文档视界 最新最全的文档下载
当前位置:文档视界 › 高中数学中直线与平面的关系问题

高中数学中直线与平面的关系问题

高中数学中直线与平面的关系问题
高中数学中直线与平面的关系问题

高中数学中直线与平面的关系问题数学,从小学开始就是大家头疼的科目,在高中三年生活中,它也是学生党们的拦路虎。今天,查字典数学网小编就给大家分享一些高中数学学习要点,让你轻松拿高分,一起来看看吧。

直线和平面的位置关系:

直线和平面只有三种位置关系:在平面内、与平面相交、与平面平行。

①直线在平面内——有无数个公共点

②直线和平面相交——有且只有一个公共点

直线与平面所成的角:平面的一条斜线和它在这个平面内的射影所成的锐角。

esp.空间向量法(找平面的法向量)

规定:a、直线与平面垂直时,所成的角为直角,b、直线与平面平行或在平面内,所成的角为0°角。

由此得直线和平面所成角的取值范围为[0°,

90°]

最小角定理:斜线与平面所成的角是斜线与该平面内任一条直线所成角中的最小角。

三垂线定理及逆定理:如果平面内的一条直线,与这个平面的一条斜线的射影垂直,那么它也与这条斜线垂直。

直线和平面垂直

直线和平面垂直的定义:如果一条直线a和一个平面内的任意一条直线都垂直,我们就说直线a和平面互相垂直.直线a叫做平面的垂线,平面叫做直线a的垂面。

直线与平面垂直的判定定理:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面。

直线与平面垂直的性质定理:如果两条直线同垂直于一个平面,那么这两条直线平行。

③直线和平面平行——没有公共点

直线和平面平行的定义:如果一条直线和一个平面没有公共点,那么我们就说这条直线和这个平面平行。

直线和平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行。

直线和平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。

高中数学专题讲义-直线与平面所成的角

【例1】 (全国2文7) 已知正三棱锥的侧棱长的底面边长的2倍,则侧棱与底面所成角的余弦值等于( ) A .3 B .3 C .22 D .3 【例2】 (全国2理7) 已知正三棱柱111ABC A B C -的侧棱长与底面边长相等,则AB 1与侧面11ACC A 所成角的正弦等于( ) A .6 B .10 C .2 D .3 【例3】 (福建卷6) 如图,在长方体ABCD 1111A B C D -中,2AB BC ==,11AA =,则1BC 与平面11BB D D 所成角的正弦值为( ) A . 63 B . 26 5 C . 155 D . 105 D C B A A 1 D 1 B 1 C 1 【例4】 (浙江) 在三棱柱111ABC A B C -中,各棱长相等,侧掕垂直于底面,点D 是侧面11BB C C 的中心,则AD 与平面11BB C C 所成角的大小是 ( ) A .30° B .45° C .60° D .90° 典例分析 板块二.直线与平面所成的角

E A 1 C 1 B 1 D C B A 【例5】 (四川卷理13)在三棱锥O ABC -中,三条棱OA 、OB 、OC 两两互相垂直,且 OA =OB =OC ,M 是AB 边的中点,则OM 与平面ABC 所成的角的大小是 ( 用反三角函数表示) 【例6】 (全国Ⅰ)已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内 的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( ) A .13 B C D . 23 【例7】 正三棱柱侧面的一条对角线长为2,且与底面成45o 角,求此三棱柱的体积. 【例8】 (四川卷15) 且对角线与底面所成角的余弦值 ,则该正四棱柱的体积等于________________. 【例9】 如图,在棱长为1的正方体1111ABCD A B C D -中, ⑴求1BC 与平面11ACC A 所成的角; ⑵求11A B 与平面11A C B 所成的角的余弦值. A B C D B 1 C 1 D 1 A 1

高中数学平面解析几何知识点总结

平面解析几何 一、直线与圆 1.斜率公式 2121 y y k x x -=-(111(,)P x y 、222(,)P x y ). 2.直线的五种方程 (1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距). (3)两点式 112121 y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)). < (4)截距式 1x y a b +=(a b 、分别为直线的横、纵截距,0a b ≠、). (5)一般式 0Ax By C ++=(其中A 、B 不同时为0). 3.两条直线的平行和垂直 (1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ?=≠; ②12121l l k k ⊥?=-. (2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零, ①11112222 ||A B C l l A B C ? =≠; < ②1212120l l A A B B ⊥?+=; 4.点到直线的距离 d =(点00(,)P x y ,直线l :0Ax By C ++=). 5.圆的四种方程 (1)圆的标准方程 222()()x a y b r -+-=. (2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0).圆心??? ??--2,2E D ,半径r=2 422F E D -+. 6.点与圆的位置关系 点00(,)P x y 与圆2 22)()(r b y a x =-+-的位置关系有三种: . 若d =d r >?点P 在圆外;d r =?点P 在圆上;d r 相离r d ; 0=???=相切r d ; 0>???<相交r d . 其中22B A C Bb Aa d +++=. 8.两圆位置关系的判定方法 # 设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21 条公切线外离421??+>r r d ; 条公切线外切321??+=r r d ;

