文档视界 最新最全的文档下载
当前位置:文档视界 › 烟温省煤器冲洗方案

烟温省煤器冲洗方案

烟温省煤器冲洗方案
烟温省煤器冲洗方案

天津华能杨柳青电厂#炉烟温省煤器冲洗

施工方案

批准:

审定:

审核:

编制:

天津港电电力设备检修有限公司

2016年5月14日

1、总则

本施工规范适用于天津华能杨柳青电厂#炉烟温省煤器冲洗技术要求。

1.1 工程名称:天津华能杨柳青电厂#炉烟温省煤器冲洗。

1.2 工程地点:天津华能杨柳青电厂内。

1.3 承包范围:烟温省煤器管道外壁灰垢高压水冲洗。

1.4 质量标准:

按《电力建筑施工及验收技术规范》和《火电施工质量检验及评定标准》评定,达到优良等级。

2、施工组织概况

施工组成人员

职务人数主要职责

施工负责人 1 全面负责,对外协调,现场施工组织

技术主管 1 负责技术、质量控制管理

施工队长 1 质量培训、检验、监督

施工员 4 安全培训、监督、检查

合计7

3、工作内容及分工

3-1乙方责任(天津港电)

3.1.1 清理设备管道外壁积灰及结垢。

3.1.2施工所需施工设备、工具的配备。

3.1.3 按照甲方指定的水电接口布置施工期间用水用电设施。

3.1.4 清理设烟道内冲洗所产生的积水,灰垢。

3.1.5 施工完成以后,乙方应及时通报甲方或相关方,由甲方进行验收。

3-2 甲方责任(杨柳青热电)

3.2.1 负责施工前准备工作,保障施工的安全措施、工作票等。

3.2.2 为乙方提供设备结构图等相关资料。

3.2.3 负责施工现场平台的搭建、人孔门及吹灰器拆卸和安装。

3.2.4 配合乙方进行现场施工,为施工提供必要的条件。

3.2.5 为施工提供电源、水源、气源等。

3.2.6 派协调员协调现场施工。

3.2.7 检查乙方履行技术协议的情况,向乙方提出整改要求。

4、工程工期

4.1 施工工期:从供方进厂之日起20天内完成。

4.2 开工日期:本公司将以甲乙双方签定协议,乙方进厂施工为准。

4.3 除非因建设单位因素原因影响工期,并经建设单位代表确认的相应顺延,否则本公司将不得更改或延误工期。

4.4 本公司将积极配合建设单位的赶工计划,不得以各种理由推迟或延误建设单位的施工进度。不得因本公司的施工组织或管理过失、造成合同工期延误。

5、标准和规范

5.1 标准和规范

5.1.1本公司将严格遵守经确认的、上级颁布的法律及法规。并遵守本行业的规程、规范、标准,以及发包方制定的各项操作规程、安全规程及验收标准。

6、施工要求

本规定适用于天津华能杨柳青热电厂#烟温省煤器烟气侧高压水冲洗项目。

6.1 开具施工项目工作票后,打开各部人孔门,进行通风后,将中间层所布置吹灰器拆除,为施工人员清理出空间。

6.2 确认烟道内安全后,施工人员进入烟道,对烟温省煤器管排表面积灰进行初步清理。

6.3 积灰清理完毕后,在烟温省煤器下方搭设脚手架,便于最下方管排冲洗。

6.4 用高压橡胶软管引入温度为70℃水源,对所有管排进行冲洗,用于初步软化灰垢中所含硫酸氢氨成分,为高压水冲洗做好准备。

6.5 低压热水冲洗结束后,进行高压水冲洗,每层管排均采用对向冲洗方式,确保冲洗效果,管排中间层因空间狭窄,需使用专用冲洗工具分别向上和向下逐排进行冲洗,冲洗过程中随时才用透光法进行检查,避免出现冲洗死角。

6.6 高压水冲洗结束后,再使用消防水逐排进行大流量冲洗,以清除高压水冲洗下来的残留灰渣。直至所有管排露出金属表面。

6.7 冲洗全部结束后,首先进行自检,自检合格后通知甲方进行验收,检验方法一般采用目测直观检查及管排透光检查相结合方式。发现不合格部位及时进行处理。

6.8 验收合格后,对设备内部进行回检,确保设备内部无遗留异物后,将清洗设备撤出,拆除脚手架,封闭人孔门。

7、安全措施

7.1安全措施

7.1.1施工安全保障体系

施工现场全体人员必须严格执行公司《施工现场安全管理规定》、《施工现场消防安全管理制度》,做到“有法可依、执法必严”。对工人进行安全宣传及教育,认真贯彻、执行公司相关的安全条例,落实到具体责任人。

7.2施工安保措施

乙方将编制该项目施工安保作业指导书,具体规定施工全过程中在施工操作、设备及工具使用、临设搭拆、动力连接等各阶段的人员、设备、材料等方面的安全保障措施及其实施方法和安全管理规定,作为在施工过程中进行安保措施操作的执行文件和进行安全监督检查的主要依据。

施工安保作业指导书要点分述如下:

7.2.1施工人员人身安保

⑴施工人员进入施工现场必须遵守指挥部各项安全制度之规定。

⑵施工时必须穿戴好工作服(棉质)、安全帽、平底胶鞋,严禁酒后作业,严禁吸烟,并注意防火。

⑶施工人员进入烟道施工过程中,保证有足量的通风。冲洗施工时,施工人员必须

戴好专用防护服及面罩。

⑷高空作业必须佩戴安全带,并配置双安全绳,在作业面上应设置安全主缆,安全主缆应固定牢固并定期检查。作业时须将安全绳固定在牢固点(含安全主缆,下同)上,所用施工工具也必须系在安全带或其它固定点上,以防高空坠落。在高空移动应用两根安全绳交替固定在牢固点上进行移动,随时保持有一根安全绳固定在牢固点上。

