文档视界 最新最全的文档下载
当前位置:文档视界 › 搭建一条T800碳纤维生产线要多少资金

搭建一条T800碳纤维生产线要多少资金

搭建一条T800碳纤维生产线要多少资金
搭建一条T800碳纤维生产线要多少资金

搭建一条T800碳纤维生产线

要多少资金?

搭建一条T800碳纤维生产线要多少资金?碳纤维复合材料是一种战略性新材料,在航天航空等领域发挥着不可替代的作用,西方国家对我国实施禁售禁运。国内公司投入2.5亿元,率先建成的25吨T800碳纤维生产线,在国内高性能碳纤维产业化方面实现零的突破。那么T800碳纤维可以应用在哪些地方呢?

高科技领域

由于T800碳纤维复合材料密度低、刚性好合强度高,成为一种先进的航天材料。我国对碳/碳烧蚀材料相关的科技问题进行了深入地研究,其研究成果已在导弹发射管、固体火箭发动机壳体、卫星和飞船上等得到应用。

飞机和汽车制造

T800碳纤维材料现在也成为汽车制造商青睐的材料,在汽车内外装饰中开始大量采用。碳纤维作为汽车材料,最大的优点是质量轻、强度大,重量仅相当于钢材的20%~30%,硬度却是钢材的10倍以上。所以汽车制造采用碳纤维材料可以使汽车的轻量化取得突破性进展,并带来节省能源的社会效益。业界认为,碳纤维在汽车制造领域今后的使用量会越来越大。

体育休闲用品

体育应用中的三项重要应用为高尔夫球棒、钓鱼杆和网球拍框架。目前,据估计每年的高尔夫球棒的产量为3400万副。按照国家和地区分类,这些高尔夫球棒主要产地为美国、中国、日本和中国台湾,美国和日本是高尔夫球棒的主要消费地,占80%以上。全世界40%的碳纤维高尔夫球棒都是由东丽公司的碳纤维制成的。

建筑加固

我国从1997年开始从国外引进碳纤维复合材料加固混凝土结构技术,并开始进行相关研究。由于其巨大的技术优势,近几年成为了研究和工程应用的热点。国内已有数十个高校和科研院所开展了此项研究工作,并取得了一批接近国际先进水平的研究成果。由于我国具有世界上最为巨大的土木建筑市场,碳纤维加固建筑结构的应用将呈现不断增长的的趋势。

其他应用

在铁路建筑中,大型的顶部系统和隔音墙在未来会有很好的应用,这些也将是T800碳纤维很有前景的应用方面。压力容器主要用在汽车的压缩天然气(CNG),罐上,而且还用在救火队员的固定式呼吸器(SCBA)上。CNG罐源于美国和欧洲国家, 现在日本和其他的亚洲国家也对这项应用表现出了极大的兴趣。

T800碳纤维的其它应用包括机器部件、家用电器、微机及与半导体相关的设备的复合材料的生产,可以用来起到加强、防静电和电

磁波防护的作用。另外,在X射线仪器市场上,碳纤维的应用可以减少人体在X 射线下的暴露。

T800碳纤维生产线主要包括放丝、牵伸、预氧化、低温碳化、高温碳化、表面处理、清洗、上浆、干燥、卷绕等设备。日新高温目前已经完成了多条T300\T800碳纤维生产线的搭建,有全套生产线搭建的经验,并与多家科研院所合作,对碳纤维生产的工艺有深入的了解。

就启动资金而言,T800碳纤维的生产线根据产量的不同工艺的差异,价格从数百万到数千万不等,详细的可以和日新高温联系。

合肥日新高温技术有限公司成立之初,就确定了依托技术开拓市场空间的经营策略,在秉承传统工艺的基础上,不断引进新技术,消化再吸收新工艺,持续发展,开拓创新。以专业品质科技创新的产品价值观,以日新盛德笃志笃行的企业精神,精心打造中国窑炉一流品牌日新窑炉。逢此民族产业迅速发展之盛世,合肥日新高温技术有限公司全体同仁热忱希望能广交业内有识之士,以致力于热能技

术、工程提供一流的解决方案为企业核心使命,为携手振兴中国的窑炉事业而贡献力量。

SMT生产线经典配置方案

SMT生产线经典配置方案 1.2 印刷机 与贴片机的情况不同,印刷机的厂商要少许多,主要有美国的MPM、英国的DEK、日本的Minami、Hitachi、德国的EKRA,特别是MPM与DEK,无论从品牌知名度还是市场占有率来看,都是印刷机市场当中的领先者。印刷机可分为半自动和全自动两种,半自动不能与其他SMT设备连接,需要人为干预(例如传送板子),但结构简单、价格便宜(仅相当于全自动机型的1/10~1/5),适合科研院所使用,典型机型DEK的248。全自动印刷机可连进SMT生产线里,无须人为干预,自动化程度高,适用于规模化生产。如英国DEK公司的DEK265 INFINITY型印刷机就是一种具有伺服压力控制系统的全自动印刷机。印刷参数可用计算机数字化设置,丝网和基板的标记可用其视觉系统自动识别对准,其印刷重复定位精度可达±0.004mm、印刷循环周期为8秒。其他较典型机型有MPM的UP3000系列、Minami的MK系列、EKRA的X5。 需要指出,在传统的焊膏印刷过程中,影响印刷效果的最大变量之一是放置在模板上的焊膏品质不断地变化;焊膏中助焊剂的蒸发;焊剂中的低沸点溶剂的蒸发;锡球在开放的环境中氧化及焊膏在印刷暂停时可印性变差等。另外,随着焊膏的使用,刮刀推动的焊膏量减少,从而引起漏印,或者由于过多的焊膏粘在刮刀上而引起网孔不能完全填满。解决这个问题的办法是将焊膏放在一个容器里,采用自动焊膏涂敷系统,就可以保证焊膏适时适量地加到模板上。另外,使用带有涂敷系统的容器还可减少焊膏在操作者面前的暴露程度,并且使设备和其它工具尽量保持干净。目前MPM和DEK公司都开始采用这一新技术,MPM称之为“流变泵”,DEK称之为“ProFlow”。 1.3 回流焊炉 回流焊接设备正向着高效、多功能、智能化发展,其中有具有独特的多喷口气流控制的回流焊炉、带氮气保护的回流焊炉、带局部强制冷却的回流焊炉、可以监测元器件温度的回流焊

