文档视界 最新最全的文档下载
当前位置:文档视界 › 电位差计的使用

电位差计的使用

电位差计的使用
电位差计的使用

§ 4.8 电位差计的使用

电位差计是利用补偿原理和比较法精确测量电势差和电源电动势的常用仪器。在测量电

势差或电源电动势时,伏特表要从被测量对象中取用电流,而电位差计则是采用补偿原理,不从被测量对象中取用电流,也就不改变被测对象原来的状态,因此用电位差计测量的结果稳定可靠且精度高。

电位差计配合标准电阻也可以精确地测量电流、电阻和校正各种精密电表。电位差计所采用的补偿原理还广泛用于非电学量(如温度、压力、位移等)的测量及自动检测和自动控制系统中。

【实验目的】

1.了解电位差计的结构和原理。

2.掌握87-1型学生电位差计的使用方法。 3.学会用电位差计来校准电压表。 【实验原理】 1.补偿原理

如图4.8-1所示,把待测电源E x (其电动势用x ε表示)与一个电动势可以连续调节的电源E 0(其电动势用0ε表示)相连。若x ε>0ε则灵敏电流计指针将向一边偏转;若x ε<

0ε,则灵敏电流计指针将向另一边偏转;若x ε=0ε则灵敏

电流计指针不偏转,这时电路处于补偿状态。在补偿状态

下,如果可调电源电动势0ε是已知的,那么待测电源电动势x ε的大小也就被测定,这种方法就称为补偿法,并称为0ε补偿电动势。

实际上,由于没有电动势可以连续调节的电源,在实验电路中,是用一个分压器来代替连续可调电源E 0的。

2.电位差计原理

下面以87-1型电位差计为例,讨论电位差计的原理。其内部电路如图4.8-2所示,虚线框内等效电路图如图4.8-3所示,E 、R A 、R B 、R C 、R

0、R 组成工作回路,R 1、R 2组成的分流支

图4.8-2

K 3

R b

K 4 图4.8-1 补偿法原理图

路。当把K 1置于“外”或“内”时,由外接稳恒直流电源或内部电源在电路中形成稳恒电流。改变R A 、R B 、R C 可以得到连续可调的补偿电压E 0,其输出端为E +和E -。需要说明的是,特殊设计的电路(本图上没画出)可以保证无论R B 调整到什么位置,都不会改变支路CA 的电阻。这样,调节电阻R A 、

R B 、R C 仅相当于改变滑线电阻器R A 、R C

触点的位置,以获取适当的补偿电压E 0。当用“×1”档时,流过工作支路CA 的电

流为5mA ,分流支路电流为0.5 mA ;当“×0.1”档时,则相反,显然,后者量程由于

电流减少到十分之一,量程也变小十分之一。

在图4.8-2中,由Es 、G 和K 2 、K 3 、

K 4组成标准电流校正回路;由E x 、G 和K 2 、K 3、K 4组成待测回路。 测量时,必须先对工作回路进行校准。

接通K 1,工作电流回路中有电流。R A 、R B 、R C 使其电压读数为1.0186V ,然后接通K 3 、K 4,先将K 2转向S ,调节电阻R 以改变工作电流回路中电流的大小,当灵敏电流计指针指零时,工作电流回路中的电流即为标准电流。(若测量时温度为20℃,查得此时标准电池的电动势的大小为1.0186V 。)此过程就是工作回路的校准过程。

保持电阻R 不变,接入待测回路,依次调节R A 、R B 、R C , 当灵敏电流计指针指零时,E +和E -间的电压E 0与待测电动势E x 相等,其数值可由R A 、R B 、R C 盘上的数据给出。

本实验中所用到的标准电源和待测电源电动势均由DHBC -2标准电势和待测电势仪提供。

若需要测量外电路的某个电阻两端的直流电压,将其电压信号取出,区别其正、负极用其代替E x 即可。

利用电位差计还可校准电压表或电流表。 用电位差计校准微安表:

用电位差计和标准电阻可以校准微安表,图4.8-4为校准微安表电路图。其中E 是直流电源,K 是电源开关,R 是滑线变阻器(作分压器使用),R x 是标准电阻,μA 为待校准的微安表,R '为限流电阻。校准原理是:接通开关K ,微安表读数为指I ,用电位差计测出R x 两端的电势差U x ,已知标准电阻R x 的阻值,则可以计算出通过R x 的标准电流x x R U I /=标,因为电位差计的测量准确度和标准电阻的精确度都非常高,可以认为标I 比微安表读数指I 更准确,于是可以用电位差计来校准微安表,并定出微

安表的准确度等级。

用电位差计校准毫伏表: 调节R A 、R B 、R C 设定合适的E 0,将待校准毫伏表正确

接入E +和E -端,其读数U x ,而用E 0可视为U 标,于是可以用电位差计来校准毫伏表,并定出其准确度等级。

【实验仪器】

87-1型学生电位差计,DHBC-2电势箱,电阻箱,被校电表,滑线变阻器、连接线等。 【实验内容】

1、校准学生式电位差计(称校准)

图4.8-4 校准微安表电路图

+R -

图4.8-3

(1) 接通DHBC-2电势箱的外接电源进行预热,一般预热30分钟方可进行测量。

(2)使用电位差计之前,先要进行校准,使电流达到规定值。87-1型电位差计面板如图4.8-5所示,首先取掉检流计上短路线,对检流计进行机械调零。打开电位差计电源,先放好R A 、R B 和R C ,使其电压刻度等于标准电池电动势1.0186V ,用所附导线将面板上各同名端相连,再将K 1、K 2、K 3、G 、R 、R b 按原理线路图进行连接,经反复检查无误后,将K 1扳向“内”接入工作电源E 。将DHBC-2电势箱上的标准电池E S 和待测电动势E X 的输出端与检流计上的E S 、E X 的相应端相连, 合上K 4,利用检流计电路上的调零旋钮对对检流计进行带电环境下的调零。R b 先取电阻箱的最大值,(使用时如果检流计不稳定,可将其值调小,直到检流计稳定为止),合上K 1、K 3、K 4,将K 2推向E S (间歇使用),并同时调节R ,使检流计无偏转(指零),为了增加检流计灵敏度,应逐步减少R b ,如此反复开、合K 2 ,确认检流计中无电流流过时,则I O 已达到规定值。

2、测量电池电动势(称测量)

调节DHBC-2电势箱上电压旋钮,设置待测电动势的大小,按待测电动势的近似值设置好R A 、R B 、R C ,R b 先取最大值,K 2推向E X 并同时调电位差计R A 、R B 、R C 和R b 使检流计无偏转(在测的步骤中R 不能变动),此时R A 、R B 和R C 显示的读数值即为E X 值,测量结束应打开K 1、K 2、K 3。