⑸施工时必须配备相应的防护用品:如口罩、手套等。

⑹每天对电气设备、电动工具、电缆进行安全检查,消除安全隐患,确保不发生因电器故障引发的人员安全事故。

⑺施工人员进入烟道内施工时,应保持足够的照明。

⑻对脚手架等设施需定期检查,保持其牢固、稳定。

⑼严格作息制度,各项安全措施均达标后方能进行施工。

⑽班前由班组自检,各项安全措施均达标后方能进行施工。

⑾由项目经理召开安全例会,总结当日及一周的安全情况,提高施工人员的安全意识。

⑿并不交叉施工中的调度协调每天一次,应明确交叉施工的安全区域。

7.2.2设备仪器的安保

⑴安全员须持证上岗,对施工设备进行安全检查、维修,使施工设备保持良好的运行状态。

⑵施工人员必须严格执行各种电动工具,电气设备的操作规程,严禁违章使用。

⑶临时配电箱的制作,电缆的搭接须由安全员完成。

⑷电动工具、电气设备处于无工作状态时,必须切断主电源。

⑸项目部不定期对设备安保工作进行检查,如有违章照章处罚。

8、文明施工和环保措施

8.1文明施工和环保措施

在工程施工现场的全体员工除严格遵守甲方有关文明施工的守则外,更应遵守

本条例和服从施工现场管理人员的引导和指示。

1、施工现场应设置醒目标识明确划分施工区域。

2、施工人员应统一着装。

3、施工应采取适当措施避免扬尘和污水产生污染。

4、全体施工人员应自觉遵守工程所在地的治安、卫生、环保等法规和管理制度。

5、严禁在施工现场吸烟。

6、严禁在施工现场睡觉。

7、严禁在施工现场追逐和嬉戏。

8、严禁在施工现场打架斗殴。

9、严禁在施工现场进食任何食物。

10、着装整齐,严禁赤胸露膊,穿拖鞋。

11、举止文明,不准有侮辱性的语言和行为。

12、进入施工现场必须配带胸卡。

变压器的温升计算

变压器的温升计算方法探讨 1 引言 我们提出工频变压器温升计算的问题,对高频变压器的温升计算也可以用来借鉴。工频变压器的计算方法很多人认为已趋成熟没有什么可讨论的,其实麻雀虽小五脏俱全,再成熟的东西也需要不断创新才有生命力。对于一个单位的工程技术人员来讲温升计算问题可能并不存在,温升本身来源于试验数据,企业本身有大量试验数据,温升问题垂手可得,拿来主义就可以了,在本企业来说绝对有效,离开了本企业也带不走那么多数据。但冷静的考虑一下,任何一个企业不可能生产全系列变压器,总会有相当多的系列不在你生产的范围内,遇到一些新问题,只能用打样与试验的方法去解决,小铁心不在话下,耗费的工时与材料都不多,大铁心耗费的铁心与线材就要考虑考虑了。老企业可以用这样简单的办法去解决,只不过多花费一些时间罢了,一个新企业或规模不大的企业,遇到这些问题要用打样与试验的方法去解决,就耗时比较多了,有时候会损失商机。进入软件时代,软件的编写者如不能掌握这一问题,软件的用户将会大大减少。下面就温升的计算公式进行探讨,本文仅提出一个轮廓,供大家参考。 2 热阻法 热阻法基于温升与损耗成正比,不同磁心型号热阻不同,热阻法计算温升比较准确,因其本身由试验得来,磁心又是固定不变的,热阻数据由大型磁心生产厂商提供。有了厂家提供的热阻数据,简单、实用何乐而不为。高频变压器可采用这一方法。而铁心片供应商不能提供热阻这一类数据,因此低频变压器设计者很难采用。热阻法的具体计算公式如下: 式中, 温升ΔT(℃) 变压器热阻Rth(℃/w) 变压器铜损PW(w) 变压器铁损PC(w) 3 热容量法 源于早期的灌封变压器,由于开放式变压器的出现这种计算方法已被人遗忘,可以说是在考古中发现。这种计算方法的特点是把变压器看成是一个密封的元件,既无热的传导,也无热的辐射,更无热的对流,热量全部靠变压器的铁心、导线、

硬母线温升计算

硬母线温升计算 请教各位,低压成套开关设备垂直母线额定短时耐受电流如何选取? 在论坛一直潜水,学习帕版及各位老师的帖子,受益匪浅。本人有一事不明白,低压成套开关设备垂直母线的额定短时耐受电流如何选取? 对于2500kVA,阻抗电压6%的变压器,主母线选择额定短时耐受电流85kA/1S,垂直母线应如何选取?垂直母线上的断路器的分断能力是否应于母线相匹配? 另,帕版经常提到的“MNS Engineering Guide-line ”式中下载不到,可否提供以下?谢谢 楼主的问题是: 对于2500kVA,阻抗电压6%的变压器,主母线选择额定短时耐受电流85kA/1S,垂直母线应如何选取?垂直母线上的断路器的分断能力是否应于母线相匹配? 我们先来计算一番: 因为:Sn=√3UpIn,所以In=2500x103/(1.732x400)=3609A 因为:Ik=In/Uk,所以Ik=3609/0.06=60.15kA 对于断路器而言,选择断路器的极限短路分断能力Icu>60.15kA即可,一般取为65kA。但是对于主母线来说,是不是我们也选择它的动稳定性等于65kA 就可以了? 动稳定性的定义是:低压开关柜抵御瞬时最大短路电流电动力冲击的能力。那么60.15kA就是最大短路电流的瞬时值吗? 我们来看下图:

这张图我们看了N遍了。其中Ip就是短路电流的稳态值,也是短路电流的周期分量。在楼主的这个问题中,我们计算得到的60.15kA 就是Ip,它也等于短路电流稳态值Ik。显然,它不是短路电流的最大瞬时值 短路电流的最大瞬时值是冲击短路电流峰值Ipk,Ipk=nIk。根据IEC 61439.1或者GB 7251.1,我们知道当短路电流大于50kA后,n=2.2,于是冲击短路电流峰值Ipk=nIk=2.2x60.15=132.33kA,这才是动稳定性对应的最大短路电流瞬时值 也就是说,对于楼主的这个范例,低压开关柜主母线的峰值耐受电流必须大于132.33kA 我们来看GB 7251.1-2005是如何描述峰值耐受电流与短时耐受电流之间的关系的,如下: 我们发现,对于主母线来说,它的峰值耐受电流与短时耐受电流之比就是峰值系数n

