文档视界 最新最全的文档下载
当前位置:文档视界 › 昼夜节律与脂质代谢关系的研究进展

昼夜节律与脂质代谢关系的研究进展

昼夜节律与脂质代谢关系的研究进展
昼夜节律与脂质代谢关系的研究进展

耐力运动对脂代谢的影响研究

2005-04-01 王昕,女,吉林长春人,广州体育学院硕士研究生,研究方向运动生物化学。 ●综述与研究 耐力运动对脂代谢的影响研究 王昕1,李丹2 (1.广州体育学院研究生部,广东广州510075;2.广东商学院体育部,广东广州510320 )主要采用文献资料法先从整体上论述了脂代谢的影响因素,进而从耐力运动对脂肪 氧化、血脂和脂蛋白的影响这两个方面的研究现状入手,深入系统地阐述了耐力运动对脂代谢 的影响及相关的限速因素。 耐力运动;脂代谢;脂肪氧化; 限速因素 G804. 07 A1671-5950(2005)02-0021-04 TheResearchSummarizationofadiposeMetabolism inEnduranceExercise WANGXin1,LIDan2 (1.GuangzhouInstituteofPhysicalEducation,Guangzhou,510075,Guangdong,,China;2. GuangdongCommercialCollege,Guangzhou,510320,Guangdong, China)Thisarticleclarifiedhowenduranceexerciseaffectadiposemetabolismbyusingliterature methodstartingwiththeaffectingfactorsofadiposemetabolismandthenfrom2sidesashowen-duranceexerciseaffectfatoxidationandhowenduranceexerciseaffectbloodlipidandlipoproteinandalsotherelatingrestricting factors. nduranceexercise;adiposemetabolism;fatoxidation;restrictingfactors 1影响脂代谢的相关因素 运动不仅可以增加能量消耗,而且可以减少脂肪,耐力运动可以很好地调节脂代谢,很多研究都证实了这一点。在研究有氧运动对脂代谢的影响时,运动强度、运动持续时间、饮食、运动方式、激素调节等都是不可忽视的影响因素,因此,在这些方面的研究也比较 多。 以往的大量研究表明,有氧运动强度是决定运动时脂肪氧化程度的主要因素。目前研究又发现,不同强度和不同持续时间的有氧运动,可以使骨骼肌中控制代谢的基因转录发生改变,但是,迄今为止,骨骼肌中控制脂代谢的酶的基因表达是如何被调控的尚没有完善的机制被阐明。 研究发现中低强度运动时,主要以脂肪氧化供能为主。研究发现以25%VO2max的运动强度运动时,几乎所有的能量都来于脂肪氧化;而以65%VO2max的运动强度运动时只有50%的能量来源于脂肪氧化。但是有人研究发现,以25%VO2max运动2h与运动30min,总脂肪氧化变化不大,而以65%VO2max运动时,游离脂肪酸进入血浆的速度随着时间的延长逐渐加快。后来人们研究发现,以65%VO2max运动时脂肪氧化的绝对速率仍然比以25%VO2max要快些。另外,以25%VO2max运动强度运动时,肌内甘油三酯(IMTG)在能量供应中贡献很小,而中等强度(65%VO2max)运动时,肌肉中的甘油三酯变得比较重要。有研究发现:在进行60-120min的亚极量运动过程中,血浆FFA的贡献率仅占总脂肪酸氧化的50%,而其余

生物化学脂类代谢

掌握内容: 必需脂酸的概念及种类: 人体需要但又不能合成,必须从食物中获取的脂酸。人体必需的脂酸是亚油酸,亚麻酸,花生四烯酸。 脂肪动员: 概念及过程:储存于脂肪细胞中的甘油三酯,在三种脂肪酶的作用下逐步水解为游离脂酸和甘油,释放入血供其他组织氧化利用的过程,称脂肪动员。甘油三酯脂肪酶是脂肪动员的限速酶。(过程PPT29、30) 激素敏感性脂肪酶的定义和作用: 甘油三酯脂肪酶是脂肪动员的限速酶,其活性受多种激素调节故称激素敏感性脂肪酶 脂解激素:增加脂肪动员限速酶活性,促进脂肪动员活性的激素。(肾上腺素、去甲状腺激素、胰高血糖素、促肾上腺皮质激素、促甲状腺激素 抗脂解激素:抑制脂肪动员,(胰岛素,前列腺素E2,烟酸) 甘油的代谢甘油的主要去路: *经糖异生转变为葡萄糖 *氧化分解为水、二氧化碳、提供能量 *参与TG和磷脂的合成 甘油→3-磷酸甘油→磷酸二羟丙酮→氧化分解,供能 ↓↓

合成磷脂和TG 糖异生 脂酸的氧化分解 概念:脂酸在胞液中活化成脂酰辅酶A,在肉碱的帮助下进入线粒体基质进行β--氧化,每次β--氧化可产生1MOL乙酰辅酶A和比原来少两个碳原子的脂酰辅酶A,偶数碳脂酸最终产生乙酰辅酶A,奇数碳脂酸除乙酰辅酶A外还有1MOL 丙酰辅酶A. 部位:肝、肌肉(脑和成熟红细胞不行) 反应阶段:1)脂酸的活化(胞液) 2)脂酰辅酶A进入线粒体 3)脂酰COA的β--氧化(线粒体) 过程及酶;

有关能量的计算:脂酰COA+7FAD+7NAD++7COA-SH+7H2O→8乙酰COA+7FADH2+7(NADH+H+) 1)软脂酸(16C饱和脂酸的)活化—2ATP 2)7次β--氧化4*7ATP 3)8乙酰COA进入TCA循环彻底氧化10*8ATP 净生成106ATP 脂酰辅酶Aβ--氧化小结 部位:线粒体 四部连续反应:脱氢、加水、再脱氢、硫解

