文档视界 最新最全的文档下载
当前位置:文档视界 › 滑坡位移曲线

滑坡位移曲线

滑坡位移曲线
滑坡位移曲线

一、理想状态滑坡演化典型位移时间曲线:

图1 斜坡变形的三阶段演化图示

Fig.1 Sketch of three phases of slope deformation

现有的研究成果表明,斜坡的稳定性状况与其变形阶段有着直接的联系,准确地把握斜坡的变形演化阶段是进行斜坡稳定性评价和滑坡预测预报的基础。从图1斜坡变形三阶段演化模式可以分析得出,在斜坡的初始变形阶段,当变形在外界因素的作用下突然启动后,随着外减弱甚至消失,其变形速率会逐渐降低,其加速度为负值;在斜坡的等速变形阶段,由于其速率基本维持在一恒定值,加速度基本为0。而一旦进入加速变形阶段,随着变形速率的不断增加,其加速度变为正值,并呈逐渐增大的趋势,超过一界限即表示滑坡进入一临滑阶段。

图2 鸡鸣寺滑坡变形曲线图

图3 大冶铁矿东踩场滑坡位移曲线

图4 智利某露采边坡位移曲线

从图3.4可以看出,大冶铁矿东采场滑坡和智力某露采边坡的变形与图2的鸡鸣寺滑坡变形具有完全相似的规律。

二、非理想状态滑坡位移时间曲线分类

1.突变型

图5 丹巴滑坡位移时间曲线

2.稳定型

(1)平稳型

平稳性在于滑坡总体位移量随着时间增长变化幅度不大,整个区县近似与一条平缓的直线;或者围绕某一趋势上下波动,累计位移整体上升(或者下降)的幅度很小;或者有比较明显的变化趋势即位移速率趋于一定值。

图6 清江水库杨家曹滑坡时间—位移曲线

(2)收敛型

随着时间增长,位移总趋势逐渐增加,但在不同的历时阶段,位移增长幅度不同,经历了一个由快速—慢速—趋于停滞的过程,即位移速率具有递减趋势。这变化与数学收敛函数相似。

图7 清江水库墓坪滑坡位移曲线

3.非典型蠕变型

(1)震荡型

图8 振荡型滑坡位移曲线(龙羊峡龙西滑坡)

(2)阶跃型

图9 阶跃型滑坡位移曲线(三峡白水河滑坡)

图10 新滩滑坡位移曲线

(3)持续缓速蠕变——加速破坏型

随着时间增长,位移逐步增大,并且位移速率大于0,具有单调递增性其中茅坪滑坡体历时曲线是这类曲线的典型代表。

图11 白什乡滑坡位移曲线图(2007 年)

图12 白什乡滑坡加速度—时间曲线图(2007 年)

图13 清江茅坪滑坡位移曲线

图14 茅坪滑坡体位移过程线

茅坪滑坡体始终处于一种发展破坏之中,前缘后缘房屋出现众多拉裂缝,原有的裂缝进一步扩张,前缘茅坪街一代出现地表沉降。同时,前缘后缘的观测孔钻孔倾斜仪导管被剪断,出现了卡探头现象,内外的观测均表明整个滑坡体位移呈现加速变化的趋势。

三、工程灾变滑坡位移曲线的可能特征

影响滑坡发生与发展的条件有施工切坡、降雨量、地震、地下水位的变化等,这里说明降雨量对蠕变滑动的影响。

图15 武都滑坡变形与降雨量的关系(Ⅰ—Ⅵ为滑坡号)

图16 滑坡蠕动变形与月降雨量相关曲线图

滑坡监测方案

什德中快通德中项目示范段 K14+680-K14+741段滑坡监测方案 中铁十八局集团有限公司

二〇一九年十二月 什德中快速路德阳-中江段 K14+680-K14+741段滑坡监测方案 编制: 复核: 审核: 中铁十八局集团有限公司

二〇一九年十二月 K14+680-K14+741段滑坡监测方案 1. 工程概况 什德中快通德中项目示范段为什邡经德阳至中江干线公路工程德阳至中江段,本项目既是德阳主城区与中江县城之间的快速通道,又是德阳全市域范围内的一条东西走廊主通道,是德阳市“五纵五横”干线公路网的横向骨架。本项目全线按一级公路标准设计,设计速度80公里小时,路基宽度45.5米。主线起于金沙江东路终点德阳海关大楼附近,穿过齐家堰隧道后朝和新镇方向布线,与和新镇北侧通过后继续向东,过集凤镇双桥村,在隆兴场西侧飞马村附近与规划的成都市第三绕城高速隆兴互通设置双喇叭互通连接,后上跨人民渠,上跨三绕高速,向中江县城方网延伸。止于中江县二环路继光大道路口,与规划的继光大道西段对接。本监测方案为监测线路主线K14+680-K14+741段路基右侧一滑坡体。 2.目的与任务 a) 目的:用先进的仪器和设备在野外滑坡、崩塌现场及其周边地区进行连续或定期重复的测量工作,准确测定监测网和形变监测点的平面坐标、高程或空间三维相对位移值,经合理的数据处理提供监测网和形变监测点水平位移、垂直位移、裂缝及滑带相对位移等动态数据,为掌握滑坡变形规律、险情预报、灾害防治、治理,达到治工程效果的检验目的;确保滑坡体的地形地物实际变形及变形趋势,超前预报,保障滑坡体治理竣工后安全。