干式变压器绕组温升计算方法分析

干式变压器绕组温升计算方法分析 傅华强 2003 1发热与散热的平衡—绕组的稳定温升 绕组上的损耗功率是绕组温升的热源,这是比较好算的.而绕组的散热则是一个比较复杂的问题.在绕组内部热量通过传导的方式传到绕组的表面,在表面则通过对流和幅射的方式传到外界环境中去.当绕组的发热与散热达到平衡时,就是绕组的稳定温升。 绕组的散热是一个复杂过程。影响绕组散热的主要因素:绕组温度;绝缘层厚;绕组外包绝缘厚:绕组外包绝缘材料的散热性能;散热气道的宽度和长度;气流速度;铁芯和相邻绕组散热的影响等。因而绕组温升计算随其所用绝缘材料和结构的不同而不同。 2 绕组温升计算的数学模型 绕组的稳定温升一般用一个简化的公式进行计算,不同的结构和绝缘材料的绕组所用系数是不同的。公式运用的温度范围也是有限定的。如: τ= K Q X Q = W/S S=∑ αi S i 式中:τ—绕组温升; K—系数; X—与散热效果有关的系数,散热越好X的值越小; Q— 绕组的单位热负荷 W/m2 W—参考温度下的绕组损耗功率 W S— 等效散热面 m2 S i— 绕组散热面 m2 αi— 散热系数 2.1 不同结构型式的变压器所用的计算公式是不同的。 2.2 干式变压器的散热主要是对流和幅射完成的,非包封变压器的传导温升

所占比例很小,因而有些计算公式将层绝缘与外绝缘造成的传导引起的温升计算省略了,有些公式还要加上传导引起的温升,如西欧树脂绝缘干式变压器的计算公式。 2.3 黑体面的热量幅射与绝对温度的4次方成比例的,在一个不大的温度段,对流和幅射对散热的综合影响造成的温升式中系数X—与散热效果有关的系数,散热越好X的值越小.如油浸变压器层式绕组温升X值取0.8,而强迫油循环时X取0.7,饼式绕组X取0.6。一般干式变压器X值取0.8,当温升在80K 左右时,由于温度高时散热效率高,在一些计算公式中X取0.75,因而当温升在100—125K时,X的取值应该再小些。 2.4 当温升范围较大时,用一个计算公式会首尾不能兼顾,需要用两个以上的公式,它们的X值不同,即斜率不同。实际上是由几条直线组成的近似曲线。 2.5 绕组的单位热负荷Q 是指在无遮盖的单位散热面上的功率(W/m2),有气道的散热面,则要确定气道的散热系数。 2.6如果计算所得温升离参考温度很远,由于计算所用绕组损耗功率离实际功率差得太大而误差很大,则应调整计算绕组损耗功率所用的参考温度。 3 确定数学模型的工厂方法 最实用的确定数学模型的方法是通过典型变压器的温升试验。无气道绕组的温升是最基本的,如绕在厚绝缘筒上的外线圈。线圈外部的面积大小就是有效散热面,先算出热负荷Q值,由试验所得温升与Q值在双对数座标纸上打点,最少要有3个试验数据,即可在对数坐标纸上连成一条合理的直线,从这条直线上确定公式的两个系数K和X。 τ= K Q X τ1 K = ———— Q1 X Lgτ2 - Lgτ1Lgτ2/τ1 X =———————— = ———— Lg Q2 - Lg Q1Lg Q2/Q1 式中:

变压器的温升计算公式

变压器的温升计算公式 1 引言 工频变压器的计算方法很多人认为已趋成熟没有什么可讨论的,对于一个单位的工程技术人员来讲温升计算问题可能并不存在,温升本身来源于试验数据,企业本身有大量试验数据,温升问题垂手可得。下面就温升的计算公式进行探讨,本文仅提出一个轮廓,供大家参考。 2 热阻法 热阻法基于温升与损耗成正比,不同磁心型号热阻不同,热阻法计算温升比较准确,因其本身由试验得来,磁心又是固定不变的,热阻数据由大型磁心生产厂商提供。有了厂家提供的热阻数据,简单、实用何乐而不为。高频变压器可采用这一方法。而铁心片供应商不能提供热阻这一类数据,因此低频变压器设计者很难采用。热阻法的具体计算公式如下: 式中, 温升ΔT(℃) 变压器热阻Rth(℃/w) 变压器铜损PW(w) 变压器铁损PC(w) 3 热容量法 源于早期的灌封变压器,由于开放式变压器的出现这种计算方法已被人遗忘,可以说是在考古中发现。这种计算方法的特点是把变压器看成是一个密封的元件,既无热的传导,也无热的辐射,更无热的对流,热量全部靠变压器的铁心、导线、绝缘材料消耗掉。这样引出一个热容量(比热)的概念,就可以利用古人留给我们的比热的试验数据,准确的计算出变压器的温升来。不是所有的变压器都可以利用这一计算公式,唯独只有带塑料外壳的适配器可采用这一方法,这种计算方法准确度犹如瓮中捉鳖十拿九稳。 若适配器开有百叶窗,那就有一部份热量通过对流散发出去,如不存在强迫对流,百叶窗对温升的影响只在百分之三左右。上一代的变压器设计工作者对这一计算方法很熟悉,现在的变压器设计工作者根据此线索,进行考古也会有收获。热容量法的计算模式如下: 式中,温升ΔT(℃)