碳纤维产业现状及发展前景

碳纤维:从“无”到“有”到“好” 随着国家政策扶持力度的不断增大及市场需求的日益增长,我国碳纤维出现了前所未有的产业化建设热潮,国产碳纤维技术和产业化水平显著提高。特别是最近十年,在国家科技与产业计划的支持下,高性能碳纤维及其复合材料在关键技术、装备及应用等方面取得了突破性进展,初步建立起国产碳纤维制备技术研发、工程实践和产业化建设的较完整体系,技术发展速度明显加快,产品质量不断提高,有效缓解了国防建设重大工程对国产高性能碳纤维的迫切需求。 目前,国内大小碳纤维生产企业近40家,其中,拥有千吨以上规模生产线的企业4家,拥有五百吨级生产线的企业5家。国产碳纤维总产能达到1.96万吨。主要产品为12K及以下规格小丝束PAN基碳纤维,其中,T300级碳纤维性能达到国际水平,已进入产业化发展阶段,并在航空航天领域得到了应用;T700级碳纤维已建成千吨级生产线,产品进入应用考核阶段,低成本干喷湿纺T700级碳纤维已经实现规模化生产;T800级碳纤维吨级线建成并已实现批量生产。但高模、高模高强碳纤维的工程化制备技术及更高等级碳纤维的制备关键技术还有待攻关。 总体上讲,目前我国碳纤维产业整体发展水平仍与国外存在较大差距。主要表现在碳纤维原丝生产工艺路线单一、纺丝速度慢、效率低;生产线规模小,产能分散,低端产品产能过剩但生产线开工率低,年产量不足产能的20%;产品品种规格单一、性能稳定性不高、同质化现象严重、成本居高不下;生产装备自主设计制造能力不足、对生产工艺的适应性差;油剂、上浆剂等原辅料开发不配套;下游应用技术发展与碳纤维技术不匹配,下游应用市场对碳纤维产业发展牵引力不足等。特别是,由于低成本、稳定化、规模化生产技术的欠缺,绝大多数碳纤维产品的成本与市场售价倒挂,我国碳纤维企业面临着国内企业间恶性竞争和国外企业恶意压价的内忧外患,生存状况不容乐观。 而目前,国际碳纤维产业及下游应用市场均呈现欣欣向荣的繁荣景象,一方面国际碳纤维应用市场继续以6-8%的增速不断扩大,应用领域进一步拓展;另一方面,全球各大碳纤维制造商已陆续宣布了大幅扩产计划,市场竞争空前激烈。 面对国际碳纤维产业如此明确的发展信号,“十三五”期间,我国碳纤维产

碳纤维及其复合材料产业现状及发展趋势

国内外碳纤维及其复合材料产业现状及发展趋势 自上世纪60年代碳纤维首次商业化以来,产业规模不断扩大,产品品质不断提高,2014年全球碳纤维产能(365天连续生产12K/24K 碳纤维丝束计算)已达到12.6万吨。尽管碳纤维与传统的玻璃纤维在价格上仍不能相比,但高性能碳纤维以其高比强度、高模量、可设计、防腐蚀和抗疲劳等突出特点,具有玻璃纤维所不能比拟的优势,已成为发展先进武器装备的关键材料,并在航空航天、国防军工、风能产业、土木工程、体育休闲等领域得到了广泛应用。 当前,国际复合材料产业呈现蓬勃发展态势,据估计,未来5年,先进复合材料将以每年5%的增速发展,而随着民用航空、汽车工业等领域的快速发展,全球高性能碳纤维需求量的年增幅可达10%,亚太地区将会有更高的增长率,即碳纤维及其复合材料产业将面临前所未有的发展空间和机遇。 因此,在目前碳纤维产业快速发展的关键时期,我们更应该认清国际碳纤维产业的发展形势、对照国外先进企业找差距找问题,通过理性思考寻求解决途径,适时把握发展机遇,落实行动、注重实效,努力推进国内碳纤维及其复合材料产业的健康快速发展。 1、国外碳纤维产业现状及发展趋势 1)产业方面 根据前躯体原料的不同,碳纤维可分为聚丙烯腈(PAN)基、沥青基和粘胶基碳纤维等。由于粘胶基碳纤维在制备过程中会释放出毒

性物质二硫化碳,且工艺流程长、生产成本高、整体性能不高,因此目前,国际碳纤维产业领域,前两种碳纤维获得了更大规模的生产和应用。其中,PAN基碳纤维又占据绝对优势,国际市场占有率超过90%。PAN基碳纤维的九大生产商包括:日本东丽、东邦、三菱丽阳、美国赫氏(Hexcel)、氰特(Cytec)、卓尔泰克(Zoltek,已被东丽收购)、台塑、土耳其阿克萨(AKSA)和德国西格里(SGL)。沥青基碳纤维的生产和应用居其次,主要生产企业三家,分别是Cytec、三菱塑料和日本碳素纤维。 PAN基碳纤维分为小丝束(1-24K)和大丝束(36K及以上)两类。全球小丝束碳纤维市场主要被日本东丽、东邦、三菱丽阳三家公司所垄断,而来自中国、土耳其和韩国的企业,正不断扩充小丝束的全球产能,同时也降低了三家日本公司的市场份额。 大丝束碳纤维生产商主要有Zoltek、SGL和三菱丽阳三家。另外,中国国企蓝星集团英国分公司拥有大丝束碳纤维原丝的供应能力,Cytec于2014年与德国腈纶企业合作开展低成本大丝束碳纤维的研制开发。预计在未来10年中,其它制造商也会陆续加入大丝束碳纤维生产领域。 为满足高速发展的航空航天与汽车市场对碳纤维的需要,几乎所有的碳纤维巨头都宣布了扩产计划。例如,日本东丽拥有以日本本土为核心的日美法韩4个生产基地,目前已形成11000~12000吨/年的T700S和4500吨/年的T800碳纤维生产能力,并宣布PAN基碳纤维的总产能于2015年达到27100吨,2020年扩大至50000吨。另外,Hexcel