高中数学竞赛基础平面几何知识点总结

高中数学竞赛平面几何知识点基础 1、相似三角形的判定及性质 相似三角形的判定: (1)平行于三角形一边的直线和其他两边(或两边的延长线)相交,所构成的三角形与原三角形相似; (2)如果一个三角形的两条边和另一个三角形的两条边对应成比例,并且夹角相等,那么这两个三角形相似(简叙为:两边对应成比例且夹角相等,两个三角形相似.); (3)如果一个三角形的三条边与另一个三角形的三条边对应成比例,那么这两个三角形相似(简叙为:三边对应成比例,两个三角形相似.); (4)如果两个三角形的两个角分别对应相等(或三个角分别对应相等),则有两个三角形相似(简叙为两角对应相等,两个三角形相似.). 直角三角形相似的判定定理: (1)直角三角形被斜边上的高分成两个直角三角形和原三角形相似; (2)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似. 常见模型: 相似三角形的性质: (1)相似三角形对应角相等 (2)相似三角形对应边的比值相等,都等于相似比 (3)相似三角形对应边上的高、角平分线、中线的比值都等于相似比 (4)相似三角形的周长比等于相似比 (5)相似三角形的面积比等于相似比的平方 2、内、外角平分线定理及其逆定理 内角平分线定理及其逆定理: 三角形一个角的平分线与其对边所成的两条线段与这个角的两边对应成比例。如图所示,若AM平分∠BAC,则 该命题有逆定理: 如果三角形一边上的某个点与这条边所成的两条线段与这 条边的对角的两边对应成比例,那么该点与对角顶点的连

线是三角形的一条角平分线 外角平分线定理: 三角形任一外角平分线外分对边成两线段,这两条线段和夹相应的内角的两边成比例。 如图所示,AD平分△ABC的外角∠CAE,则 其逆定理也成立:若D是△ABC的BC边延长线上的一点, 且满足,则AD是∠A的外角的平分线 内外角平分线定理相结合: 如图所示,AD平分∠BAC,AE平分∠BAC的外角 ∠CAE,则 3、射影定理 在Rt△ABC中,∠ABC=90°,BD是斜边AC上的高,则有射 影定理如下: BD2=AD·CD AB2=AC·AD BC2=CD·AC 对于一般三角形: 在△ABC中,设∠A,∠B,∠C的对边分别为a,b,c,则有 a=bcosC+ccosB b=ccosA+acosC c=acosB+bcosA 4、旋转相似 当一对相似三角形有公共定点且其边不重合时,则会产生另 一对相似三角形,寻找方法:连接对应点,找对应点连线和 一组对应边所成的三角形,可以得到一组角相等和一组对应 边成比例,如图中若△ABC∽△AED,则△ACD∽△ABE 5、张角定理 在△ABC中D为BC边上一点,则 sin∠BAD/AC+sin∠CAD/AB=sin∠BAC/AD 6、圆内有关角度的定理 圆周角定理及其推论: (1)圆周角定理指的是一条弧所对圆周角等于它所对圆心角的一半 (2)同弧所对的圆周角相等 (3)直径所对的圆周角是直角,直角所对的弦是直径

高中数学《平面的基本性质》教案

§1.2.1平面的基本性质 一、教学目标: 1、知识与技能 (1)借助生活中的实物,学生对平面产生感性的认识; (2)掌握平面的表示法,认识水平放置的直观图; (3)掌握平面的基本性质及作用; (4)培养学生的空间想象能力。 2、过程与方法 通过师生的共同讨论,学生经历平面的感性认识。 3、情感与价值 使用学生认识到我们所处的世界是一个三维空间,进而增强了学习的兴趣。 二、教学重点、难点 重点:(1)平面的概念及表示; (2)平面的基本性质,注意他们的条件、结论、作用、图形语言及符号语言。 难点:平面基本性质的掌握与运用。 三、学法与教学用具 (1)学法:学生通过阅读教材,联系身边的实物思考、交流,师生共同讨论等,从而较好地完成本节课的教学目标。 (2)教学用具:投影仪、投影片、正(长)方形模型、三角板 四、授课类型:新授课 五、教学过程 (一)创设引入情景 生活中常见的如黑板、平整的操场、桌面、平静的湖面等等,都给我们以平面的印象。你们能举出更多例子吗? 平面的含义是什么呢? (二)建立模型 1、平面含义 以上实物都给我们以平面的印象,几何里所说的平面,就是从这样的一些物体中抽象出来的,但是,几何里的平面是无限延展的。 2、平面的画法及表示 在平面几何中,怎样画直线?一条直线平移就得到了一个平面。我们通常把一个“水平 放置的平面画成一个平行四边形,锐角画成450 ,且横边画成邻边的2倍长”。(如图): 平面通常用希腊字母α、β、γ等表示,如平面α、平面β等,也可以用表示平面的平行四边形的四个顶点或者相对的两个顶点的大写字母来表示,如平面AC 、平面ABCD 等。 如果几个平面画在一起,当一个平面的一部分被另一个平面遮住时,应画成虚线或不画(打出投影片) D C B A α β β

高中数学直线与平面的夹角题库

3.2.3直线与平面的夹角 3.2.4二面角及其度量 学习目标 1.理解斜线和平面所成的角的定义,体会夹角定义的唯一性、合理性.2.会求直线与平面的夹角θ.3.掌握二面角的概念,二面角的平面角的定义,会找一些简单图形中的二面角的平面角.4.掌握求二面角的基本方法、步骤. 知识点一直线与平面所成的角 1.直线与平面所成的角 2.最小角定理 知识点二二面角及理解 1.二面角的概念 (1)二面角的定义:平面内的一条直线把平面分成两部分,其中的每一部分都叫做半平面.从一条直线出发的两个半平面所组成的图形叫做二面角.如图所示,其中,直线l叫做二面角的棱,每个半平面叫做二面角的面,如图中的α,β.