油浸电力变压器温升计算设计手册

设计手册 油浸电力变压器温升计算

目 录 1 概述 第 1 页 热的传导过程 第 1 页 温升限值 第 2 页 1.2.1 连续额定容量下的正常温升限值 第 2 页 1.2.2 在特殊使用条件下对温升修正的要求 第 2 页 1.2.2.1 正常使用条件 第 2 页 1.2.2.2 安装场所的特殊环境温度下对温升的修正 第 2 页 1.2.2.3 安装场所为高海拔时对温升的修正 第 3 页 2 层式绕组的温差计算 第 3 页 层式绕组的散热面(S q c )计算 第 3 页 层式绕组的热负载(q q c )计算 第 3 页 层式绕组的温差(τq c )计算 第 4 页 层式绕组的温升(θqc )计算 第 4 页 3 饼式绕组的温升计算 第 4 页 饼式绕组的散热面(S q b )计算 第 4 页 3.1.1 饼式绕组的轴向散热面(S q bz )计算 第 4 页 3.1.2 饼式绕组的横向散热面(S q b h )计算 第 5 页 饼式绕组的热负载(q q b )计算 第 5 页 饼式绕组的温差(τq b )计算 第 5 页 3.3.1 高功能饼式绕组的温差(τq g )计算 第 5 页 3.3.2 普通饼式绕组的温差(τq b )计算 第 6 页 饼式绕组的温升(θq b )计算 第 7 页 4 油温升计算 第 8 页 箱壁几何面积(S b )计算 第 8 页 箱盖几何面积(S g )计算 第 9 页 版 次 日 期 签 字 旧底图总号 底图总号 日期 签字 油 浸 电 力 变 压 器 温 升 计 算 共 页 第 页 02 01

油箱有效散热面(S yx )计算 第 9 页 4.3.1 平滑油箱有效散热面(S yx )计算 第 9 页 4.3.2 管式油箱有效散热面(S yx )计算 第10 页 4.3.3 管式散热器油箱有效散热面(S yx )计算 第12 页 4.3.4 片式散热器油箱有效散热面(S yx )计算 第14 页 目 录 油平均温升计算 第19 页 4.4.1 油箱的热负载(q yx )计算 第19 页 4.4.2 油平均温升(θy )计算 第19 页 顶层油温升计算 第19 页 5 强油冷却饼式绕组的温升计算 第21 页 强油导向冷却方式的特点 第21 页 5.1.1 线饼温度分布 第21 页 5.1.2 横向油道高度的影响 第21 页 5.1.3 纵向油道宽度的影响 第21 页 5.1.4 线饼数的影响 第21 页 5.1.5 挡油隔板漏油的影响 第21 页 5.1.6 流量的影响 第21 页 强油冷却饼式绕组的热负载(q q p )计算 第22 页 强油冷却饼式绕组的温差(τq p )计算 第23 页 强油冷却饼式绕组的温升(θq p )计算 第23 页 强油风冷变压器本体的油阻力(ΔH T )计算 第23 页 5.5.1 油管路的油阻力(ΔH g )计算 第23 页 5.5.1.1 油管路的摩擦油阻力(ΔH M )计算 第23 页 5.5.1.2 油管路特殊部位的形状油阻力(ΔH X )计算 第24 页 5.5.1.3 油管路的油阻力(ΔH g )计算 第25 页 5.5.2 线圈内部的油阻力(ΔH q )确定 第26 页 5.5.2.1 线圈内部的摩擦油阻力(ΔH q m )计算 第26 页 5.5.2.2 线圈内部特殊部位的形状油阻力(ΔH qT )计算 第27 页 油 浸 电 力 变 压 器 温 升 计 算 共 页 第 页 02 02

电容器外部温升计算

電容器外部溫升計算公式 :3.1416 :頻率 (Hz ) :損耗因數 tan δ :峰值電流 (A ) :容抗 (Ω) π f DF I rms Xc :電容器外部溫升 (℃) :傳熱系數 MPE Film 1.4×10-3 W/( cm 2×℃) MPP Film 2.5×10-3 W/( cm 2×℃) :電容器表面積 (cm 2) :電容器容量 (F ) :頻率系數 2πf (Hz ) β S C ω 1 β*S I 2 rms*tan δ ω*C )× 1 β*S I 2 rms*DF* )* 2πfC 1 Xc= = ω*C 1 2πfC 1 ω =2πf 1cal/(cm 2?s ?℃)=4.1868 W/(cm 2 × ℃) CAPACITORS HUNG JUNG ELECTRONICS GUANG DONG 1 β*S I 2 rms*tan δ ω*C × 1 β*S =( )×I 2 rms ×DF ×Xc =( )×I 2 rms ×DF × 1 β*S 2πfC 1 MPE Film β :1.4×10 -3 W/(cm 2 × ℃) S :18.16cm 2 (26×18×10mm) I rms :1. 1.20A 2. 2.30A 3. 2.83A DF :0.018 π :3.14 f :50KHz=5×10 4Hz 1. 1.20A =( )×1.22×0.018× =39.3329×0.018×3.1847133×1.22 =2.2547506×1.22 =3.2468408(℃) 1 1.4×10 -3×18.16 1 2×3.14×5×10 4×10 -6 △T 2. 2.30A =2.2547506×2.3 2 =11.92763(℃) △T 3. 2.83A =2.2547506×2.83 2 =18.058072(℃) △T MPP Film β :2.51208×10 -3 W/(cm 2 × ℃) S :19.855cm 2 (26×18.5×11.5mm) I rms :1. 1.20A 2. 2.83A 3. 3.50A DF :0.007 π :3.14 1. 1.20A =( )×1.22×0.007× =20.0491×0.007×3.1847133×1.2 2 =0.4469544×1.2 2 =0.6436143(℃) 1 2.51208×10 -3× 1 2×3.14×5×10 4×10 - 6 △T 2. 2.83A =0.4469544×2.83 2 =3.579613(℃) △T 3. 3.50A =0.4469544×3.50 2 =5.4751914(℃) △T