运动对三大营养素代谢之影响

運動對三大營養素代謝之影響 隨著實驗技術的研發及分子生物學和基因學的發展,許多研究對於醣類、脂肪和蛋白質等營養素的能量代謝機制有更清楚的描述和解釋,並進一步對運動產生的效果提供更多生理反應的證據。運動能促進個體的肌肉性質、心肺功能和代謝功能,對慢性疾病之危險因子具改善的效果。運動的重要性不僅是針對一般民眾的健康,了解運動產生的效應,對於運動選手的訓練亦顯重要;運動訓練強調個體能量系統的運用,而主要能量系統包括醣類、脂肪和蛋白質等營養素,該三種系統於運動過程中的表現各有不同機制與反應是有深入了解的必須性。 運動對營養素代謝之影響 一、碳水化合物(醣類) 鈣離子在運動過程中除了引起肌蛋白與肌凝蛋白結合而產生肌肉收縮外,其對於促使葡萄糖吸收現象產生之機制中具正面效果。過去研究指出利用電刺激方式刺激運動神經或運動神經去極化會引發肌漿網膜內的鈣離子快速釋放到肌細胞內產生橫橋作用造成肌肉收縮。過去研究結果顯示,雖然利用咖啡因於運動中可提升運動時之葡萄糖濃度,增加脂肪酸的運用,亦可增加肌肉細胞內的鈣離子濃度並進而增進肌肉細胞對於葡萄糖的吸收能力,但鈣離子增加的速度依然遠小於肌肉本身收縮所造成的效果。由於鈣離子在肌肉收縮的機制上扮演著極為重要的角色,而目前的研究對於鈣離子在運動過程中所引發的葡萄糖吸收現象之間的關係,與鈣離子於葡萄糖吸收之訊息系統的角色應進行更深入的研究。 運動能刺激骨骼肌細胞GLUT4 蛋白轉位,促使GLUT4 蛋白將葡萄糖轉運至肌肉細胞儲存。運動訓練可增加肌肉纖維大小、增加肌肉間微血管密度、促使肌漿中之酵素活化,亦能改善肌肉組織之代謝功能,即肌肉組織中葡萄糖。調節肌肉組織葡萄糖吸收的主要機制,主要是依靠含有GLUT4 蛋白的囊泡(GLUT4 containing vesicle) 從細胞內部的儲存池轉位至細胞膜表面所達成。過去研究以離體組織或是以動物模式進行之結果指出規律的身體活動與肌肉收縮會提升葡萄糖吸收能力與血糖控制能力。另外,運動刺激誘發GLUT4 蛋白轉位的訊息傳遞路徑與胰島素刺激葡萄糖進入至肌肉組織中的路徑是相異的。胰島素刺激的GLUT4 蛋白轉位與葡萄糖吸收現象過程中,P13-kinase 扮演其中的關鍵角色,而許多研究以P13-kinase 的抑制劑阻斷該蛋白質激酵的作用,發現胰島素的效應可以完全被抑制,但P13-kinase 抑制劑對於運動刺激所產生之GLUT4 蛋白轉位與葡萄糖吸收現象的效應卻沒有明顯影響。肌肉收縮除了快速提升GLUT4 轉位與葡萄糖吸收外,規律的運動訓練亦可增加骨骼肌GLUT4 蛋白的基因表現與提升肝醣儲存之適應效應,且也會產生有利於血糖控制的效果;肌肉組織之代謝能力為影響運動選手之運動表現的因素之一,因此對於運動調節肌肉組織的醣類吸收能力機制的瞭解應更加深入探究。

代谢组学的研究方法和研究流程

代谢组学的研究方法和研究流程分子微生物学112300003林兵 随着人类基因组计划等重大科学项目的实施,基因组学、转录组学及蛋白质组学在研究人类生命科学的过程中发挥了重要的作用,与此同时, 代谢组学(metabolomics)在20世纪90年代中期产生并迅速地发展起来,与基因组学、转录组学、蛋白质组学共同组成系统生物学。基因组学、转录组学、蛋白质组学和代谢组学等各种组学0在生命科学领域中发挥了重要的作用,它们分别从调控生命过程的不同层面进行研究, 使人们能够从分子水平研究生命现象, 探讨生命的本质, 逐步系统地认识生命发展的规律.这些组学手段加上生物信息学, 成为系统生物学的重要组成部分。 代谢组学的出现和发展是必要的, 同时也是必须的。对于基因组学和蛋白质组学在生命科学研究中的缺点和不足, 代谢组学正好可以进行弥补。代谢组学研究的是生命个体对外源性物质(药物或毒物)的刺激、环境变化或遗传修饰所做出的所有代谢应答, 并且检测这种应答的全貌及其动态变化。代谢组学方法为生命科学的发展提供了有力的现代化实验技术手段, 同时也为新药临床前安全性评价与实践提供了新的技术支持与保障. 1 代谢组学的概念及发展 代谢组学最初是由英国帝国理工大学Jeremy N icholson教授提出的,他认为代谢组学是将人体作为一个完整的系统,机体的生理病理过程作为一个动态的系统来研究, 并且将代谢组学定义为生物体对病理生理或基因修饰等刺激产生的代谢物质动态应答的定量测定。2000年,德国马普所的Fiehn等提出了代谢组学的概念,但是与N ichols on提出的代谢组学不同, 他是将代谢组学定位为一个静态的过程,也可以称为/代谢物组学, 即对限定条件下的特定生物样品中所有代谢产物的定性定量分析。同时Fiehn还将代谢组学按照研究目的的不同分为4类: 代谢物靶标分析,代谢轮廓(谱)分析, 代谢组学,代谢指纹分析。现在代谢组学在国内外的研究都在迅速地发展, 科学家们对代谢组学这一概念也进行了完善, 作出了科学的定义: 代谢组学是对一个生物系统的细胞在给定时间和条件下所有小分子代谢物质的定性定量分析,从而定量描述生物内源性代谢物质的整体及其对内因和外因变化应答规律的科学。 与基因组学、转录组学、蛋白质组学相同, 代谢组学的主要研究思想是全局观点。与传统的代谢研究相比, 代谢组学融合了物理学、生物学及分析化学等多学科知识, 利用现代化的先进的仪器联用分析技术对机体在特定的条件下整个代谢产物谱的变化进行检测,并通过特殊的多元统计分析方法研究整体的生物学功能状况。由于代谢组学的研究对象是人体或动物体的所有代谢产物, 而这些代谢产物的产生都是由机体的内源性物质发生反应生成的,因此,代谢产物的变化也就揭示了内源性物质或是基因水平的变化,这使研究对象从微观的基因变为宏观的代谢物,宏观代谢表型的研究使得科学研究的对象范围缩小而且更加直观,易于理解, 这点也是代谢组学研究的优势之一. 代谢组学的优势主要包括:对机体损伤小,所得到的信息量大,相对于基因组学和蛋白质组学检测更加容易。由于代谢组学发展的时间较短, 并且由于代谢组学的分析对象是无偏向性的样品中所有的小分子物质,因此对分析手段的要求比较高, 在数据处理和模式识别上也不成熟,存在一些不足之处。同时生物体代谢物组变化快, 稳定性较难控制,当机体的生理和药理效应超敏时,受试物即使没有相关毒性,也可能引起明显的代谢变化,导致假阳性结果。 代谢组学应用领域大致可以分为以下7个方面:

