文档视界 最新最全的文档下载
当前位置:文档视界 › 数学f9第九章 从面积到乘法公式 小结与思考 教学设计

数学f9第九章 从面积到乘法公式 小结与思考 教学设计

数学f9第九章 从面积到乘法公式 小结与思考 教学设计
数学f9第九章 从面积到乘法公式 小结与思考 教学设计

本文为自本人珍藏 版权所有 仅供参考

小结与思考

教学目标:

1、进一步理解本章的有关内容,掌握有关的运算法则,并会应用法则进行计算。

2、了解公式的几何背景。

3、反思本章的学习过程,进一步感受从图形面积计算得出整式乘法法则、整式乘法公式

的过程,并会理解计算的算理,发展符号感,发展有条理的思考和表达能力。

教学重、难点:

灵活运用整式乘法法则和乘法公式进行运算。

教学过程:

一、由学生自己回顾本章所学的内容,在学生独立思考的基础上,开展小组交流和全班交

二、让学生自己举出整式乘法与因式分解的例子,体会整式乘法的运算法则和乘法公式以

及因式分解与整式乘法的互逆关系。

例1、 计算:

(1)2)32(n m -; (2))2)(2()3)(3(a b a b a b b a +-+-+-;

(3))2(6)2(23332x x x x x ++-; (4)223403)62()21

()2(---÷?+---; (5)32237)()()(a a a a -÷-?÷-。

例2、 把下列各式分解因式:

(1)1)4)(2(+++x x ; (2))1(4)(2++++b a b a ;

(3)22)()(b a b a --+; (4))()(2)(2x y y x x y x x ---+-。

例3、 化简后求值:22)32()32)(32(2)32(b a b a b a b a ++-+--,其中2-=a ,31

=b 。

三、把几个图形拼成一个新图形,再通过图形面积的计算,常常可以得到一些有用的式子。

例4、(1)两个边长分别为a,b,c 的直角三角形和一个两条直角边都是c 的直角三角形

拼成一个新的图形。试用不同的方法计算这个图形的面积,你能发现什么?

a b c c a

b

(2)由四个边长分别为a,b,c 的直角三角形拼成一个新的图形。试用两种不同的

方法计算这个图形的面积,并说说你发现了什么。

四、通过探索数与数之间的关系发现一个等式的探索性问题,应先引导学生通过观察去发

现等式,再运用学过的知识去说明其正确。

例5、(1)观察下面各式规律:

2222)121(2)21(1+?=+?+;

2222)132(3)32(2+?=+?+;

2222)143(4)43(3+?=+?+;

……

写出第n 行的式子,并证明你的结论。

(2)计算下列各式,你发现了什么规律?

①2200220032001-?;②210010199-?;③210000100019999-?。

五、经历从图形面积计算得出整式乘法法则、乘法公式的过程,感受数形结合的思想。

六、作业:选用复习题中的习题。

a

乘法公式教学设计教案

乘法公式(1)------两数和乘以这两数的差(一)教学目标 1.经历探索平方差公式的过程,进一步发展符号感和推理能力。 2.会推导平方差公式,并能运用公式进行简单计算。 3.认识平方差及其几何背景。 4.在合作、交流和讨论中发掘知识,并体验学习的乐趣。 (二)教学重点:体会公式的发现和推导过程,理解公式的本质,并会运用公式进行简单的计算。 (三)教学难点:从广泛意义上理解公式中的字母含义。 (四)教学过程: 教学过程 设计意图 探索引入1. 如图,边长为20厘米的大正方形中有一 个边长为8厘米的小正方形,请表示出图中 阴影部分面积: 图(1)的面积为: 图(2)的面积为: 学生探讨:从上式中你能发现一些有趣的现 1.引导学生体会根据 特例进行归纳、建立猜 想、用符号表示并给出 证明这一重要的数学 探索过程,要让学生体 会符号运算对证明猜 想的作用,同时引导学 生体会“数形结合”思 想的重要性。 2、对公式的几何解释 学生普遍感到困难,教 师可以根据两幅图的 变化过程制成动画或 操作演示。 20 8 图(1) 12 336 8 20 8 8 20 202 2= - = ? - ? 336 )8 20 )( 8 20 (= - +

(1)(2a+1)(2a-1)=2 a2-1,原因是“积的乘方”运算错误。 (2)(3a+1)(3a-1)=6a2-1,原因是“数的乘方”运算错误。 (3)(2a+1)(-2a-1)=4a2-1,原因是没有掌握平方差公式的特征。 (4)(-2a+1)(-2a-1)= - 4a2-1,原因是常见的符号错误。 (5)-(2a+1)(2a-1)= - 4a2-1,原因也是常见的符号错误。 。。。 策略:针对上述错误,进行题组训练,教师精讲学生多练,还可以每天五分钟小测验提高解题速度和准确率。

乘法公式

14.2乘法公式 第1课时平方差公式 教学目标 1.经历探索平方差公式的过程,会推导平方差公式,并能运用公式进行简单的运算.2.理解平方差公式的结构特征,灵活应用平方差公式. 教学重点 平方差公式的推导和应用. 教学难点 理解平方差公式的结构特征,灵活应用平方差公式. 教学设计一师一优课一课一名师(设计者:) 教学过程设计 一、创设情景,明确目标 从前,有一个狡猾的庄园主,把一块边长为x米的正方形土地租给张老汉种植,第二年,他对张老汉说:“我把这块地的一边增加5米,另一边减少5米,继续租给你,租金不变,你也没有吃亏,你看如何?”张老汉一听觉得好像没有吃亏,就答应了,回到家中,把这事和邻居们一讲,都说:“张老汉,你吃亏了!”张老汉非常吃惊.同学们,你知道张老汉为什么吃亏吗? 通过本节课的学习,你将能解释这其中的原因! 二、自主学习,指向目标 自学教材第107页至108页,思考下列问题: 1.根据条件列式: (1)a、b两数的平方差可以表示为________; (2) a、b两数差的平方可以表示为________; 2.平方差公式的推导依据是________________________________________________________________________.3.平方差公式(乘法)的特征是:左边是__________________,右边是__________________. 三、合作探究,达成目标 探究点一探索平方差公式 活动一:1.填写教材P107三个计算结果,