重复“校准”与“测量”两个步骤。共对E X 测量三次,取E X 的平均值作为测量结果。 3、校准毫伏表:

根据毫伏表量程,选择合适的档位,设置R A 、R B 、R C ,记下E 0值并视为U 标,然后用待校准的毫伏表测量E +、 E -间的电压,记为U 指,计算U U U ?=-标指。测定10组数据,根据公式定出毫伏表的等级。

4、校准微安表

按图4.8-4连接好外电路,调节滑线变阻R ,使微安表依次指示为5.0μA 、10.0μA 、15.0μA 、20.0μA 、25.0μA 、30.0μA 、35.0μA 、40.0μA 、45.0μA 、50.0μA ,按照实验内容2的方法依次测出对应的R x 两端的电势差U x 值,并依次算出x x R U I /=标和误差指标I I I -=?,根据公式定出微安表的等级。

【数据处理】

1.将实验内容2的E X 测量结果填入设计好的表格中,并计算其平均值。

2.根据实验内容3测量的数据,将U 指、U 标、U ?系列数值填入自己设计好的表格中。以U 指为横坐标,以U ?为纵坐标,作出毫伏表的校准曲线~U U ?指(校准曲线呈折线状)。

3.根据实验内容4测量的数据,将指I 、x U 、标I 、I ?系列数值填入自己设计好的表格中。以指I 为横坐标,以I ?为纵坐标,作出微安表的校准曲线指I I ~?(校准曲线呈折线状)。

4.确定被校准电表的准确度等级

计算电表的基本误差

图4.8-5

%100m

ma m ??=

I I r x

式中max I ?是I ?绝对值的最大值,I m 是电表量程。根据电表的基本误差与电表准确度等级的关系m 100r a ≥,在电表的七个等级中选一个数值大于或等于100r m 的最小值即为该电表的等级。仿照上述方法确定被校准毫伏表的准确度等级。

【注意事项】

1.连线时标准电池、电源正负极一定要接正确。

2.实验完毕后电动势箱、电位差计的开关要全部断开,测量选择开关K 2放在中间位置的“断”档上。

3.实验完毕后灵敏电流计应置于“短路”档。 【预习思考题】

1.用电位差计和电压表分别测量同一电阻两端的电势差时读数是否相同?哪一个更准确?为什么?

2.用电位差计进行测量时为什么必须先校正工作电流? 【分析讨论题】

1.在校正电位差计工作电流时,如果灵敏电流计指针总是向一边偏转,无法调到补偿状态,你认为可能的原因是什么?如果在测量某电势差时,也出现这种情况,可能的原因是什么?

【附录】

1.DHBC-2型标准电势和待测电势使用介绍

DHBC-2型产品选用高精度电压基准源来代替标准电池,克服了标准电池的诸多缺点,不仅能作为标准电池用,还可利用电压调节旋钮提供不同大小的被测电势差。当测量精度要求不高时,可以不对其进行温度修正,输出1.0186V 标准电势作为电位差计的标准电源。

DHBC-2型产品为市电型,接通交流220V 电源,预热半小时后即可工作。若对测量精度要求不高,也可适当缩短预热时间。

DHBC-2型标准电势和待测电势与电位差计连接示意图如下:

电位差计的原理和使用

实验八 电位差计的原理和使用 【实验目的】 1.掌握电位差计的工作原理和正确使用方法,加深对补偿法测量原理的理解和运用。 2.训练简单测量电路的设计和测量条件的选择。 【实验仪器】 UJ31型直流电位差计、SS1791双路输出直流稳压电源、标准电池、标准电阻、AC15/5灵敏电流计、FJ31型直流分压箱、滑线变阻器、直流电阻箱、待校验电表、待测干电池、待测电阻、开关和导线等。 【实验原理】 如图5.8.1所示,电位差计的工作原理是根据电 压补偿法,先使标准电池E n 与测量电路中的精密电阻R n 的两端电势差U st 相比较,再使被测电势差(或电压)E x 与准确可变的电势差U x 相比较,通过检流计G 两次指零来获得测量结果。电压补偿原理也可从电势差计的“校准”和“测量”两个步骤中理解。 校准:将K 2打向“标准”位置,检流计和校准电路联接,R n 取一预定值,其大小由标准电池E S 的电动势确定;把K 1合上,调节R P ,使检流计G 指零,即E n = IR n ,此时测量电路的工作电流已调好为 I = E n /R n 。校准工作电流的目的:使测量电路中的R x 流过一个已知的标准电流I o ,以保证R x 电阻盘上的电压示值(刻度值)与其(精密电阻R x 上的)实际电压值相一致。 测量:将K 2打向“未知”位置,检流计和被测电路联接,保持I o 不变(即R P 不变),K 1合上,调节R x ,使检流计G 指零,即有E x = U x = I o R x 。 由此可得x n n x R R E E = 。由于箱式电位差计面板上的测量盘是根据R x 电阻值标出其对应的电压刻度值,因此只要读出R x 电阻盘刻度的电压读数,即为被测电动势E x 的测量值。 所以,电位差计使用时,一定要先“校准”,后“测量”,两者不能倒置。 【实验装置】 1. UJ31型电位差计 UJ31型箱式电位差计是一种测量低电势的电位差计,其测量范围为 mV .V 1171-μ(1K 置1?档)或mV V 17110-μ(1K 置10?档)。使用 图5.8.1 电位差计的工作原理 图5.8.2 UJ31型电位差计面板图 + - -++- + -标准 检流计 5.7-6.4V 未知1 未知2 K 1 R P2 R P3 R P1 R n K 2 I II III 1.01×10 ×1 未知1 未知2 标准断断粗 中 细 ×1 ×0.1 ×0.001 粗细短路

电子电位差计的检定及校准

电子电位差计的检定及校准 一、电子电位差计的工作原理及结构 (一)电子电位差计的工作原理 电子电位差计采用电压补偿法来测量被测参数,当热电偶直流电动势经滤波单元输入仪表的测量桥路时,由于热电偶电动势和测量电路是反方向串接的,两者大小不等所产生的差值电压,经晶体管放大器放大后,驱动伺服电机。一方面伺服电机通过齿轮传动,带动滑动臂与测量桥路中的滑线电阻相接触,以改变滑动臂与滑线电阻的接触位置,直至使测量桥路中产生的补偿电压与输入的被测直流电动势相补偿,此时桥路处于平衡状态,放大器无功率输出,伺服电机停止转动;另一方面伺服电机带动指示记录机构,将被测电动势记录下来,交流同步电机带动记录纸以恒定的速度移动,做为记录的时间坐标。 (二)元件结构及作用 电子电位差计的原理方框图如图1所示。它是由测量桥路、放大器、伺服电机、指示记录机构、设定机构、滑线电阻组成的闭环控制系统。指示记录机构又包括指示记录系统和走纸系统两部分:指示记录系统由指针、记录笔或打印机构及刻度盘组成;走纸系统由变速机构和走纸机构等组成。 图1 电子电位差计工作原理方框图 电子电位差计除了以上几个主要部分组成,还有各种附加装置,如表内、表面定值电接点(可进行电接点位式调节),电动调节(能对被测对象进行比例、微分、积分调节),程序控制,计算器等。这些附加装置增加了电位差计的功能,扩大了适用范围。 1、测量桥路 测量桥路是用来产生直流电压,与热电偶产生的热电势相平衡。 2、放大器 放大器的作用是将测量桥路输出的不平衡电压,放大到足以驱动伺服电机转动所需的功率,进而带动滑动触点移动,减小测量桥路不平衡电压,使系统达到平衡。 3、伺服电机 伺服电机是两相交流异步电机,它可以向正、反两个方向旋转,其转向取决于控制