生物化学真题之脂类代谢与合成

脂代谢 2014简述细胞质内脂肪酸氧化降解的三个步骤及其相关活性载体 (未) 第一个步骤是脂肪酸的 -氧化。 -氧化又包括活化、氧化、水合、氧化、断裂这五个步骤。每一轮氧化切下两个碳原子即乙酰辅酶A 第二个步骤是 氧化形成的乙酰辅酶A进入柠檬酸循环,继续被氧化最后脱出二氧化碳。 第三个大步骤中脂肪酸氧化过程中产出还原型的电子传递分子一一NADH和FADH2它们在第三步骤中把电子送到线粒体呼吸链,经过呼吸链,电子被运送给氧原子,伴随这个电子的流动,ADP经磷酸化作用转化为ATP。 所涉及的相关活性载体包括 -氧化中将脂肪酸的形式乙酰辅酶A转送到线粒体的载体肉碱。第三个步骤电子传递的载体包括:NADH-Q还原酶、琥珀酸一Q还原酶、细胞色素还原酶、细胞色素氧化酶等 2011脂肪酸 氧化和载体 脂肪酸 氧化共包括五个步骤 1?活化:脂肪酸在硫激酶的作用下形成脂酰辅酶A 2?氧化:脂酰辅酶A的羧基邻位被脂酰辅酶A脱氢酶作用,脱下两个氢原子转化为反式-2-烯酰辅酶A,同时产生FADH2

3?水合:反式-2-烯酰辅酶A水合成3-羟脂酰辅酶A,这部反应是在烯酰辅酶A 水合酶的作用下完成的 4?氧化:3-羟脂酰辅酶A在3-羟脂酰辅酶A脱氢酶的作用下转化为3-酮脂酰辅酶A,并产生NADH 5?硫解:3-同脂酰辅酶A受第二个辅酶A的作用发生硫解,断裂为乙酰辅酶A和一个缩短了两个碳原子的脂酰辅酶A,这部反应是在-酮硫解酶的催化下。 其总结果是脂肪酸链以乙酰辅酶A形式自羧基端脱下两个碳原子单元,缩短了的脂肪酸以脂酰辅酶A形式残留,又进入下一轮-氧化。 2010磷脂合成的共性 脂质合成所包括的绝大多数反应发生在膜结构的表面,与之相关的各种酶具有两亲性。 甘油磷脂合成的第一阶段是甘油-3-磷酸形成磷脂酸的反应途径,甘油酸和脂酰辅酶A在脂酰转移酶的作用下生成磷脂酸。磷脂酸一旦形成就很快转移为二脂酰甘油和CDP-二脂酰甘油。 常见的磷脂如磷脂酰乙醇胺、磷脂酰甘油、二磷脂酰甘油,这三种甘油磷脂的生物合成途径从开始到CDP-二脂酰甘油的生物合成途径是共通的,自CDP-二脂酰甘油一下就分别有各自的途径。这里说的CDP是5—胞苷二磷 酸。 2009某细胞内草酰乙酸的浓度对脂肪酸的合成有何影响? 草酰乙酸是柠檬酸循环的中间产物,其浓度在柠檬酸循环中有重要作用,是循环中最关键的底物之一。在肝脏中,决定乙酰辅酶A去向的是草酰乙酸,它带动乙酰辅酶A进入柠檬酸循环。进而影响到脂肪酸合成。 当草酰乙酸浓度低时,则不能充分带动乙酰辅酶 A 进入柠檬酸循环,换言之就是无法合成足够的柠檬酸。而柠檬酸又是脂肪酸合成中将乙酰辅酶 A 从线粒体转运到细胞溶胶中的三羧酸转运体系的基础,柠檬酸是乙酰基的载体。所以脂肪酸必然受到抑制。当草酰乙酸浓度高时,即能合成充分的柠檬酸,也意味着细胞溶胶中将会有