展示点评: (1)二项式乘以二项式,合并前结果应该是几项式?(四项)合并后都是几项式?(二项) (2)观察上列算式的左边的两个二项式,有什么异同?运算出结果后的二项式与等式左边的二项式有什么关系? (等号的左边是两数的和乘以这两数的差,等号的右边是这两数的平方差.) 2.归纳:两个数的________与这两个数的差的积,等于这两数的________. 用公式表示上述规律为:(a+b)(a-b) =________这就是平方差公式. 3.观察教材图14.2-1,请你用两种方法计算图形中阴影部分的面积,得到什么结果?(a+b)(a-b)=a2-b2 4.观察教材P108例1中的两个算式,能否用平方差公式进行计算?若能用,公式中a,b分别代表什么? 例1运用平方差公式计算 (1)(3x+2)(3x-2); (2)(-x+2y)(-x-2y). 思考:确定能否应用平方差公式进行运算的关键是什么? 展示点评:观察算式:①是不是两个二项式相乘;②是不是两数的和乘以两数的差;③若作为因式的二项式的首项是负号的,可以连同符号一起看作为一项,也可以把一个因式里的两项颠倒位置观察思考.关键就是确定是不是两数的和乘以两数的差. 解答过程见课本P108例1 小组讨论:能运用平方差公式计算的式子有何特征? 【反思小结】能运用平方差公式进行计算的式子特征:①二项式与二项式的积;②把两个二项式进行对比:有一项相同,另一项互为相反数. 针对训练: 1.计算(2a+5)(2a-5)等于( A ) A.4a2-25 B.4a2-5 C.2a2-25 D.2a2-5 2.计算(1-m)(-m-1),结果正确的是( B ) A.m2-2m-1 B.m2-1 C.1-m2 D.m2-2m+1 探究点二平方差公式的综合应用 活动二:计算: (1)102×98; (2)(y+2)(y-2)-(y-1)(y+5). 展示点评:(1)例1是数的计算,观察其特征,把两个因数如何变形能够运用平方差公式进行计算? (2)例2中有整式的简单的混合运算,在进行运算时要注意什么? 展示点评:第1题可以变为100与2的和乘以100与2的差;第(2)题中多项式的乘法,能运用平方差公式的一定要运用平方差公式进行运算. 解答过程见课本P108例2 小组讨论:平方差公式与整式乘法有什么关系?在运用时应注意什么问题? 【反思小结】(1)可运用平方差公式运算的式子,也属于我们前面所学的多项式乘以多项式的运算,所以说平方差公式适用于特殊形式的该类运算. (2)有些不能直接用平方差公式的题目可向公式形式转化,写成两数和与两数差乘积的形式,再运用公式. (3)在运用平方差公式运算时,一要注意确定好公式中的“a”项,“b”项;二要注意对两个数整体平方,而不是部分平方.

八年级数学乘法公式练习题

07~08 上学年 八年级数学同步调查测试三 整式的乘除(13.3乘法公式) 一、 选择(3分×8=24分) 1、下列各式中,运算结果为2236y x -的是 ( ) A 、()()x y x y --+-66 B 、()()x y y -+-616 C 、()()x y x y +-+94 D 、()()x y x y ---66 2、若M x y y x ()3942-=-2,那么代数式M 应是 ( ) A 、-+()32x y B 、 -+y x 23 C 、 32x y + D 、 32x y - 3、乘积等于22b a -的式子为 ( ) A 、()()b a b a -- B 、()()b a b a --- C 、()()a b b a --- D 、()()b a b a +-+ 4、下列各式是完全平方式的是 ( ) A 、x xy y 2224++ B 、 251022m mn n ++ C 、 a ab b 22++ D 、 x xy y 22214 -+ 5、下列等式中正确的为 ( ) A 、()2222b ab a b a +--=+- B 、()222 242b ab a b a +-=- C 、222 24121n mn m n m +-=?? ? ??- D 、()()22b a c c b a --=-+ 6、若()2221243by xy x y ax +-=+,则b a ,的值分别为 ( ) A 、2, 9 B 、2, -9 C 、-2 ,9 D 、-4, 9 7、要使等式()()2 2b a M b a +=+-成立,则M 是 ( ) A 、ab 2 B 、ab 4 C 、-ab 4 D 、-ab 2 8、两个个连续奇数的平方差一定是 ( )A 、 3的倍数 B 、5的倍数 C 、8的倍数 D 、16的倍数