电动机温升的基本测量方法

电动机温升的基本测量方法 电力作业人员都知道,电力设备在运行做工的过程中不可避免的要产生热能,进而产生无功功率等,电动机的运行也不例外,其中电动机的温升是判断电动机是否正常运行的一个重要的参考指标,那么电动机的温升具体是怎么测量的呢? 一,电动机温度热量的产生。 一台电机中的温度分布和热量流通情况十分复杂。各种损耗形成不同的热风损耗转化为热量后,将流过不同的材料,由电机外表面散发至外面。 主要的热源来自电机内部,即来自电流流过导体时产生的铜损耗,以及在铁芯内当磁通变化时所产生的铁损耗。轴承摩擦所产生的热,仅为局部的热源,对绕组和铁芯的温升影响不大。在电机内部,各点的温度是不均匀的。在发热量大而散热不易之处,例如在电枢的槽的底部温度为最高。 当电机开始运转后,由于热量不断产生,各部分温度将继续增加,直到热量的产生和散发达到乎衡为止。 二,电动机散热的基本方式。 1,电机的热量向外发散时主要依靠对流作用,其次为幅射作用。 因为电机的底座和电机所接触的空气都为不良导热体,由传导作用传热主要在电机内部进行。辐射作用的有效表面仅为电机各部分的

外表面。 2,对流作用又可区分为自然对流和强制对流两种。 自然对流作用:是由于和散热面相接触的热空气的上升,且其所逸出的空间由周围的空气的填补; 强制对流作用:是由待备的通风器,例如附装在机轴上的风扇,在冷却表面上形成气流。 旋转着的电枢本身也起着带动气流的作用。限制温升的有效方法是增强散热作用。 三,电动机温升的基本测量方法。 由于电机各部分的发热和散热过程比较复杂,影响的因素很多,所以对温升的计算通常只作近似的估算,在设计电机时,常以经验数据为依据。 测定电机各部分温度的方法,主要有下列四种方法: 1、温度计测量法。 此法用温度计直接测定温度,最为简便。但用温度计仅能接触到电机各部分的表面,所测得的仅为表面温度。用温度计无法测出电机内部的最高温度。 2、电阻测量法。 此法只能用以测定绕组的平均温度。原理: 在电机运转以前,我们先测得绕组的冷态电阻r1,即当绕组温度等于冷却介质温度t1时的电阻。设电机运转以后绕组的湿度升高至t2,绕组的电阻便增加至r2。加温度用摄氏来量度,则对铜线绕组

变压器试验基本计算公式

变压器试验基本计算公式 一、电阻温度换算: 不同温度下的电阻可按下式进行换算:R=R t (T+θ)/(T+t) θ:要换算到的温度;t:测量时的温度;R t :t温度时测量的电阻值; T :系数,铜绕组时为234.5,铝绕组为224.5。 二、电阻率计算: ρ=RtS/L R=(T+θ)/(T+t)电阻参考温度20℃ 三、感应耐压时间计算: 试验通常施加两倍的额定电压,为减少励磁容量,试验电压的频率应大于100Hz,最好频率为150-400Hz,持续时间按下式计算: t=120×f n /f, 公式中:t为试验时间,s;f n 为额定频率,Hz;f为试验频率, Hz。 如果试验频率超过400 Hz,持续时间应不低于15 s。 四、负载试验计算公式: 通常用下面的公式计算:P k =(P kt +∑I n 2R×(K t 2-1))/K t 式中:P k 为参考温度下的负载损耗; P kt 为绕组试验温度下的负载损耗; K t 为温度系数; ∑I n 2R为被测一对绕组的电阻损耗。 三相变压器的一对绕组的电阻损耗应为两绕组电阻损耗之和,计算方法如下:“Y” 或“Y n ”联结的绕组:P r =1.5I n 2R xn =3 I n 2R xg ; “D”联结的绕组:P r =1.5I n 2R xn =I n 2R xg 。 式中:P r 为电阻损耗; I n 为绕组的额定电流; R xn 为线电阻; R xg 为相电阻。 五、阻抗计算公式: 阻抗电压是绕组通过额定电流时的电压降,标准规定以该压降占额定电压的百分数表示。阻抗电压测量时应以三相电流的算术平均值为准,如果试验电流无法达到额定电流时,阻抗电压应按下列公式折算并校准到表四所列的参考温度。e kt = (U kt ×I n )/(U n ×I k )×100%, e k =1) - (K ) /10S (P e2 2 N kt 2 kt % 式中:e kt 为绕组温度为t℃时的阻抗电压,%; U kt 为绕组温度为t℃时流过试验电流I k 的电压降,V; U n 为施加电压侧的额定电压,V; I n 为施加电压侧的额定电流,A; e k 为参考温度时的阻抗电压,%; P kt 为t℃的负载损耗,W;S n 为额定容量,kVA; K t 为温度系数。案例1:

热电偶法测大功率电机温升

热电偶法测大功率电机温 电控开发部 凡新建 目前我们测试电机的温升通常是使用电阻法,它是一种测试电机温升的等效方法,具有简便快捷,测试准确的优点。但是在最近做新D 3项目的时候却发现电阻法测温升的一个弊端。 新D 3借用了820单风轮外机的电机YDK400-8,由于新D 3的结构与820单风轮外机的结构不同,蒸发器的面积和排数也不相同,需重新验证一下电机的性能。刚开始我们是用常规的电阻法测试温升的,铜绕组的温升Δt (K )可由式(1)确定,试验结束后绕组温度T (℃)由式(2)确定: ())1(5.2342111 1 2?????????????-++-= ?t t t R R R t ())2(5.2345.23411 2 ??????????????-+= t R R T 两式中:R 1——试验开始时的绕组电阻,Ω; R 2——试验结束时的绕组电阻,Ω; t 1——试验开始时的绕组温度,℃; t 2——试验结束时的冷却介质温度,℃。 第一次测电机温升的时候,我们按1.1倍额定电压进行测试的,由于外销额定电压230V ,测试电压为254V ,测试结果见如表1。从表1可以看到低档温升很低,而高风的温升超标(企业标准规定:分体式室外空调器送风电机温升 F 级绝缘温升要小于78K )。看来该款电机不能用于外销,那内销温升能否通过呢?我们又用242V 的电压