植物代谢组学的研究方法及其应用

植物代谢组学的研究方法及其应用 ★★★ BlueGuy(金币+3)不错,谢谢! 近年来,随着生命科学研究的发展,尤其是在完成拟南芥(Arabidopsis thaliana) 和水稻(Oryza sativa) 等植物的基因组测序后,植物生物学发生了翻天覆地的变化。人们已经把目光从基因的测序转移到了基因的功能研究。在研究DNA 的基因组学、mRNA 的转录组学及蛋白质的蛋白组学后,接踵而来的是研究代谢物的代谢组学(Hall et al.,2002)。代谢组学的概念来源于代谢组,代谢组是指某一生物或细胞在一特定生理时期内所有的低分子量代谢产物,代谢组学则是对某一生物或细胞在一特定生理时期内所有低分子量代谢产物同时进行定性和定量分析的一门新学科(Goodacre,2004)。它是以组群指标分析为基础,以高通量检测和数据处理为手段,以信息建模与系统整合为目标的系统生物学的一个分支。 代谢物是细胞调控过程的终产物,它们的种类和数量变化被视为生物系统对基因或环境变化的最终响应(Fiehn,2002)。植物内源代谢物对植物的生长发育有重要作用(Pichersky and Gang,2000)。植物中代谢物超过20万种,有维持植物生命活动和生长发育所必需的初生代谢物;还有利用初生代谢物生成的与植物抗病和抗逆关系密切的次生代谢物,所以对植物代谢物进行分析是十分必要的。 但是,由于植物代谢物在时间和空间都具有高度的动态性(stitt and Fernie,2003)。尤其是次生代谢物种类繁多、结构迥异,且产生和分布通常有种属、器官、组织以及生长发育时期的特异性,难于进行分离分析,所以人们一直在寻找更为强大的检测分析工具。在代谢物分析领域,人们已经提出了目标分析、代谢产物指纹分析、代谢产物轮廓分析和代谢表型分析、代谢组学分析等概念。20世纪90年代初,Sauter 等(1991)首先将代谢组分析引入植物系统诊断,此后关于植物代谢组学的研究逐年增多。随着拟南芥等植物的基因组测序完成以及代谢物分析手段的改进和提高,今后几年进入此研究领域的科学家和研究机构将越来越多。 1研究方法 代谢组学分析流程包括样品制备、代谢物成分分析鉴定和数据分析与解释。由于植物中代谢物的种类繁多,而目前可用的成分检测和数据分析方法又多种多样,所以根据研究对象不同,采用的样品制备、分离鉴定手段及数据分析方法各不相同。 1.1样品制备 植物代谢物样品制备分为组织取样、匀浆、抽提、保存和样品预处理等步骤(Weckwerth and Fiehn,2002)。代谢产物通常用水或有机溶剂(如甲醇和己烷等)分别提取,获得水提取物和有机溶剂提取物,从而把非极性的亲脂相和极性相分开。分析之前,通常先用固相微萃取、固相萃取和亲和色谱等方法进行预处理(邱德有和黄璐琦,2004)。然而植物代谢物千差万别,其中很多物质稍受干扰结构就会发生改变,且对其分析鉴定所采用的设备也不同。目前还没有适合所有代谢物的抽提方法,通常只能根据所要分析的代谢物特性及使用的鉴定手段选择合适的提取方法。而抽提时间、温度、溶剂成分和质量及实验者的技巧等诸多因素也将影响样品制备的水平。

生物化学脂类代谢习题答案

脂类代谢 一、问答题 1、为什么摄入糖量过多容易长胖? 答:因为脂肪酸合成的起始原料乙酰CoA主要来自糖酵解产物丙酮酸,摄入糖量过多则糖酵解产生的丙酮酸也多,进而导致合成脂肪酸的起始原料乙酰CoA也多,原料多合成的脂肪酸自然就多了,所以摄入糖量过多容易长胖。 2、比较脂肪酸β—氧化与脂肪酸的合成有哪些不同点? 答:①细胞中发生部位不同:合成发生在细胞质,氧化发生在线粒体;②酰基载体不同:合成所需载体为ACP—SH,氧化所需载体为乙酰CoA; ③二碳片段的加入与裂解方式:合成就是以丙二酰ACP加入二碳片段,氧化的裂解方式就是乙酰CoA;④电子供体或受体:合成的供体就是NADPH,氧化的受体就是FAD、FAD+;⑤酶系不同:合成需7种酶,氧化需4种酶;⑥原料转运方式:合成就是柠檬酸转运系统,氧化就是肉碱穿梭系统;⑦能量变化:合成耗能,氧化产能。 3、试计算1mol甘油彻底氧化成CO2与H2O可净生成多少molATP。答:甘油氧化产生的乙酰CoA进入三羧酸循环彻底氧化。经过4次脱氢反应生成3molNADH+H+、1molFADH2、以及2molCO2,并发生一次底物水平磷酸化,生成1molGTP。依据生物氧化时每1molNADH+H+与1molFADH2 分别生成2、5mol、1、5mol的ATP,

因此,1mol甘油彻底氧化成CO2与H2O生成ATP摩尔数为6×2、5+1×1、5+3-1=18、5。 4、1mol硬脂酸(即18碳饱与脂肪酸)彻底氧化成CO2与H2O时净生成的ATP的摩尔数。 答:1mol硬脂酸彻底氧化需经8次循环,产生9个乙酰CoA,每摩尔乙酰CoA进入三羧酸循环产生10molATP,这样共产生90molATP。8molFADH2进入电子传递链产生12molATP,8molNADH进入电子传递链共产生20molATP。脂肪酸的活化需消耗2个高能磷酸键,这样彻底氧化1mol硬脂酸净得120molATP。 5、胆固醇在体内可转变成哪些重要物质?合成胆固醇的基本原料与关键酶各就是什么? 答:转变成胆汁酸、甾类激素、维生素D; 基本原料:二甲基丙烯焦磷酸酯(DPP)、异戊烯醇焦磷酸酯 关键酶:羟甲基戊二酸单酰CoA还原酶(HMGCoA还原酶) 6、为什么在长期饥饿或糖尿病状态下,血液中酮体浓度会升高?答:由于糖供应不足或利用率降低,机体需动员大量的脂肪酸供能,同时生成大量的乙酰CoA。此时草酰乙酸进入糖异生途径,又得不到及时的回补而浓度降低,因此不能与乙酰CoA缩合成柠檬酸。在这种情况下,大量积累的乙酰CoA衍生为丙酮、乙酰乙酸、β—羟丁酸。

生物化学脂类代谢习题答案

脂类代 一、问答题 1、为什么摄入糖量过多容易长胖? 答:因为脂肪酸合成的起始原料乙酰CoA主要来自糖酵解产物丙酮酸,摄入糖量过多则糖酵解产生的丙酮酸也多,进而导致合成脂肪酸的起始原料乙酰CoA也多,原料多合成的脂肪酸自然就多了,所以摄入糖量过多容易长胖。 2、比较脂肪酸β—氧化和脂肪酸的合成有哪些不同点? 答:①细胞中发生部位不同:合成发生在细胞质,氧化发生在线粒体; ②酰基载体不同:合成所需载体为ACP—SH,氧化所需载体为乙酰CoA;③二碳片段的加入与裂解方式:合成是以丙二酰ACP加入二碳片段,氧化的裂解方式是乙酰CoA;④电子供体或受体:合成的供体是NADPH,氧化的受体是FAD、FAD+;⑤酶系不同:合成需7种酶,氧化需4种酶;⑥原料转运方式:合成是柠檬酸转运系统,氧化是肉碱穿梭系统;⑦能量变化:合成耗能,氧化产能。 3、试计算1mol甘油彻底氧化成CO2和H2O可净生成多少molATP。答:甘油氧化产生的乙酰CoA进入三羧酸循环彻底氧化。经过4次脱氢反应生成3molNADH+H+、1molFADH2、以及2molCO2,并发生一次底物水平磷酸化,生成1molGTP。依据生物氧化时每1molNADH+H+和1molFADH2 分别生成2.5mol、1.5mol的ATP,因