(完整word版)初中数学乘法公式

第 1 页 共 16 页 乘法公式 概念总汇 1、平方差公式 平方差公式:两个数的和与这两个数的差的乘积等于这两个数的平方差,即 (a +b )(a -b )=a 2 -b 2 说明: (1)几何解释平方差公式 如右图所示:边长a 的大正方形中有一个边长为b 的小正方形。 第一种:用正方形的面积公式计算:a 2-b 2; 第二种:将阴影部分拼成一个长方形,这个长方形长为(a +b ),宽为(a -b ), 它的面积是:(a +b )(a -b ) 结论:第一种和第二种相等,因为表示的是同一块阴影部分的面积。 所以:a 2-b 2=(a +b )(a -b )。 (2)在进行运算时,关键是要观察所给多项式的特点,是否符合平方差公式的形式,即只有当这两个多项式它们的一部分完全相同,而另一部分只有符合不同,才能够运用平方差公式。平方差公式的a 和b ,可以表示单项式,也可以表示多项式,还可以表示数。应用平方差公式可以进行简便的多项式乘法运算,同时也可以简化一些数字乘法的运算 2、完全平方公式 完全平方公式:两个数和(或差)的平方,等于它们的平方和,加上(或减去)它们积的两倍,即 (a +b )2 =a 2 +2ab +b 2 ,(a -b )2 =a 2 -2ab +b 2 这两个公式叫做完全平方公式。平方差公式和完全平方公式也叫做乘法公式 说明: (1)几何解释完全平方(和)公式 如图用多种形式计算右图的面积 第一种:把图形当做一个正方形来看,所以 它的面积就是:(a +b )2 第二种:把图形分割成由2个正方形和2个相同的

第 2 页 共 16 页 长方形来看,其中大正方形的的边长是a ,小正方形 的边长是b ,长方形的长是a ,宽是b ,所以 它的面积就是:a 2+ab +ab +b 2=a 2+2ab +b 2 结论:第一种和第二种相等,因为表示的是同一个图形的面积 所以:(a +b )2=a 2+2ab +b 2 (2)几何解释完全平方(差)公式 如图用多种形式计算阴影部分的面积 第一种:把阴影部分当做一个正方形来看,所以 它的面积就是:(a -b )2 第二种:把图形分割成由2个正方形和2个相同的 长方形来看,长方形小正方形大正方形阴影S S S S ?=2-- 其中大正方形的的边长是a ,小正方形的边长是b ,长方形的长是(a -b ),宽是b ,所以 它的面积就是:()2 2 2 2 22b ab a b b a b a +-=?-?-- 结论:第一种和第二种相等,因为表示的是同一个图形的面积 所以:()222 2b ab a b a +-=- (3)在进行运算时,防止出现以下错误:(a +b )2=a 2+b 2,(a -b )2=a 2-b 2 。要注意符号的处理,不同的处理方法就有不同的解法,注意完全平方公式的变形的运用。完全平方公式的a 和b ,可以表示任意的数或代数式,因此公式的使用就不必限于两个二项式相乘,而可以扩大到两个多项式相乘,但要注意在表示成完全平方公式的形式才能运用公式,完全平方公式有着广泛的应用,尤其要注意完全平方公式和平方差公式的综合应用 方法引导 1、乘法公式的基本计算 例1 利用平方差公式计算: (1)(3x +5y )(3x -5y ); (2)(0.5b +a )(-0.5b +a ) (3)(-m +n )(-m -n ) 难度等级:A

乘法公式教学设计精选教案

乘法公式(1)------两数和乘以这两数的差 (一)教学目标 1.经历探索平方差公式的过程,进一步发展符号感和推理能力。 2.会推导平方差公式,并能运用公式进行简单计算。 3.认识平方差及其几何背景。 4.在合作、交流和讨论中发掘知识,并体验学习的乐趣。 (二)教学重点:体会公式的发现和推导过程,理解公式的本质,并会运用公式进行简单的计算。(三)教学难点:从广泛意义上理解公式中的字母含义。 (四)教学过程: 教学过程设计意图 探索引入1. 如图,边长为20厘米的大正方形中有一个边长为8厘 米的小正方形,请表示出图中阴影部分面积: 图(1)的面积为: 图(2)的面积为: 学生探讨:从上式中你能发现一些有趣的现象吗?再举几 个数试试.如果是一个数和一个字母,或两个都 是字母呢?它们的情况又如何? 2.计算下列各题: (1)(x+2)(x-2) (2) (1+3a)(1-3a) (3)(x+5y)(x-5y) 3、观察以上算式及其计算结果,你发现了什么规律?能 不能大胆猜测得出一个一般性的结论? 1.引导学生体会根据 特例进行归纳、建立猜 想、用符号表示并给出 证明这一重要的数学 探索过程,要让学生体 会符号运算对证明猜 想的作用,同时引导学 生体会“数形结合”思 想的重要性。 2、对公式的几何解释 学生普遍感到困难,教 师可以根据两幅图的 变化过程制成动画或 操作演示。 问题研讨 计算(a+b)(a-b) = = 探讨:(1)a+b 与a-b这两个式子有什么相同和不同? (2)计算的结果有什么特点? 此环节培养了学生的观察 归纳能力 知识知识归纳:平方差公式次环节可以给出几个变式: (-a+b)(-a-b) = a2- b2 20 8 图(1) 12 336 8 20 8 8 20 202 2= - = ? - ? 336 )8 20 )( 8 20 (= - +

(完整版)[初一数学]乘法公式

乘法公式 一、平方差公式:(a+b)(a-b)=a2-b2 要注意等式的特点: (1)等式的左边是两个二项式的乘积,且这两个二项式中,有一项相同,另一项互为相反数; (2)等式的右边是一个二项式,且为两个因式中相同项的平方减去互为相反数的项的平方. 值得注意的是,这个公式中的字母a,b可以表示数,也可以是单项式或多项式.平方差公式可以作为多项式乘以多项式的简便公式,也可以逆用做为快速计算的工具. 例1下列各式中不能用平方差公式计算的是(). A.(a-b)(-a-b)B.(a2-b2)(a2+b2) C.(a+b)(-a-b)D.(b2-a2)(-a2-b2) 解:C.根据上面平方差公式的结构特点,A中,-b是相同的项,a与-a 是性质符号相反的项,故可使用;B中a2是相同项,-b2与b2是互为相反数符合公式特点;同样D也符合.而C中的两个二项式互为相反数,不符合上述的等式的特征,因此不可使用平方差公式计算. 例2运用平方差公式计算: (1)(x2-y)(-y-x2); (2)(a-3)(a2+9)(a+3). 解:(1)(x2-y)(-y-x2)