(2)二面角的记法:棱为l ,两个面分别为α,β的二面角,记作α—l —β.如图,A ∈α,B ∈β,二面角也可以记作A —l —B ,也可记作2∠l . (3)二面角的平面角:在二面角α—l —β的棱上任取一点O ,在两半平面内分别作射线OA ⊥l ,OB ⊥l ,则∠AOB 叫做二面角α—l —β的平面角,如图所示.由等角定理知,这个平面角与点O 在l 上的位置无关. (4)直二面角:平面角是直角的二面角叫做直二面角. (5)二面角的范围是[0°,180°]. 2.用向量夹角来确定二面角性质及其度量的方法 (1)如图,分别在二面角α—l —β的面α,β内,并沿α,β延伸的方向,作向量n 1⊥l ,n 2⊥l ,则〈n 1,n 2〉等于该二面角的平面角. (2)如图,设m 1⊥α,m 2⊥β,则角〈m 1,m 2〉与该二面角大小相等或互补. 1.直线与平面所成的角α与该直线的方向向量与平面的法向量的夹角β互余.( × ) 2.二面角的大小范围是??? ?0,π 2.( × ) 3.二面角的大小等于其两个半平面的法向量的夹角的大小.( × ) 题型一 求直线与平面的夹角 例1 已知正三棱柱ABC-A 1B 1C 1的底面边长为a ,侧棱长为2a ,求AC 1与侧面ABB 1A 1所成的角. 解 建立如图所示的空间直角坐标系Axyz ,

高中数学平面解析几何的知识点梳理

平面解析几何 1.直线的倾斜角与斜率: (1)直线的倾斜角:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针 方向旋转到和直线重合时所转的最小正角记为α叫做直线的倾斜角. 倾斜角)180,0[?∈α,?=90α斜率不存在. (2)直线的斜率:αtan ),(211 212=≠--=k x x x x y y k .(111(,)P x y 、222(,)P x y ). 2.直线方程的五种形式: (1)点斜式:)(11x x k y y -=- (直线l 过点),(111y x P ,且斜率为k ). 注:当直线斜率不存在时,不能用点斜式表示,此时方程为0x x =. (2)斜截式:b kx y += (b 为直线l 在y 轴上的截距). (3)两点式:1 21121x x x x y y y y --=-- (12y y ≠,12x x ≠). 注:① 不能表示与x 轴和y 轴垂直的直线; ② 方程形式为:0))(())((112112=-----x x y y y y x x 时,方程可以表示任意直线. (4)截距式:1=+b y a x (b a ,分别为x 轴y 轴上的截距,且0,0≠≠b a ). 注:不能表示与x 轴垂直的直线,也不能表示与y 轴垂直的直线,特别是不能表示过原点的直线. (5)一般式:0=++C By Ax (其中A 、B 不同时为0). 一般式化为斜截式:B C x B A y -- =,即,直线的斜率:B A k -=. 注:(1)已知直线纵截距b ,常设其方程为y kx b =+或0x =. 已知直线横截距0x ,常设其方程为0x my x =+(直线斜率k 存在时,m 为k 的倒数)或0y =. 已知直线过点00(,)x y ,常设其方程为00()y k x x y =-+或0x x =. (2)解析几何中研究两条直线位置关系时,两条直线有可能重合;立体几何中两条直线一般不重合. 3.直线在坐标轴上的截矩可正,可负,也可为0. (1)直线在两坐标轴上的截距相等....?直线的斜率为1-或直线过原点. (2)直线两截距互为相反数.......?直线的斜率为1或直线过原点. (3)直线两截距绝对值相等.......?直线的斜率为1±或直线过原点. 4.两条直线的平行和垂直: (1)若111:l y k x b =+,222:l y k x b =+ ① 212121,//b b k k l l ≠=?; ② 12121l l k k ⊥?=-. (2)若0:1111=++C y B x A l ,0:2222=++C y B x A l ,有 ① 1221122121//C A C A B A B A l l ≠=?且.② 0212121=+?⊥B B A A l l . 5.平面两点距离公式: (111(,)P x y 、222(,)P x y ),22122121)()(y y x x P P -+-=.x 轴上两点间距离:A B x x AB -=. 线段21P P 的中点是),(00y x M ,则??? ????+=+=2221 0210y y y x x x .

高中数学竞赛平面几何中的几个重要定理

平面几何中几个重要定理及其证明 一、 塞瓦定理 1.塞瓦定理及其证明 定理:在?ABC 内一点P ,该点与?ABC 的三个顶点相连所在的三条直线分别交?ABC 三边AB 、BC 、CA 于点D 、E 、F ,且D 、E 、F 三 点均不是?ABC 的顶点,则有 1AD BE CF DB EC FA ??=. 证明:运用面积比可得 ADC ADP BDP BDC S S AD DB S S ????== . 根据等比定理有 ADC ADC ADP APC ADP BDP BDC BDC BDP BPC S S S S S S S S S S ??????????-=== -, 所以APC BPC S AD DB S ??=.同理可得APB APC S BE EC S ??=,BPC APB S CF FA S ??=. 三式相乘得 1AD BE CF DB EC FA ??=. 注:在运用三角形的面积比时,要把握住两个三角形是“等高”还是“等底”,这样就可以产生出“边之比”. 2.塞瓦定理的逆定理及其证明 定理:在?ABC 三边AB 、BC 、CA 上各有一点D 、E 、F ,且D 、E 、F 均不是? ABC 的顶点,若 1AD BE CF DB EC FA ??=,那么直线CD 、AE 、BF 三线共点. A B C D F P

