文档视界 最新最全的文档下载
当前位置:文档视界 › 23个函数与导函数类型专题

23个函数与导函数类型专题

23个函数与导函数类型专题
23个函数与导函数类型专题

23个函数与导函数类型专题

ln

()

x1

f x

x1x

=+

+

,若x0

>,且x1

≠,

ln

()

x k

f x

x1x

>+

-

,求k的取值范围.

解析:⑴将不等式化成()(*)

k>=<模式

ln

()

x k

f x

x1x

>+

-

得:

ln ln

x1x k

x1x x1x

+>+

+-

,化简得:

ln

2

2x x

k1

x1

<-

-

⑵构建含变量的新函数()

g x

构建函数:

ln

()

2

2x x

g x

x1

=

-

(x0

>,且x1

≠)

其导函数由

'''

2

u u v uv

v v

-

??

=

?

??

求得:'()(ln ln)

()

22

22

2

g x x x x x1

x1

=---

-

即:'()[()()ln]

()

22

22

2

g x x1x1x

x1

=--+

-

()

ln

()

22

222

2x1x1

x

x1x1

??

+-

=-

?

?

-+

??

⑶确定()

g x的增减性

先求()

g x的极值点,由'()0

g x0

=得:ln

2

2

x1

x0

x1

-

-=

+

即:ln

2

2

x1

x

x1

-

=

+

满足③式的

x1

=

在0

x x1

≥≥时,由于

2

2

x1

1

x1

-

<

+

有界,而ln x0

>无界

故:ln

2

2

x1

x0

x1

-

-<

+

即:在0

x x1

≥≥时,'()

g x0

≤,()

g x单调递减;

那么,在0

0x x

<<时,()

g x单调递增.

满足③式得0x恰好是0x1

=

⑷ 在(,)x 1∈+∞由增减性化成不等式

在(,)x 1∈+∞区间,由于()h x 为单调递减函数,

故:()lim ()x 1g x g x →+≤ln lim 2x 12x x x 1→+??

= ?-?? 应用不等式:ln x x 1<-得:

ln ()lim lim lim 22x 1x 1x 12x x 2x x 12x 1x 1x 1x 1→+→+→+-??????<== ? ? ?+??--???? 即:()()g x g 11<=,即:()g x 的最大值是()g 1

代入①式得:()k 1g x <-,即:()k 1g 1≤-,即:k 0≤ ④ ⑸ 在(,)x 01∈由增减性化成不等式

在(,)x 01∈区间,由于()g x 为单调递增函数,

故:()lim ()x 0g x g x →+≥ln lim 2x 02x x x 1→+??= ?-?? 由于极限()lim ln x 0

x x 0→+=,故:()g x 0≥,代入①式得:k 1≤ ⑤

⑹ 总结结论

综合④和⑤式得:k 0≤. 故:k 的取值范围是(,]k 0∈-∞

由①式ln 22x x k 1x 1

<-

-,设函数ln ()2

2x x K x 1x 1

=-

-

当x 1→时,用洛必达法则得:

ln (ln )'(ln )

lim

lim

lim

()

22x 1

x 1

x 1

2x x 2x x 2x 112x x 1

x 1→→→+===--,则()K 10= 用数值解如下:

其中,()K x 的最小值是()K 10=,即()()K x K 1>,所以本题结果是k 0≤.

()ln 2f x x ax =-,a 0>,x 0>,()f x 连续,若存在均属于区间[,]13的,αβ,且1βα-≥,使()()f f αβ=,证明:ln ln ln 322

a 53

-≤≤ 解析:⑴ 求出函数()f x 的导函数

函数:()ln 2f x x ax =- ①

其导函数:'()2112ax f x 2ax x x -=-=()()

11x +-=

② ⑵ 给出函数()f x 的单调区间

由于x 0>,由②式知:'()f x 的符号由()1的符号决定.

当10>,即:x

<

时,'()f x 0>,函数()f x 单调递增;

当10<,即:x

>时,'()f x 0<,函数()f x 单调递减;

当10=,即:x

=时,'()f x 0=,函数()f x 达到极大值.