=(-y +x2)(-y-x2) =(-y)2-(x2)2 =y2-x4; (2)(a-3)(a2+9)(a+3) =(a-3)(a+3)(a2+9) =(a2-32)(a 2+9) =(a2-9)(a2+9) =a4-81 . 例3计算: (1)54.52-45.52; (2)(2x2+3x+1)(2x2-3x+1). 分析:(1)中的式子具有平方差公式的右边的形式,可以逆用平方差公式;(2)虽然没有明显的符合平方差公式的特点,值得注意的是,平方差公式中的字母a,b可以表示数,也可以是单项式或多项式,我们可以把2x2+1看做公式中字母a,以便能够利用公式.正如前文所述,利用平方差可以简化整式的计算. 解:(1)54.52-45.52 =(54.5+45.5)(54.5-45.5)

乘法公式教学设计教案

乘法公式教学设计教案 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

乘法公式(1)------两数和乘以这两数的差(一)教学目标 1.经历探索平方差公式的过程,进一步发展符号感和推理能力。 2.会推导平方差公式,并能运用公式进行简单计算。 3.认识平方差及其几何背景。 4.在合作、交流和讨论中发掘知识,并体验学习的乐趣。 (二)教学重点:体会公式的发现和推导过程,理解公式的本质,并会运用公式进行简单的计算。 (三)教学难点:从广泛意义上理解公式中的字母含义。 (四)教学过程: 教学过程设 计意图 探索引入1. 如图,边长为20厘米的大正方形中有一个边长为8厘米的小正方 形,请表示出图中阴影部分面积: 图(1)的面积为: 图(2)的面积为: 学生探讨:从上式中你能发现一些有趣的现象吗?再举几个数试试.如 果是一个数和一个字母,或两个都是字母呢它们的情况又 如何 2.计算下列各题: (1)(x+2)(x-2) (2) (1+3a)(1-3a) (3)(x+5y)(x-5y) 3、观察以上算式及其计算结果,你发现了什么规律能不能大胆猜测得 1.引导 学生体 会根据 特例进 行归 纳、建 立猜 想、用 符号表 示并给 出证明 这一重 要的数 学探索 过程, 要让学 生体会 符号运 算对证 明猜想 20 8 图(1) 12 336 8 20 8 8 20 202 2= - = ? - ? 336 )8 20 )( 8 20 (= - +

(五)、错解: (1)(2a+1)(2a-1)=2 a2-1,原因是“积的乘方”运算错误。 (2)(3a+1)(3a-1)=6a2-1,原因是“数的乘方”运算错误。 (3)(2a+1)(-2a-1)=4a2-1,原因是没有掌握平方差公式的特征。 (4)(-2a+1)(-2a-1)= - 4a2-1,原因是常见的符号错误。 (5)-(2a+1)(2a-1)= - 4a2-1,原因也是常见的符号错误。 。。。 策略:针对上述错误,进行题组训练,教师精讲学生多练,还可以每天五分钟小测验提高解题速度和准确率。

初中数学乘法公式例题解析

乘法公式例题解析 新课指南 1.知识与技能:掌握整式乘法的平方差公式、完全平方公式和 (x+a)(x+b)=x2+(a+b)x+ab公式,通过公式运用,培养学生运用公式的计算能力. 2.过程与方法:经历探索平方差公式、完全平方公式和公式(x+a)(x+b)=x2+(a+b)x+ab 的过程,培养学生研究问题和探索规律的方法. 3.情感态度与价值观:(1)通过从多项式的乘法到乘法公式,再运用公式计算多项式的乘法,培养学生从一般到特殊,再从特殊到一般的思维能力;(2)通过乘法公式的几何背景,培养学生运用数形结合的思想方法和整体的数学思想方法的能力. 4.重点与难点:重点是掌握公式(a+b)(a-b)=a2-b2,(a±b)2=a2±2ab+b2.难点是公式中字母的广泛含义. 教材解读精华要义 数学与生活 如图15-16所示,边长为a的大正方形中有一个边长为b的小正方形, (1)请表示图15-16(1)中阴影部分的面积; (2)某同学将阴影部分拼成了一个长方形,如图15-16(2)所示,这个长方形的长和宽分别是多少?请你表示出它的面积? (3)比较(1)(2)的结果,你能发现什么?

思考讨论由图15-16(1)可知,阴影部分的面积为(a2-b2),由图15-16(2)可知,拼成长方形的长为(a+b),宽为(a-b),其面积为(a+b)(a-b),由于图(2)是由图(1)拼成的,故两图面积相等,所以有(a+b)(a-b)=a2-b2那么如何证明呢? 知识详解 知识点1 平方差公式及其导出 平方差公式是指(a+b)(a-b)=a2-b2. 这就是说,两个数的和与这两个数的差的积等于这两个数的平方差. 课本中本节的开始是先让同学们做几个多项式相乘的小题. 经过计算,同学们首先发现,四个小题所得到的结果有惊人的相同之处:每个小题的结果都只含有两项,而且都可以写成两个数的平方差形式. 为什么会有这些相同之处呢?同学们会想到,这是由于每个小题中的两个多项式都有非常特殊的关联:它们的第一项都相同,第二项的绝对值相同,但是符号相反. 归纳类似的多项式相乘的式子,就得到了平方差公式(a+b)(a-b)=a2-a2. 直接计算也可以得到这个公式:(a+b)(a-b)=a2-ab+ab-b2=a2-b2. 【注意】 a,b仅仅是一个符号,它们可以表示数,也可以表示式子(单项式、多项式等),只是它们的和与差的积,一定等于它们的平方差. 认识公式的特征至关重要. 平方差公式的特征:公式的左边是两个数的和乘以这两个数的差,而公式的右边恰好是这两个数的平方差.