此,1mol甘油彻底氧化成CO2和H2O生成ATP摩尔数为6×2.5+1×1.5+3-1=18.5。 4、1mol硬脂酸(即18碳饱和脂肪酸)彻底氧化成CO2和H2O时净生成的ATP的摩尔数。 答:1mol硬脂酸彻底氧化需经8次循环,产生9个乙酰CoA,每摩尔乙酰CoA进入三羧酸循环产生10molATP,这样共产生90molATP。8molFADH2进入电子传递链产生12molATP,8molNADH进入电子传递链共产生20molATP。脂肪酸的活化需消耗2个高能磷酸键,这样彻底氧化1mol硬脂酸净得120molATP。 5、胆固醇在体可转变成哪些重要物质?合成胆固醇的基本原料和关键酶各是什么? 答:转变成胆汁酸、甾类激素、维生素D; 基本原料:二甲基丙烯焦磷酸酯(DPP)、异戊烯醇焦磷酸酯 关键酶:羟甲基戊二酸单酰CoA还原酶(HMGCoA还原酶) 6、为什么在长期饥饿或糖尿病状态下,血液中酮体浓度会升高?答:由于糖供应不足或利用率降低,机体需动员大量的脂肪酸供能,同时生成大量的乙酰CoA。此时草酰乙酸进入糖异生途径,又得不到及时的回补而浓度降低,因此不能与乙酰CoA缩合成柠檬酸。在这种情况下,大量积累的乙酰CoA衍生为丙酮、乙酰乙酸、β—羟丁酸。

运动与脂肪代谢

运动与脂肪代谢 安静、运动时骨骼肌的主要供能物质之一。 第一节运动时脂肪分解 一、概述 60%—65%最大摄氧量或以下强度运动,脂肪分解能够提供运动肌所需的大部分能量。 (一)长时间运动时骨骼肌细胞燃料的选择 每克脂肪完全氧化可产生ATP的克数就是糖的2.5倍;糖原以水化合物的形式储存在细胞内,而脂肪则以无水的形式储存,以脂肪分子形式储能具有体积小的特点。 (二)运动时脂肪的供能作用 运动肌对各种供能物质的利用比例主要取决于运动强度及运动持续时间。 1、在短时间激烈运动时,无论就是动力性运动还就是静力性运动,肌肉基本上不能利用脂肪酸。 2、当以70%—90%最大摄氧量强度运动时,在开始运动10—15分钟以后。 3、在低于60%—65%最大摄氧量强度的长时间运动中,尤其就是在60%最大摄氧量以下强度的超长时间运动中,脂肪成为运动肌的重要供能物质。 (三)运动时脂肪参与供能的形式与来源 1、运动时脂肪参与供能的形式 (1)在心肌、骨骼肌等组织中,脂肪酸可经氧化,生成二氧化碳与水。这就是脂肪供能的主要形式。 (2)在肝脏中,脂肪酸氧化不完全,生成中间产物乙酰乙酸、β-羟丁酸与丙酮,合称酮体。酮体参与脂肪组织脂解的调节。 (3)在肝、肾细胞中,甘油作为非糖物质经过糖异生途径转变成葡萄糖,对维持血糖水平起重要作用。

2.参与骨骼肌供能的脂肪酸来源 (1)脂肪组织(即脂库)储存的脂肪; (2)循环系统即血浆脂蛋白含有的脂肪; (3)肌细胞浆中的脂肪。运动时人体基本上不利用肝脏内储存的脂肪。 二、运动时脂肪(甘油三酯)分解代谢 (一)脂肪组织中脂肪分解 1.脂肪酸动员 2、脂肪分解:甘油二酯脂肪酶与甘油一酯脂肪酶的活性比甘油三酯脂肪酶大得多。 3、脂肪组织释放脂肪酸与甘油:甘油三酯—脂肪酸循环(甘油产生后基本上全部被释放入血,大部分脂肪酸在脂肪细胞内直接参与再酯化过程) (二)血浆甘油三酯分解 (三)肌细胞内甘油三酯分解 1、肌内甘油三酯含量:每千克骨骼肌内甘油三酯含量平均值为12毫摩尔 2.肌内甘油三酯分解:骨骼肌内LPL也就是甘油三酯水解的限速酶,它与脂肪组织内LPL相似,也受多种激素调节。它的活性受低浓度肾上腺素、胰高糖素抑制,受高浓度肾上腺素、胰高糖素激活。在超过1小时的长时间运动中,骨骼肌内LPL 活性提高近两倍,而脂肪组织内仅提高约20%。训练影响骨骼肌LPL活性,在耐力训练中这一作用更明显。 3.肌内甘油三酯的供能作用:在70%最大摄氧量强度的长时间运动时,脂肪酸供能的75%来自肌内脂肪。肌内甘油三酯水解速率平均值就是每100克肌肉2—5微摩尔/分,在有氧代谢能力强的慢收缩肌纤维中甘油三酯消耗最为明显。 第二节运动时脂肪酸的利用 运动时骨骼肌氧化的脂肪酸依靠肌内甘油三酯水解与摄取血浆FFA,随运动时间延长,血浆FFA供能起主要作用。 一、血浆游离脂肪酸浓度及其转运率