电位差计的原理和使用

实验八电位差计得原理与使用 【实验目得】 1.掌握电位差计得工作原理与正确使用方法,加深对补偿法测量原理得理解与运用。 2.训练简单测量电路得设计与测量条件得选择。 【实验仪器】 UJ31型直流电位差计、SS1791双路输出直流稳压电源、 标准电池、标准电阻、AC15/5灵敏电流计、 FJ31型直流 分压箱、滑线变阻器、直流电阻箱、待校验电表、待测 干电池、待测电阻、开关与导线等。 【实验原理】 如图5.8.1所示,电位差计得工作原理就是根据电 压补偿法,先使标准电池E…与测量电路中得精密电阻Rn 得两端电势差Us,相比较,再使被测电势差(或电压) 仔与准确可变得电势差久相比较,通过检流计 G两次指 图581电位差il?得工作原理 零来获得测量结果。电压补偿原理也可从电势差计得 “校准”与“测量”两个步骤中理解。 校准:将?打向“标准”位置,检流讣与校准电路联接.几取一预左值,其大小由标准电池Es得电动势确定;把Ki合上调'I'J R P,使检流计G指零,即£…=风,此时测量电路得工作电流已调好为7= E.JR n。校准工作电流得目得:使测量电路中得&流过一个已知得标准电流人. 以保证&电阻盘上得电压示值该IJ度值)与英(精密电阻凡上得)实际电压值相一致。 测量:将心打向“未知”位置,检流讣与被测电路联接,保持不变(即弘不变)K合上, 调节&使检流计G指零,即有E x =Ux= /<> 由此可得。由于箱式电位差计而板上得测疑盘就是根据凡电阻值标岀其对应得电压刻度值,因此只要读岀R,电阻盘刻度得电压读数,即为被测电动势瓦得测量值。所以,电位差计使用时,一定要先“校准",后“测量",两者不能倒置。 【实验装置】 1、UJ31型电位差计 UJ31型箱式电位差计就是一种测量低 电势得电位差计,其测量范囤为(宜档)或 (宜档)。使用外接工作电源,标准电池与灵 敏电流计均外接,英面板图如图5. 8. 2 所 示。调节工作电流(即校准)时分别调节(粗 调)、(中调)与(细调)三个电阻转盘,以 保证迅速准确地调节工作电流。就是为了适 应温度不同时标准电池电动势得变化而设 置得,当温度不同引起标准电池电动势变化 时,通过凋节,使工作电流保持不变。被分 成I 0、11()与111()三个电阻转盘, 并在转盘上标出对应得电压值,电位差计处 于补偿状态时可以从这三个转盘上直接读岀未知电动势或未知电压。左下方得“粗”与

电位差计校准电表实验报告(完整版)

电位差计校准电流表

3 、电位差计的标准 要想使回路的工作电流等于设计时规定的标准值I O ,必须对电位差计进行校准。方法如图所示。E S 是已知的标准电动势,根据它的大小,取cd 间电阻为R cd ,使R cd =E S /I O ,将开关K 倒向E S ,调节R 使检流计指针无偏转,电路达到补偿,这时I O 满足关系I O = E S /R cd ,由于已知的E S 、R cd 都相当准确,所以I O 就被精确地校准到标准值,要注意测量时R 不可再调,否则工作电流不再等于I O 。 4﹑电流表的校准 校正电流表的电路如图5-20-4所示,图中毫安表为被校准电流表,R 为限流器,s R 为标准电阻,有4个接头,上面两个是电流接头,接电流表,下面两个是电压接头,接电位差计。电位差计可测出s R 上的电压s U ,则流过s R E R a b c d Es Ex K 图5-20-4 电位差计校正电流表电路

中电流的实际值为s s R U I /0= 在毫安表上读出电流指示值I ,与0I 进行比较,其差值0I I I -=?称为电流表指示值的绝对误差。找出所测值中的最大绝对误差m I ?,按式(0-0-1)确定电流表级别。 %100??= 量限 m I a (0-0-1) 电路实物图: 五、实验内容及步骤 1、校准学生式电位差计 使用电位差计之前,先要进行校准,使电流达到规定值。先放好R A 、R B 和R C ,使其电压刻度等于标准电池电动势,取掉检流计上短路线,用所附导线将K 1、K 2、K 3、G 、R 、R b 和电位差计等各相应端钮间按原理线路图进行连接,经反复检查无误后,接入工作电源E ,标准电池E S 和待测电动势E X ,R b 先取电阻箱的最大值,(使用时如果检流计不稳定,可将其值调小,直到检流计稳定为止),合上K 1、K 3,将K 2推向E S (间歇使用),并同时调节R ,使检流计无偏转(指零),为了增加检流计灵敏度,应逐步减少R b ,如此反复开、合K 2 ,确认检流计中无电流流过时,则I O 已达到规定值。

实验4 直流电位差计的原理及应用

实验10 直流电位差计的原理及应用 【实验目的】 1、学习“补偿法”在实验测量中的应用。 2、掌握电位差计的工作原理及其测量的基本方法。 3、学习对实验电路参数的估算及校准方法。 【实验仪器】 DH325型十一线电位差计 1台 DHBC -5标准电势与待测电势 1台 1、DHBC -5标准电势与待测电势面板示意图 注意:DHBC -5标准电势与待测电势的标准电势:1.0186V ,精度为0.01%;待测电势:0~1.9V 连续可调。严禁作为电源外接负载使用。 【实验原理】 1.补偿法原理 补偿法是一种准确测量电动势(电压)的有效方 法。如图1所示。设E 0为一连续可调的标准电源电 动势(电压),而E X 为待测电动势,调节E 0使检流 计G 示零(即回路电流I=0),则E X = E 0。上述过程的实质是,不断地用已知标准电动势(电压)与待测 图1 补偿法原理图 的电动势(电压)进行比较,当检流计指示电路中的电流为零时,电路达到平衡补偿状态,此时被测电动势与标准电动势相等,这种方法称为补偿法。这和用一把标准的米尺来与被测物体(长度)进行比较,测出其长度的基本思想一样。但X