应急监测预警解决方案论文-国际应急管理学会TIEMS

应急监测预警解决方案 应急救援装备产业技术创新战略联盟张肖曼 摘要:随着监测预警技术的不断发展,应用在家庭、自然灾害、事故灾难和公共卫生领域的监测预警产品也逐渐成熟和扩大起来。本文主要从上述五个方面来描述各自领域一些监测预警技术和产品。 《中华人民共和国突发事件应对法》中将突发事件分为四个阶段预防与应急准备、监测与预警、应急处置与救援、事后恢复与重建。监测监控对于防范突发性公共事件,在事前预防、事中监测到事后恢复重建的各个过程中均起着重要作用。党中央、国务院高度重视突发公共事件管理工作,加强了应急预案体系、应急体制机制和法制建设,特别是以公共安全科技技术为支撑,对突发公共事件应急管理的基础理论、关键技术应用和研究给予大力支持,加强了公共安全应急风险评价、监测监控、预测预警、动态决策、综合协调等能力,提升了国家应对突发公共事件能力,最大限度地保护了人民群众的生命和财产安全。 通过监测监控,可以快速、准确地提供突发公共事件的类别、分布、影响范围及发展态势等现场动态资料信息,能为有效地控制影响范围、缩短持续时间、将损失减到最小提供有力的技术支持,从而确保对事件的快速处置和正确决策。目前监测预警技术主要应用于家庭、自然灾害、事故灾难和公共卫生五个领域。 一、家庭监测预警 在家庭生活中,通过感烟火灾探测器可以实时监测家里的烟雾浓度来实现火灾的报警。感烟火灾探测器:烟雾探测器就是通过监测烟雾的浓度来实现火灾报警的探测器。常用的感烟探测器有离子感烟探测器、光电感烟探测器及红外光束线性感烟探测器。 一氧化碳检测仪是一款高亮度液晶指示,可以灵活配置多种不同气体传感器的气体检测仪器。仪器可连续检测有毒气体、氧气、易燃易爆气体浓度,随时观察现气体浓度值。 洪水监测仪通常使用在家庭地下室、电脑室、低洼地及文件储存间,洪水监测仪能够及时监测到水位位置,达到预设值时,洪水监测仪会自动发出报警。

滑坡监测方案111

目录 1.工程概况··························································错误!未定义书签。 2. 目的与任务 (1) 3、执行的技术规范与依据 (1) 4、滑坡监测内容、监测方法和工作量布设 (1) 4.1 监测内容 (1) 4.2 监测方法 (1) 4.3 监测周期 (1) 4.4 监测频率 (1) 4.5 监测的等级 (1) 4.6 布设监测工作量 (2) 5、监测工作实施方案 (2) 5.1监测系统基准网及监测网的建立、实施 (2) 5.2 监测基准网施测 (3) 5.3 变形观测点施测 (3) 5.4 位移监测点的建立及实施 (4) 6 监测数据的整理及分析 (4) 6.1 监测数据的整理 (4) 6.2 监测数据的分析及上报 (4) 6.3险情预警标准 (4) 7、人员与设备组织 (5)

8、提交成果资料 (5) 郴州市梅田区滑坡监测方案 1. 工程概况: 梅田区滑坡位于郴州市宜章县,滑坡与市区道路仅有人行便道连接,交通条件较差。工作区位于郴州地南端,处于山区过渡地带,气候温和湿润,雨量较充沛,光照适宜,四季分明,属亚热带湿润气候带。降雨多集中在夏季,多暴雨、大暴雨,引发洪涝灾害,江河猛涨,山洪爆发。多年平均气温16.0℃,多年平均降雨量为972.6mm,每年降雨主要集中在5~9月,其间降雨总量占全年降雨总量的75%。多年月平均降雨量最高为7月的236.8mm,最低为1月的3.8mm,最大一日降雨量为220.5mm,最大雨强为70mm/h。工作区位于斜坡上部位,坡面冲沟不发育,无地表水流。 2.目的与任务: a) 目的: 用常规的或先进的仪器和设备在野外滑坡、崩塌现场及其周边地区进行连续或定期重复的测量工作,准确测定监测网和形变监测点的平面坐标、高程或空间三维相对位移值,经合理的数据处理提供监测网和形变监测点水平位移、垂直位移、裂缝及滑带相对位移等动态数据,为掌握滑坡变形规律、险情预报、灾害防治、治理,达到治工程效果的检验目的;确保竣工斜坡体的地形地物实际变形及变形趋势,超前预报,保障斜坡体治理竣工后安全。 b) 任务: 1) 对斜坡体进行地表(包括构筑物顶部)的位移与沉降监。 2) 通过监测数据获得滑坡局部和整体变形及变形趋势,检验滑坡稳定状况。 3) 与气候、地下水位变化相联系,分析滑坡、危岩变形与之的相关性规律。 4) 在治理工程期间监测斜坡体的地形地物实际变形及变形趋势,超前预报,确保施工安全。 5) 提供治理工程效果评价报告,以及必要时的预警报告。 3 . 执行的技术规范与依据 a) 《工程测量规范》(GB 50026-2007)。 b) 《建筑变形测量规程》(JGJ/T 8-97)。 c) 《国家一、二等水准测量规范》(GB/T 12897-2006)。 d) 《精密工程测量规范》(GB/T 15314-94)。 e)《国家三角测量和精密导线测量规范》 4 . 变形斜坡体监测内容、监测方法和工作量布设 4.1 监测内容 根据《设计》要求,此次滑坡动态监测包括地表大地变形监测,沉降监测。 4.2 监测方法 a) 各观测点的水平位移采用测线支距法及光电极坐标法; b) 垂直位移采用电磁波测距三角高程测量; 4.3 监测周期 本监测工作从滑坡坡治理工程结束后共计6个月时间。 4.4 监测频率 水平位移变形观测、垂直位移变形观测:每月观测一次,遇特殊情况应增加观测次数,(如大雨后、绵雨期、自然条件急剧变化情况下)或平常发现山体有异常变化亦应增加观测次数

滑坡体水平位移观测方案

金阳新区融创.名品城边坡变形观测方案 贵州蓝岭地质工程勘测有限公司 二○一○年三月

金阳新区融创.名品城边坡变形观测方案 拟编: 审核: 总工程师: 贵州蓝岭地质工程勘测有限公司 2011年3月22日

正文目录 一、工程概况.............................................................. 错误!未定义书签。 二、滑坡监测目的...................................................... 错误!未定义书签。 三、滑坡监测要求...................................................... 错误!未定义书签。 四、监测内容.............................................................. 错误!未定义书签。 1、滑坡体水平位移观测点的布置 ................. 错误!未定义书签。 2 、测站点及后视点布置 ................................. 错误!未定义书签。 3、观测点制作及要求 ....................................... 错误!未定义书签。 1、边坡点制作 ........................................... 错误!未定义书签。 2、钢钉制作 ............................................... 错误!未定义书签。 4、观测方法........................................................ 错误!未定义书签。 6、观测设备........................................................ 错误!未定义书签。 7、观测中的问题 ............................................... 错误!未定义书签。 四、结论及建议.......................................................... 错误!未定义书签。