乘法公式教学设计(完整版)

2018年初中教师“大练兵、大比武”学科教学技能竞赛 《乘法公式》教学设计 教学目标 1.经历探索完全平方公式的变形过程,进一步发展符号感和推理能力。 2.在灵活应用公式的过程中激发学生的学习兴趣,培养探究精神。 重点:灵活运用完全平方公式解题。 难点:完全平方公式的变形拓展。 教学过程 一、复习乘法公式中的完全平方公式 完全平方公式 (a+b)2=a 2+2ab+b 2 (a ?b)2=a 2?2ab+b 2 文字表述:两数和(或差)的平方,等于它们的平方和,加(或减)它们的积的2倍. 口诀:首平方,加上尾平方,2倍乘积在中央,符号看前方。 符号表示:( +?)2= 2+2 ?+2?(建模思想,多题归一思想) 注:其中的 、?可以代表单独的一个数或字母或一个单项式或多项式。 二、完全平方公式的变形 ① (a+b)2=a 2+2ab+b 2 ② a 2+b 2=(a+b)2?2ab ③ (a ?b)2=a 2?2ab+b 2 ④ a 2+b 2=(a ?b)2+2ab ⑤ (a+b)2=(a ?b)2+4ab ⑥ 2 )(2 22b a b a ab --+= ⑦ 2 )(2 22b a b a ab --+=

⑧ 4 )()(2 2b a b a ab --+= 在完全平方公式的多种变形中,a+b ,a ?b ,ab ,a 2+b 2四者中,知二求二。 三、灵活应用完全平方公式求代数式的值 1.已知x -y =6,x y =-8. (1)求x 2+y 2的值;(2)求(x +y )2的值 2.已知,21=+x x 求221x x +的值 3.应用完全平方公式解题 (1)982 (2)20162-2016×4030+20152. 四、终极挑战 1. 已知0136422=+++-b b a a ,求a-b 的值. 2. 已知三角形的三边满足022*******=---++bc ac ab c b a ,判断此三角形的形状? 思考:无论x 、y 为何值时,多项式 106222++-+y x y x 值恒为非负数. 五、课堂小结 本节课我们学习了灵活运用完全平方公式解题,体会到数学中的建模思想,多题归一思想,构造的数学思想。 六、作业 ① 已知,21=+x x 求441x x +的值 ② 若022222=++-+b a b a ,求20182017b a +的值 板书设计 一、复习.完全平方公式 二、灵活应用公式解题 三、数学思想:建模思想,多题归一思想,构造思想

七年级数学思维探究(19)乘法公式(含答案)

高斯()17771855-,德国数学家、天文学家和物理学家,有“数学王子”之称,高斯的成就遍及数学的各个领域,在数论、非欧几何、重变函数论、椭圆函数论等方面均有开创性贡献,他十分注重数学的应用,并且在对天文学、大地测量学和磁学的研究中也偏重于用数学方法 19.乘法公式 解读课标 多项式的形式是多种多样的,两个有一定关联的特殊多项式相乘,结果常常简洁而优美. 乘法公式是多项式相乘得出的既有特殊性又有实用性的具体结论,学习乘法公式应注意: 1.理解公式,掌握公式的结构特征; 2.了解公式的变形与发展; 3.灵活运用公式,既能正用、又能逆用,而且还能适当变形或重新组合,综合运用公式; 4.把握公式的几何意义,领悟数形结合的思想. 问题解决 例1如果正整数x ,y 满足方程2264x y -=,则这样的正整数对(),x y 的个数是______. 试一试()()22a b a b a b -=+-,a b +以a b -的奇偶性相同,这个十分简单的结论是解本例的基础. 例2已知a 、b 、c 满足227a b +=,221b c -=-,2617c a -=-则a b c ++的值等于( ) A .9 B .3 C .4 D .5 试一试 由条件等式联想到完全平方式,解题的切入点是整体考虑. 例3计算 (1)()()()()() 2481621212121211++++++ (2)222 2004200312004200220042004++ (3)33 45.113.945.113.931.2 -+? 试一试对于(1),通过对待求式恰当变形,使之符合平方差公式的结构特征; 对于(2),用字母表示数,将数值计算转化为式的计算. 例4老师在黑板上写出三个算式225382-=?,229784-=?,22153827-=?,王华接着又写了两个具有同样规律的算式:22115812-=?,22157822-=?…… (1)请你再写出两具有上述规律的版式; (2)用文字写出上述算式反映的规律; (3)证明这个规律的正确性. 试一试 由特殊到一般,用字母表示算式反映的规律并证明. 例5(1)已知222246140x y z x y z ++-+-+=,求x y z ++的值. (2)222651=+,225372=+,26531378?=,221378373=+

华东师大初中数学八年级上册乘法公式(基础)知识讲解[精选]