证明:设直线AE 与直线BF 交于点P ,直线CP 交 AB 于点D /,则据塞瓦定理有 // 1AD BE CF D B EC FA ??=. 因为 1AD BE CF DB EC FA ??=,所以有/ /AD AD DB D B =.由于点D 、D /都在线段AB 上,所以点D 与D /重合.即得D 、E 、F 三点共线. 注:利用唯一性,采用同一法,用上塞瓦定理使命题顺利获证. 二、 梅涅劳斯定理 A B C D E F P D /

高中数学-直线与平面的夹角练习

高中数学-直线与平面的夹角练习 课后导练 基础达标 1.直线a与平面α内任一条线所成最小的角为θ,a是平面α的斜线,b是平面α内与a 异面的任意直线,则a与b所成的角() π A.最小值为θ,最大值为π-θ B.最小值为θ,最大值为 2 π C.最小值为θ,无最大值 D.无最小值,最大值为 2 答案:B 2.如右图所示,在正方体ABCD-A1B1C1D1中,求直线A1C1与平面ABC1D1所成的角 () A.30° B.60° C.45° D.90° 答案:A 3.正方体ABCD-A1B1C1D1中,A1B和面BB1D1D所成的角为() A.15° B.45° C.60° D.30° 答案:D 4.如左下图,正方体ABCD-A1B1C1D1中,E是CC1的中点,求BE与平面B1BD所成角的余弦值________________. 15 答案: 5 5.如右上图,S是△ABC所在平面外一点,SA,SB,SC两两垂直,判断△ABC的形状_________. 答案:锐角三角形 6.四面体S-ABC中,SA、SB、SC两两垂直,∠SBA=45°,∠SBC=60°,M为AB的中点,求:(1)BC与平面SAB所成的角; (2)SC与平面ABC所成角的正弦值. 解析:(1)如右图,∵SA、SB、SC两两垂直,

∴SC⊥面SAB. ∴∠CBS 是BC 与平面SAB 所成的角. ∵∠CBS=60°, ∴BC 与平面SAB 所成的角为60°. (2)连结MC,在Rt△ASB 中,∠SBA=45°,则SM⊥AB. 又SC⊥面SAB, ∴SC⊥AB, ∴AB⊥面SMC.过S 作SO⊥MC 于点O,则SO⊥AB, ∴SO⊥面ABC, ∴∠ SCM 是SC 与平面ABC 所成的角. 设SB=a,则SC=3a,SM= 2 2a, 在Rt△CSM 中,CM= 2 14a, ∴sin∠SCM= 7 7 =MC SM . 7.在Rt△ABC 中,∠A=90°,AB=3,AC=4,PA 是平面ABC 的斜线,∠PAB=∠PAC=60°, (1)求PA 与平面ABC 所成角的大小; (2)PA 的长等于多少时,点P 在平面ABC 上的射影O 恰好在BC 边上? 解:(1)如右图,过P 作PO⊥平面ABC 于O,则∠PAO 为PA 与平面ABC 所成的角, 易证AO 为∠BAC 的平分线,则∠OAB=45°. 由公式cosθ=cosθ1·cosθ2可得 cos∠PAO= OAB PAB ∠∠cos cos =22 45 cos 60cos =ο ο, ∴∠PAO=45°. ∴PA 与平面ABC 所成的角为45°.

高中数学课时作业:直线、平面平行的判定及其性质

课时作业44直线、平面平行的判定及其性质 一、选择题 1.已知直线a与直线b平行,直线a与平面α平行,则直线b与α的关系为(D) A.平行B.相交 C.直线b在平面α内D.平行或直线b在平面α内 解析:依题意,直线a必与平面α内的某直线平行,又a∥b,因此直线b与平面α的位置关系是平行或直线b在平面α内. 2.已知α是一个平面,m,n是两条直线,A是一个点,若m?α,n?α,且A∈m,A∈α,则m,n的位置关系不可能是(D) A.垂直B.相交 C.异面D.平行 解析:对于选项A,当m⊥α时,因为n?α,所以m⊥n,可能; 对于选项B,当A∈n时,m∩n=A,可能; 对于选项C,若A?n,由异面直线的定义知m,n异面,可能; 对于选项D,若m∥n,因为m?α,n?α,所以m∥α,这与m∩α=A矛盾,不可能平行,故选D. 3.(四川乐山四校联考)平面α∥平面β的一个充分条件是(D) A.存在一条直线a,a∥α,a∥β B.存在一条直线a,a?α,a∥β C.存在两条平行直线a,b,a∥α,a∥β,b?β D.存在两条异面直线a,b,a?α,b?β,a∥β,b∥α 解析:存在一条直线a,a∥α,a∥β,有可能a平行于两平面的交线,该条件不是平面α∥平面β的一个充分条件,故A错;存在一条直线a,a?α,a∥β,有可能a平行于两平面的交线,该条件不是平面α∥平面β的一个充分条件,故B错;存在两条平行直线a,b,a∥α,a∥β,b?β,有可能a平行于两平面的交线,该条件不是平面α∥平面β的一个充分条件,故C错;存在两条异面直线a,b,a?α,b?β,a∥β,b∥α,据此可得平面α∥平面β,该条件是平面α∥平面β的一个充分条件.故选D.