滑坡深部位移监测方法和设备的比较

滑坡深部位移监测方法和设备的比较 熊清远(2015年1月) 确定滑坡深部滑带、测量滑坡深部岩土体活动和变化趋向是研究滑坡稳定性的重要内容。目前根据钻孔来监测滑坡体滑动的方法主要有以下三种:①倾斜仪;②CZ-2型固定式钻孔倾斜仪;③GPRS深部自动监测报警系统。目前国内外监测滑坡和岩土层深部水平位移的仪器趋向正由活动式向固定式发展,人工仪器向智能自动化、数据远程传输、通过阀值设定自动报警方向发展。 一、倾斜仪 通过测量钻孔内导槽随时间的倾斜变化及铅垂线随时间的变化,来测量岩土体的水平位移变化的仪器。见图1。目前我国在滑坡和岩土层深部水平位移监测上采用的钻孔倾斜仪(或称测斜仪)大多数是移动式钻孔倾斜仪,一台仪器测量多个监测钻孔。 1、优点 ⑴测量方法简单可行,采用人工定 期监测,定期总结监测资料; ⑵一次性投资少。 2、缺点 ⑴不能实现远程及恶劣天气下采集 数据; ⑵不能实时连续监测; ⑶不能实现灾害中、后期的监测预报,在测斜管受到变形或剪断后,倾

斜仪无法下到测点位置进行测量,使监测钻孔报废(见图2)。 ⑷导槽安装不好会造成测量数据不准确; ⑸有人值守需要大量人力、物力和资金; ⑹无报警功能。 二、CZ-2型固定式钻孔倾斜仪 全套仪器由探管、电缆接线、GPRS数据发收器、微电脑时控开关、专用电源等组成(见图3)。 探管中安装有传感器和电子电路,传感器采用高精度集成加速度传感器,能够水平二向测量岩土层深部水平位移,单片机控制直接采集位移数据,232接口自动向地表发出采集数据。探管有单探管和多探管2种,根据测量需要由多节单探管组成多探管,中间由空心连杆联接,连杆内空间是导线通道,

沉降位移观测方案

沉降位移观测方案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

沉降位移观测方案 一、工程概况 本工程利用与京杭运河相连的陆窖灌溉引水渠,在其两侧建设4个2000吨级泊位,6个1000吨级泊位和2个1000吨级多用途泊位,泊位岸线总长856m,拓宽水渠作为港池靠船,码头采用现浇扶壁式结构,码头基础采用抛石基床,后方回填土方形成码头堆场。该工程沉降位移观测的关键是在码头胸墙后方回填土过程中对码头的沉降位移观测。 二、技术标准和规范 1、宿迁中心港果园作业区二期工程《施工图设计说明》 2、《国家一、二等水准测量规范》(GB/T12897-2006) 3、《建筑变形测量规范》(JGJ8-2007) 4、《工程测量规范》(GB50026-2007) 5、《水工工程测量规范》(JTJ203-2001) 三、沉降位移观测目的 沉降、位移观测是码头结构不可忽视的工作之一,特别是该工程在土方回填过程中,通过沉降、位移观测,可以监测码头胸墙的沉降位移情况,便于及时发现异常情况,采取措施,同时也为优化填土方案及填土速率,提供直接的数据参考,确保工程的安全施工及后期运行。 四、测量精度指标与观测仪器的选择 1.根据设计要求和现行国家规范中对建筑物沉降、位移观测的各项规定,结合本工程具体的特点,建筑变形测量规范的三级标准满足本工程的需要,用来作为本工程的变形观测工作的精度指标。建筑变形测量规范标准为沉降观测点测站高差中的中误差为± m,位移观测点坐标中误差为±10m m。

2.在沉降观测工作中选用DSZ2精密自动安平水准仪上加装测微器,配合精密铝合金水准尺进行作业,读数精度可以达到。位移观测选用徕卡TCRP1201+全站仪,其测距精度为1mm+*D,测角精度为″。 3.为观测工作提供技术保证,监测所用的观测仪器等设备定期经过校核,定期计量监督检测院等鉴定。 五、沉降位移控制点的布设及联测 在码头上下游离开施工区域30至50米各设一个固定测站点,测站点处下挖米深,1米见方的基坑用浆砌块石填筑后在其中间浇筑混凝土观测墩,观测墩尺寸为上口30cm,下口40cm,高。观测墩顶部预埋强制对中基座及水准点。观测墩周围用涂有红白相间的钢管围栏进行保护,并设立警示牌。观测墩稳定后与码头平面高程控制网进行联测平差。 六、沉降位移观测点布设 观测点设置在胸墙顶部护轮坎的中间位置,每道伸缩缝旁的同一侧设置一个观测点。埋设钉预埋的时候顶部不超过护轮的顶高程,但是不低于1cm,埋设钉外露4cm,用5cm长,直径10cm的PVC管套在其周围与混凝土分离。埋设的观测钉如下图所示,埋设时要牢固并且保持垂直。 埋设钉反射棱镜埋设钉和反射棱镜的连接 七、沉降位移观测的方法、频率 1、平面位移观测方法。在观测墩上利用连接螺栓架设全站仪,后视另一个观测墩,测量每一个预埋钉的平面角度和距离,角度测量两个测回,距离正倒

沉降观测报告(模板)

沉降观测报告模板 一.工程概况: 简述工程规模,结构形式,地基,高度,建筑面积,抗震烈度,抗震设防等级,设计的沉降观测要求,观测点建立时间,观测周期,观测等级等。 二. 沉降观测采用的规范及标准 1.《建筑变形测量规程》JGJ/T8-97; 2.《国家一、二等水准测量规范》GB/12897-2006; 3《建筑地基基础设计规范》(GB 50007-2002) 4.《建筑工程资料管理规程》 5《工程测量规范》GB/50026-2007 6《建筑变形测量规程》GB/8-2007 7.本工程《技术设计书》; 三. 沉降观测依据及要求 依据工程设计图纸要求及沉降观测施工规范、规程做观测详细说明。 四. 观测目的及要求: 沉降观测的主要目的:是监测建筑物(构筑物)在施工期间以及后续各个阶段的沉降状态和工作情况,并为建设单位、设计单位和施工单位提供准确可靠的建筑物动态沉降数据,以便在发生不正常现象时,使各方能及时分析原因,采取措施,防止事故发生,