测试(内销额定电压220V,1.1倍额定电压就是242V),测试结果见表2,发现温升虽然符合企业标准的要求了,但是裕量太小了,如果产品稍有波动很可能温升就不合格了。 表2:第二次测试结果(242V) 为了进一步验证电机发热情况,我们又接连进行了第三次和第四次测试,结果见表3和表4,结果温升一次合格一次超标。 表4 第四次测试结果(254V) 在这四次测试中有两次温升合格,两次温升超标,温升到底是不

变压器温升太高解决方法

变压器温升太高解决方法 开关电源中主要的发热元器件为半导体开关管、功率二极管、高频变压器、滤波电感等。不同器件有不同的控制发热量的方法。功率管是高频开关电源中发热量较大的器件之一,减小它的发热量,不仅可以提高功率管的可靠性,而且可以提高开关电源的可靠性,提高平均无故障时间(MTBF)。开关管的发热量是由损耗引起的,开关管的损耗由开关过程损耗和通态损耗两部分组成,减小通态损耗可以通过选用低通态电阻的开关管来减小通态损耗;开关过程损耗是由于栅电荷大小及开关时间引起的,减小开关过程损耗可以选择开关速度更快、恢复时间更短的器件来减少。但更为重要的是通过设计更优的控制方式和缓冲技术来减小损耗,如采用软开关技术,可以大大减小这种损耗。减小功率二极管的发热量,对交流整流及缓冲二极管,一般情况下不会有更好的控制技术来减小损耗,可以通过选择高质量的二极管来减小损耗。对于变压器二次侧的整流可以选择效率更高的同步整流技术来减小损耗。对于高频磁性材料引起的损耗,要尽量避免趋肤效应,对于趋肤效应造成的影响,可采用多股细漆包线并绕的办法来解决。 高频电源变压器是工作频率超过中频(10kHz)的电源变压器,主要用于高频开关电源中作高频开关电源变压器,也有用于高频逆变电源和高频逆变焊机中作高频逆变电源变压器的。按工作频率高低,可分为几个档次:10kHz~50kHz、50kHz~100kHz、100kHz~500kHz、500kHz~1MHz、1MHz以上。传送功率比较大的,工作频率比较低;传送功率比较小的,工作频率比较高。这样,既有工作频率的差别,又有送功率的差别,工作频率不同档次的电源变压器设计方法不一样. 高频电源变压器的设计原则 高频电源变压器的设计原则,是在具体使用条件下完成具体的功能中追求性能价格比最好。有时可能偏重性能和效率,有时可能偏重价格和成本。现在,轻、薄、短、小,成为高频电源的发展方向,是强调降低成本。其中成为一大难点的高频电源变压器,更需要在这方面下功夫。所以高频电源变压器的“设计要点”,性能,成本,如果能认真考虑一下高频电源变压器的设计原则,追求更好的性能价格比,传送不到10VA的单片开关电源高频变压器,应当设计出更轻、薄、短、小的方案来。市场的价值规律是无情的!许多性能好的产品,往往由于价格不能为市场接受而遭冷落和淘汰。往往一种新产品最后被成本否决。要“节能又节钱”.产品成本,不但包括材料成本,生产成本,还包括研发成本,设计成本。因此,为了节约时间,根据经验,对高频电源变压器的铁损铜损比例、漏感与激磁电感比例、原边和副边绕组损耗比例、电流密度提供一些参考数据,对窗口填充程度,绕组导线和结构推荐一些方案,不要按步就班地来回进行推算和仿真。设计原则是在具体的使用条件下完成具体的功能中追求性能价格比最好。检验设计的唯一标准是设计出的产品能否实应住市场. 高频电源变压器的设计要求以设计原则为出发点,可以对高频电源变压器提出4项设计要求:使用条件,完成功能,提高效率,降低成本。 1 使用条件 使用条件包括两方面内容:可靠性和电磁兼容性。可靠性是指在具体的使用条件下,高频电源变压器能正常工作到使用寿命为止。一般使用条件对高频电源变压器影响最大的是环境温度。有些软磁材料,居里点比较低,对温度敏感。例如:锰锌软磁铁氧体,居里点只有215℃,其磁通密度,磁导率和损耗都随温度发生变化,故除正常温度25℃外,还要给出60℃,80℃,100℃时的各种参考数据。因此,将锰锌软磁铁氧体磁芯的工作温度限制在100℃以下,也就是环境温度为40℃时,温升只允许低于60℃,相当于A级绝缘材料温度。与锰锌软磁铁氧体磁芯相配套的电磁线和绝缘件,一般都采用E级和B级绝缘材料,采用H级绝缘的三重绝缘电磁线和聚酰胺薄膜,成本增加,是不是因为H级绝缘的高频电源变压器优化的设计方案,可以使体积减少1/2~1/3的缘故?本来体积就比较小的高频100kHz10VA高频电源变压器,如次级绕组采用三重绝缘线,能把体积减小1/2~1/3。电磁兼容性是指高频电源变压器既不产生对外界的电磁干扰,又能承受外界的电磁干扰。电磁干扰包括音频噪声和高频噪声。高频电源变压器产生电磁干扰的主要原因之一是磁芯的磁致伸缩。磁致伸缩大的软磁材料,产生的电磁干扰大。例如,锰锌软磁铁氧体,磁致伸缩系数λS为21×10-6,是取向硅钢的7倍以上,是高磁导坡莫合金和非晶合金的20倍以上,是微晶纳米晶合金的10倍以上。因此锰锌软磁铁氧体磁芯产生的电磁干扰大。