高中数学竞赛讲义_平面几何

平面几何 一、常用定理(仅给出定理,证明请读者完成) 梅涅劳斯定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若',','C B A 三点共线,则 .1''''''=??B C AC A B CB C A BA 梅涅劳斯定理的逆定理 条件同上,若.1''''''=??B C AC A B CB C A BA 则',','C B A 三点共线。 塞瓦定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若',','CC BB AA 三线平行或共点,则.1''''''=??B C AC A B CB C A BA 塞瓦定理的逆定理 设',','C B A 分别是ΔABC 的三边BC ,CA ,AB 或其延长线上的点,若.1''''''=??B C AC A B CB C A BA 则',','CC BB AA 三线共点或互相平行。 角元形式的塞瓦定理 ',','C B A 分别是ΔABC 的三边BC ,CA ,AB 所在直线上的点,则',','CC BB AA 平行或共点的充要条件是.1'sin 'sin 'sin 'sin 'sin 'sin =∠∠?∠∠?∠∠BA B CBB CB C ACC AC A BAA 广义托勒密定理 设ABC D 为任意凸四边形,则AB ?CD+BC ?AD ≥AC ?BD ,当且仅当A ,B ,C ,D 四点共圆时取等号。 斯特瓦特定理 设P 为ΔABC 的边BC 上任意一点,P 不同于B ,C ,则有 AP 2=AB 2?BC PC +AC 2?BC BP -BP ?PC. 西姆松定理 过三角形外接圆上异于三角形顶点的任意一点作三边的垂线,则三垂足共线。 西姆松定理的逆定理 若一点在三角形三边所在直线上的射影共线,则该点在三角形的外接圆上。 九点圆定理 三角形三条高的垂足、三边的中点以及垂心与顶点的三条连线段的中点,这九点共圆。 蒙日定理 三条根轴交于一点或互相平行。(到两圆的幂(即切线长)相等的点构成集合为一条直线,这条直线称根轴) 欧拉定理 ΔABC 的外心O ,垂心H ,重心G 三点共线,且.2 1GH OG = 二、方法与例题 1.同一法。即不直接去证明,而是作出满足条件的图形或点,然后证明它与已知图形或点重合。 例1 在ΔABC 中,∠ABC=700,∠ACB=300,P ,Q 为ΔABC 内部两点,∠QBC=∠QCB=100,∠ PBQ=∠PCB=200,求证:A ,P ,Q 三点共线。 [证明] 设直线CP 交AQ 于P 1,直线BP 交AQ 于P 2,因为∠ACP=∠PCQ=100,所以 CQ AC QP AP =1 ,①在ΔABP ,ΔBPQ ,ΔABC 中由正弦定理有

高中数学 空间点,直线和平面的位置关系公式

空间点,直线和平面的位置关系 一,线在面内的性质: 定里1. 如果一条直线的两点在一个平面内,那么这条直线上所有点都在这个平面内。 二,平面确定的判定定理: 定里2. 经过不在同一直线上的三点有且只有一个平面。 定里3.经过一条直线和直线外一点,有且只有一个平面。 定里4. 经过两条相交直线有且只有一个平面。 定里5.经过两条平行直线有且只有一个个平面。 三,两面相交的性质: 定里6. 如果两个平面有一个公共点,那么还有其它公共点,则这些公共点的集合是一条直线。 四,直线平行的判定定理: 定里7. 平行于同一直线的两直线平行。 五,等角定理: 定里8.如果一个角的两边和另一个角的两边分别平行且同向,那么这两个角相等。 六,异面直线定义: 不同在任何一个平面内的两条直线叫异面直线。(异面直线间的夹角只能是:锐角或直角) 七,直线和平面平行的判定定理: 定理9. 平面外一条直线与平面内一条直线平行,那么这条直线与这个平

面平行。

符合表示: β ββ////a b a b a ???????? 推理1. 如果一条直线与平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行。 符号表示: b a b a a a ////??? ?????=??βαβαα 八,平面与平面平行判定定理: 定理1. 如果一个平面内有两条相交直线分别平行于另一个平面,那么这两个平面平行。 符号表示: β αββαα//////??????????=??b a M b a b a 推论1:如果一个平面内有两条相交直线分别平行于另一个平面内的两条相交直线,那么这两个平面平行。 九,平面与平面平行的性质: 定理1. 如果两个平面平行同时与第三个平面相交,那它们的交线平行。

高中数学常用平面几何名定理

高中数学常用平面几何名定理 定理1 Ptolemy定理托勒密(Ptolemy)定理 四边形的两对边乘积之和等于其对角线乘积的充要条件是该四边形内接于一圆。 定理2 Ceva定理 定理3 Menelaus定理 定理4 蝴蝶定理定理 内容:圆O中的弦PQ的中点M,任作两弦AB,CD,弦AD与BC分别交PQ于X,Y,则M为XY之中点。 定理5 张角定理 在△ABC中,D是BC上的一点。连结AD。张角定理指出:sin∠BAD/AC+sin∠CAD/AB=sin∠BAC/AD 定理6 Simon line西姆松(Simson)定理(西姆松线) 从一点向三角形的三边所引垂线的垂足共线的充要条件是该点落在三角形的外接圆上。 定理7 Eular line: 同一三角形的垂心、重心、外心三点共线,这条直线称为三角形的欧拉线;且外心与重心的距离等于垂心与重心距离的一半 定理8 到三角形三定点值和最小的点——费马点 已知P为锐角△ABC内一点,当∠APB=∠BPC=∠CPA=120°时,PA+PB+PC的值最小,这个点P称为△ABC 的费尔马点。 定理9 三角形内到三边距离之积最大的点是三角形的重心 定理10到三角形三顶点距离的平方和最小的点是三角形的重心 在几何里,平面是无限延展的,是无大小的,是不可度量的,是无厚度的,通常画平行四边形来表示平面 0、勾股定理,即直角三角形两直角边的平方和等于斜边的平方。这是平面几何中一个最基本、最重要的定理,国外称为毕达哥拉斯定理。 1、欧拉(Euler)线: 同一三角形的垂心、重心、外心三点共线,这条直线称为三角形的欧拉线;且外心与重心的距离等于垂心与重心距离的一半 2、九点圆: 任意三角形三边的中点.三条高线的垂足.垂心与各顶点连线的中点,这9点共圆,这个圆称为三角形的九点圆;其圆心为三角形外心与垂心所连线段的中点,其半径等于三角形外接圆半径的一半。