⑶ 由区间的增减性给出不等式

由,αβ均属于区间[,]13,且1βα-≥,得到:[,]12α∈,[,]23β∈ 若()()f f αβ=,则,αβ分属于峰值点x

=

的两侧

即:

α<,β>.

所以:α所在的区间为单调递增区间,β所在的区间为单调递减区间.

故,依据函数单调性,在单调递增区间有:()()()f 1f f 2α≤≤ ③ 在单调递减区间有:()()()f 2f f 3β≥≥ ④ ⑷ 将数据代入不等式

由①式得:()f 1a =-;()ln f 224a =-;()ln f 339a =- 代入③得:()ln a f 24a α-≤≤-,即:ln a 24a -≤-,即:ln 2

a 3

⑤ 代入④式得:ln ()ln 24a f 39a β-≥≥-,即:ln ln 24a 39a -≥-, 即:ln ln 32

a 5

-≥

⑥ ⑸ 总结结论

证毕.

由⑶已得:[,]12α∈,[,]23β∈,且:()ln 2f a ααα=-?,()ln 2f a βββ=-? 若:()()f f αβ=,则:ln ln 22a a ααββ-?=-? 即:()ln ln 22a βαβα-=-,故:ln ln 22

a βα

βα

-=

-

当:2β=,1α=时,ln 2

a 3

=

当:3β=,2α=时,ln ln 32

a 5

-=

故:a

()ln ()2f x x ax 2a x =-+-.若函数()y f x =的图像与x 轴交于

,A B 两点,线段AB 中点的横坐标为0x ,试证明:01

x a

>

.

解析:⑴ 求出函数()f x 导函数

函数()f x 的定义域由ln x 可得:x 0>. 导函数为:'()()1f x 2ax 2a x =

-+-()()1

12x a x

=+- ① ⑵ 确定函数的单调区间

1a 0x ->,即(,)1

x 0a ∈时,'()f x 0>,函数()f x 单调递增; 当

1a 0x -<,即(,)1

x a ∈+∞时,'()f x 0<,函数()f x 单调递减; 当

1a 0x -=,即1x a =时,'()f x 0=,函数()f x 达到极大值()1f a

. ()ln ()()21111f a 2a a a a a =-?+-?ln 11

1a a

=+- ② ⑶ 分析图像与x 轴的交点,求出a 区间

由于lim ()x f x 0→+∞

<,lim ()x 0

f x 0→+<

若()f x 与x 轴交于,A B 两点,则其极值点必须()1

f 0a >.

即:ln 1110a a +->,即:ln 11

1a a

>- ③

考虑到基本不等式ln

111a a ≤-及③式得:ln 111

11a a a

-<≤- 即:1111a a -

<-,即:2

2a

>,即:a 1< 结合ln

1

a

,即:a 0>得:(,)a 01∈ ④ ⑷ 求出,A B 点以及A 关于极值点的对称点C

,A B 两点分居于极值点两侧,即:A 1x a <

,B 1x a

>

设:A 11x x a =

-,B 21x x a =+,则,12x x 0>,且11

x a <(因x 0>) 设:C 11x x a =

+

于是:()()A B f x f x 0==,即:()11

f x 0a -=

故:()ln()()()()2A 111111

f x x a x 2a x a a a

=---+--

ln()()()2111121112a x a 2x x 2a x a a a a -=---??++--

ln()ln 2

11111ax a 1ax ax 0a

=--+

-+-= ⑤ 将1x 替换成1x -代入()A f x 就得到()C f x :

()()ln()ln 2

C 111111f x f x 1ax a 1ax ax a a

=+=+-+--- ⑥

⑸ 比较,,A B C 点的函数值,以增减性确定其位置

构造函数:()()()()()1C A 1111

g x f x f x f x f x a a

=-=+--

将⑤⑥式代入上式得:()ln()ln()1111g x 1ax 1ax 2ax =+--- ⑦ 其对1x 的导函数为:

'()111a a g x 2a 1ax 1ax -=--+-221

2a

2a 1a x =--22

1221a x 2a 1a x =?- ⑧ 由于④式(,)a 01∈及11

x a

<

,所以'()1g x 0>. 即:()1g x 是随1x 的增函数,其最小值是在1x 0=时,即:()()1g x g 0≥ 由⑦式得:()g 00=,故:()()1g x g 00≥=.