确保工程质量安全。 建筑沉降观测能测定建筑及地基的沉降量、沉降差及沉降速率,并根据需要计算基础倾斜、局部倾斜等数据。 五. 基准点和沉降观测点的设置 1基准点是沉降观测起始数据的基本控制点,为保证观测值的高可靠性,在施工区附近(变形区外)埋设沉降观测水准基点,所埋基准点根据《建筑变形测量规范》JGJ/T8-2007中的规定进行建立。基准点的个数,可根据工程规模的大小合理布设。本建筑共埋设4个基准点,高程系统采用假定高程BM1=m,也可采用施工区域内国家高程系统,高程值为甲方提供绝对高程值。基准点的建立必须用高精度水准仪引测,经过闭合、平差计算而来,并定期检验基准点的稳定性。至提交报告时基准点稳定可靠,符合规范要求。 2依据《建筑变形测量规范》JGJ/T 8-2007中的规定,沉降观测点的布置以能全面反映建筑物地基变形特征并结合地质情况及建筑物结构特点进行,变形观测点均设在建筑主要受力位置。点位设置的高度应有利于观测,且不影响施工的原则,并有利于长期保存。变形观测点均设在建筑主要受力点上。每个建筑物或构筑物在施工平面图上,都合理设置沉降观测点

滑坡监测报告

滑坡监测报告

五盂高速公路盂县境内梁家寨段滑坡监测 技 术 总 结 山西测绘工程院 第 1 页共12页

2014年7月2日 目录 一、概述 (3) 1.1工程概况 (3) 1.2目标与任务 (3) 二、监测依据 (4) 三、工作组织与设备配置 (4) 3.1人员安排 (4) 3.2设备配置 (4) 四、监测方法及等级 (6) 4.1坐标系统的选择 (6) 4.2监测等级 (6) 4.2监测方法的选择 (6) 五、项目工期及完成的工作量 (7) 六、基准点的布设、观测、解算、精度、检测及稳定性分析 (8) 6.1基准点的布设 (8) 6.2基准点的观测 (8) 6.3基准点的解算及精度分析 (8) 6.4基准点的检测及稳定性分析 (11) 七、监测结果数据分析 (13) 八、结论 (15) 九、附件 (16) 第 2 页共12页

五盂高速公路盂县境内梁家寨段滑坡监测 技术总结 一、概述 1.1工程概况 滑坡监测点位于盂县梁家寨乡椿树底村大垴梁。滑坡体范围面积约18000平方米,滑坡体南北走向,下方有在建高速公路和村庄,北侧已发生过滑坡现象,现发现滑坡体范围已出现裂缝,相关部门已进行了应急处理,为进一步掌握滑坡体的变形情况,获得斜坡体发展变化趋势,须对滑坡体进行监测,通过对地表位移、沉降的监测,从而监测斜坡体的地形地物实际变形及变形趋势。 受山西省交通规划勘察设计院委托,山西省测绘工程院承担该滑坡的监测工作。 1.2工作任务及工作量 通过对滑坡区域及周围地表水平位移、垂直位移的监测,为分析研究滑坡体的稳定性现状及发展趋势,及滑坡体的治理工程设计提供科学、准确、及时 的数据基础。具体任务及工作量如下: 协助设计单位完成监测点、基准点的布设工作,根据现场地质情况和监测要求,整个工作区域分4条轴线,共布设监测点24个,基准点4个。 1.3工作时间及进度 (1)、2014年4月28日至5月8日进行基准点及监测点布设 (2)、2014年5月15日至5月16日连续观测两天作为第一组观测数据 (3)、2014年5月17日至5月18日进行基准点和部分监测点的二等水准测量 第 3 页共12页

沉降位移观测方案教学资料

沉降位移观测方案

沉降位移观测方案 一、工程概况 本工程利用与京杭运河相连的陆窖灌溉引水渠,在其两侧建设4个2000吨级泊位,6个1000吨级泊位和2个1000吨级多用途泊位,泊位岸线总长856m,拓宽水渠作为港池靠船,码头采用现浇扶壁式结构,码头基础采用抛石基床,后方回填土方形成码头堆场。该工程沉降位移观测的关键是在码头胸墙后方回填土过程中对码头的沉降位移观测。 二、技术标准和规范 1、宿迁中心港果园作业区二期工程《施工图设计说明》 2、《国家一、二等水准测量规范》(GB/T12897-2006) 3、《建筑变形测量规范》(JGJ8-2007) 4、《工程测量规范》(GB50026-2007) 5、《水工工程测量规范》(JTJ203-2001) 三、沉降位移观测目的 沉降、位移观测是码头结构不可忽视的工作之一,特别是该工程在土方回填过程中,通过沉降、位移观测,可以监测码头胸墙的沉降位移情况,便于及时发现异常情况,采取措施,同时也为优化填土方案及填土速率,提供直接的数据参考,确保工程的安全施工及后期运行。 四、测量精度指标与观测仪器的选择 1.根据设计要求和现行国家规范中对建筑物沉降、位移观测的各项规定,结合本工程具体的特点,建筑变形测量规范的三级标准满足本工程的需要,用

来作为本工程的变形观测工作的精度指标。建筑变形测量规范标准为沉降观测点测站高差中的中误差为±1.5m m,位移观测点坐标中误差为±10m m。 2.在沉降观测工作中选用DSZ2精密自动安平水准仪上加装测微器,配合精密铝合金水准尺进行作业,读数精度可以达到0.1mm。位移观测选用徕卡TCRP1201+全站仪,其测距精度为1mm+1.5ppm*D,测角精度为1.0″。 3.为观测工作提供技术保证,监测所用的观测仪器等设备定期经过校核,定期计量监督检测院等鉴定。 五、沉降位移控制点的布设及联测 在码头上下游离开施工区域30至50米各设一个固定测站点,测站点处下挖1.5米深,1米见方的基坑用浆砌块石填筑后在其中间浇筑混凝土观测墩,观测墩尺寸为上口30cm,下口40cm,高 1.3m。观测墩顶部预埋强制对中基座及水准点。观测墩周围用涂有红白相间的钢管围栏进行保护,并设立警示牌。观测墩稳定后与码头平面高程控制网进行联测平差。 六、沉降位移观测点布设 观测点设置在胸墙顶部护轮坎的中间位置,每道伸缩缝旁的同一侧设置一个观测点。埋设钉预埋的时候顶部不超过护轮的顶高程,但是不低于1cm,埋设钉外露4cm,用5cm长,直径10cm的PVC管套在其周围与混凝土分离。埋设的观测钉如下图所示,埋设时要牢固并且保持垂直。