乘法公式(基础) 【学习目标】 1. 掌握平方差公式、完全平方公式的结构特征,并能从广义上理解公式中字母的含义; 2. 学会运用平方差公式、完全平方公式进行计算.了解公式的几何意义,能利用公式进行乘法运算; 3. 能灵活地运用运算律与乘法公式简化运算. 【要点梳理】 【高清课堂396590 乘法公式 知识要点】 要点一、平方差公式 平方差公式:22 ()()a b a b a b +-=- 两个数的和与这两个数的差的积,等于这两个数的平方差. 要点诠释:在这里,b a ,既可以是具体数字,也可以是单项式或多项式. 抓住公式的几个变形形式利于理解公式.但是关键仍然是把握平方差公式的典型特征:既有相同项,又有“相反项”,而结果是“相同项”的平方减去“相反项”的平方.常见的变式有以下类型: (1)位置变化:如()()a b b a +-+利用加法交换律可以转化为公式的标准型 (2)系数变化:如(35)(35)x y x y +- (3)指数变化:如3232()()m n m n +- (4)符号变化:如()()a b a b --- (5)增项变化:如()()m n p m n p ++-+ (6)增因式变化:如2244()()()()a b a b a b a b -+++ 要点二、完全平方公式 完全平方公式:()2222a b a ab b +=++ 2222)(b ab a b a +-=- 两数和 (差)的平方等于这两数的平方和加上(减去)这两数乘积的两倍. 要点诠释:公式特点:左边是两数的和(或差)的平方,右边是二次三项式,是这两数的平方和加(或减)这两数之积的2倍.以下是常见的变形: ()2222a b a b ab +=+-()2 2a b ab =-+ ()()22 4a b a b ab +=-+

整式乘法中的数学思想

图1 图2 整式乘法中的数学思想 数学思想方法是数学问题的灵魂,求解决数学问题的金钥匙,整式的乘法运算也不例外. 整式的乘法运算运算中常见的数学思想方法有以下几种: 一、转化思想 在整式运算中,多项式乘法是化归为多项式乘以单项式来完成的,多项式乘以单项式又化归为单项式乘以单项式来完成的,而单项式乘以单项式又化归为同底数幂的运算来完成的. 例1 化简:(3x +2)(x -1)+3(x -1)(x +1). 评注: 本题在运用化归思想运算的过程中省略了一些步骤,不过一定要注意避免因为“-”号可能给化简带来的错误. 二、整体思想 例2 以知3a+2b=2,ab=5,求 32 a b [(3a+2b )2+a 2b 2]的值. 三、数形结合思想 例3、如下图1,边长为a 的大正方形中一个边长为b 的小正方形,小明将图1的阴影部分拼成了一个长方形,如图2.这一过程用下式表示正确的是( ) A 、a 2+b 2-2ab =(a -b )2 B 、a 2+b 2+2ab =(a +b )2 C 、2a 2-3ab +b 2=(2a -b )(a -b ) D 、a 2-b 2=(a +b ) (a -b ) 四、分类讨论思想 例4、在整式运算中,任意两个一次二项式相乘后,将同类项合并得到的项数可以是----. 分析:对于任意两个一次二项式相乘,最多可以有四项,如(a+b )(c+d );还可以是三项,如(x+1)(x+3);还可以是两项,如(x-2)(x+2). 乘法公式中的数学思想 思想方法是数学的灵魂,而乘法公式是初中数学当中的最常用公式之一,应用非常的广泛,因此,我们必须彻底弄清公式的本质特征.下面,给同学们总结一下运用乘法公式解决问题的思想方法. 一、整体的思想 研究某些数学问题时,往往不是以问题的某个组成部分为着眼点,而是有意识放大考查问题的视角,将要解决的问题看作一个整体,通过研究问题的整体形式、整体结构或做整体处理后,达到顺利而又简捷

初二数学 乘法公式

乘法公式 平方差公式 学习目标: 1.能说出平方差公式的特点,并会用式子表示. 2.能正确地利用平方差公式进行多项式的乘法运算. 3.通过平方差公式得出的过程,体会数形结合的思想. 学习重点:掌握两数和乘以它们的差的结构特征. 学习难点:正确理解两数和乘以它们的差的公式的意义. 学习过程: 一、联系生活,设境激趣 问题一:王林到小卖部去买饼干, 售货员告诉他: 共4.2千克,每千克3.8元.正当售货员还在用计算器计算时,王林马上说出了共15.96元,售货员很惊奇地问:“你怎么比计算器算的还快呢?”王林很得意的告诉她:这是一个秘密. 同学们,你能帮售货员揭开小林快速口算出4.2×3.8的秘密吗? 二.观察概括,探索验证 问题二:1.经过本节课的学习,我们就能揭开这一秘密了.请同学们计算下面三道题: (1)(x+3)(x-3);(2) (m+5n)(m-5n);(3) (4+y)(4-y) . 2.请你观察思考:以上几个多项式与多项式相乘的式子有什么特点?积有什么特点?你能用字母表示吗? 观察发现:两数和乘以这两数的等于这两数的 用一个数学等式表示为:(a+b)(a-b)=……平方差公式. 3.这个等式正确吗?你怎样验证其正确性呢? ⑴利用多项式乘以多项式计算: ⑵你能再用以下的图形验证平方差公式吗?试一试.

图13.3.1 先观察图13.3.1,再用等式表示下图中图形面积的运算: = - . 具有简洁美的乘法公式:(a +b )(a -b )=a 2-b 2. 三、理解运用,巩固提高 问题三:1. 填一填:①2x+21)(2x-2 1)=( )2-( )2 = ②(3x+6y)(3x-6y)=( )2-( )2= ③(m 3+5)(m 3-5)=( )2-( )2= 2. 辨一辨: ① (2x +3)(2x -3) =2x 2-9 ②(x +y 2)(x -y 2) = x 2-y 2 ③(a +b)(a -2b) = a 2-b 2 3.说一说:下列各式都能用平方差公式计算吗? ①(2a -3b)(3b -2a) ②(-2a+3b) (2a+3b) ③(-2a -3b)(2a -3b) ④(2a -3b)(2a+3b) ⑤(2a+3b)(-2a -3b) ⑥(2a -3b)(-3b+2a) 4.做一做:(1)(a +3)( a -3) (2)(2a +3b)( 2a -3b) (3)(1+2c)( 1-2c) (4)变式拓展:①(-2x -y )(2x -y ) ②(-m+n)(-m-n) ③ (-2x-5y)(5y-2x)