代谢组学研究进展综述

代谢组学技术及其在中医研究中的探讨 姓名:郭欣欣学号:22009283 导师:刘慧荣 代谢组学(metabonomics) 是20世纪90年代中期发展起来的一门新兴学科,是关于生物体系受刺激或扰动后(如将某个特定的基因变异或环境变化后) 其代谢产物(内源代谢物质) 种类、数量及其变化规律的科学。它研究的是生物整体、系统或器官的内源性代谢物质的代谢途径及其所受内在或外在因素的影响。常用的方法是检测和量化一个生物整体代谢随时间变化的规律;建立内在和外在因素影响下,代谢整体的变化轨迹,反映某种病理(生理) 过程中所发生的一系列生物事件。 1 代谢组学研究技术平台 代谢组学研究的技术平台包括以下几个部分:前期的样品制备,中期的代谢产物检测、分析与鉴定以及后期的数据分析与模型建立。 前期代谢组学研究常用的检测技术,一般不需要对标本行特别的分离、纯化等。但离体条件下,细胞或组织内的代谢状态可迅速改变,代谢物的质与量亦随之变化,为正确反映在体的真实信息,须立即阻断内在酶的活性。最为常用的是冰冻/液氮降温法及冷冻、干燥的保存技术,尽管如此,细胞间仍始终有一低水平的代谢活动,需尽量避免氧化等活化因素。 中期代谢产物的检测、分析与鉴定是代谢组学技术的核心部分,最常用的是NMR及质谱(MS)两种。 核磁共振技术是利用高磁场中原子核对射频辐射的吸收光谱鉴定化合物结构的分析技术,生命科学领域中常用的是氢谱( 1H NMR ) 、碳谱(13C NMR)及磷谱(31P NMR)三种。可用于体液或组织提取液和活体分析两大类。 NMR技术在代谢组学中的应用越来越广泛,它具有如下优点: ①无损伤性,不破坏样品的结构和性质; ②可在一定的温度和缓冲范围内进行生理条件或接近生理条件的实验; ③与外界特定干预相结合,研究动态系统中机体化学交换、运动等代谢产物的变化规律; ④实验方法灵活多样。但仪器价格及维护费用昂贵限制了该技术的进一步普及。 质谱技术是将离子化的原子、分子或是分子碎片按质量或是质荷比(m/e)大小顺序排列成图谱,并在此基础上,进行各种无机物、有机物的定性或定量分析。新的离子化技术则使质谱技术的灵敏度和准确度均有很大程度的提高。NMR技术与MS技术相比,各有其优缺点,需要在研究中灵活选用。总体而言,NMR技术应用的更为广泛。此外,根据代谢组学的研究需要,还常用于其他的一些分析技术,如气相色谱(GC) ,高效液相色谱仪(HPLC) ,高效毛细管电泳(HPCE)等。它们往往与NMR或MS技术联用,进一步增加其灵敏性。但不容忽视的是,随着分析手段更新,敏感性及分辨率提高,“假阳性”的概率也就越大,可能是仪器技术方法固有的,亦或是数据分析过程中产生的。 后期代谢组学研究的后期需借助于生物信息学平台。它往往借助于一定的软件,联合多种数据分析技术,将多维、分散的数据进行总结、分类及判别分析,发现数据间的定性、定量关系,解读数据中蕴藏的生物学意义,阐述其与机体代谢的关系。如果说分析技术在我们面前打开了“一扇门”,正确的数据分析方法和模型建立便是“找到宝藏”的钥匙。 主成分分析法( PCA) 是最常用的分析方法。其将分散于一组变量上的信息集中于几个综合指标(PC)上,如糖代谢、脂质代谢、氨基酸代谢等,利用主成分描述机体代谢的变化情况,发挥了降维分析的作用,避免淹没于大量数据中。其他的模式识别技术,如聚类分析、辨别式功能分析、最小二乘法投影法等在代谢组学研究中亦有其重要的地位。 现实情况下,代谢组学的数据更为复杂,特别是NMR对病理生理过程的研究,将代谢物的表达谱与时间相联系,分析时更加困难,需要借助复杂的模型或是专家系统进行分析(在应用

代谢组学综述

代谢组学综述 摘要:代谢组学是20世纪90年代中期发展起来的对某一生物或细胞所有低相对分子质量代谢产物进行定性和定量分析的一门新学科,由于其广泛的应用前景,目前已成为系统生物学的重要组成部分。现简要介绍了代谢组学的含义、代谢组学研究的历史沿革、当前代谢组学研究中的分析技术、数据解析方法,综述了代谢组学在药物毒理学研究、疾病诊断、植物和中药等领域的应用情况,并对当前代谢组学研究中存在的问题及发展趋势进行探讨。 关键词:代谢组学研究技术 随着人类基因组计划等重大科学项目的实施,基因组学、转录组学及蛋白质组学在研究人类生命科学的过程中发挥了重要的作用, 与此同时, 代谢组学(metabolomics)在20世纪90年代中期产生并迅速地发展起来, 与基因组学、转录组学、蛋白质组学共同组成系统生物学。基因组学、转录组学、蛋白质组学和代谢组学等各种组学0在生命科学领域中发挥了重要的作用, 它们分别从调控生命过程的不同层面进行研究, 使人们能够从分子水平研究生命现象, 探讨生命的本质, 逐步系统地认识生命发展的规律。这些组学手段加上生物信息学, 成为系统生物学的重要组成部分。 代谢组学的出现和发展是必要的, 同时也是必须的。对于基因组学和蛋白质组学在生命科学研究中的缺点和不足, 代谢组学正好可以进行弥补。代谢组学研究的是生命个体对外源性物质(药物或毒物)的刺激、环境变化或遗传修饰所做出的所有代谢应答, 并且检测这种应答的全貌及其动态变化。代谢组学方法为生命科学的发展提供了有力的现代化实验技术手段, 同时也为新药临床前安全性评价与实践提供了新的技术支持与保障。 1 代谢组学的概念及发展 代谢组学最初是由英国帝国理工大学Jeremy N icholson教授提出的, 他认为代谢组学是将人体作为一个完整的系统, 机体的生理病理过程作为一个动态的系统来研究, 并且将代谢组学定义为生物体对病理生理或基因修饰等刺激产生的代谢物质动态应答的定量测定。2000年, 德国马普所的Fiehn等提出了代谢组学的概念, 但是与N icholson提出的代谢组学不同, 他是将代谢组学定位为一个静态的过程, 也可以称为/代谢物组学, 即对限定条件下的特定生物样品中所有代

生物化学脂质代谢知识点总结(精选.)