其比较判别的手段有所不同,补偿法用示值为零来判定 。 但电动势连续可调的标准电源很难找到,那么怎样才能简单地获得连续可调 的标准电动势(电压)呢?简单的设想是:让一阻值连续可调的标准电阻上流过一恒定的工作电流,则该电阻两端的电压便可作为连续可调的标准电动势。 2.电位差计测量原理 2 是一种直流电位差计的原理简图。 图2 电位差计原理图 它由三个基本回路构成: ① 工作电流调节回路,由工作电源E 、限流电阻R P 、标准电阻R N 和R X 组成。 ② 校准回路,由标准电池E N 、检流计G 、标准电阻R N 组成。 ③ 测量回路,由待测电动势E X ,检流计G ,标准电阻R X 组成。通过测量 未知电动势E X 的两个操作步骤,可以清楚地了解电位差计的原理。 (1)“校准”:图中开关K 拨向标准电动势E N 侧,取R N 为一预定值(对 应标准电势值E N =R N ×I 0=1.0186V ),调节R P 使检流计G 示值为零,使工作电流回路内的R X 中流过一个已知的“标准”电流I 0,且N N R E I =0。 (2)“测量”:将开关K 拨向未知电动势E X 一侧,保持I 0不变,调节滑动触 头B ,使检流计示零,则N N X X X E R R R I E =?=0。被测电压与补偿电压极性相抵且大小相等,因而互相补偿(平衡)。这种测E X 的方法叫补偿法。补偿法具有以下优点:

电位差计测电动势

实验六 电压补偿及电流补偿实验 电位差计是一种精密测量电位差(电压)的仪器,它的原理是使被测电压和一已知电压相互补偿(即达到平衡),其准确度可高达0.001%。它还常被用以间接测量电流、电阻和校正各种精密电表。在科学研究和工程技术中广泛使用电子电势差计进行自动控制和自动检测。 【实验目的】 1.掌握补偿法测电动势的基本原理。 2.用UJ-31型低电势电位差计校准电流表。 【实验原理】 1.补偿原理: 图6-1中用已知可调的电信号0E 去抵消未知被测电信号x E 。当完全抵消时(检流计G 指零),可知信号0E 的大小就是被测信号x E 的大小,此方法为补偿法,其中可知信号为补偿信号。 2.电位差计的原理: 图6-2是UJ31 型电位差计的原理简图。UJ-31型电位差计是一种测量直流低电位差的仪器,量程分为17mV (最小分度1μV ,倍率开关K 1旋至×1)和170mV (最小分度10μV ,倍率开关旋到×10)两档。该电路共有3个回路组成:①工作回路②校准回路③测量回路。 (1)校准:为了得到一个已知的“标准”工作电流mA 10I 0= 。将开关S 合向“标准”处,N E 为标准电动势1.0186v ,取N R =101.86Ω,调节“粗”“中”“细”三个电阻大小使检流计G 指零,显然 mA R E I N N 100== (6-1) (2)测量:将开关S 合向“测量”处,x E 是未知待测电动势。保持mA 10I 0=,调节x R 使检流计G 指零,则有 x x R I E 0= (6-2) 图6-1 补偿原理 图6-2 电位差计原理图

x R I 0是测量回路中一段电阻上的分压,称为“补偿电压”。 被测电压x E 与补偿电压极性相反、大小相等,因而相互补偿(平衡)。这种测量未知电压的方式叫“补偿法”。 补偿法具有以下优点: ①电位差计是一电阻分压装置,它将被测电压X U 和一标准电动势接近于直接加以并列比较。X U 的值仅取决于电阻比及标准电动势,因而能够达到较高的测量准确度。 ②上述“校准”和“测量”两步骤中,检流计两次均指零,表明测量时既不从标准回路内的标准电动势源(通常用标准电池)中也不从测量回路中吸取电流。因此,不改变被测回路的原有状态及电压等参量,同时可避免测量回路导线电阻,标准电阻的内阻及被测回路等效内阻等对测量准确度的影响,这是补偿法测量准确度较高的另一个原因。 3.电流表的校准: 所谓校准是使被校电流表与标准电流表同时测量一定的电流,看其指示值与相应的标准值(从标准电表读出)相符的程度。校准的结果得到电表各个刻度的绝对误差。选取其中最大的绝对误差除以量程,即得该电表的标称误差,即 标称误差=100?量程 最大绝对误差% (6-3) 根据标称误差的大小,将电表分为不同的等级,常记为K 。例如,若0.5%<标称误差≤1.0%,则该电表的等级为1.0级。 【实验仪器】 UJ31 型电位差计;毫安表;平衡指示仪(检流计);直流稳压电源;滑线变阻器;模拟标准电阻;导线;开关等。 【实验步骤】 1.先将检流计“AC5型检流计”电源打开预热15分钟。 2.按照图6-3所示连接好电路。图中E '是“TH-SS3022型数显直流稳压电源”;ACB 是滑线变阻器;R 是电阻箱;0R 是模拟标准电阻;mA 是被校电流表。 如图6-4,电位差计上的“标准”接线柱接“FB204型标准电势”;“检流计”接线柱接“AC5型检流计”;“5.7~6.4”接线柱接“晶体管稳压电源”;“未知1”接线柱接“模拟标准电阻”(注意各接线柱的极性不能接反)。 3.“AC5型检流计”调零。将开关打到“调零”处,调节“调零”旋钮,直到指针指图6-4 UJ31型电位差计面板示意图 标准 检流计 5.7V -6.4V 未知1 未知2 R N ×10 ×1 未知1 未知2 标准 粗 细 短路 ×1mV ×0.1mV ×0.001mV II III I P r 1 r 2 r 3 S j ′ 图6-3 电流表校正电路图

实验十一 电位差计及其应用

实验十一电位差计及其应用 【实验目的】 1.了解电位差计的工作原理、结构、特点与操作方法。 2.掌握用电位差计测电池的电动势的方法。 【实验仪器】 电位差计,标准电池、检流计、待测电池、直流稳压电源、导线若干。 【实验原理】 一般用伏特表测电位差或电动势时,由于伏特表自身的内阻在电路中有分流作用,往往产生较大的测量误差。而用电位差计测电位差或电动势时,却不存在这个问题。 箱式电位差计是用来精确测量电池电动势或电位差的专门仪器。它采用电位比较方法依据补偿原理进行测量,由于与之配合使用的标准电池电动势非常稳定,用做检测电流的灵敏电流计灵敏度很高,加上箱式电位差计的电压比较电路精确度较高,因此,它能精确地测量待测的电位差和电池的电动势。同时,因为箱式电位差计精度很高,常用来校正电压表和电流表。 图8-1 电压补偿原理图图8-2 电位差计原理简图 1.电压补偿原理 图8-1为电压补偿原理图。在图8-1中,Ex为被测未知电动势,E0为可以调节的已知电源,G为检流计。在此回路中,若E0≠Ex,则回路中一定有电流,检流计指针偏转。调整E0值,总可以使检流计G指示零值,这就说明此时回路中两电源的电动势必然是大小相等,方向相反,数值上有Ex=E0,因而相互补偿