当1x 0≠时,()()()1C A g x f x f x 0=->,即:()()()C A B f x f x f x >= 由于C x 和B x 同在单调递减区间,所以由()()C B f x f x >得:C B x x <

即:C 1B 211

x x x x a a

=+<=+,即:12x x <或21x x 0-> ⑨ ⑹ 得出结论

那么,由⑨式得:

()0A B 1x x x 2=

+()12111x x 2a a =-++()21111x x a 2a

=+->

证毕.

知函数()'()()x 121f x f 1e f 0x x 2-=-+

.若()21

f x x ax b 2

≥++,求()a 1b +的最大值.

解析:⑴ 求出函数()f x 的解析式

由于'()f 1和()f 0都是常数,所以设'()f 1A =,()f 0B =,利用待定系数法求出函数()f x 的解析式. 设:()x 121f x Ae Bx x 2-=-+

,则:()A

f 0B e

== 其导函数为:'()x 1f x Ae B x -=-+,则:'()f 1A B 1A =-+= 所以:B 1=,A e =,函数()f x 的解析式为:()x 2

1f x e x x 2

=-+

① ⑵ 化简不等式()2

1f x x ax b 2

++ 即:()x 22

11f x e x x x ax b 22

=-+

≥++,故:()x e a 1x b 0-+-≥ ② ⑶ 构建新函数()g x ,并求其极值点

构建函数()()x g x e a 1x b =-+- ③

其导函数:'()()x g x e a 1=-+ ④

要使②式得到满足,必须()g x 0≥故当()g x 取得极值时有:'()M g x 0=,由④式得极值点:ln()M x a 1=+ 此时的()g x 由③得:()()()ln()M g x a 1a 1a 1b 0=+-++-≥ ⑤ ⑷ 求()a 1b +的最大值

由⑤式得:()[ln()]b a 11a 1≤+-+,则:()()[ln()]2a 1b a 11a 1+≤+-+ ⑥ 令:y a 1=+,则⑥式右边为:()(ln )2h y y 1y =- (y 0>)

其导函数为:'()(ln )()(ln )21

h y 2y 1y y y 12y y

=-+-=- ⑦

当ln 12y 0->,即:(y 0∈时,'()h y 0>,()h y 单调递增;

当ln 12y 0-<,即:)y ∈+∞时,'()h y 0<,()h y 单调递减;

当ln 12y 0-=,即:y =时,'()h y 0=,()h y 达到极大值.

此时,()h y 的极大值为:(2e

h 12

=-= ⑧ ⑸ 得出结论

将⑧代入⑥式得:()()e a 1b h y 2+≤≤

知函数()ln()f x x x a =-+的最小值为0,其中a 0>.若对任意的

[,)x 0∈+∞,有()2f x kx ≤成立,求实数k 的最小值.

解析:⑴ 利用基本不等式求出a

利用基本不等式x e 1x ≥+或ln y y 1≤-,得:ln()()x a 1x a -+≥-+ 即:ln()()x x a x 1x a 1a -+≥+-+=-,即:()ln()f x x x a 1a =-+≥-