第七章脂质代谢 第一节脂质的构成、功能及分析 脂质的分类 脂质可分为脂肪和类脂,脂肪就是甘油三脂,类脂包括胆固醇及其脂、磷脂和糖脂。 脂质具有多种生物功能 1.甘油三脂机体重要的能源物质 2.脂肪酸提供必需脂肪酸合成不饱和脂肪酸衍生物 3.磷脂构成生物膜的重要组成成分磷脂酰肌醇是第二信使前体 4.胆固醇细胞膜的基本结构成分 可转化为一些有重要功能的固醇类化合物 第二节脂质的消化吸收 条件:1,乳化剂(胆汁酸盐、甘油一酯、甘油二酯等)的乳化作用; 2,酶的催化作用 位置:主要在小肠上段

第三节甘油三脂代谢 甘油三脂的合成 1.合成的部位:肝脏(主要),脂肪组织,小肠粘膜 2.合成的原料:甘油,脂肪酸 3.合成途径:甘油一脂途径(小肠粘膜细胞) 甘油二脂途径(肝,脂肪细胞)

注:3-磷酸甘油主要来源于糖代谢,部肝、肾等组织摄取游离甘油,在甘油激酶的作用下可合成部分。 内源性脂肪酸的合成: 1.场所:细胞胞质中,肝的活性最强,还包括肾、脑、肺、脂肪等 2.原料:乙酰COA,ATP,NADPH,HCO??,Mn离子 3.乙酰COA出线粒体的过程:

4.反应步骤 ①丙二酸单酰COA的合成: ②合成软脂酸:

③软脂酸延长在内质网和线粒体内进行: 脂肪酸碳链在内质网中的延长:以丙二酸单酰CoA为二碳单位供体 脂肪酸碳链在线粒体中的延长:以乙酰CoA为二碳单位供体 脂肪酸合成的调节: ①代谢物的调节作用: 1.乙酰CoA羧化酶的别构调节物。 抑制剂:软脂酰CoA及其他长链脂酰CoA 激活剂:柠檬酸、异柠檬酸 糖代谢增强,相应的NADPH及乙酰CoA供应增多,异柠檬酸及柠檬酸堆积,有利于脂酸的合成。 ②激素调节: 甘油三脂的氧化分解: ①甘油三酯的初步分解: 1.脂肪动员:指储存在脂肪细胞中的脂肪,被肪脂酶逐步水解为FFA及甘油,并释放入血以供其他组织氧化利用的过程。 2.关键酶:激素敏感性甘油三脂脂肪酶(HSL)

脂质代谢练习题

脂质代谢 一、A1 1、体内甘油三酯的合成部位是 A、神经细胞 B、脂肪细胞 C、肾细胞 D、脾细胞 E、乳腺细胞 2、甘油三酯合成的基本原料是 A、甘油 B、胆固醇酯 C、胆碱 D、鞘氨醇 E、胆固醇 3、合成胆固醇的限速酶是 A、HMG CoA合成酶 B、HMG C0A裂解酶 C、HMG CoA还原酶 D、鲨烯环氧酶 E、甲羟戊酸激酶 4、胆固醇合成的主要场所是 A、肾 B、肝 C、小肠 D、脑 E、胆 5、胆固醇在体内的主要生理功能 A、影响基因表达 B、合成磷脂的前体 C、控制胆汁分泌 D、影响胆汁分泌 E、控制膜的流动性 6、胆固醇体内合成的原料 A、胆汁酸盐和磷脂酰胆碱 B、17-羟类固醇和l7-酮类固醇 C、胆汁酸和VD等 D、乙酰CoA和NADPH E、胆汁酸

7、下列物质中参加胆固醇酯化成胆固醇酯过程的是 A、LCAT B、IDL C、LPL D、LDH E、HMG-CoA还原酶 8、胆固醇体内代谢的主要去路是在肝中转化为 A、乙酰CoA B、NADPH C、维生素D D、类固醇 E、胆汁酸 9、血浆蛋白琼脂糖电泳图谱中脂蛋白迁移率从快到慢的顺序是 A、α、β、前β、CM B、β、前β、α、CM C、α、前β、β、CM D、CM、α、前β、β E、前β、β、α、CM 10、合成VLDL的主要场所是 A、脂肪组织 B、肾 C、肝 D、小肠粘膜 E、血浆 11、脂肪动员的关键酶是 A、脂蛋白脂肪酶 B、甘油一酯酶 C、甘油二酯酶 D、甘油三酯酶 E、激素敏感性甘油三酯酶 12、酮体包括 A、草酰乙酸、β-羟丁酸、丙酮 B、乙酰乙酸、β-羟丁酸、丙酮酸 C、乙酰乙酸、γ-羟丁酸、丙酮 D、乙酰乙酸、β-羟丁酸、丙酮 E、乙酰丙酸、β-羟丁酸、丙酮 13、肝脏在脂肪代谢中产生过多酮体主要由于 A、肝功能不好