(平衡)。这种测电压或电动势的方法称为补偿法。电位差计就是应用这种补偿原理设计而成的测量电动势或电位差的仪器。 由上可见,构成电位差计需要有一个特定的可调电源E0,而且要求它满足两个条件:①它的大小便于调节,使E0能够和Ex补偿;②它的电压很稳定,并能读出精确的伏特值。 2.电位差计原理 图8-2为电位差计原理图。电位差计应用的补偿原理,是用可调的已知电压E0=IR0与被测电动势Ex相比较,当检流计指示零时,两者相等从而获得测量结果,如图8-2所示。由欧姆定律U=IR可知,要想得到可调的已知电压E0,可先使电流I确定为一恒定的已知标准电流I0,然后使I0流过电阻R,如果Ra的大小可调并可知(Ra是R在补偿回路ExKGRa中的部分),则Ra两端的电压降U 即为可调已知,有U=I0Ra,将Ra两端的电压U引出,并与未知电动势Ex进行比较,组成补偿回路,则U相当于上面所要求的“E0”。 在图8-2中,ERRsRp组成辅助回路,ExKGRa和EsRsGK各组成一个补偿回路。 ⑴校准工作电流 辅助回路中的电流叫工作电流。为使Ra中通过的电流是已知的标准电流I0,在图8-2中,使开关K倒向右端1,调节Rp改变辅助回路中的电流,当检流计指示零时,Rs上的电压降恰与补偿回路中标准电池的电动势Es相等,有Es=I0. Rs,,由于Es和Rs都是很准确的,所以这时辅助回路中的工作电流就被精确地校准到所需要的I0值。

UJ31型电位差计

UJ31型电位差计 【实验目的】 1、学习并了解UJ31型低电势直流电位差计的构造和工作原理; 2、学习用UJ31型低电势电位差计校正毫伏表。 【实验原理】 一、UJ31型低电势电位差计的测量原理: 首先来看看UJ31型低电势电位差计的原理电路图: 其中的E 为辅助工作电源,R i 表示的是工作电流标准化调节电阻;下边两个支路中,R T 代表修正温度差异的调节电阻,E N 标准电池;右边之路中R U 为待测电动势的读数盘,E X 表示待测的电位差。 测量的时候遵循一下测量步骤: 1、计算标准电池E N 的实验室温度修正值,修正公式如下: ()()()()[] () V t t C E N 62 N 102093.0206.4020C t E -?-+--?=? (1)

上式中的()V 0186.1C 20E N =?; 2、将转换开关放到“标准挡”,调节标准电流调节电阻,使得检流计示数为零,此时有: T N IR E = (2) 3、然后将转换开关打到“未知档”,调节电阻R U ,使得检流计示数仍为零,则此时有: U X IR E = (3) 故此时可得出待测电位差E X 的值: N T U X E R R E = (4) (4)式既是UJ31型低电势电位差计测量所用的公式。 二、仪器误差: 在规定的使用条件下,电位差计的基本误差(指的是绝对误差): ()mV a U U U N X %10X ??? ? ? +±=? (5) 式中的a 表示的是电表的表级。U X 表示待测的电压值,U N 为基准值,它的算法是 其所用量程最大的数量级(10的整数次幂)。 并可由(5)式计算出相对误差。 【实验仪器】 UJ31型低电势电位差计、直流稳压电源(2)、直流复射式光电检流计、标准电池、毫伏表、电阻箱、滑线变阻器、连接导线。 【实验内容】 1、按相关的要求连接好电路图。将选择开关打在“断”这一档,调零光电检流计;

电位差计的原理和使用

实验八电位差计的原理和使用 【实验目的】 1掌握电位差计的工作原理和正确使用方法,加深对补偿法测量原理的理解和运用。 2?训练简单测量电路的设计和测量条件的选择。 【实验仪器】 UJ31型直流电位差计、SS1791双路输出直流稳压电源、标准电池、标准电阻、AC15/5灵敏电流计、FJ31型直流分压箱、滑线变阻器、直流电阻箱、待校验电表、待测干 电池、待测电阻、开关和导线等。 【实验原理】 如图5.8.1所示,电位差计的工作原理是根据电压补偿法,先使标准电池E n与测量电路中的精密电阻R n的两端电势差U st相比较,再使被测电势差(或电压)E x与准确可变的电势差U x相比较,通过检流计G两次指零来获得测量结果。电压补偿原理也可从电势差计的“校准”和“测量”两个步骤中理解。 校准:将K2打向“标准”位置,检流计和校准电路联接, R n取一预定值,其大小由标 准电池E S的电动势确定;把K1合上,调节R p ,使检流计G 指零,即E n= IR n,此时测量电路的工作电流已调好为1= E n/R n。校准工作电流的目的:使测量电路中的 R x流过一个 已知的标准电流I。,以保证R x电阻盘上的电压示值(刻度值)与其(精密电阻 R x上的)实 际电压值相一致。 测量:将K2打向“未知”位置,检流计和被测电路联接,保持 I o不变(即R p不变), K1合上,调节R x,使检流计G指零,即有E x = U x = I o R x o 由此可得E x 〔R x o由于箱式电位差计面板上的测量盘是根据 R x电阻值标出其对 R n 应的电压刻度值,因此只要读出R x电阻盘刻度的电压读数,即为被测电动势E x的测量值。 所以,电位差计使用时,一定要先校准”,后测量”, 粗- ” 1卜细 图5.8.1电位差计的工作原理

电位差计校准毫安表

DJ31型直流电位差计校准毫安表 姓名:刘己才 学号:201010320210 摘要:电位差计是一种精密测量电位差(电压)的仪器,它的原理是使被测电压和一已知电压相互补偿(即达到平衡),其准确度可高达0.001%。它常被用以间接测量电流、电阻和校正各种精密电表。在科学研究和工程技术中广泛使用电子电势差计进行自动控制和自动检测。 关键词:DJ31直流电位差计 毫安表 校准 引言:一般的毫安表在长期使用过后指针会发生偏离0刻度而产生误差,所以需要用UJ-31型低电势电位差计校准毫安表。 正文: 【实验原理】 1.补偿原理: 图6-1中用已知可调的电信号0E 去抵消未知被测电信号x E 。当完全抵消时(检流计G 指零),可知信号0E 的大小就是被测信号x E 的大小,此方法为补偿法,其中可知信号为补偿信号。 2.电位差计的原理: 图6-2是UJ31 型电位差计的原理简图。UJ-31型电位差计是图6-1 补偿原理 图6-2 电位差计原理图