碳纤维国内技术和生产现状简介

碳纤维国内技术和生产 现状简介 文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-

国内碳纤维技术及生产现状 我国从20世纪60年代后期开始研制碳纤维,历经近40年的漫长历程。在此期间,由于国外把碳纤维生产技术列入禁运之列,严格控制封锁,制约了我国碳纤维工业的发展。我国科技工作者发扬自力更生的精神,从无到有,逐步建成了碳纤维的工业雏型。20世纪70年代初突破连续化工艺,1976年在中科院山西煤炭化学研究所建成我国第一条PAN基碳纤维扩大试验生产线,当时生产能力为2t/a。20世纪80年代开展了高强型碳纤维的研究,于1998年建成一条新的中试生产线,规模为40t/a。我国主要研究单位有中科院山西煤化所、上海合纤所、北京化工大学、山东工业大学、东华大学、安徽大学、浙江大学、长春工业大学等。 我国目前使用碳纤维量约占世界用量的1/5。巨大的市场潜力,供不应求的局面,必然促进我国碳纤维工业的发展。但是,要想进入竞争的市场,一是要保证产品的质量,二是要求价位相当。针对我国碳纤维工业的现状,需首先解决高性能PAN原丝的质量,在这基础上才有可能产业化,这是进市场的前提;同时,还需进行预氧化,碳化,石墨化设备及表面处理装置的工程化开发,使其形成规模化生产能力,才能在保证质量的基础上降低成本。目前,内内研究开发以及生产碳纤维的呼声很高,发展趋势令人鼓舞。 但由于对我国碳纤维产业发展的建议目前我国高性能碳纤维无论在质量上还是数量上与国外相比还有一定差距,远远满足不了需求。为此,尽快研究和发展我国自己的高性能碳纤维材料已迫在眉睫。碳纤维是一门多学科交叉、多技术集成的系统工程,质量的提升涉及到方方面面。以下几个方面应优先考虑。 1、提高PAN原丝质量 PAN原丝不仅影响碳纤维的质量,而且影响其产量和生产成本。换言之,只有高质量的原丝才能生产出高性能碳纤维,才能稳定生产,提高产量,降低成本。对于现代碳纤维

SMT生产线工艺流程

SMT生产线工艺流程 【作业准备:SMT生产线所有工作站人员规范佩戴防静电手环、工作鞋、工作服、工作帽。】 一、物料存储: 1.静电敏感元件、湿度敏感元件,依据《ESD防护管理程序》、《湿敏元件管理程序》存放并记录。 2.每瓶锡膏贴上《锡膏标示单》存放于冰箱,每天点检一次冰箱内温度(要求0~10℃)。 二、印刷锡膏: 1.锡膏: a.回温:从冰箱取出编号最小的锡膏(先进先出原则),填写回温时间,取出时为开始时间, 两小时后为结束时间。放置回温盒中,室温下自然升温两小时。 b.搅拌:待回温时间结束,锡膏放入搅拌机内,搅拌2分钟。 c.使用:①.IPQC确认回温时间合格后方可作业。 ②.开封后使用寿命为24小时。若不使用,则收纳于瓶内封盖冷藏。 ③.钢网上锡膏超过30分钟未使用,则收纳于瓶内封盖。 ④.环境要求:温度22~28℃,湿度45~65%。 2.钢网: a.张力测量:每次用前进行测量五个位置的张力值并记录,小于30N/cm2时及时知会负责人处理。 依据《钢网管制作用办法》。 b.清洗:①.使用前/后,用无尘擦拭纸、丙醇清洗钢网面和底层,气枪吹除网孔异物。 ②.印刷过程中,每印刷十片电路板或者印刷品质有缺陷时,立刻清洗。 ③.依据《钢网清洗作用办法》、《印刷品质检验标准书》 3.半自动印刷机调试: a.组装:确认电路板符合订单机种→固定电路板于印刷机作业台→钢网开口对准电路板各焊盘后 锁固→启功钢网往下移动并与电路板完成贴合时,紧固调节转盘。 b.锡膏量调试:①.倒入锡膏于钢网上,手动控制刮刀来回均匀锡膏,逐步增加锡膏量,覆盖电路 板所有焊盘,且刮刀两端有锡膏溢出。 ②.刮刀刮除后,钢网面若残留有锡膏,调整刮刀压力,使其刮除残留的锡膏。 c.锡膏厚度确认:①.锡膏测厚仪测量电路板五个区域的锡膏厚度。 ②.厚度标准:下限=钢网厚度减0.01mm,上限=钢网厚度加0.045mm。 ③.依据《锡膏测厚仪作业标准书》 d.印刷品质检查:操作员检查每片加工产品,若出现毛刺、连锡、少锡、漏印现象,及时清洗网 孔、增加钢网上的锡膏量。 1/3 三、贴片机贴片:

2018年碳纤维行业现状及发展前景分析报告

2018年碳纤维行业现状及发展前景分析报告

正文目录 1、碳纤维材料前景广阔,全球产能高度集中 (6) 1.1、碳纤维应用领域广泛,全球需求增长态势良好 (6) 1.2、碳纤维技术壁垒高,行业龙头优势显著、成本控制能力强 (17) 2、日本企业后发先至,精准定位碳纤维市场 (21) 2.1、东丽掌控碳纤维核心技术,引领行业持续发展 (22) 2.2、帝人东邦布局全球生产基地,碳纤维材料业务盈利能力不断增长 (27) 2.3、三菱丽阳兼备多种碳纤维材料生产能力,大力发展车用碳纤维复材37 2.4、西格里集团碳纤维产业链一体化布局, (45) 3、发展高端制造业,国内未来碳纤维需求巨大 (51) 3.1国内碳纤维的需求增长迅速,行业发展空间广阔 (51) 3.2、国内外企业规模差距大,碳纤维近年获国家政策大力支持 (57) 3.3、国内碳纤维行业步入快速发展期,竞争力持续增强 (58) 4、主要公司分析 (59) 5、风险提示 (60)

图目录 图1:全球碳纤维市场需求及预测 (6) 图2:2016年全球碳纤维需求分布 (6) 图3:2016 年碳纤维在全球航空航天领域细分应用占比 (7) 图4:波音787“梦想客机”的碳纤维机身 (8) 图5:国外商用飞机碳纤维复合材料应用占比 (8) 图6:波音公司预测2014 -2033年全球新增客机数量 (9) 图7:客机碳纤维渗透率预测 (9) 图8:碳纤维复合材料在汽车零部件中的应用情况 (10) 图9:全球汽车领域碳纤维需求量预测 (12) 图10:风电机组正向着大型化发展 (12) 图11:风电叶片的长度和材料经济性关系 (12) 图12:碳纤维在风电叶片中的主要应用部位 (13) 图13:风电新增装机容量预测 (14) 图14:风电叶片碳纤维需求量预测 (14) 图15:碳纤维高尔夫球杆 (15) 图16:碳纤维自行车 (15) 图17:2014-2016年各领域碳纤维价格变动趋势 (17) 图18:2014-2016年全球碳纤维市场需求分布情况 (17) 图19:碳纤维的制造工艺 (19) 图20:全球小丝束碳纤维市场分布 (20) 图21:全球大丝束碳纤维市场分布 (20) 图22:碳纤维行业发展历史 (21) 图23:东丽近年营业收入及毛利率 (23) 图24:2016年东丽株式会社营业收入各业务板块占比 (24) 图25:东丽株式会社PAN碳纤维生产工艺 (25) 图26:聚丙烯腈预氧化化学式 (25) 图27:东邦公司的全球化布局 (28) 图28:帝人集团的全球设施分布 (28) 图29:帝人集团业务领域概要 (29)