沉降观测措施

目录 1. 工程概况 2. 编制依据 3. 沉降观测方法 沉降观测目的 基准点选择 沉降观测标设计、制作、埋设 沉降观测路线的布设 沉降观测操作步骤及观测程序 沉降观测周期及要求 精度评定及内业计算 沉降观测成果整理 4.沉降观测人员组成 5.沉降观测仪器配备 6. 沉降观测技术要求 7.沉降原因分析 8.沉降观测标的保护 9.安全文明施工措施

1.工程概况 大唐保定热电厂八期扩建工程包括汽机间、除氧煤仓间、锅炉间、集控楼、主厂变等,土建、安装同时进行,沉降观测制约因素较多,同时安装各阶段观测周期确定,希望项目部各职能部门及相关专业工地密切配合,保证此项工作顺利完成。 此次沉降观测总计包括43个点,其中汽机间(A列)布置6个点;除氧煤仓间布置13个点;锅炉间布置10个点;汽机基座0m10个点、10m运转层4个点。 2.编制依据 《主厂房沉降观测图》(F1031S-T0238) 《国家一、二等水准测量规范》(GB12897—91) 《工程测量规范》(GB50026—93) 《电力建设施工及验收规范》(建筑工程篇、锅炉机组篇、汽轮机机组篇) 《建筑地基基础设计规范》(GB50007-2002) 《电力建设安全操作规程》 3.沉降观测方法 沉降观测目的 首先,通过沉降观测取得沉降量、沉降观测曲线图,可监视建(构)筑物在施工过程和使用过程的状态变化和工作情况,在发现不正常现象(如框架下沉、裂缝等)时及时分析原因,采取必要的措施,防止事故发生,并改善运营方式,以保证安全生产。 其次,通过在施工和运营期间对工程建(构)筑物原体进行观测分析研究,可验证地基与基础的计算方法、工程结构的设计方法,对不同的地基与工程结构规定合理的允许沉降、变形数值,为工程建(构)筑物的设计、施工、运行工作提供资料。 基准点的选择 基准点选择2个,在主厂房固定端并经验收通过。 在沉降观测首次观测前,必须对水准基点进行联测,以后每半年或发现工作基点有异常时联测一次,发现问题及时修正,确保沉降观测成果资料真实可靠。 沉降观测标设计、制作、埋设 按《主厂房沉降观测点》(T208(4)—01)要求,0m层观测标选用详图TG—1中(6)型制作。观测标选用φ25不锈钢,由修造厂机加工成型;护圈用φ18 A3钢制作。观测标标高为+。 汽轮机10m运转层观测标选用详图TG—1中(1)型制作。 钢筋混凝土柱在封模浇筑砼前事先在设计位置埋设(300×300×10)预埋件,钢柱在就位并柱脚二次浇灌后,把观测标焊接在预埋件及钢柱设计位置上,焊缝高≥5mm。汽轮机10m运转层观测标在钢筋绑扎完毕,将观测标焊接固定于设计位置。 沉降观测路线的布设 观测路线布设成四个闭合环,其中主厂房(A)、(B)、(C)、(D)列13个点一个闭合环;锅炉间(K1-K4)列10个点一个闭合环;汽机基座0m10个点一个闭合环,10m运转层4个点组

山体滑坡监控预警完整系统[详细]

山体滑坡预警监测系统 一、需求概述 1.山体滑坡24小时全天候监测需求 监测区域处于滑坡多发地段,临近居民区,需要采取24小时全天候的预警动态监测手段,及时发出监测预警信息, 预警山体滑坡、泥石流等地质灾害而免受或减少损失. 2.自动报警定位需求 支持在山体滑坡或泥石流等地质灾害发生前,通过精密仪器及时监测出山体松动、偏移的微小征兆,在及时发现并立刻自动报警的同时,迅速确认并在监测地图上显示滑坡位置. 3.预警预测需求 支持通过分析长期的山体位移变化,预测未来可能产生的安全隐患,提前做好防范补救准备. 4.信息查询管理需求 可以对历史监测数据、报警数据、统计图表数据等进行查询管理.并建立数据档案,用于长期监测研究.

二、 系统总体方案 1. 系统总体架构方案 1) 基础层 基础成主要是整个系统的 基础硬件,是整个系统架构的 基础. 数据传输与接收接口服务 基础层 实时监测数据 历史监测数据 基础地理数据 报警信息数据 监测分析数据 数据层 自动监测预警软件 预测分析管理软件 滑坡位置方向监测 预警短信发布管理监测数据管理存储 历史数据查询管理 报警信息查询软件 数据收发接口管理 系统维护管理软件 应用层 表现层

主要有激光测距传感器终端、网络平台、计算机等硬件设备.监测终端采集数据通过传输网络与计算机平台互通,形成一个集成的系统. 2)数据层 整个系统的数据包括传感器监测的实时数据、历史数据、图表分析数据、报警信息数据、历史报警信息数据、地理空间数据等.是整个系统的数据核心. 3)应用层 在基础层和数据层基础上,开发应用系统,包括数据管理、自动报警、图形分析预测等若干功能软件 4)表现层 是指最终系统的操作界面,将有电子地图为系统地图,实现各种功能包括报警、图表查询、图形分析等功能操作界面. 2.系统总体配置方案 本系统从用户需求出发需求配置:激光测距监测设备终端设备、监测预警平台软件、无线传输设备. 1)激光测距监测设备3套.