一种测量直流低电位差的仪器,量程分为17mV (最小分度1μV ,倍率开关K 1旋至×1)和170mV (最小分度10μV ,倍率开关旋到× 10)两档。该电路共有3个回路组成:①工作回路②校准回路③测量回路。 (1)校准:为了得到一个已知的“标准”工作电流mA 10I 0=。将 开关S 合向“标准”处,N E 为标准电动势1.0186v ,取N R =101.86Ω, 调节“粗”“中”“细”三个电阻大小使检流计G 指零,显然 mA R E I N N 100== (6-1) (2)测量:将开关S 合向“测量”处,x E 是未知待测电动势。保 持mA 10I 0=,调节x R 使检流计G 指零,则有 x x R I E 0= (6-2) x R I 0是测量回路中一段电阻上的分压,称为“补偿电压”。 被测电压x E 与补偿电压极性相反、大小相等,因而相互补偿(平衡)。 这种测量未知电压的方式叫“补偿法”。 补偿法具有以下优点: ①电位差计是一电阻分压装置,它将被测电压X U 和一标准电 动势接近于直接加以并列比较。X U 的值仅取决于电阻比及标准电 动势,因而能够达到较高的测量准确度。 ②上述“校准”和“测量”两步骤中,检流计两次均指零,表明测量时既不从标准回路内的标准电动势源(通常用标准电池)中也不从测量回路中吸取电流。因此,不改变被测回路的原有状态及电压等参量,同时可避免测量回路导线电阻,标准电阻的内阻及被测回路等效内阻等对测量准确度的影响,这是补偿法测量准确度较高的另一个原因。 3.电流表的校准: 所谓校准是使被校电流表与标准电流表同时测量一定的电流,看其指示值与相应的标准值(从标准电表读出)相符的程度。校准的结果得到电表各个刻度的绝对误差。选取其中最大的绝对误差除以量程,即得该电表的标称误差,即 =100?量程最大绝对误差% (6-3)

电位差计的原理及使用预习原始数据实验报告精编

电位差计的原理及使用预习原始数据实验报告 精编 Document number:WTT-LKK-GBB-08921-EIGG-22986

院(系)名称班 别姓 专业名称学 实验课程名称普通物理实验(2) 实验项目名称电位差计的原理及使用 内容包含:实验目的、实验原理简述、实验中注意事项、实验预习中的问题探讨 【实验目的】 1.了解电位差计的结构,正确使用电位差计; 2.理解电位差计的工作原理——补偿原理; 3.掌握线式电位差计测量电池电动势的方法; 4.熟悉指针式检流计的使用方法。 【实验原理】 电源的电动势在数值上等于电源内部没有净电流通过时两极件的电压。如果直接用电压表测量电源电动势,其实测量结果是端电压不是电动势。因为将电压表并联到电源两端,就有电流I通过电源的内部。由于电源有内阻r0,在电源内部不可避免地存在电位降Ir0,因而电压表的指示值只是电源的端电压(U=E-Ir0 )的大小,它小于电动势。显然,为了能够准确的测量电源的电动势,必须使通过电源的电流I为零。此时,电源的端电压U才等于其电动势E。 1.补偿原理 如图1所示,把电动势分别为ES 、EX和检流计G联成闭合回路。当ES < EX时,检流计指针偏向一边。当ES > EX时,检流计指针偏向另一边。只有当ES = EX时,回路中才没有电流,此时I=0 ,检流计指针不偏转,我们称这两个电动势处于补偿状态。反过来说,若I=0 ,则ES = EX 。 图1

电流计的保护: 图1电路中,当两比较电动势电压稍有变化,电流计将产生极大偏转,这将直接损坏电表。 为保护小量程电表,通常给电流表串联一大电阻R(图2),以减小流经电表的电流,调节比较电动势,使电流计示值为零,再减小串联电阻阻值,调节比较电动势,使电流计示值为零….如此反复进行,直至串联电阻为零时,电流表示值也为零。 2. 十一线电位差计的工作原理 如图3所示,AB为一根粗细均匀的电阻丝共长11米,它与直流电源组成的回路称作工作回路,由它提供稳定的工作电流Io;由待测电源Ex、检流计G、电阻丝MN构成的回路称为测量回路;由标准电源Es、检流计G、电阻丝MN构成的回路称为定标(或校准)回路。调节总 电流I0的变化可以改变电阻丝AB单位长度上电位差Uo的大小。M、N 为AB上的两个活动接触点,可以在电阻丝上移动,以便从AB上取适当的电位差来与测量支路上的电位差(或电动势补偿)。 实验预习报告

电位差计的原理及使用预习原始数据实验报告

实验预习报告 院(系)名称班 别 姓名 专业名称学号 实验课程名称普通物理实验(2) 实验项目名称电位差计的原理及使用 内容包含:实验目的、实验原理简述、实验中注意事项、实验预习中的问题探讨 【实验目的】 1.了解电位差计的结构,正确使用电位差计; 2.理解电位差计的工作原理——补偿原理; 3.掌握线式电位差计测量电池电动势的方法; 4.熟悉指针式检流计的使用方法。 【实验原理】 电源的电动势在数值上等于电源内部没有净电流通过时两极件的电压。如果直接用电压表测量电源电动势,其实测量结果是端电压不是电动势。因为将电压表并联到电源两端,就有电流I 通过电源的内部。由于电源有内阻r0,在电源内部不可避免地存在电位降Ir0,因而电压表的指示值只是电源的端电压(U=E-Ir0 )的大小,它小于电动势。显然,为了能够准确的测量电源的电动势,必须使通过电源的电流I为零。此时,电源的端电压U才等于其电动势E。 1.补偿原理 如图1所示,把电动势分别为ES 、EX和检流计G联成闭合回路。当ES < EX时,检流计指针偏向一边。当ES > EX时,检流计指针偏向另一边。只有当ES = EX时,回路中才没有电流,此时I=0 ,检流计指针不偏转,我们称这两个电动势处于补偿状态。反过来说,若I=0 ,则ES = EX 。 图1 电流计的保护: 图1电路中,当两比较电动势电压稍有变化,电流计将产生极大偏转,这将直接损坏电表。 为保护小量程电表,通常给电流表串联一大电阻R(图2),以减小流经电表的电流,调节比较电动势,使电流计示值为零,再减小串联电阻阻值,调节比较电动势,使电流计示值为零….如此反复进行,直至串联电阻为零时,电流表示值也为零。 2. 十一线电位差计的工作原理 如图3所示,AB为一根粗细均匀的电阻丝共长11米,它与直流电源组成的回路称作工作回路,由它提供稳定的工作电流Io;由待测电源Ex、检流计G、电阻丝MN构成的回路称为测量回路;由标准电源Es、检流计G、电阻丝MN构成的回路称为定标(或校准)回路。调节总 电流I0的变化可以改变电阻丝AB单位长度上电位差Uo的大小。M、N 为AB上的两个活动接触点,可以在电阻丝上移动,以便从AB上取适当的电位差来与测量支路上的电位差(或电动势补偿)。