乘法公式教学设计教案

乘法公式教学设计教案 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

乘法公式(1)------两数和乘以这两数的差 (一)教学目标 1.经历探索平方差公式的过程,进一步发展符号感和推理能力。 2.会推导平方差公式,并能运用公式进行简单计算。 3.认识平方差及其几何背景。 4.在合作、交流和讨论中发掘知识,并体验学习的乐趣。 (二)教学重点:体会公式的发现和推导过程,理解公式的本质,并会运用公式进行简单的计算。 (三)教学难点:从广泛意义上理解公式中的字母含义。 (四)教学过程: 教学过程设计意图 探索引入1. 如图,边长为20厘米的大正方形中有一个边 长为8厘米的小正方形,请表示出图中阴影部 分面积: 图(1)的面积为: 图(2)的面积为: 学生探讨:从上式中你能发现一些有趣的现象 吗再举几个数试试.如果是一个数和 一个字母,或两个都是字母呢它们 的情况又如何 2.计算下列各题: (1)(x+2)(x-2) (2) (1+3a)(1-3a) (3)(x+5y)(x-5y) 1.引导学生体会根据 特例进行归纳、建立 猜想、用符号表示并 给出证明这一重要的 数学探索过程,要让 学生体会符号运算对 证明猜想的作用,同 时引导学生体会“数形 结合”思想的重要性。 2、对公式的几何解释 学生普遍感到困难, 教师可以根据两幅图 的变化过程制成动画 或操作演示。 20 8 图(1) 12 336 8 20 8 8 20 202 2= - = ? - ? 336 )8 20 )( 8 20 (= - +

(五)、错解: (1)(2a+1)(2a-1)=2 a2-1,原因是“积的乘方”运算错误。 (2)(3a+1)(3a-1)=6a2-1,原因是“数的乘方”运算错误。 (3)(2a+1)(-2a-1)=4a2-1,原因是没有掌握平方差公式的特征。 (4)(-2a+1)(-2a-1)= - 4a2-1,原因是常见的符号错误。 (5)-(2a+1)(2a-1)= - 4a2-1,原因也是常见的符号错误。 。。。 策略:针对上述错误,进行题组训练,教师精讲学生多练,还可以每天五分钟小测验提高解题速度和准确率。

乘法公式-乘法公式练习题

乘法公式练习题 1.(2004·青海)下列各式中,相等关系一定成立的是( ) A.(x-y)2=(y-x)2 B.(x+6)(x-6)=x2-6 C.(x+y)2=x2+y2 D.6(x-2)+x(2-x)=(x-2)(x-6) 2.(2003·泰州)下列运算正确的是( ) A.x2+x2=2x4 B.a2·a3= a5 C.(-2x2)4=16x6 D.(x+3y)(x-3y)=x2-3y2 3.(2003·河南)下列计算正确的是( ) A.(-4x)·(2x2+3x-1)=-8x3-12x2-4x B.(x+y)(x2+y2)=x3+y3 C.(-4a-1)(4a-1)=1-16a2 D.(x-2y)2=x2-2xy+4y2 4.(x+2)(x-2)(x2+4)的计算结果是( ) A.x4+16 B.-x4-16 C.x4-16 D.16-x4 5.19922-1991×1993的计算结果是( ) A.1 B.-1 C.2 D.-2 6.对于任意的整数n,能整除代数式(n+3)(n-3)-(n+2)(n-2)的整数是( ) A.4 B.3 C.5 D.2 7.( )(5a+1)=1-25a2,(2x-3) =4x2-9,(-2a2-5b)( )=4a4-25b2 8.99×101=( )( )= . 9.(x-y+z)(-x+y+z)=[z+( )][ ]=z2-( )2. 10.多项式x2+kx+25是另一个多项式的平方,则k= . 11.(a+b)2=(a-b)2+ ,a2+b2=[(a+b)2+(a-b)2]( ), a2+b2=(a+b)2+ ,a2+b2=(a-b)2+ . 12.计算. (1)(a+b)2-(a-b)2; (2)(3x-4y)2-(3x+y)2; (3)(2x+3y)2-(4x-9y)(4x+9y)+(2x-3y)2; (4)1.23452+0.76552+2.469×0.7655; (5)(x+2y)(x-y)-(x+y)2. 13.已知m2+n2-6m+10n+34=0,求m+n的值

乘法公式教学设计 教案

13.3 乘法公式(1)------两数和乘以这两数的差 (一)教学目标 1.经历探索平方差公式的过程,进一步发展符号感和推理能力。 2.会推导平方差公式,并能运用公式进行简单计算。 3.认识平方差及其几何背景。 4.在合作、交流和讨论中发掘知识,并体验学习的乐趣。 (二)教学重点:体会公式的发现和推导过程,理解公式的本质,并会运用公式进行简单的计算。 (三)教学难点:从广泛意义上理解公式中的字母含义。 (四)教学过程:

图(1)的面积为: 图(2)的面积为: 学生探讨:从上式中你能发现一些有趣的现 象吗?再举几个数试试.如果是 一个数和一个字母,或两个都是 字母呢?它们的情况又如何? 2.计算下列各题: (1)(x+2)(x-2) (2) (1+3a)(1-3a) (3)(x+5y)(x-5y) 3、观察以上算式及其计算结果,你发现了什 么规律?能不能大胆猜测得出一个一般 性的结论? 问题研计算(a+b)(a-b) = = 此环节培养了学生 的观察归纳能力 336 8 20 8 8 20 202 2= - = ? - ? 336 )8 20 )( 8 20 (= - +