用等效法测量电机温升

检测技术?TEST TECHNIQUE 用等效法测量电机温升 收稿日期:2004-12-04 张文海 徐丽 (成都精密电机厂,成都 610500) 摘 要:介绍了等效法测量电机温升的原理,并进行验证,同时对损耗等问题作了讨论。 关键词:电机;温升;试验;能量;消耗 中图分类号:T M306 文献标识码:A 文章编号:1001-6848(2005)03-0093-02 0 引 言 电动机的温升测量,一般采用的方法是发电机陪试法。即被试电机拖动一台功率、转速相当的陪试电机作发电机,然后将发电机的输出能量消耗在电阻上,让被试电机在额定负载下运行,直到温升稳定,最后用电阻法测出温升值。可以看出,这种方法没有一台功率、转速相当的陪试电机,温升试验根本无法进行。当然,转矩仪也可用于温升试验,但因温升须长时间连续运行,这对贵重的转矩仪寿命是一个重大的损害,且转矩仪一般工作转速都不高, 6000r/m in以上的高速电机,甚至额定数据测量都不能用转矩仪,当然用它测高速电机的温升就更不行。为此,笔者提出一种单机等效测量温升的方法。 1 等效法测量温升的原理 众所周知,无论直流电机还是交流电机,运行时的发热,均来自于电机的损耗,也就是说,效率越高的电机,损耗越小,发热也就愈少,温升则低;反之,损耗越大,发热就厉害,温升则高。因此,我们可以把一台电机损耗的大小,等效成一个功率大小不同的电炉对电机个体加热。前面的温升试验发电机陪试法,则是一种间接电炉加热法,即被试电机带额定负载运行时,损耗象附带放了一个电炉为电机个体加热。有了间接电炉法,可以想能否用直接电炉法为电机个体加热?回答是可以的。方法是只要能测知这台电机的效率是多少,就可算出这台电机额定输出时的损耗功率是多少,然后将这台电机的转子卡住堵转,再在线圈内通直流电流。电流的大小,等于它与端电压的乘积,即额定运行时的损耗功率。这样测出的堵转温升,理论上应与电机额定运行的测出的温升相等,因二者的发热条件和散热条件基本一样。等效法测电机温升,正是基于这一原理。 2 实验验证 选择一台高速永磁无槽直流电动机,因高速电机无论测功和测温升都比较困难。电机有关数据为:型号YZ-20;电压180V;输出功率2.3kW;额定转速6900r/min;额定电流13.8A;效率93%(无槽直流电机效率很高,实测为93%)。 1)用传统发电机陪试法测温升 该法必须再选一台同型号电机作发电机陪试,设被试电机为1#,陪试电机为2#,测试步骤为: (1)测出两台电机电枢一周内平均电阻R a,1# =0.48 ,2#=0.5 ,(2)测出两台电机单独6900r/ m in空载运行时的空载损耗P0。1#电机6900r/m in 时,U0=178.2V,I0=0.46A,则P0=V0I0=178.2×0.46=82(W),2#电机6900r/m in时,U0= 162V,I0=0.52A,则P0=V0I0=162×0.52=83 (W)。(3)温升试验开始,两台电机夹在专用安装板上同轴对施,1#电机通直流180V起动运行,拖动2#电机作发电机发电,用滑杆电阻调节2#电机的负载电流,当1#电机的输入电流达到13.8A时,算出1#电机的输出功率为2311W,输入功率为2484 (W),损耗为173W。(4)电机在此额定负载下运行 1.5h,测得的温升值为8 2.8K。 2)同等效法测温升比较 (1)用发电机陪试法测量升已知1#电机额定负载13.8A时的损耗是113W。(2)将1#电机电枢卡住堵转,并安装在同一安装板上,然后将电机通直流电流,使电枢电流与端电压乘积等于173W。(3)以此恒功率堵转1.5h,测出的温升值为87.5K,比传 — 93 — 用等效法测量电机温升 张文海 徐丽

pcb线路温升计算

Temperature Rise in PCB Traces Douglas Brooks UltraCAD Design, Inc. doug@https://www.docsj.com/doc/ef6338298.html, https://www.docsj.com/doc/ef6338298.html, Reprinted from the Proceedings of the PCB Design Conference, West, March 23-27, 1998? 1998 Miller Freeman, Inc. ? 1998, UltraCAD Design, Inc. Background I built my first “electronic” device over 40 years ago. (I was really young at the time!) Over the intervening years, there have been dramatic changes in technology. Some of these changes include the shift from designing circuits with components to designing systems with IC’s, the shift from high voltage vacuum tube requirements (say 250 volts, or so) to (mostly) low voltage requirements, and the subsequent decline in the relative number of designs where high voltage and high current requirements are an issue. In the 60’s almost all designers had to worry about the current carrying capacity of PCB traces on at least some of their designs. Now, some designers can go through an entire career without having to address this issue at all. As I looked at this I began to understand why the significant investigations into PCB trace temperature-vs-current (T-C) relationships are mostly over 25 years old! The current T-C bible for most of us is the set of charts in IPC-D-275. (IPC) (Footnote 1) Yet there is a nagging concern about them when we use them: Are they current? Are we sure where they came from and can they be trusted? Some people say they were generated with only three or four points and then “French Curves” were used to create smooth lines between the points. Others say they have been redrawn so many times by so many artists that they only somewhat resemble the original data. And you only have to look at the incongruous result from some of them that up to 125 ma of current can flow through a conductor with zero cross-sectional area! (You know, the curves really should go through the origin!) Then I ran across another set of data in an old (1968) copy of “Design News” (DN) (Footnote 2). McHardy and Gandi recently reported on an analysis where they tried to test a theoretical, mathematical model on the IPC and the DN data (Footnote 3) with some limited success. That was when I decided to do the same thing using a different, more analytical (I believe) approach. This paper is a report of that analysis. Defining the Model We can think of a model as a representation of reality. In the context of this paper I will use an equation to “model” the relationship between current and the temperature of a trace. If the model is realistic, then when I substitute variables into the equation, the result will (within reason) reflect the actual result that would be obtained in the physical world. We can “test” a model by looking at actual results, and see if the model would give similar results under the same conditions. It is intuitive that the flow of current through a trace (power) will cause the temperature of the trace to increase. The formula for power is I2*R, so the relationship is probably not simply linear. The resistance of a trace (per unit length) is a function of its cross-sectional area (width times thickness). So the relationship between temperature and current, therefore, is probably a non-linear function of current, trace width, and trace thickness. But the ability of a trace to “shed”, or dissipate, heat is a function of its surface area, or width (per unit length). At the same time the current is heating the trace, the trace is cooling through the combined effects or radiation, convection and conduction through its surface. Therefore, the relative effect of width in the overall model is probably different than thickness.