《碳纤维复合材料》阅读练习及答案

阅读文章,回答问题。 碳纤维复合材料 ①2018年11月6日,两年一度的珠海航展上,中俄合作研制的280座远程宽体客机CR929,以1:1的展示样机首次亮相国际航展。 在这款最新一代的大型飞机上,复合材料的使用比例有望 ..超过50%。同样,在去年5月5日首飞的C919大客机上,使用的复合材料占到飞机结构重量的12%。这里的复合材料,主要就是碳纤维复合材料。 ②碳纤维是火箭、卫星、导弹、战斗机和舰船等尖端武器装备必不可少的战略基础材料。它不存在腐蚀生锈的问题。由于使用碳纤维材料可以大幅降低结构重量,因而可显著提高燃料效率。采用碳纤维与塑料制成的复合材料制造的卫星、火箭等宇宙飞行器,噪音小,质量小,动力消耗少,可节约大量燃料。 ③碳纤维还是让大型民用飞机、汽车、高速列车等现代交通工具实现“轻量化”的完美材料。航空应用中对碳纤维的需求正在不断增多,新一代大型民用客机空客A380和波音787使用了约为50%的碳纤维复合材料。这使飞机机体的结构重量减轻了20%,比同类飞机可节省20%的燃油,从而大幅降低了运行成本、减少二氧化碳排放。碳纤维作为汽车材料,最大的优点是质量轻、强度大。它的重量仅相当于钢材的20%到30%,硬度却是钢材的10倍以上。所以汽车制造采用碳纤维材料可以使汽车的轻量化取得突破性进展,并带来节省能源的社会效益。 ④随着航空航天、汽车轻量化、风电、轨道交通等行业领域对碳

纤维的需求爆发,碳纤维工业应用开始进入规模化生产。业内预测,预计到2020年,全球碳纤维需求量将超过16万吨,到2025年,将超过33万吨。面对如此巨大而重要的市场,国内企业既要通过掌握关键技术来实现碳纤维的稳定批量生产和大规模工程化应用,同时也要瞄准国产新一代碳纤维及其复合材料及早研发和布局,2016年2 月15日,中国突破日本管制封锁研制出高性能碳纤维。2018年2月,中国完全自主研发出第一条百吨级T1000碳纤维生产线,这标志着我国已经牢牢站稳全球高端碳纤维市场的一席之地。 101.阅读选文第①段和第③段,回答问题。 (1)选文第①段加点词“有望”能删去?请说出理由。 (2)选文第③段画线句运用了哪些说明方法?有何作用? 102.随着科学技术的发展,请你设想一下生活中将会有哪些碳纤维复合材料的产品。 【答案】 101.(1)不能删去,“有望”是有希望的意思,说明“在这款最新一代的大型飞机上,复合材料的使用比例”未来有希望超过“50%”,该词体现了说明文语言的准确性和科学性。 (2)列数字、作比较,具体准确地说明了碳纤维作为汽车材料,最大的优点是质量轻、强度大。 102.碳纤维复合材料制成的羽毛球拍、登山器械等体育休闲用品;汽车、地铁等交通工具;以及碳纤维复合材料制成的衣服、家具等日

日本东邦特耐克斯公司研发的碳纤维预浸料与应用

Zeus公司开发PEEK纤维 Zeus公司(Orangeburg.S.C)于2009年1月12日宣布,该公司开发的PEEK(聚醚醚酮)纤维已成功进行商品化。 据该公司报道,目前可拉挤出单丝直径在0.07~1 mm(0.003~0.040 in)范围。这种PEEK 纤维具有很好的耐磨耗性、耐腐蚀性以及较高的抗拉强度与韧性。 在PEEK纤维用途方面,可制作辫带或制成其他形式应用。PEEK在温度升高到248 ℃(480 °F)时,该产品可出现低烟气体,有很高的延长度,其结果会导致严重影响复原。 低热膨胀系数碳纤维工具系统 英国先进复合材料集团(即A C G)和美国G r a f t e c h国际有限公司两单位进行合作,是一家制造石墨及碳纤维产品的公司,开发出A C G GRAFOAM FPA-20碳纤维泡沫塑料工具系统,这是一种低热膨胀系数、质量轻的碳纤维复合材料的工具材料。 据报导,这种碳纤维复合材料的热膨胀系数为2.3×10-6/℃。据说,其耐热性超出复合材料加工过程的要求。它还能用机器加工接近完成的尺寸,然后完全将其封入内部。在A C G集团拥有所有权的专利中,允许用界面技术、一种工具层压板蒙皮、代表性的A C G集团的低温模制(LTM)。 ACG集团还报导,碳纤维泡沫塑料内在的热特性,允许把它用在来自该公司的中温(MTM)与高温(H T M)工具层压板范围。一旦固化,运用一种二次机械加工操作,创造出最终工具外形,采用附加的后部层压板,更进一步用任何工具修饰完工。随后,再机械加工。可适合的成型工艺,包括带子铺放或丝束缠绕,不论在哪儿,质量轻是有好处的,尤其是在处理极大的工具时。 据报导,ACG集团主要为北美航空器制造厂商开发制造工具,加工复杂表面外形的部件,精度为±0.2 mm(0.008 in);加工不复杂表面外形的部件,精度为±0.1 mm(0.004 in)。 美国Cytec公司提出 碳纤维扩产计划将延缓1年 据国外媒体报道,美国Cytec工业公司(位于美国新泽西州,森林公园)于2009年4月16日宣布,根据该公司第一季度结果,评审其资金收支预算计划,收入明显减少。该公司预测未来交易环境和对碳纤维总的需求概况影响,决定碳纤维扩产计划将延缓12 个月完成。 这项决定将使公司2009年总的资金收支预测计划收入将减少至180 百万美元,先前估算的是200 百万美元。 该公司坚定相信,碳纤维复合材料将长期保持较高用途的倾向,并监测其市场需求动态,以确定最佳时期完成其扩产计划。 Cytec工业公司曾在2007年宣布,要在2010年前将该公司碳纤维产能实现翻番的目标,在其美国南卡罗来纳州的新设备生产线上进行生产。 日本东邦特耐克斯公司 研发的碳纤维预浸料与应用 日本东邦特耐克斯公司(Toho Tenax)将碳纤维与树脂进行复合使用。 所谓碳纤维预浸料就是在碳纤维中浸渍树脂,用来成型制品的一种中间材料。一般说来,把这种预浸料进行层合或缠绕,经热固化后制得复合材料。 东邦特耐克斯公司进行开发体育运动用、产业用、航空航天等所适应的各种预浸料。在其他方面,革新降低成本、节能成型方法、电子束(射线)固化系统及再生利用性高的热塑性树脂基预浸料的开发也在进行之中。为适应更广泛的市场需求,天天都在努力工作和研发之中。 ⑴ 体育运动用预浸料 以高尔夫球手柄与钓鱼杆为主要用途,进行抗超高弯曲强度型、抗超高扭曲强度型等高性能制品的开发。 作为预浸料用树脂,虽然中温固化(130 ℃)的环氧树脂为主流,但也有要求对应轻量化纤维含量(CF含量为50 g/m2以下)、低树脂含量(树脂含量在25 %以下)的树脂改进以及向预浸 信息动态 第4期- 45 -