代谢组学技术在烟草研究中的应用进展_王小莉

2016-02,37(1)中国烟草科学 Chinese Tobacco Science 89 代谢组学技术在烟草研究中的应用进展 王小莉,付博,赵铭钦*,贺凡,王鹏泽,刘鹏飞 (河南农业大学烟草学院,国家烟草栽培生理生化研究基地,郑州 450002) 摘要:简述了作为研究植物生理生化和基因功能新方法的代谢组学在烟草研究中的主要技术流程及其应用现状,归纳了不同生态环境和不同组织中烟草代谢物差异及产生原因,总结了生物和非生物胁迫及化学诱导处理等条件下的烟草生理生化变化及相关基因功能。最后提出了目前烟草代谢组学研究所面临的问题,并指出与其他组学整合应用是代谢组学在烟草研究领域的发展趋势。 关键词:烟草;代谢组学;胁迫;化学诱导;基因功能 中图分类号:S572.01 文章编号:1007-5119(2016)01-0089-08 DOI:10.13496/j.issn.1007-5119.2016.01.016 Research of Metabolomics in Tobacco WANG Xiaoli, FU Bo, ZHAO Mingqin*, HE Fan, WANG Pengze, LIU Pengfei (College of Tobacco Science, Henan Agricultural University, National Tobacco Physiology and Biochemistry Research Center, Zhengzhou 450002, China) Abstract: Metabolomics has been considered one of the most effective means of investigating physiological and biochemical processes and gene function of plants. Here we review the main process of metabolomics and its application status in tobacco research, the regulation mechanisms of physiological and biochemical reactions when tobacco responds to different environmental, biotic and abiotic stresses, chemically induced processes and genetic modifications. Finally, issues of critical significance to current tobacco metabolomics research are discussed and it is noted that integration with other omics is the trend of metabolomics research in tobacco. Keywords: tobacco; metabolomics; stress; chemical induction; gene function 代谢组学与基因组学、转录组学和蛋白质组学分别从不同层面研究生物体对环境或基因改变的响应,它们都是系统生物学的重要组成部分。植物代谢组学是21世纪初产生的一门新学科,主要通过研究植物的次生代谢物受环境或基因扰动前后差异来研究植物代谢网络和基因功能[1-2]。与微生物和动物相比,植物的独特性在于它拥有复杂的代谢途径,目前发现的次生代谢产物达20万种以上[3]。代谢物差异是植物对基因或环境改变的最终响应[4],因此,对代谢物进行全面解析,探索相关代谢网络和基因调控机制,是从分子层面深入认识植物生命活动规律的一个重要环节[5-7]。 烟草不仅是重要的经济作物,同时还是一种重要的模式植物,作为生物反应器在研究植物遗传、发育、防御反应和转基因等领域中具有重要意义[8-10]。烟草代谢物非常丰富,目前从烟叶中已鉴定出3000多种[11],且代谢物理化性质和含量差异较大,给烟草化学及代谢规律研究带来挑战。传统的烟草化学主要集中于研究某一类化学成分或某几种重要物质,如萜类[12]、生物碱类[13]、多酚类等[14],这很难全面地系统地阐述烟草代谢网络。随着系统生物学的发展,烟草越来越广泛地被用于基因组学、转录组学、蛋白质组学和代谢组学的研究中,例如采用系统生物学的方法找出 基金项目:中国烟草总公司浓香型特色优质烟叶开发(110201101001 TS-01);上海烟草集团责任有限公司“浓香型特色优质烟叶风格定位研究及样品检测”(szbcw201201150) 作者简介:王小莉(1983-),女,博士研究生,主要从事烟草生理生化研究。E-mail:xiaoliwang325@https://www.docsj.com/doc/eb3784943.html, *通信作者,E-mail:zhaomingqin@https://www.docsj.com/doc/eb3784943.html, 收稿日期:2015-09-09 修回日期:2015-11-19

代谢组学及其发展

代谢组学及其发展 摘要:代谢组学是上世纪九十年代中期发展起来的一门新兴学科,是系统 生物学的重要组成部分。它是关于生物体系内源代谢物质种类、数量及其变化规律的科学,研究生物整体、系统或器官的内源性代谢物质及其所受内在或外在因素的影响。 关键词:代谢组学,研究方法,组学运用,中药学 1 代谢组学 代谢组学(metabonomics/metabolomics)是效仿基因组学和蛋白质组学的研究思想,对生物体内所有代谢物进行定量分析,并寻找代谢物与生理病理变化的相对关系的研究方式,是系统生物学的组成部分。其研究对象大都是相对分子质量1000以内的小分子物质。先进分析检测技术结合模式识别和专家系统等计算分析方法是代谢组学研究的基本方法。 2代谢组学的研究方法 2.1研究范围 代谢组学主要研究的是作为各种代谢路径的底物和产物的小分子代谢物(MW<1000)。在食品安全领域,利用代谢组学工具发现农兽药等在动植物体内的相关生物标志物也是一个热点领。其样品主要是动植物的细胞和组织的提取液。 2.2常用的分析技术 主要技术手段是代谢组学以液相色谱一质谱(LC.MS)、气相色谱-质谱(GC.Ms)、核磁共振谱(NMR)等方法为主要研究手段[1.2.3],其中以NMR为主。通过检测一系列样品的NMR 谱图,再结合模式识别方法,可以判断出生物体的病理生理状态,并有可能找出与之相关的生物标志物(biomarker)。为相关预警信号提供一个预知平台。 据不同的研究对象和研究目的,Fiehn 将生物体系的代谢产物分析分为4个层次:(1)代谢物靶标分析对某个或某几个特定组分的分析。在这个层次中,需要采取一定的预处理技术除掉干扰物,以提高检测的灵敏度。(2)代谢轮廓(谱)分析对少数所预设的一些代谢产物的定量分析。如某一类结构、性质相关的化合物,某一代谢途径的所有中间产物或多条代谢途径的标志性组分。进行代谢轮廓(谱)分析时,可以充分利用这一类化合物的特有的化学性质,在样品的预处理和检测过程中,采用特定的技术来完成。(3)代谢组学是在限定条件下对特定生物样品中所有内源性代谢组分的定性和定量分析。进行代谢组学研究时,样品的预处理和检测技术必须满足对所有的代谢组分具有高灵敏度、高选择性、高通量的要求,而且基体干扰要小。代谢组学涉及的数据量非常大,因此需要有能对其数据进行解析的化学计量学技术。代谢组学的最终目标是解析所有的可见峰。(4)代谢指纹分析不具体鉴定单一组分,而是通过比较代谢物指纹图谱的差异对样品进行快速分类。 2.3数据处理平台 应用NMR或MS得到的代谢组学数据是海量的多变量数据信息,需要利用模式识别(PR,pattern recognition)技术进行多元数据分析,将数据降维,然后对样本分类或寻找生物标志物(biomarker),用来解释代谢表型(metabolic phenotypes)

相关文档