变压器温度计算

1 引言 工频变压器的计算方法很多人认为已趋成熟没有什么可讨论的,对于一个单位的工程技术人员来讲温升计算问题可能并不存在,温升本身来源于试验数据,企业本身有大量试验数据,温升问题垂手可得。下面就温升的计算公式进行探讨,本文仅提出一个轮廓,供大家参考。 2 热阻法 热阻法基于温升与损耗成正比,不同磁心型号热阻不同,热阻法计算温升比较准确,因其本身由试验得来,磁心又是固定不变的,热阻数据由大型磁心生产厂商提供。有了厂家提供的热阻数据,简单、实用何乐而不为。高频变压器可采用这一方法。而铁心片供应商不能提供热阻这一类数据,因此低频变压器设计者很难采用。热阻法的具体计算公式如下: 式中, 温升ΔT(℃) 变压器热阻Rth(℃/w) 变压器铜损PW(w) 变压器铁损PC(w) 3 热容量法 源于早期的灌封变压器,由于开放式变压器的出现这种计算方法已被人遗忘,可以说是在考古中发现。这种计算方法的特点是把变压器看成是一个密封的元件,既无热的传导,也无热的辐射,更无热的对流,热量全部靠变压器的铁心、导线、绝缘材料消耗掉。这样引出一个热容量(比热)的概念,就可以利用古人留给我们的比热的试验数据,准确的计算出变压器的温升来。不是所有的变压器都可以利用这一计算公式,唯独只有带塑料外壳的适配器可采用这一方法,这种计算方法准确度犹如瓮中捉鳖十拿九稳。 若适配器开有百叶窗,那就有一部份热量通过对流散发出去,如不存在强迫对流,百叶窗对温升的影响只在百分之三左右。上一代的变压器设计工作者对这一计算方法很熟悉,现在的变压器设计工作者根据此线索,进行考古也会有收获。热容量法的计算模式如下:

式中,温升ΔT(℃) 变压器质量Gt(g) 变压器铜损PW(w) 变压器铁损PC(w) T—加热时间常数(s) At—变压器散热面积(cm2) Ct——变压器比热(w·s/℃·g) CC——铁心比热(w·s/℃·g) GC——铁心质量(g) cw——导线比热(w·s/℃·g) Gw——导线质量(g) cis——绝缘材料比热(w·s/℃·g) Gis——绝缘材料质量(g) Gt——变压器质量(g) 4 散热面积法 散热面积法基于热量全部由变压器表面积散发出去,这种算法有三种类型:

干式变压器温升试验

干式变压器温升试验之“模拟负载法” 1.试验方法:模拟负载法。 2.试验原理:通过短路试验和空载试验的组合来确定的。 3.试验目的:是验证变压器冷却能力,能否将由总损耗所产生的热量散发出去,达 到热平衡时使变压器绕组(平均)高于冷却介质的温升不超过规定的限值,同时还要通过红热扫描观测电路联结点、铁心及结构件、绕组等是否有局部过热。 4.试验接线图: 5.试验过程:在额定电压下连续进行的空载试验应一直持续到绕组和铁心的稳定状态, 然后测量各个线圈的温升Δθe;立即进行短路试验,此时一个线圈由开路变成短路,另一 个线圈输入额定电流,直到绕组和铁心稳定为止,然后测量各个线圈的温升Δθc。(试验顺序可以互换) 绕组温升:Δθc(Δθe)=R2/R1(T+θ1)-( T+θ2) 各个线圈的总温升: Δθc’=Δθc [1+(Δθe /Δθc)1/k1]k1 式中:Δθc’--绕组总温升;Δθc—短路试验下的绕组温升; Δθe—空载试验下的绕组温升;T—温度系数,铜时为:235铝时为:225 R1、R2、θ1、θ2—冷态电阻、热态电阻、冷电阻环温、热电阻环温; k1—对于自冷式为0.8;对于风冷式为0.9。 备注:由于某种原因,施加电流没有达到额定电流时折算: I r Δθr=Δθ×(-)q I t 式中:Δθr、Δθt-额定电流下、试验电流下的绕组温升; I r、I t-额定电流、试验电流;(I t >0.9I r) q-AN:1.6、AF:1.8。 首先要测冷电阻并准确的记录绕组温度,接线方式分别同空载试验和负载试验。负载状态下试验的电流应尽可能接近额定持续电流,并不小于此值的90%,电流应持续直到变压器 任何部分每小时的温度上升少于2K。测量高、低压热电阻并准确的记录绕组温度,记录数 据并计算结果。检验绕组的温升是否符合设计要求。 6.温升试验分接位置的选择: a. 对分接范围在±5%以内,且额定容量不超过2500kVA的变压器,如无特殊要求,温 升试验选在主分接上进行。 b. 对分接范围超过±5%,或额定容量大于2500kVA的变压器,温升试验选在最大电流分接上进行。 7.海拔与温升限值的关系: 变压器运行高度超过海拔1000米,但试验场地是正常海拔,温升限值应递减,变压器运行高度低于海拔1000米,但试验场地高于海拔1000米,温升限值应递增,海拔超过1000米每500米为一级, AN:2.5% AF:5% 8.温升稳定的判断方法: 铁芯、绕组温升持续三小时且每小时不超过1K时,变压器视为稳定。 国家标准对温升限值的要求: 部位绝缘系统温度℃最高温升K 线圈 A 105 60 (电阻法) E 120 75 B 130 80

相关文档