国内外碳纤维生产现状及发展趋势

国内外碳纤维生产现状及发展趋势 碳纤维, 国内外, 趋势, 生产, 发展 碳纤维是纤维状的碳素材料,含碳量在90%以上。它是利用各种有机纤维在惰性气体中、高温状态下碳化而制得。碳纤维具有十分优异的力学性能,是目前已大量 生产的高性能纤维中具有最高的比强度和最高的比模量的纤维,特别是在2000℃以上的高温惰性环境中,碳材料是唯一强度不下降的物质,是其他主要结构材料(金属及其合金)所无法比拟的。除了优异的力学性能外,碳纤维还兼具其他多种优良性能,如低密度、耐高温、耐腐蚀、耐摩擦、抗疲劳、震动衰减性高、电及热 传导性高、热膨胀系数低、X光穿透性高,非磁体但有电磁屏蔽性等。 作为高性能纤维的一种,碳纤维既有碳材料的固有特性,又兼备纺织纤维的柔软可加工性,是先进复合材料最重要的增强材料,已在军事及民用工业的各 个领域取得广泛应用,从航天、航空、汽车、电子、机械、化工、轻纺等民用工业到运动器材和休闲用品等。因此,碳纤维被认为是高科技领域中新型工业材料的典 型代表,为世人所瞩目。碳纤维产业在发达国家支柱产业升级乃至国民经济整体素质提高方面,发挥着非常重要的作用,对我国产业结构的调整和传统材料的更新换代也有重要意义,对国防军工和国民经济有举足轻重的影响。 我国自20世纪60年代开始碳纤维研究开发至今已有近40年的历史,但进展缓慢,同时由于发达国家对我国几十年的技术封锁,至今没能实现大规模 工业化生产,工业及民用领域的需求长期依赖进口,严重影响了我国高技术的发展,尤其制约了航空航天及国防军工事业的发展,与我国的经济社会发展进程极不相 称。所以,研制生产高性能、高质量的碳纤维,以满足军工和民用产品的需求,扭转大量进口的局面,是当前我国碳纤维工业发展的迫切任务。 1生产方法 目前,工业化生产碳纤维按原料路线可分为聚丙烯腈(PAN)基碳纤维、沥青基碳纤维和粘胶基碳纤维三大类。从粘胶纤维制取高力学性能的碳纤维必 须经高温拉伸石墨化,碳化收率低,技术难度大、设备复杂,成本较高,产品主要为耐烧蚀材料及隔热材料所用;由沥青制取碳纤维,原料来源丰富,碳化收率高, 但因原料调制复杂、产品性能较低,亦未得到大规模发展;由聚丙烯腈纤维原丝可制得高性能的碳纤维,其生产工艺较其它方法简单,而且产品的力学性能优良,用 途广泛,因而自20世纪60年代问世以来,取得了长足的发展,成为当今碳纤维工业生产 的主流。 聚丙烯腈基碳纤维的生产主要包括原丝生产和原丝碳化两个过程。 原丝生产过程主要包括聚合、脱泡、计量、喷丝、牵引、水洗、上油、烘干收丝等工序。碳化过程主要包括放丝、预氧化、低温碳化、高温碳化、表面处理、上浆烘干、收丝卷绕 等工序。

SMT生产线经典配置方案

SMT生产线经典配置方案 SMT大概流程配置线: 供给机+ 印刷机+ 高速贴片机+ 多功能贴片机+ 回流炉+ 收纳机 SMT设备:贴片机的选择最为关键 一般SMT生产工艺包括焊膏印刷、贴片和回流焊三个步骤,所以要组成一条完整的SMT生产线,必然包括实施上述工艺步骤的设备:印刷机、贴片机和回流焊炉。特别是贴片机,往往会占到整条生产线投资的70%以上,所以贴片机的选择最为关键。 1.贴片机 分类 目前生产贴片机的厂家众多,结构也各不相同,但按规模和速度大致可分为大型高速机(俗称“高档机”)和中型中速机(俗称“中档机”),其他还有小型贴片机和半自动/手动贴片机。一部大型机的价格一般为中型机的3倍至4倍。生产大型高速贴片机的厂商主要有Panasonic、Siemens、Fuji、Universal、Assembleo n、Hitachi等;生产中型中速贴片机的厂商主要有Juki、Yamaha、Samsung、Mirae、Mydata等。其中Panasonic、Siemens、Fuji贴片机的市场占有率最高,号称贴片机市场的“三驾马车”。 无论对于大型机厂商还是对中型机厂商来说,所推荐的SMT生产线一般由2台贴片机组成:一台片式Chip元件贴片机(俗称高速贴片机)和一台IC元件贴片机(俗称高精度贴片机),这样各司其责,有利于贴片机发挥出最高的贴片效率。但现在情况正发生着改变,由于很多商都推出了多功能贴片机,使SMT生产线只有一台贴片机成为可能。一台多功能贴片机在保持较高贴片速度的情况下,可以完成所有元件的贴装,减少了投资,这种贴片机颇受中小企业、科研院所的青睐。 典型机型有Siemens的F5系列、Panasonic的MSF等。结构 目前贴片机结构大致可分为四种类型:动臂式(又称“拱架式”)、复合式、转塔式和大型平行系统。 动臂式机器是最传统的贴片机,具有较好的灵活性和精度,适用于大部分元件,高精度机器一般都是这种类型,但其速度无法与复合式、转塔式和大型平行系统相比。动臂式机器分为单臂式和多臂式,单臂式是最早发展起来的现在仍然使用的多功能贴片机。在单臂式基础上发展起来的多臂式贴片机可将工作效率成倍提高,如美国Universal公司的GSM2贴片机就有两个动臂安装头,可交替对一块PCB进行安装。动臂式机器的结构如图1所示。绝大多数贴片机厂商均推出了采用这一结构的高精度贴片机和中速贴片机,例如环球公司的GSM系列、A ssembleon公司的ACM、Hitachi公司的TIM-X、Fuji公司的QP-341E和XP系