补偿原理与电位差计

思考题: 1.电位差计测电压的方法与用电压表测电压的方法有什么不同 答:用电位差计测电压采用的是比较法测量电压,测量时候不需要从待测电路中取出电流,不会干扰到待测电路的工作状态,因此可以进行精确度很高的测量;而用电压表测量电压,用的是直接的测电流,因为制作高精度的电压表相当困难,而且无论电压表多么理想,实际上,它还是会干扰到待测电路的电流,因此进行高精度测量时不宜采用直接用电压表测量电压。 2.电位差计的测量结果能具有很高的精度? 答:电位差计不需要从待测电路中取出电流,不会干扰到待测电路的工作状态,因而可以进行精密测量。由于在结构上采用了高精密度的电阻元件、标准电池和灵敏的检流计,因而测量结果具有很高的精度。 3.如果不校准工作电流就进行测量,会有什么后果? 答:电位差计测量电压采用的是比较法,校准电流是为了能达到我们的精度要求,如果不进行校准工作电流,就会产生系统误差,从而导致测量结果存在奔可以避免的误差,影响数据的精确度。 实验感想与体会 组装电路时,应按照电路图从电路的一端出发,先连好干路,再分别逐次连接各支路,一步一步地都做对不要觉得麻烦就随便连接,否则很容易使自己迷失方向或者使导线连接错误等等,导致后面的实验不能进行。还有,在使用检流计之前,应该先大概估计一下电流,否则,即使再快的断开开关也可能会使指针因摆动角度过大从而造成仪器损坏。这次试验的操作比较容易,然而其数据处理,尤其是不确定度的计算比较复杂,通过实验让我更加深刻地体会和了解了不确定度的计算的重要性。在本次实验中,不确定度的来源很多,比如电阻误差,检流计灵敏度不匹配,标准电池电动势的微小变化,气温微变化,干路电流的微小变化等等,这就需要我们逐个的去分析,舍去较小的因素,保留主要的不确定度来源,我还了解到数据记录的重要性,此次数据记录不多。但是很杂,特别是与不确定度计算有关的一起数据已被忽略,以后我做实验之前一定要先把现实条件考虑充分,要考虑到各种可能出现误差的地方,并在做实验时多加留意。另外,每做完一个小实验之后应该先将所有仪器收好,摆成初始状态,然后再开始下一个实验,这样看似乎耽误时间,实际上由于整齐的桌面提高了效率,,使得下一个实验可以更快的完成,而且不至于在实验中不慎打碎未用的仪器造成不可挽回的结果,所以,及时收拾桌面对于后面几个实验的完成是很 重要的,而且整齐对一辈子都是有好处的。

用电位差计测电动势实验报告doc

用电位差计测电动势实验报告 篇一:十一线电位差计测电动势(实验报告) 大学物理实验报告 实验名称电位差计测量电动势实验日期实验人员 【实验目的】 1. 了解电位差计的结构,正确使用电位差计; 2. 理解电位差计的工作原理——补偿原理; 3. 掌握线式电位差计测量电池电动势的方法; 4. 熟悉指针式检流计的使用方法。 【实验仪器】 11线板式电位差计、检流计、标准电池、待测电池、稳压电源、单刀双掷开关、保护电路组 【实验原理】 电源的电动势在数值上等于电源内部没有净电流通过时两极件的电压。如果直接用电压表测量电源电动势,其实测量结果是端电压,不是电动势。因为将电压表并联到电源两端,就有电流I通过电源的内部。由于电源有内阻r0,在电源内部不可避免地存在电位降Ir0,因而电压表的指示值只是电源的端电压(U=E-Ir0)的大小,它小于电动势。显然,为了等于其电动势E。 1. 补偿原理 ?? 如图1所示,把电动势分别为ES 、EX和检流计G 联成闭合回路。当ES EX时,检流计指针偏向另一边。只

有当ES = EX时,回路中才没有电流,此时I=0 ,检流计指针不偏转,我们称这两个电动势处于补偿状态。反过来说,若I=0 ,则ES = EX。 能够准确的测量电源的电动势,必须使通过电源的电流I为零。此时,电源的端电压U才 图1 补偿电路 2. 十一线电位差计的工作原理 如图2所示,AB为一根粗细均匀的电阻丝共长11米,它与直流电源组成的回路称作工 作回路,由它提供稳定的工作电流I0;由待测电源EX、检流计G、电阻丝CD构成的回 路称为测量回路;由标准电源ES、检流计G、电阻丝CD 构成的回路称为定标(或校准) 回路。调节总电流I0的变化可以改变电阻丝AB单位长度上电位差U0的大小。C、D 为AB上的两个活动接触点,可以在电阻丝上移动,以便从AB上取适当的电位差来与测量支路上的电位差(或电动势补偿)。 —第 1 页共 3 页— 图2 电位差计原理图 1) 预设 当直流电源接通,K2既不与ES接通、又不与EX接通时,

电位差计校准电表实验报告(完整版)

大学实验论文 电位差计校准电流表 学院专业 报告人学号 实验地点实验时间 实验论文提交时间:

一摘要 电位差计不需要从待测电路中取出电流,不会干扰到待测电路的工作状态,因而可以进行精密测量。由于在结构上采用了高精密度的电阻元件、标准电池和灵敏的检流计,因而测量结果具有很高的精度。由于学生式电位差计准确度等级为0.1级,而通常所用的电流表只有0.5级,从精度上来说完全可以用电位差计来校准电表。本实验即通过设计一个合理的电路和选定合适的实验器材,校准一个20mA毫安且绘制了其修正曲线。 此实验是一个简单的设计性实验,也是电位差计应用实验。重点要求学生能根据实验原理和实验环境设计出校准电流表的电路;并学习写出描述实验方案的论证、电路设计、操作步骤、数据处理、校准结论等内容的设计性报告。 关键词:电位差计校准电表电流表 一、实验目的 1.理解电位差计的工作原理,掌握电位差计的使用方法。 2.掌握使用电位差计校准电表的方法。 3.学习简单电路的设计方法,培养独立工作的能力。 三实验仪器: 学生式电位差计,标准电池,稳压电源,可变电阻器箱两台,待校准电流表(20mA),标准电阻Rs。