函数的最大值与导数.doc

第1课时 课型:新授课 主备人:武果果 一、学习目标 1?借助函数图像,直观的理解函数的最大值和最小值概念; 2. 弄清函数最大值、最小值与极大值、极小值的区别与联系,理解和熟悉函数于(兀)必有最大 值和最小值的充分条件; 3. 会利用导数求连续函数/(兀)在闭区间["]上的最大值和最小值。 二、 考情分析 1. 考纲要求:会求闭区间上函数的最大值与最小值; 2?考情分析:运用导数研究函数的最值; 3?备考要求:注重导数在研究函数极值与最值中的工具性作用。 三、 课前自主学习 1?导入学习 复习:(1)极大(小)值概念: ____________________________________________________ (2)求函数极值的方法: ________________________________________________ 实例导入:预习课本心完成下面问题: ⑴你能找出函数 尸/(兀)在区间上的极大值、极小值、最大值、最小值吗? (2)函数y = /(x)在开区间仏b)上的极大值、极小值、最大值、最小值存在吗? ⑶若函数)/(x)在区间[d,b ]上不连续还存在极大值、极小值、最大值、最小值吗? 新知:函数y = 在闭区间[⑦切上的最值: 一般地,如果在区间[⑦切上函数y = /(x)的图像是一条 ________ 的曲线,那么它必有最 大值和最小值. 例1?求函数/*(%) = 6 + 12x-x 3在【-亍3]上的最大值与最小值。 选2?2 § 13.3函数的最大(小)值与导数

解-7/(X)=6+12X-A3???广(0 = 由厂(兀) = 0,解得兀= 当X变化时,f(x)与#(尢)的变化情况如下表: ???函数心在[-事3]上的最大值是____ ;最小值是_______ 结论:求函数y = /(x)在[d,b]上的最值的步骤: ⑴.求函数y = /(%)在(d,b)内的_______ ; ⑵.将函数〉,= /&)的 _____ 与____________ 比较,其中最大的一个是最大值,最小的一个 是________ O 2. 自我检测 练习(1)?已知a为实数,/(x) = (x2-4)(x-a),若广(-1) = 0,求/⑴在 [-2, 2]上的最大值和最小值. 7i n (2).求函数/(x) =-2cosx-x在区间[-亍,-]上的最大值与最小值。

嵌套函数与函数的零点问题

嵌套函数与函数的零点问题 1二已知函数f (x )=x +1,x ?0l o g 2x ,x >0{,则y =f (f (x ))+1的零点组成的集合为 .2二?变式?已知函数f (x )=x +1,x ?0l o g 2 x ,x >0{,则y =f (f (x ))-1的零点组成的集合为 .3二函数f (x )=x +1,x ?0,x 2-2x +1,x >0. { ,若关于x 的方程f 2(x )-a f (x )=0恰有5个不同的实数解,则a 的取值范围为 .4二定义域为R 的函数f (x )= |l g x |,x >0,-x 2-2 x ,x ?0.{,关于x 的函数y =2f 2(x )-3f (x )+1的零点个数为 .5二函数f (x )是定义在R 上偶函数,且当x ?0时,f (x )=x |x -2|,若关于x 的方程f 2(x )+a f (x )+b =0恰有1 0个不同的解,则a 的取值范围是 .6二已知函数f (x )=-x 2,x ?0,x 2+2x ,x <0.{ ,则不等式f f x ()()?3的解集是 .7二已知函数f (x )=l o g 2x ,x >0,2x ,x ?0. {,则满足不等式f (f (x ))>1的x 的取值范围是 .8二已知函数f (x )=x 2-2a x +a 2-1若关于x 的不等式f (f (x ))<0的解集为空集,则实数a 的取值范围是 . 9二设函数f (x )是偶函数,当x ?0时,f (x )=x (3-x ),0?x ?3,-3x +1,x >3ì?í???,若函数y =f (x )-m 有四个不同的零点,则实数m 的取值范围是 .