碳纤维的应用领域及前景

碳纤维的应用领域及前景 carbonfibre application 作者(writer):杨成刚 Gang chengyang 摘要(Abrtrant): 1 碳纤维的成分结构 2 碳纤维的应用领域 3 碳纤维的发展前景 关键词(Keywords) 乱层石墨复合材料关键材料军工业民用行业潜力极大 正文(Text) 碳纤维是由有机纤维经碳化及石墨化处理而得到的微晶石墨材料。碳纤维的微观结构类似人造石墨,是乱层石墨结构。碳纤维是一种力学性能优异的新材料,它的比重不到钢的1/4,碳纤维树脂复合材料抗拉强度一般都在3500Mpa以上,是钢的7~9倍,抗拉弹性模量为230~430Gpa亦高于钢。因此CFRP的比强度即材料的强度与其密度之比可达到2000Mpa/(g/cm3)以上,而A3钢的比强度仅为59Mpa/(g/cm3)左右,其比模量也比钢高。材料的比强度愈高,则构件自重愈小,比模量愈高,则构件的刚度愈大,从这个意义上已预示了碳纤维在工程的广阔应用前景。综观多种新兴的复合材料(如高分子复合材料、金属基复合材料、陶瓷基复合材料)的优异性能,不少人预料,人类在材料应用上正从钢铁时代进入到一个复合材料广泛应用的时代。碳纤维编织布 碳纤维可加工成织物、毡、席、带、纸及其他材料。传统使用中碳纤维除用作绝热保温材料外,一般不单独使用,多作为增强材料加入到树脂、金属、陶瓷、混凝土等材料中,构成复合材料。碳纤维增强的复合材料可用作飞机结构材料、电磁屏蔽除电材料、人工韧带等身体代用材料以及用于制造火箭外壳、机动船、工业机器人、汽车板簧和驱动轴等。碳纤维 1994年至2002年左右,随着从短纤碳纤维到长纤碳纤维的学术研究,使用碳纤维制作发热材料的技术和产品也逐渐进入军用和民用领域。现在国内已经有使用长纤碳纤维制作国家电网电缆的使用案例多处。同时,碳纤维发热产品,碳纤维采暖产品,碳纤维远红外理疗产品也越来越多的走入寻常百姓家庭。碳纤维是军民两用新材料,属于技术密集型和政治敏感的关键材料。以前,以美国为首的巴黎统筹委员会(COCOM),对当时的社会主义国家实行禁运封锁政策,1994年3月,COCOM虽然已解散,但禁运封锁的阴影仍笼罩在上空,先进的碳纤维技术仍引不进来,特别是高性能PAN基原丝技术,即使我国进入WTO,形势也不会发生大的变化。因此,除了国人继续自力更生发展碳纤维工业外,别无其它选择。因此,国外尤其是碳纤维生产技术领先的日韩等国对中国的碳纤维材料及制品的出口一直保持相当谨慎的态度,只有为数很少的中国企业能够与其建立合作关系,拥有其产品的进口渠道。碳纤维广泛用于民用,军用,建筑,化工,工业,航天等领域。 ------------ 在人们印象中,碳纤维更多地与航空航天、军工产品及国防建设联系在一起,由于投资门槛高、技术难度大,特别是日本东丽 30 年"修得正果"的经历,一度让技术与资金均相对薄弱的中国化纤企业望而却步,导致了中国碳纤维长期严重依赖进口的状况。然而, 2004 年以来国际市场上出现以碳纤维为代表的高性能纤维供不应求的局面,已不仅仅影响到我国

碳纤维及其复合材料的发展及应用_上官倩芡

第37卷第3期上海师范大学学报(自然科学版)Vol.37,N o.3 2008年6月J ou rnal of ShanghaiNor m alUn i versity(Natural S ci en ces)2008,J un 碳纤维及其复合材料的发展及应用 上官倩芡,蔡泖华 (上海师范大学机械与电子工程学院,上海201418) 摘要:叙述了碳纤维的结构形态、分类以及在力学、物理、化学方面的性能,介绍了碳纤维增强复合材料的特性,着重阐述了碳纤维增强树脂基复合材料中基体的分类、选择和应用,指出了碳纤维及其复合材料进一步发展的趋势. 关键词:碳纤维;复合材料 中图分类号:O636文献标识码:A文章编号:1000-5137(2008)03-0275-05 碳纤维作为一种高性能纤维,具有高比强度、高比模量、耐高温、抗化学腐蚀、耐辐射、耐疲劳、抗蠕变、导电、传热和热膨胀系数小等一系列优异性能.此外,还具有纤维的柔曲性和可编性[1~3].碳纤维既可用作结构材料承载负荷,又可作为功能材料发挥作用.因此碳纤维及其复合材料近几年发展十分迅速.本文作者就碳纤维的特性、分类及其在复合材料领域的应用等内容进行介绍. 1碳纤维特性、结构及分类 碳纤维是纤维状的碳材料,由有机纤维原丝在1000e以上的高温下碳化形成,且含碳量在90%以上的高性能纤维材料.碳纤维主要具备以下特性:1密度小、质量轻,碳纤维的密度为1.5~2g/c m3,相当于钢密度的1/4、铝合金密度的1/2;o强度、弹性模量高,其强度比钢大4~5倍,弹性回复为100%;?热膨胀系数小,导热率随温度升高而下降,耐骤冷、急热,即使从几千摄氏度的高温突然降到常温也不会炸裂;?摩擦系数小,并具有润滑性;?导电性好,25e时高模量碳纤维的比电阻为775L8/c m,高强度碳纤维则为1500L8/c m;?耐高温和低温性好,在3000e非氧化气氛下不熔化、不软化,在液氮温度下依旧很柔软,也不脆化;?耐酸性好,对酸呈惰性,能耐浓盐酸、磷酸、硫酸等侵蚀[4~7].除此之外,碳纤维还具有耐油、抗辐射、抗放射、吸收有毒气体和使中子减速等特性. 碳纤维的结构取决于原丝结构和碳化工艺,但无论用哪种材料,碳纤维中碳原子平面总是沿纤维轴平行取向.用X-射线、电子衍射和电子显微镜研究发现,真实的碳纤维结构并不是理想的石墨点阵结构,而是属于乱层石墨结构[8],如图1所示.构成此结构的基元是六角形碳原子的层晶格,由层晶格组成层平面.在层平面内的碳原子以强的共价键相连,其键长为0.1421n m;在层平面之间则由弱的范德华力相连,层间距在0.3360~0.3440n m之间;层与层之间碳原子没有规则的固定位置,因而层片边缘参差不齐.处于石墨层片边缘的碳原子和层面内部结构完整的基础碳原子不同.层面内部的基础碳原子所受的引力是对称的,键能高,反应活性低;处于表面边缘处的碳原子受力不对称,具有不成对电子,活性 收稿日期:2008-01-04 基金项目:上海市教委科研基金项目(06D Z034). 作者简介:上官倩芡(1974-),女,上海师范大学机械与电子工程学院副教授.