第五章沉降观测习题

第四分册建筑主体结构工程检测技术 第一篇主体结构现场检测 5. 沉降观测习题集 单位: 姓名: 上岗证号: 得分: 一、填空题 1、垂直位移监测,可根据需要按变形观测点的中误差或相邻变形观测点的中误差,确定监测精度等级。 2、变形监测网基准点应选在稳固可靠的位置,工作基点应选在比较稳定且的位置,变形观测点应设立在能反映的位置或监测断面上。 3、监测基准网应由和构成。 4、垂直位移监测基准网,应布设成形网并采用方法观测。 5、DS05级水准仪视准轴与水准管轴的夹角不得大于″。 6、垂直位移观测起始点高程宜采用测区原有高程系统。较小规模的监测工程,可采用系统;较大规模的监测工程,宜与联测。 7、建筑物沉降观测应测定建筑及地基的、及。 8、建筑物沉降观测:如果最后两个观测周期的平均沉降速率小于 mm/日,可以认为整体趋于稳定,如果各点的沉降速率均小于 mm/日,即可终止观测;否则,应继续每个月观测一次,直至建筑物稳定为止。 9、建筑主体倾斜观测应测定建筑顶部观测点相对于底部固定点或上层相对于下层观测点的、及。 10、建筑物整体倾斜观测应避开强和的时间段。 11、当利用相对沉降量间接确定建筑整体倾斜时,可选用和和两中方法。 12、沉降观测标志一般分为、、。 13、垂直位移监测,可根据需要按或,确定监测精度等级。

14、沉降观测时,仪器应避免安置在有空压机、搅拌机、卷扬机、起重机等的范围内。 二、单项选择题 1、每个工程变形监测应至少有()个基准点。 A、2 B、3 C、4 D、4 2、监测基准网应多长时间复测一次()。 A、2个月 B、3个月 C、6个月 D、1年 3、施工沉降观测过程中,若工程暂时停工,停工期间可每隔多长时间观测一次,正确答案选()。 A、1-2个月 B、2-3个月 C、3-4个月 D、4-5个月 4、塔形、圆形建筑或构件宜采用以下那种方法检测主体倾斜,正确答案选()。 A、投点法 B、测水平角法 C、前方交会法 D、正、倒垂线法 5、工业厂房或多层民用建筑的沉降观测总次数,不应少于()次。 A、3 B、4 C、5 D、6 6、对于深基础建筑或高层、超高层建筑,沉降观测应从()时开始。 A、上部结构施工 B、主体封顶时 C、不一定 D、基础施工 7、变形监测的精度指标值,是综合了设计和相关施工规范已确定的允许变形量的()作为测量精度值。 A、1/10 B、1/30 C、1/20 D、1/25

滑坡监测解决方案

北斗玉衡滑坡监测系统北京北斗星通导航技术股份有限公司

目录 一.概述 (3) 二.监测原理 (3) 三.系统组成 (3) 四.软件、硬件设备 (4) 五.技术优势 (13)

一.概述 “地质灾害隐患点”多分布在野外、不发达农村,交通、通讯、电力支持都极为不方便的地区,如何对地质灾害的隐患点,特别是对危害极大的如:山体滑坡、泥石流、地质断层等等地质危害地带进行长期的有效的监测,并能够及时地将这些灾害的发生实时现况反映到应急中心,保护人民生命安全,减少人民群众的财产损失,已成为地质监测人员和相关地质灾害应急管理部门的当务之急。一种廉价的、便捷的、不受时间空间制约的、可长期对地质灾害隐患点实施在线监测手段,是各地质灾害研究、应急管理部门最迫切的需求。 北斗星通导航技术股份有限公司GNSS应用事业部致力于为客户提供稳定可靠、实时动态的北斗卫星监测数据。通过互联网、北斗传输、无线通信技术等,实现全天候、自动化的地表位移实时监控。为预防滑坡灾害提供第一时间数据分析资料。同时为提前判断滑坡的发生做出准确预测提供可靠的技术手段,以减少生命财产损失,发挥最大的社会效益。 二.监测原理 滑坡的发生分三个阶段:蠕动变形阶段、滑坡破坏阶段和渐趋稳定阶段。在蠕动变形阶段,斜坡内部某一部分因抗剪强度小于剪切力而首先变形,产生微小的移动;变形进一步发展,直至坡面出现断续的拉张裂缝;随着拉张裂缝的出现,渗水作用加强,变形进一步发展,后缘拉张,裂缝加宽。逐渐发展到滑坡破坏阶段。基于此滑坡变化规律,通过北斗卫星高精度导航定位技术,实时监测滑坡体地表变形的大小、速率,监控滑坡的发展变化情况。实时掌握滑坡体的位移变化信息。实现为预防滑坡灾害做好预测预报。 三.系统组成 基于北斗的滑坡监测系统由以下部分组成:GNSS(Global Navigation Satellite System)数据采集系统、供电系统、数据传输系统、避雷系统、数据处理与监控中心等。同时可拓展兼容雨量计、土壤含税率计、深部测斜等多种传感器。 1.系统工作原理