四、实验原理: 1、电位补偿原理 。 如图是将被测电动势的电源Ex 与一已知电动势的电源E O “+”端对“+”端,“-”端对“-”端地联成一回路,在电路中串联检流计“G ”,若两电源电动势不相等,即Ex≠E O 回路中必有电流,检流计指针偏转;如果电动势E O 可调并已知,那么改变E O 的大小,使电路满足E X =E 0,则回路中没有电流,检流计指示为零,这时待测电动势E X 得到己知电动势E O 的完全补偿。可以根据已知电动势值E O 定出E X ,这种方法叫补偿法。我们知道,用电压表测量电压时,总要从被测电路上分出一部分电流,从而改变了被测电路的状态,用补偿法测电压时,补偿电路中没有电流,所以不影响被测电路的状态。这是补偿测量法最大的优点和特点。 2、电位差计 按电压补偿原理构成的测量电动势的仪器称为电位差计。由上述补偿原理可知,采用补偿法测量电动势对E O 应有两点要求:(1)可调。能使E O 和E X 补偿。(2)精确。能方便而准确地读出补偿电压E O 大小,数值要稳定。 E E R a b c d Eo Ex Io

电位差计的使用数据处理参考

《电位差计的使用》数据处理参考 一、用电位差计校准量程为mA I m 15=电流表的实验数据处理方法举例 1.整理所测实验数据,计算出修正值和标称误差,确定被校准电流表的精度等级。 列出实验中校验15mA 量程毫安表的实验数据如表1 %100max ??量程 标称误差= I =____________________ 根据国家对电表的质量指标,指针式电磁表的精度等级可分为: 0.1、 0.2、0.5、1.0、 1.5 、2.5 、5.0 七个等级。根据标称误差的计算,故可确定被校电表的精度等级为____________级。 2.根据表中数据,用坐标纸作出校正曲线x x I I -?。 3.验证用电位差计校准量程为mA I m 15=电流表实验的校验装置的合理性 用电位差计校验毫安表,要求估算校验装置的误差,并判断它是否小于电表基本误差限的1/3,就可得出校验装置是否合理的结论。 0.05级电位差计的基本误差限可用下式计算: )%05.0(U U S U S ?+±=?=________________________mV (注意:U ?值与电位差计上的量程倍率有关) 标准电阻s R 等级为f=0.01级,其电阻的误差限: s R R f s ?=?%=________________________Ω 估算时只要求考虑电位差计及标准电阻s R 的基本误差限,根据s s s R U I =由误差传递公式可导出:

=?? ? ? ???+???? ???=?2 2s R s U s I R U I s S S ____________________ 所以 =??= ?S S I I I I S S __________________________mA 而被校毫安表的基本误差限为: 量程级别%?=?I =____________________mA , 其1/3基本误差限值: =?3/I __________mA , 比较S I ?是否《3/I ?(即比较校验装置的误差S I ?是否远小于被校电表基本误差限I ?的1/3,若是该校验装置是合理。否则不合理。 二、用电位差计测干电池电动势的数据处理 1给出电位差计测量干电池电动势的测量结果。 按图2接线,取分压箱分压比为500,电压差计量程倍率为k=1,对干电池电动势进行六次测量,得到表2的实验数据。 n 为分压箱分压比; f 为分压箱精度等级子; k 电位差计量程倍率; E n (14.5)为14.5℃时标准电池电压。 由实验装置可得被测干电池的电压为:s x nU E = 由误差传递公式得: 22222 2)()()()( )()( s s s s s x x s s x x U U n n U n U U n n E E U U n n E E ?+?=?+?=??+?=? (1)

电位差计的工作原理

电位差计的工作原理 电位差计是利用补偿法测量直流电动势(或电压)的精密仪器,如图1所示,工作电源E,限流 电阻R p,滑线电阻R AB构成辅助回路,待测电源E x(或标准电池E n),检流计G和R AC 构成补偿回路 。按图中规定电源极性接入E、E x,双向开关K打向2,调节C点,使流过G 中的电流为零(称达到平 衡,若E

【UJ36a直流电位差计】产品说明 产品说明: 一、用途 UJ36a为测量精度0.1%的直流携带式电位差计,可在实验室、车间及现场测量直流电压,亦可以换算后测 量直流电阻、电流、功率及温度等。 本仪器可以校验一般电压表及有转换开关、经转换后可用电压讯号输出,对电子电位差计,毫伏计等以电 压作为测量对象的工业仪表进行校验。 仪器有内附集成放大器、电动势基准以及工作电池、不需外加附件硬可进行测量。同时避免了采用市电作为工作电源的电位差计的工业干扰,使测量工作正常进行。 二、主要技术指标 1、各主要指标: 注:校对“标准”时,工作电流相对变化0.1%时,检流计指针转大于1格。 2、仪器使用条件: 保证准确温度范围:15℃~25℃ 使用温度范围:5℃~35℃ 相对湿度:<80% 3、外壳对线路绝缘电阻RJ>100MΩ 4、仪器工作电流6mA,标称工作电压1.5V,可用范围1.4~1.6V,由4节1.5V1号干电串并供电。 5、仪器能耐受50赫正弦波500V电压历时1分钟的耐压试验。 6、外形尺寸:270×230×140mm 7、重量:<4kg 三、原理 本电位差计根据补偿法原理制成。 调节R P阻值、当工作电流I在R N上产生电压降等于标准电池电势值E N时,如开关K打入左边,检流计便指零,此时工作电流便准确地等于6mA。上述步骤称为对“标准”。 测量时,调节已知电阻R P,其工作用电流6mA产生的电压降等于被测值U X时U X=IR,如开关K打入右边,检流计指零。从而可由已知的R阻值大小来反映U X数值。 四、使用说明 1、测量未知电压U X: 打开后盖,按极性装入1.5V1号干电4或5节及9V6F22垒层电池1或2节,倍率开关从“断”旋到所需倍率,此时上述电源接通,2分钟后调节“调零”旋钮,使检流计指针示值为零。被测电压(势)按极性接入“未知”端钮,“测量-输出”开关放于“测量”位置,扳键开关扳向“标准”,调节“粗”“微”旋钮,直到检流计指零。 扳键扳向“未知”调节ⅠⅡ测量盘,使检流计指零,被测电压(势)为测量盘读数与倍率乘积。 测量过程中,随着电池消耗,工作电流变化,所以连续使用时经常核对“标准”,使测量精确。 2、作讯号输出: 按上述步骤,在对好“标准”后,将“测量-输出”开关旋到“输出”位置(即检流计短路)。选择“倍率”及调节ⅠⅡ测量盘,扳键放在“未知”位置,此时“未知”端钮二端输出电压值即为倍率与测量示值的乘积。

相关文档
相关文档 最新文档