导数与函数零点问题解题方法归纳

导函数零点问题 一.方法综述 导数是研究函数性质的有力工具,其核心又是由导数值的正、负确定函数的单调性.应用导数研究函数的性质或研究不等式问题时,绕不开研究()f x 的单调性,往往需要解方程()0f x '=.若该方程不易求解时,如何继续解题呢?在前面专题中介绍的“分离参数法”、“构造函数法”等常见方法的基础上,本专题举例说明“三招”妙解导函数零点问题. 二.解题策略 类型一 察“言”观“色”,“猜”出零点 【例1】【2020·福建南平期末】已知函数()() 2 1e x f x x ax =++. (1)讨论()f x 的单调性; (2)若函数()() 2 1e 1x g x x mx =+--在[)1,-+∞有两个零点,求m 的取值范围. 【分析】(1)首先求出函数的导函数因式分解为()()()11e x f x a x x =++'+,再对参数a 分类讨论可得; (2)依题意可得()()2 1e x g x m x =+'-,当0m …函数在定义域上单调递增,不满足条件; 当0m >时,由(1)得()g x '在[)1,-+∞为增函数,因为()01g m '=-,()00g =.再对1m =,1m >, 01m <<三种情况讨论可得. 【解析】(1)因为()() 2 1x f x x ax e =++,所以()()221e x f x x a x a ??=+++??'+, 即()()()11e x f x a x x =++'+. 由()0f x '=,得()11x a =-+,21x =-. ①当0a =时,()()2 1e 0x f x x =+'…,当且仅当1x =-时,等号成立. 故()f x 在(),-∞+∞为增函数. ②当0a >时,()11a -+<-, 由()0f x >′得()1x a <-+或1x >-,由()0f x <′得()11a x -+<<-; 所以()f x 在()() ,1a -∞-+,()1,-+∞为增函数,在()() 1,1a -+-为减函数.

(完整版)导数与函数的极值、最值问题(解析版)

【高考地位】 导数在研究函数的极值与最值问题是高考的必考的重点内容,已由解决函数、数列、不等式问题的辅助工具上升为解决问题的必不可少的工具,特别是利用导数来解决函数的极值与最值、零点的个数等问题,在高考中以各种题型中均出现,对于导数问题中求参数的取值范围是近几年高考中出现频率较高的一类问题,其试题难度考查较大. 【方法点评】 类型一 利用导数研究函数的极值 使用情景:一般函数类型 解题模板:第一步 计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ; 第二步 求方程'()0f x =的根; 第三步 判断'()f x 在方程的根的左、右两侧值的符号; 第四步 利用结论写出极值. 例1 已知函数x x x f ln 1 )(+= ,求函数()f x 的极值. 【答案】极小值为1,无极大值. 【点评】求函数的极值的一般步骤如下:首先令'()0f x =,可解出其极值点,然后根据导函数大于0、小于0即可判断函数()f x 的增减性,进而求出函数()f x 的极大值和极小值. 【变式演练1】已知函数322()f x x ax bx a =+++在1x =处有极值10,则(2)f 等于( ) A .11或18 B .11 C .18 D .17或18 【答案】C 【解析】

试题分析:b ax x x f ++='23)(2,???=+++=++∴1010232 a b a b a ???-==????=----=?114012232b a a a a b 或???=-=33 b a .当???=-=3 3 b a 时,∴≥-=',0)1(3)(2x x f 在1=x 处不存在极值. 当???-==11 4b a 时, )1)(113(1183)(2-+=-+='x x x x x f ,0)(),1,3 11 (<'- ∈∴x f x ;0)(),,1(>'+∞∈x f x ,符合题意. 所以???-==114b a .181622168)2(=+-+=∴f .故选C . 考点:函数的单调性与极值. 【变式演练2】设函数()21 ln 2 f x x ax bx =--,若1x =是()f x 的极大值点,则a 的取值范围为 ( ) A .()1,0- B .()1,-+∞ C .()0,+∞ D .()(),10,-∞-+∞U 【答案】B 【解析】 考点:函数的极值. 【变式演练3】函数x m x m x x f )1(2)1(2 1 31)(23-++-=在)4,0(上无极值,则=m _____. 【答案】3 【解析】 试题分析:因为x m x m x x f )1(2)1(2 1 31)(23-++-= , 所以()()2'()(1)2(1)21f x x m x m x x m =-++-=--+,由()'0f x =得2x =或1x m =-,又因为

导数中的零点问题(学生版)