高中数学 平面

§2.1.1平面(1) 一、设问导读(预习教材P 40~ P 43,找出疑惑之处) 问题1:观察长方体,你能发现构成空间几何体的基本要素有哪些?这些点、线、面有怎样的位置关系?本节我们将讨论这个问题. 2.平面的概念: 问题2:生活中哪些物体给人以平面形象?你觉得平面可以拉伸吗?平面有厚薄之分吗? 问题3:什么是平面呢? 如何画平面?平面如何表示呢? 问题4:点动成线、线动成面.联系集合的观点,点与直线、点与平面的位置关系怎么表示?直线与平面? A a A a A α A α 用符号语言表示: 3.平面的基本性质: 问题5:直线l 与平面α有一个公共点P ,直线l 是否在平面α内?有两个公共点呢? 问题6:公理1的文字语言如何叙述,符号语言如何符号语言如何表示?表示? 问题7:公理1有何作用? 问题8:两点确定一条直线,两点能确定一个平面吗?任意三点能确定一个平面吗? 问题9:公理2的文字语言如何叙述,符号语言如何表示? 问题10:你从公理2出发还能得出哪些推论?它们的作用是什么? 问题11:把三角板的一个角立在课桌面上,三角板所在平面与桌面所在平面是否只相交于点B ?为什么? 问题12:公理3的文字语言如何叙述,符号语言如何表示? 问题13:公理3有何作用? 二、自学检测 例1:如图,用符号表示下列图形中点、直线、平面之间的位置关系. 例2:如图在正方体ABCD A B C D ''''-中,判断下列命题是否正确,并说明理由: ⑴直线AC 在平面ABCD 内; ⑵设上下底面中心为,O O ',则平面AA C C ''与平面BB 'D D ' 的交线为OO '; ⑶点,,A O C '可以确定一个平面; ⑷平面AB C ''与平面AC D '重合; ⑸由,,A C B ''确定的平面是ADC B ''; 练 一练 :用符号表示下列语句,并画出相应的图形: ⑴点A 在平面α内,但点B 在平面α外; ⑵直线a 经过平面α外的一点M ; ⑶直线a 既在平面α内,又在平面β内. 4.课堂练习:43页 1,2,3,4. 5.课外作业:51页 习题2.1 A 组 1,2 三、巩固训练: 1. 下面说法正确的是( ). ①平面ABCD 的面积为210cm ②100个平面重合比50个平面重合厚③空间图形中虚线都是辅助线④平面不一定用平行四边形表示. A.① B.② C.③ D.④ 2. 下列说法正确的是( ). ①空间任意三点可以确定一个平面; ②有三个公共点的两个平面必重合; ③空间两两相交的三条直线确定一个平面; ④三角形是平面图形 ⑤平行四边形、梯形、四边形都是平面图形; ⑥垂直于同一条直线的两条直线平行; ⑦一条直线与两条平行线中的一条相交,也必和另一条相交; ⑧两组对边相等的四边形是平行四边形. 3.直线12,l l 相交于点P ,并且分别与平面γ相交于点,A B 两点,用符号表示为____________________. 4..平面α?平面l β=,点A α∈,B α∈,C β∈,且AB l R ?=,过A 、B 、C 三点确定平面γ,则βγ?= ( ) A . 直线AC B .直线BC C .直线CR D .以上都不对. 5. 两个平面不重合,在一个面内取4点,另一个面内取3点,这些点最多能够确定平面_______个 ※ 学习小结 1. 平面的特征、画法、表示; 2. 平面的基本性质(三个公理); 3. 用符号表示点、线、面的关系. ※ 知识拓展 平面的三个性质是公理(不需要证明,直接可以用),是用公理化方法证明命题的基础.其中公理1可以用来判断直线或者点是否在平面内;公理2用来确定一个平面,判断两平面重合,或者证明点、线共面;公理3用来判断两个平面相交,证明点共线或者线共点的问题. 四、拓展延伸 1.①两个平面α,β可将空间分成几部分? ② 已知a αβ?=,b βγ?=,c αγ?=,则平面α,β,γ可将空间分成几部分? O ' O B ' C ' D 'A ' D C B A