(1)(2a+1)(2a-1)=2 a2-1,原因是“积的乘方”运算错误。(2)(3a+1)(3a-1)=6a2-1,原因是“数的乘方”运算错误。(3)(2a+1)(-2a-1)=4a2-1,原因是没有掌握平方差公式的特征。(4)(-2a+1)(-2a-1)= - 4a2-1,原因是常见的符号错误。

(5)-(2a+1)(2a-1)= - 4a2-1,原因也是常见的符号错误。 。。。 策略:针对上述错误,进行题组训练,教师精讲学生多练,还可以每天五分钟小测验提高解题速度和准确率。

乘法公式优秀教案

《平方差公式》新授课 一.教材分析 1.内容、地位和作用 本节课的主要内容是平方差公式的推导和平方差公式在整式乘法中的应用.它是在学生已经掌握单项式乘法、多项式乘法基础上的拓展和创造性应用;是对多项式乘法中出现的较为特殊的算式的第一种归纳、总结;是从一般到特殊的认识过程的范例.它应用十分广泛,通过乘法公式的学习,可以丰富教学内容,开拓学生视野,更是今后学习因式分解、分式运算及其它代数式变形的重要基础. 2.教学重点与难点 (1)教学重点:对平方差公式的发现及探究;对平方差公式结构特征的认识. (2)教学难点:灵活运用平方差公式进行整式乘法计算. 二.教学目标分析 1.知识与技能 (1)会推导平方差公式,了解公式的几何意义,理解平方差公式中字母的含义; (2)能运用平方差公式进行计算. 2.过程与方法 (1)经历探索平方差公式的过程,感悟由特殊到一般再到特殊的研究方法,发展学生归纳总结的能力; (2)在验证平方差公式的过程中,引导学生感知数形结合及数学化归思想. 3.情感、态度与价值观 (1)通过设置丰富的问题情境,鼓励学生积极探索和交流; (2)通过开放式的教学方法,培养学生的数学思维能力和自主学习习惯. 三.教学过程分析 【复习引入】 复习多项式与多项式乘法法则:(a+b)(m+n)=am+an+bm+bn. 设计意图:通过复习多项式的乘法法则,既是对前面所学知识的回顾,也是为接下来引导学生开展对平方差公式的探究作好铺垫. 【公式探究】 1.对特例的探究 请同学们运用多项式与多项式的乘法法则解决一个实际问题: (投影)边长为a的正方形,一边长增加1米,另一边减少1米,所得新长方形的面积与原来的正方形面积是否相同? 师生活动:教师引导,学生思考,将新的长方形面积用代数式表示,并运用多项式的乘法法则进行计算. 设计意图:通过一个与生活实际相关联的问题,有效激发学生的探究兴趣.同时,问题中所列的代数式为引出平方差公式做好铺垫,让学生能自然而然过渡到新知的学习. 2.一般性结论的探究 问题1:如果正方形的边长再发生变化,你们还能提出类似问题吗? 师生活动:学生独立思考后用规范的数学语言表达,教师倾听不同思维层次的多个学生的回答,纠正表达中不准确的地方,让学生对这个问题达成共识. 设计意图:教师根据学生的回答及时了解学生对旧知识的掌握情况,并在学生原有的基础上进行自主建构,符合学生的认知规律. 问题2 继续写下去,你能发现怎样的结论呢?请将你的发现用字母表示出来. 学生活动:因为有了前面学习的经验,学生有能力进行自主探究,在这个环节,给学生充分的时间和机会独立思考,让学生展开自主探究. 教师活动:在学生充分探究的基础上,与学生一起总结出探究的结论:“我发现:

乘法公式的拓展及常见题型整理

乘法公式的拓展及常见题型整理 例题:已知b a +=4,求ab b a ++222。 ⑴如果1,3=-=-c a b a ,那么()()()2 22a c c b b a -+-+-的值是 ⑵1=+y x ,则222 121y xy x ++= ⑶已知xy 2y x ,y x x x -+-=---222 2)()1(则= ⑴若()()a b a b -=+=2 2 713,,则a b 22 +=____________,a b =_________ ⑵设(5a +3b )2=(5a -3b )2+A ,则A= ⑶若()()x y x y a -=++2 2 ,则a 为 ⑷如果22)()(y x M y x +=+- ,那么M 等于 ⑸已知(a+b)2 =m ,(a —b)2 =n ,则ab 等于 ⑹若N b a b a ++=-2 2)32()32(, 则N 的代数式是 ⑺已知,3)(,7)(22=-=+b a b a 求ab b a ++22的值为 。 ⑻已知实数a,b,c,d 满足53=-=+bc ,ad bd ac ,求) )((2222d c b a ++ 例题:已知(a+b)2 =7,(a-b)2 =3, 求值: (1)a 2 +b 2 (2)ab 例2:已知a= 201x +20,b=201x +19,c=20 1 x +21,求a 2+b 2+c 2-ab -bc -ac 的值 ⑴若499,7322=-=-y x y x ,则y x 3+= ⑵若2=+b a ,则b b a 422 +-= 若65=+b a ,则b ab a 3052++= ⑶已知a 2+b 2=6ab 且a >b >0,求 b a b a -+的值为 ⑷已知20042005+=x a ,20062005+=x b ,20082005+=x c ,则代数式ca bc ab c b a ---++222的值 是 . (四)步步为营 例题:3?(22 +1)?(24 +1)?(28 +1)?(162+1) 6?)17(+?(72+1)?(74+1)?(78+1)+1 ()( )()()()224 4 8 8 a b a b a b a b a b -+ +++ 1)12()12()12()12()12()12(3216842++?+?+?+?+?+

相关文档
相关文档 最新文档