11.基于三维GIS的滑坡灾害监测预警系统及应用

万方数据

3380岩土力学2009年 表形态信息和地质分布信息,通过剖面图信息和钻孔信息等资料,能够生成三维地质模型。建立三维地质模型的主要难点在于:地质体是一个三维性、非均质性非常明显的复杂体,然而工程中由于成本等原因导致获取的资料分布及其不均匀,也就是说,在重点监测部分的地质信息获取资料真实而且详细,在非重点区域中的地质资料基本靠推测得到。2.1地表TIN模型的建立 相对于地质模型,地表模型的资料是容易获取并且精度比较高。在工程中,地表模型的资料一般表现为等高线的形成,数据格式多数为AUTOCAD的格式,通过读取AUTOCAD文件,可以获得地表模型的离散点,对地表离散点集合,通过重要点法(ⅥP法)取得离散点的重要点集,然后采用三角网生长算法将重要点集剖分为TIN[12-13]网格。图l表达了三角网剖分的三角网生长法剖分步骤。 对原始数据进行递 pj分割.将原始数 ~.田l三角冈剖分-三角罔生长算法 Fig.1Triangulation—growingmethodfordelaunay triangulation 2.2滑坡体模型的建立 相对于地表模型的建立来说,滑坡体模型的建立相对比较复杂,其主要原因是由于地质资料调查不够详细。为了通过少量的钻孔资料和地质剖面线资料建立滑坡体模型,需要充分利用地表模型提供的信息。如图2所示钻孔的Zl、Z2、Z3的地质分层数量不一致,对Z3钻孔中没有I层的信息,所以对第U面进行插值时,在Z3钻孔的位置采取第1个面的高度进行代替。在最终进行插值时,不采取高度直接插值,而是采用第1面和II面的差来进行插值。插值完成后,用第1面的高度减去第1I面的高度,得到第1I面的最终高度。对于第1I面和第1面高度一致的地方,采用无效值代替第1I面的高度,进行有约束条件的构造TIN,形成第1I面的TIN。 图2通过钻孔与地表数据共同插值 Fig.2Interpolatingbydrillandterrain 对于其他各层的数据面,采用相同的方法进行构建。对不同的层,将边界进行连接,形成最终的滑坡体地质模型。 3系统预测模型的建立 ARMA序列‘14—15】的数学模型是有限参数线形模型,对于满足有限参数线形模型的平稳时间序列的分析,在理论上已趋成熟,并且广泛应用在很多的领域。它用有限参数线形模型描述时间序列的自相关结构,便于进行统计分析与数学处理。在监测数据的预测中,利用ARMA模型描述的时间序列预报问题有着重要的意义。 把具有如下结构的模型称为自回归滑动平均模型,简记为ARMA(p,q): 藜曩00Vat(e,)j0篡.2:t~坼1}砟≠o,伤≠l E(‘)=,=。,E(£‘)=o,s≠JE(‘乞)=o,协<fJ 式中:P、q称为模型阶数,卢=(晚,钨,…,丸,仍,…,仍)∈RpⅢ1为模型参数。若庇=0,则称该模型为中心化ARMAp,g):若P--0,则该模型为滑动平均模型MA国);若g=o,则该模型为自回归模型AR(p)。 通过计算可以得到自相关函数dCF与偏自相关函数PACF,从而可以确定出模型及其阶数,以及模型参数∥,得到预测方程如下: Go=l,Gj=∑(群Gf一。一《)(七≥1)(2) 七;J rP口 l∥+∑馋暑(,一0一∑谚£(f+,一f),,≤q 暑(,)={。吾纠(3)I∥+∑谚l(,一f),,>g 》》 型∞一驹:一固:酉万方数据

(完整word版)地质灾害监测预警系统方案

地质灾害监测预警系统方案

目录 第一章项目概述 (3) 1.1项目背景 (3) 1.2建设目标 (3) 1.3需求描述 (4) 第二章总体架构 (5) 2.1系统架构 (5) 2.2预警发布 (6) 2.2.1发布权限 (6) 2.2.2预警发布内容 (6) 2.2.3预警信息发布对象 (7) 2.3预警发布方式 (7) 2.4预警发布通信方案 (7) 第三章详细实现 (8) 3.1概述 (8) 3.2系统架构 (8) 3.3水雨情监测系统 (10) 3.3.1中心监控平台 (12) 3.3.2前端采集设备 (13) 3.4无线预警广播系统 (16) 3.4.1预警中心系统 (16) 3.4.2预警终端 (17) 3.4.3预警信息发布流程 (17) 3.4.4预警组网方式 (18) 3.4.5相关设备的准备及安装 (22) 3.5LED发布系统 (23) 第四章总结 (26)

第一章项目概述 1.1 项目背景 泥石流是指在山区或者其他沟谷深壑,地形险峻的地区,因为暴雨、暴雪或其他自然灾害引发的山体滑坡并携带有大量泥沙以及石块的特殊洪流。泥石流具有突然性以及流速快,流量大,物质容量大和破坏力强等特点。发生泥石流常常会冲毁公路铁路等交通设施甚至村镇等,造成巨大损失。 泥石流一般发生在半干旱山区或高原冰川区。这里的地形十分陡峭,泥沙、石块等堆积物较多,树木很少。一旦暴雨来临或冰川解冻,大大小小的石块有了足够的水分,便会顺着斜坡滑动起来,形成泥石流。而我国是一个多山的国家,山丘区面积约占国土面积的三分之二。据调查,全国所有的县级行政区中,有75%在山区,而这75%的山区县级行政区聚集了全国56%的人口。由于山丘区居住的人口数量多、密度大、分布广,以及典型的季风气候导致的降雨时空分布不均和复杂的地形地质因素等,每年汛期,随着暴雨或冰川融化,极易形成泥石流。居住在山丘区的广大群众的生命财产安全都将面临山洪、泥石流和山体滑坡等灾害的严重威胁,其中7400万人直接受到影响。 地质灾害的防御策略是“以防为主,防重于抢”,防御防治的方法是既要采取工程措施,提高工程防治标准,也要采取非工程措施,建立综合预防减灾体系,提高防灾抗风险能力。 综上所述,建立地质灾害监测预警系统,是防治山洪、泥石流、山体滑坡等地质灾害的一项重要的非工程性措施。 1.2 建设目标 完整的地质灾害监测预警系统应同时具备:水雨情监测系统、LED灾情发布系统、无线预警广播系统。 水雨情监测系统应能够实时监测现场的地质数据,气候数据等,为预警信息的发布提供数据依据,并由LED灾情发布系统和无线预警广播系统进行预警发布。当地质灾害发生时,系统能有效地发布预警信号,提示当地民众及时防范或撤离。

建筑物沉降观测和基坑变形监测点布设及报告2

2、监测点的布设 2.0.1基坑顶部竖向位移 监测点布设在基坑边坡顶部的,应沿基坑周边布置,基坑周边中部、阳角处应布置监测点。监测点间距不宜大于20m,每边监测点数目不应少于3个。监测点宜设置在基坑边坡坡顶上。 监测点布设在在围护墙上的,应沿围护墙的周边布置,围护墙周边中部、阳角处应布置监测点。监测点间距不宜大于20m,每边监测点数目不应少于3个。监测点宜设置在冠梁上。 2.0.2基坑顶部水平位移 监测点的布设同2.1 基坑顶部竖向位移,宜为共用点。 2.0.3坑外土体深层水平位移 深层水平位移监测孔宜布置在基坑边坡、围护墙周边的中心处及代表性的部位,数量和间距视具体情况而定,但每边至少应设1个监测孔。 2.0.4 地下水位 水位监测点应沿基坑周边、被保护对象(如建筑物、地下管线等)周边或在两者之间布置,监测点间距宜为20~50m。相邻建(构)筑物、重要的地下管线或管线密集处应布置水位监测点;如有止水帷幕,宜布置在止水帷幕的外侧约2m处。 2.0.5 锚(杆)索拉力 锚(杆)索的拉力监测点应选择在受力较大且有代表性的位置,基坑每边跨中部位和地质条件复杂的区域宜布置监测点。每层锚杆的拉力监测点数量应为该层锚杆总数的1~3%,并不应少于3根。每层监测点在竖向上的位置宜保持一致。每根杆体上的测试点应设置在锚头附近位置。 2.0.6支护桩桩身内力