高中数学直线平面平行的性质及判定

一、空间几何体的表面积 1棱柱、棱锥的表面积:各个面面积之和 2 圆柱的表面积 3 圆锥的表面积2 r rl S ππ+= 4 圆台的表面积2 2R Rl r rl S ππππ+++= 5 球的表面积2 4R S π= 二、空间几何体的体积 1柱体的体积 h S V ?=底 2锥体的体积 h S V ?=底31 3台体的体积 h S S S S V ?++=)31 下下上上( 4球体的体积 3 34R V π= 三、直线、平面平行的判定与性质 1、直线与平面平行的判定定理 平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行, 用符号表示为a ?α,b ?α,且a ∥b ?a ∥α。 (1)运用直线与平面平行的判定定理时,必须具备三个条件: ①平面外一条直线;②平面内一条直线;③两条直线相互平行. (2)直线与平面平行的判定定理的关键是证明两直线平行,证两直线平行是平面几何的问题,所以该判定定理体现了空间问题平面化的思想. (3)判定直线与平面平行有以下方法:一是判定定理;二是线面平行定义;三是面面平行的性质定理. 【例1】 如右图所示,已知P 、Q 是单位正方体ABCD —A 1B 1C 1D 1的面A 1B 1BA 和面ABCD 的中心. 求证:PQ ∥平面BCC 1B 1. 证:如右图,取B 1B 中点E ,BC 中点F ,连结PE 、QF 、EF , ∵△A 1B 1B 中,P 、E 分别是A 1B 和B 1B 的中点, ∴PE 1 2 A 1 B 1.同理QF 1 2 AB .又A 1B 1AB ,∴PE QF . ∴四边形PEFQ 是平行四边形. ∴PQ ∥EF . 又PQ ?平面BCC 1B 1,EF ?平面BCC 1B 1, ∴PQ ∥平面BCC 1B 1. 2 22r rl S ππ+=

高中数学-直线与平面平行判定和性质

高中数学-立体几何典型例题一 例1简述下列问题的结论,并画图说明: (1) 直线a 平面 ,直线b a A ,则b 和 的位置关系如何? ,直线b//a ,则直线b 和 的位置关系如何? (1) 由图(1)可知:b 或b A ; (2) 由图(2)可知:b//或b . 典型例题二 例2 P 是平行四边形 ABCD 所在平面外一点, Q 是PA 的中点,求证: PC//平面BDQ . 分析:要证明平面外的一条直线和该平面平行,只要在该平面内找到一条直线和已知直线平行就可以 了. 证明:如图所示,连结 AC ,交BD 于点0 , ???四边形 ABCD 是平行四边形 ??? AO CO ,连结0Q ,则0Q 在平面BDQ 内, APC 的中位线, ? PC // 0Q . ??? PC 在平面BDQ 外, ? PC//平面 BDQ . 说明:应用线面平行的判定定理证明线面平行时,关键是在平面内找一条直线与已知直线平行,怎样 找这一直线呢? 由于两条直线首先要保证共面,因此常常设法过已知直线作一平面与已知平面相交,如果能证明已知 直线和交线平行,那么就能够马上得到结论?这一个证明线面平行的步骤可以总结为: 过直线作平面,得交线,若线线平行,则线面平行. 典型例题三 (2)直线a 分析: 且 OQ 说明:

例3经过两条异面直线a, b之外的一点P,可以作几个平面都与a , b平行?并证明你的结论. 分析:可考虑P点的不同位置分两种情况讨论. 解:(1)当P点所在位置使得a , P (或b , P )本身确定的平面平行于b (或a )时,过P点再作不出与a , b都平行的平面; (2)当P点所在位置a , P (或b , P)本身确定的平面与b (或a)不平行时,可过点P作a//a , b 〃b.由于a , b异面,则a , b不重合且相交于P .由于a b P , a , b确定的平面,则由线面平行判定定理知:a// , b〃?可作一个平面都与a , b平行. 故应作“ 0个或1个”平面. 说明:本题解答容易忽视对P点的不同位置的讨论,漏掉第(1)种情况而得出可作一个平面的错误结论?可见,考虑问题必须全面,应区别不同情形分别进行分类讨论. 典型例题四 例4平面外的两条平行直线中的一条平行于这个平面,那么另 已知:直线a//b, a//平面,b . 求证:b// . 证明:如图所示,过a及平面内一点A作平面 . 设c, ??? a// ??? a//c. 又??? a//b, ? b//c. ??? b , c , ? b// . 说明:根据判定定理,只要在内找一条直线c//b,根据条件a// ,为了利用直线和平面平行的性 质定理,可以过a作平面与相交,我们常把平面称为辅助平面,它可以起到桥梁作用,把空间问题向平面问题转化. 和平面几何中添置辅助线一样,在构造辅助平面时,首先要确认这个平面是存在的,例如,本例中就是以“直线及直线外一点确定一个平面”为依据来做出辅助平面的. 典型例题五 例5已知四面体S ABC的所有棱长均为a .求: (1 )异面直线SC、AB的公垂线段EF及EF的长;

高中数学竞赛平面几何讲座(非常详细)