碳纤维复合材料柔性连续抽油杆生产工艺

碳纤维复合材料柔性连续抽油杆生产工艺 ?拉挤成型于1951年首次在美国注册专利,60年代发展很慢,70-80年代进入快速发展阶段。我国起步则较晚,直到90年代随着拉挤专用树脂技术的引进生产才进入快速发展时期。目前,引进及国产拉挤生产线已超过200条。我国发展拉挤与欧美形式相似:先开发形状简单的棒材,然后随着化工防腐、电力、采矿等行业的发展与需求,开发了型材制品,目前这些技术已经比较成熟。 拉挤工艺是一种连续生产复合材料型材的方法,它是将纱架上的无捻玻璃纤维粗纱和其他连续增强材料、聚脂表面毡等进行树脂浸渍,然后通过保持一定截面形状的成型模具,并使其在模内固化成型后连续出模,由此形成拉挤制品的一种自动化生产工艺。 利用拉挤工艺生产的产品其拉伸强度高于普通钢材。表面的富树脂层又使其具有良好的防腐性,故在具有腐蚀性的环境的工程中是取代钢材的最佳产品,广泛应用于交通运输、电工、电气、电气绝缘、化工、矿山、海洋、船艇、腐蚀性环境及生活、民用各个领域。 拉挤成型工艺形式很多,分类方法也很多。如间歇式和连续式,立式和卧式,湿法和干法,履带式牵引和夹持式牵引,模内固化和模内凝胶模外固化,加热方式有电加热、红外加热、高频加热、微波加热或组合式加热等。 拉挤成型典型工艺流程为: 玻璃纤维粗纱排布——浸胶——预成型——挤压模塑及固化——牵引——切割——制品

注射拉挤成型工艺流程图 拉挤成型设备组成 1、增强材料传送系统:如纱架、毡铺展装置、纱孔等。 2、树脂浸渍:直槽浸渍法最常用,在整个浸渍过程中,纤维和毡排列应十 分整齐。 3、预成型:浸渍过的增强材料穿过预成型装置,以连续方式谨慎地传递, 以便确保它们的相对位置,逐渐接近制品的最终形状,并挤出多余的树脂,然后再进入模具,进行成型固化。 4、模具:模具是在系统确定的条件下进行设计的。根据树脂固化放热曲线 及物料与模具的摩擦性能,将模具分成三个不同的加热区,其温度由树脂系统的性能确定。模具是拉挤成型工艺中最关键的部分,典型模具的长度

碳纤维制备工艺简介讲解

碳纤维制备工艺简介 碳纤维(Carbon Fibre)是纤维状的碳材料,及其化学组成中碳元素占总质量的90%以上。碳纤维及其复合材料具有高比强度,高比模量,耐高温,耐腐蚀,耐疲劳,抗蠕变,导电,传热,和热膨胀系数小等一系列优异性能,它们既可以作为结构材料承载负荷,又可以作为功能材料发挥作用。因此,碳纤维及其复合材料近年来发展十分迅速。 一、碳纤维生产工艺 可以用来制取碳纤维的原料有许多种,按它的来源主要分为两大类,一类是人造纤维,如粘胶丝,人造棉,木质素纤维等,另一类是合成纤维,它们是从石油等自然资源中提纯出来的原料,再经过处理后纺成丝的,如腈纶纤维,沥青纤维,聚丙烯腈(PAN)纤维等。 经过多年的发展,目前只有粘胶(纤维素)基纤维、沥青纤维和聚丙烯腈(PAN)纤维三种原料制备碳纤维工艺实现了工业化。 1,粘胶(纤维素)基碳纤维 用粘胶基碳纤维增强的耐烧蚀材料,可以制造火箭、导弹和航天飞机的鼻锥及头部的大面积烧蚀屏蔽材料、固体发动机喷管等,是解决宇航和导弹技术的关键材料。粘胶基碳纤维还可做飞机刹车片、汽车刹车片、放射性同位素能源盒,也可增强树脂做耐腐蚀泵体、叶片、管道、容器、催化剂骨架材料、导电线材及面发热体、密封材料以及医用吸附材料等。 虽然它是最早用于制取碳纤维的原丝,但由于粘胶纤维的理论总碳量仅44.5%,实际制造过程热解反应中,往往会因裂解不当,生成左旋葡萄糖等裂解产物而实际碳收率仅为30% 以下。所以粘胶(纤维素)基碳纤维的制备成本比较高,目前其产量已不足世界纤维总量的1%。但它作为航空飞行器中耐烧蚀材料有其独特的优点,由于含碱金属、碱土金属离子少,飞行过程中燃烧时产生的钠光弱,雷达不易发现,所以在军事工业方面还保留少量的生产。 2,沥青基碳纤维 1965年,日本群马大学的大谷杉郎研制成功了沥青基碳纤维。从此,沥青成为生产碳纤维的新原料,是目前碳纤维领域中仅次于PAN基的第二大原料路线。大谷杉郎开始用聚氯乙稀(PVC)在惰性气体保护下加热到400℃,然后将所制PVC沥青进行熔融纺丝,之后在空气中加热到260℃进行不熔化处理,即预氧化,再经炭化等一系列后处理得到沥青基碳纤维。 目前,熔纺沥青多用煤焦油沥青、石油沥青或合成沥青。1970年,日本吴羽化学工业公司生产的通用级沥青基碳纤维上市,至今该公司仍在规模化生产。1975年,美国联合碳化物公司(Union Carbide Corporation)开始生产高性能中间相沥青基碳纤维“Thornel-P”,年产量237t。我国鞍山东亚精细化工有限公司于20世纪90年代初从美国阿石兰石油公司引进年产200t通用级沥青基碳纤维生产线,1995年已投产,同时还引进了年产45t活性碳纤维的生产装置。 3,聚丙烯腈(PAN)基碳纤维 PAN基碳纤维的炭化收率比粘胶纤维高,可达45%以上,而且因为生产流程,溶剂回收,三废处理等方面都比粘胶纤维简单,成本低,原料来源丰富,加上聚丙烯腈基碳纤维的力学性能,尤其是抗拉强度,抗拉模量等为三种碳纤维之首。所以是目前应用领域最广,产量也最大的一种碳纤维。PAN基碳纤维生产的流程图如图1所示。