支护桩桩身内力监测点应布置在受力、变形较大且有代表性的部位,监测点数量和横向间距视具体情况而定,但每边至少应设1处监测点。竖直方向监测点应布置在弯矩较大处,监测点间距宜为3~5m。 2.0.7支撑内力 支撑内力监测点的布置应符合下列要求: 1、监测点宜设置在支撑内力较大或在整个支撑系统中起关键作用的杆件上; 2、每道支撑的内力监测点不应少于3个,各道支撑的监测点位置宜在竖向保持一致; 3、钢支撑的监测截面根据测试仪器宜布置在支撑长度的1/3部位或支撑的端头。钢筋混凝土支撑的监测截面宜布置在支撑长度的1/3部位; 4、每个监测点截面内传感器的设置数量及布置应满足不同传感器测试要求。 2.0.8 围护墙侧向土压力 围护墙侧向土压力监测点的布置应符合下列要求: 1、监测点应布置在受力、土质条件变化较大或有代表性的部位; 2、平面布置上基坑每边不宜少于2个测点。在竖向布置上,测点间距宜为2~5m,测点下部宜密; 3、当按土层分布情况布设时,每层应至少布设1个测点,且布置在各层土的中部; 4、土压力盒应紧贴围护墙布置,宜预设在围护墙的迎土面一侧。 2.0.9土体分层竖向位移 土体分层竖向位移监测孔应布置在有代表性的部位,数量视具体情况确定,并形成监测剖面。同一监测孔的测点宜沿竖向布置在各层土内,数量与深度应根据具体情况确定,在厚度较大的土层中应适当加密。 2.0.10立柱竖向位移 立柱的竖向位移监测点宜布置在基坑中部、多根支撑交汇处、施工栈桥下、

基坑位移沉降观测记录表

基坑位移沉降观测记录表 工程名称:海淀区西北旺镇辛店居住组团A02地块3#人防出口观测时间:2012.9.29 依据高程:45.1 序号位移 尺寸 点位高 程(M) 位移方向本次位移 (MM) 累计位 移(MM) 本(MM) 次沉降 累计沉 降 (MM) Z1 10 44.516 向西 Z2 72 44.502 向西 抄测人: 基坑位移沉降观测记录表 工程名称:海淀区西北旺镇辛店居住组团A02地块3#人防出口观测时间:2012.10.02 依据高程:45.1 序号测点 读数 点位高 程(M) 位移方向本次位移 (MM) 累计位 移(MM) 本次沉降 (MM) 累计沉 降 (MM) Z1 10 44.516 向西0 0 0 Z2 72 44.502 向西0 0 0 抄测人:

基坑位移沉降观测记录表 工程名称:海淀区西北旺镇辛店居住组团A02地块3#人防出口观测时间:2012. 10.5 依据高程:45.1 序号测点 读数 点位高 程(M) 位移方向本次位移 (MM) 累计位 移(MM) 本次沉降 (MM) 累计沉 降 (MM) Z1 11 44.511 向西 1 1 5 Z2 73 44.499 向西 1 1 3 抄测人: 基坑位移沉降观测记录表 工程名称:海淀区西北旺镇辛店居住组团A02地块3#人防出口观测时间:2012. 10.8 依据高程:45.1 序号测点 读数 点位高 程(M) 位移方向本次位移 (MM) 累计位 移(MM) 本次沉降 (MM) 累计沉 降 (MM) Z1 11 44.510 向西0 1 1 6 Z2 73 44.498 向西0 1 1 4 抄测人:

国家优秀奖- 基于北斗系统的山体滑坡监测及预警系统

作品编号科技论文基于北斗系统的山体滑坡监测及预警系统 作者:王喆、朱凤英、黄云婷 (机电工程学院,2011级电气工程及其自动化,3116108052) 【摘要】目前国内部分地区山体滑坡事故频发,鉴于山体滑坡带来人员伤亡、财产损失、交通严重堵塞等问题,本文基于北斗导航和物联网等平台设计出低成本山体滑坡监测及预警系统,该系统可实时记录、上传山体状态参数,并在山体即将发生滑坡时紧急报警,通知居民撤离。 Abstract: The frequent accidents of landslides led to some of the severe problems, such as casualties, loss of property, traffic jam and so on. This article explained a low-cost landslide monitoring and early warning system based on BDS and IOT,The system can record and upload the state datas of mountain in real time,and it can turn into emergency alarm before the landslides,inform the residents to evacuate. 【关键词】北斗卫星导航系统;山体滑坡;监测预警;物联网;ZigBee Keywords: BeiDou Navigation Satellite System; landslides; monitoring and early warning; Internet of Things; ZigBee 1 背景及意义 1.1 地质灾害背景 由于地形地貌和人类工程活动等原因,国内部分地区山体滑坡事故频发,共发育有大型滑坡140余处,较大滑坡2212处以上。山体滑坡一旦发生,不仅造成滑坡体上人员伤亡、财产损失,而且泥石流将危及一定范围内的房屋、交通、人员安全,针对山体滑坡存在预防难、救援难、危害大、治理难度大等问题,如何及时有效地监测山体状态并能够提前发现异常状态、及时报警等已经成为人们关注的重点。 1.2 提供科研数据 由于山体滑坡存在的诸多危害,因此摸清山体滑坡发生和发展的规律,对其作出准确预报具有理论意义和实践意义。由于山体滑坡时间的不确定性,滑坡过程短暂且迅速等原因,在山体滑坡中采集数据难度较大,如果能对不同坡面滑坡时收集到的数据进行科学分析,将对日后的准确预报提供科学依据。同时,农业、水利、城乡建设、交通、林业、矿产等部门也迫切需要这样的成果作为规划、管理等的依据。 1.3 北斗卫星导航系统

相关文档