第一讲 注意添加平行线证题 在同一平面内,不相交的两条直线叫平行线.平行线是初中平面几何最基本的,也是非常重要的图形.在证明某些平面几何问题时,若能依据证题的需要,添加恰当的平行线,则能使证明顺畅、简洁. 添加平行线证题,一般有如下四种情况. 1、为了改变角的位置 大家知道,两条平行直线被第三条直线所截,同位角相等,内错角相等,同旁内角互补.利用这些性质,常可通过添加平行线,将某些角的位置改变,以满足求解的需要. 例1 、设P 、Q 为线段BC 上两点,且BP =CQ,A 为BC 外一动点(如图1).当点A 运动到使 ∠BAP =∠CAQ 时,△ABC 是什么三角形?试证明你的结论. 答: 当点A 运动到使∠BAP =∠CAQ 时,△ABC 为等腰三角形. 证明:如图1,分别过点P 、B 作AC 、AQ 的平行线得交点D.连结DA. 在△DBP =∠AQC 中,显然∠DBP =∠AQC ,∠DPB =∠C. 由BP =CQ,可知△DBP ≌△AQC.有DP =AC ,∠BDP =∠QAC. 于是,DA ∥BP ,∠BAP =∠BDP.则A 、D 、B 、P 四点共圆,且四边形ADBP 为等腰梯形.故AB =DP.所以AB =AC. 这里,通过作平行线,将∠QAC “平推”到∠BDP 的位置.由于A 、D 、B 、P 四点共圆,使证明很顺畅. 例2、如图2,四边形ABCD 为平行四边形,∠BAF =∠BCE.求证:∠EBA =∠ADE. 证明:如图2,分别过点A 、B 作ED 、EC 的平行线,得交点P,连PE. 由AB CD,易知△PBA ≌△ECD.有PA =ED,PB =EC. 显然,四边形PBCE 、PADE 均为平行四边形.有 ∠BCE =∠BPE ,∠APE =∠ADE.由∠BAF =∠BCE,可知 ∠BAF =∠BPE.有P 、B 、A 、E 四点共圆.于是,∠EBA =∠APE.所以,∠EBA =∠ADE. 这里,通过添加平行线,使已知与未知中的四个角通过P 、B 、A 、E 四点共圆,紧密联系起来.∠APE 成为∠EBA 与∠ADE 相等的媒介,证法很巧妙. 2、欲“送”线段到当处 利用“平行线间距离相等”、“夹在平行线间的平行线段相等”这两条,常可通过添加平行线,将某些线段“送”到恰当位置,以证题. 例3、在△ABC 中,BD 、CE 为角平分线,P 为ED 上任意一点.过P 分别作AC 、AB 、BC 的垂 线,M 、N 、Q 为垂足.求证:PM +PN =PQ. 证明:如图3,过点P 作AB 的平行线交BD 于F,过点F 作BC 的 平行线分别交PQ 、AC 于K 、G,连PG. 由BD 平行∠ABC,可知点F 到AB 、BC 两边距离相等.有KQ =PN. 显然,PD EP =FD EF =GD CG ,可知PG ∥EC. 由CE 平分∠BCA,知GP 平分∠FGA.有PK =PM.于是,PM +PN =PK +KQ =PQ. 这里,通过添加平行线,将PQ “掐开”成两段,证得PM =PK,就有PM +PN =PQ.证法非常简捷. 3 、为了线段比的转化 由于“平行于三角形一边的直线截其它两边,所得对应线段成比例”,在一些问题中,可以通过添加平行线,实现某些线段比的良性转化.这在平面几何证题中是会经常遇到的. ∥=A D B P Q C 图1 P E D G A B F C 图2A N E B Q K G C D M F P 图3

高中数学平面

平面 立体几何课程是初等几何教育的内容之一,是在初中平面几何学习的基础上开设的,以空间图形的性质、画法、计算以及它们的应用为研究对象,以演绎法为研究方法.通过立体几何的教学,使学生的认识水平从平面图形延拓至空间图形,完成由二维空间向三维空间的转化,发展学生的空间想象能力,逻辑推理能力和分析问题、解决问题的能力. 平面的概念和平面的性质是立体几何全部理论的基础.平面,是现实世界存在着的客观事物形态的数学抽象,在立体几何中是只描述而不定义的原始概念,但平面是把三维空间图形转化为二维平面图形的主要媒介,在立体几何问题平面化的过程中具有重要的桥梁作用. 一、素质教育目标 (一)知识教学点 1.“平面”是空间图形的基本元素,很多空间图形的面都是平面图形,平面图形及其性质是初中平面几何的主要学习内容,因此,要建立起“空间问题平面化”的观点. 2.虽然日常生活中的平面物体有一定的局限,但作为立体几何中的“平面”无大小之分,是无限延展的. 3.平面可用图形表示,也可用符号表示,应理清与其它图形表示法的联系与区别. (二)能力训练点 1.通过“平面”概念的教学,初步培养空间想象能力,如平面的无限延展性. 2.由叙述语言、图形语言和符号语言的互译,培养语言转换能力. (三)德育渗透点 通过通俗意义上的平面到数学意义上的平面的学习,了解具体与抽象,特殊与一般的辩证关系,由点、直线、平面间内在的联系逐渐形成“事物总是运动变化”的辩证观点. 二、教学重点、难点及解决办法 1.教学重点 (1)从客观存在的平面物体抽象出“平面”概念.

(2)掌握点、直线、平面间的相互关系,并会用文字、图形、符号语言正确表示. (3)理解平面的无限延展性. 2.教学难点 (1)理解平面的无限延展性. (2)集合概念的符号语言的正确使用. 3.解决办法 (1)借助实物操作,抽象出“平面”概念. (2)运用正迁移规律,将直线的无限延伸性类比于平面的无限延展性. 三、课时安排 1课时. 四、学生活动设计 准备好纸板三块,纸盒一个,小竹签四根.纸板作为平面的模型,纸盒用于观察平面的位置,以便同画出的图形比较,小竹签用于表示直线. 五、教学步骤 (一)明确目标 1.能够从日常生活实例中抽象出数学中所说的“平面”. 2.理解平面的无限延展性. 3.正确地用图形和符号表示点、直线、平面以及它们之间的关系. (二)整体感知 “立体几何”作为一门学生刚开始学习的学科,其内容对学生来说基本上是完全陌生的,应以“讲授法’的主,引导学生观察和想象,吸引学生的注意力,激发学生的学习兴趣,初步培养空间想象力. 本课是“立体几何”的起始课,应先把这一学科的内容作一大概介绍,包括课本的知识结构,“立体几何”的研究对象,研究方法,学习立体几何的方法和作用等.而后引入“平面”概念,以类比的方式,联系直线的无限延伸性去理解平面的无限延展性,突破教学难点.在进行“平面的画法”教学时,不仅要会画水平放置的平面,还应会画直立的平面和相

相关文档
相关文档 最新文档