碳纤维织造的技术

碳纤维织造的技术 织造技术的发展 早在公元前5000 年,世界文明发源地就有了纺织品生产,例如非洲尼罗河流域的亚麻纺织、我国黄河、长江流域的葛纺织和丝绸纺织等。公元前500 年我国就有了脚踏织机。早在150年前,有梭织机开始逐步代替手工织布,其产量比手工织布的产量高出一倍,1844年开始出现无梭织机,剑杆织机发明于1870年,我国20世纪60年代中期开始研制剑杆织机,并成功地应用在有梭织机的技术改造上。 20世纪末,计算机被应用到织造机械,许多电子引纬和开口装置及系统应用到众多织机总,使剑杆织机的转速和入纬率大大提高。挠性剑杆织机的速度和入纬分别到了700rpm和1500rpm。进入21世纪后,剑杆织机的发展已不再单纯追求速度和入纬率,研究重点转向提高织机的产量及运转性能、提高织造效率及产品质量。织机制造商所努力的方向为对应各种各样纬纱,织造高附加值织物。新型剑杆织机已基本实现了电子技术、变频调速技术、传感技术与织机机械的完美结合,使得剑杆织造技术达到了一个崭新水平。 近年来,在航空航天工业发展的推动下,发达国家的高性能纤维纺织装备技术取得了突破性进展,电子化自动控制的剑杆织机、多轴向经编机等关键技术装备的研制获得成功,碳纤维织物的品质和性能得到大幅度提升。 我国高性能复合材料技术研究始于20世纪70年代,经过30多年的发展,工艺装备技术水平有了很大的发展,计算机控制的纤维剑杆织机、缝边机、编织机等现代化纺织预成型设备国内已有引进。虽然我国碳纤维织物的研究在国家重大科技专项需求的牵引下得到了迅速的发展,取得了一定的成绩,但是与发达国家相比,目前我国碳纤维设备依旧落后很多。 织造工艺 织造是一种基本的纺织工艺,能够使两条以上纱线在斜向或纵向互相交织形成整体结构的预成形体。根据不同的织造手法,可分为以下四种织造工艺。 1、梭织(weaving):使用梭子(shuttle)的运动来配送纬纱而交织经纱。 2、编织(braiding):以携纱器(carrier)的运动来配送编织纱以交织轴向纱,在没有轴向纱的情况则编织纱互相交织。 3、针织(knitting):以钩针的运动来使纱线形成环结构,套环的交织便形成织物。 4、针缝(stiching):以缝线的方式将两轴以上的平面不交织的结构缝合在一起。 织造设备 梭织可以说是最古老的织布技术,至今许多手工织布事实上就是一种简化的梭织发。梭织的目的不外乎将两套垂直的纱线互相交织而形成一块平面织物。从梭织的表面说明就是使用梭子来回在纬向运动,从而带入纬纱。 以下为简单的梭织机平面示意图,其中包括了几个重要部分,经纱(warp yarn)从盘头伸出,穿过综框(harness),再经钢筘(reed or batter)到织口与纬纱(weft yarn)交织,成形的织物卷取后完成。综框的结构包含总是(heddle),综丝上有综丝眼(heddle eyelet),经纱穿过综丝眼,由综框的上下运动形成经纱的开口,开口的目的就是使梭子能通过,梭子来回运动交织纬纱。综框的数目至少是两个以上,例如,平纹织物中,单数的经纱穿过一综框而双数穿过另一综框。更复杂的织造,则需要更多的综框与综丝上下运动来控制。钢筘的作用是打纬(beat up),使刚由梭子带过的纬纱能整齐排列并增加织物密度。其运动方式是钢筘先是后退,待梭子通过后则钢筘向前将纬纱推至织口,再后退等下一次打纬。

2019年-2023年国内外碳纤维市场及发展前景分析

2019年—2023年国内外碳纤维市场及发展前景分析1 前言 2019年对于我们国家是极不平凡的一年,改革开放40周年后,改革再出发,新中国成立70周年,国民经济转型升级遭遇阵痛,创新型国家建设任重道远,中美贸易战由于双方强硬不断反复升级,美国在全球范围内对华为实行制裁,这些因素对碳纤维这一新兴产业发展具有较高的相关度。 对于碳纤维产业,还有一件事不容忽视。2019年5月20日,习近平总书记来到江西考察调研,江西考察调研期间,习近平首先考察了位于赣州市的江西金力永磁科技股份有限公司,了解企业生产经营和赣州市稀土产业发展情况。习近平总书记考察稀土产业,稀土是我国重要的战略资源。江西金力永磁科技股份有限公司成立于2008年8月19日,是一家集研发、生产和销售高性能钕铁硼永磁材料于一体的高新技术企业,是国内新能源和节能环保领域核心应用材料的领先供应商。看似平凡的考察行程,意义很不一般,其中稀土产业与碳纤维产业应有许多相似之处。 “工业维生素”“工业黄金”“新材料之母”……稀土因其独特的物理化学性质,广泛应用于新能源、新材料、节能环保、航空航天、电子信息等领域,是现代工业中不可或缺的重要元素,是不可再

生的重要战略资源。稀土的高效开发利用,可以有力促进我国的多领域产业升级,实现众多新兴战略产业的崛起,对于国家发展意义重大。 习近平的考察传递了党中央重视战略新兴产业发展的决心,两个多月前的全国人大十二届三次会议期间,习近平总书记参加代表团审议时三次强调了一点。2019年5日,习近平在参加内蒙古代表团审议时强调,要把现代能源经济这篇文章做好,紧跟世界能源技术革命新趋势,延长产业链条,提高能源资源综合利用效率。要发展现代装备制造业,发展新材料、生物医药、电子信息、节能环保等新兴产业,发展现代服务业,发展军民融合产业;3月7日,习近平参加了广东代表团的审议。他提到,把新一代信息技术、高端装备制造、绿色低碳、生物医药、数字经济、新材料、海洋经济等战略性新兴产业发展作为重中之重,构筑产业体系新支柱;3月8日在山东代表团审议时,习近平提到海洋是高质量发展战略要地。要加快建设世界一流的海洋港口、完善的现代海洋产业体系、绿色可持续的海洋生态环境,为海洋强国建设作出贡献。在这三个代表团的讲话中,对于新兴产业的发展,装备制造业、生物医药、信息技术、新材料以及海洋经济等产业,习近平提到过不止一次。这些都是对碳纤维之类的新兴产业发展传递的一种信号。 2018年中国碳纤维产业,“几家欢喜几家愁”,以光威复材、中简科技为代表的服务于航空航天应用的碳纤维企业,已经展示出牢固的供应价值链关系和靓丽的业绩单;以中复神鹰、精功科技为代表

相关文档
相关文档 最新文档