专题2.3导数中的零点问题 解决零点问题,需要采用数形结合思想,根据函数的图像或者趋势图像找出符合题意的条件即可,因此用导数判断出单调性作出函数图像或趋势图像至关重要。 一、能直接分离参数的零点题目 此类问题较为简单,分离之后函数无参数,则可作出函数的准确图像,然后上下移动参数的值,看直线与函数交点个数即可。 例1.已知函数(),()ln a f x x g x x x =+=,若关于x 的方程2()()2g x f x e x =-只有一个实数根,求a 的值。注意这里()h x 的单调性不是硬解出来的,因为你会发现'()h x 的式子很复杂,但是如果把()h x 当成两个函数的和,即2ln (),()2x m x n x x ex x ==-+,此时(),()m x n x 的单调性和极值点均相同,因此可以整体判断出()h x 的单调性和极值点。所以21a e e =+(注意:有一个根转化为图像只有一个交点即可)二、不能直接分离参数的零点问题(包括零点个数问题) 这里需要注意几个转化,以三次函数为例,若三次函数有三个不同的零点,则函数必定有两个极值点,且极大值和极小值之积为负数,例如()f x 在区间(0,1)上有零点,此时并不能确定零点的个数,只能说明至少有一个零点,若函数在区间上单调,只需要用零点存在性定理即可,但是若函数在区间上不单调,则意味着()f x 在区间(0,1)上存在极值点。 在解决此类问题时常用的知识是零点存在定理和极限的相关知识,但必不可少的是求出函数的趋势图像,然后根据趋势图像找符合零点问题的条件即可,这里需要说明一下,参数影响零点的个数问题主要有两个方向,一是参数影响单调性和单调区间的个数,二是参数影响函数的极值或最值,而通过这两个方向就可以影响函数的趋势图像,进而影响零点的个数,因此分类讨论思想在此类问题中必不可少。例2.已知函数32()31f x ax x =-+,若()f x 存在唯一的零点0x ,且00x >,则a 的取值范围是 注意:如果不是的大题没必要分类讨论,做出符合题意的图像反推即可 例3.已知函数2()ln 2f x x x b x =++--在区间1[,]e e 上有两个不同零点,求实数b 的取值范围。

《函数的最大(小)值与导数》教案

《函数的最大(小)值与导数》教案 【教学目标】 1.使学生理解函数的最大值和最小值的概念,掌握可导函数)(x f 在闭区间[]b a ,上所有点(包括端点b a ,)处的函数中的最大(或最小)值必有的充分条件; 2.使学生掌握用导数求函数的极值及最值的方法和步骤. 【教学重点】利用导数求函数的最大值和最小值的方法. 【教学难点】函数的最大值、最小值与函数的极大值和极小值的区别与联系. 【教学过程】 一、复习回顾: 1.极值的概念: 极大值: 一般地,设函数f (x )在点x 0附近有定义,如果对x 0附近的所有的点,都有f (x )<f (x 0),就说f (x 0)是函数f (x )的一个极大值,记作y 极大值=f (x 0),x 0是极大值点. 极小值:一般地,设函数f (x )在x 0附近有定义,如果对x 0附近的所有的点,都有f (x )>f (x 0).就说f (x 0)是函数f (x )的一个极小值,记作y 极小值=f (x 0),x 0是极小值点. 2. 判断函数)(x f y =的极值的方法: 解方程0)(='x f .当0)(0='x f 时: (1)如果在0x 附近的左侧0)(>'x f ,右侧0)(<'x f ,那么)(0x f 是极大值; (2)如果在0x 附近的左侧0)(<'x f ,右侧0)(>'x f ,那么)(0x f 是极小值. 3. 求可导函数f (x )的极值的步骤: (1)确定函数的定义区间,求导数f ′(x ); (2)求方程f ′(x )=0的根; (3)用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格.检查f ′(x )在方程根左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值;如果左右不

高中数学专题练习-函数零点问题

高中数学专题练习-函数零点问题 [题型分析·高考展望] 函数零点问题是高考常考题型,一般以选择题、填空题的形式考查,难度为中档.其考查点有两个方面:一是函数零点所在区间、零点个数;二是由函数零点的个数或取值范围求解参数的取值范围. 常考题型精析 题型一 零点个数与零点区间问题 例1 (1)(·湖北)已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-3x ,则函数g (x )=f (x )-x +3的零点的集合为( ) A.{1,3} B.{-3,-1,1,3} C.{2-7,1,3} D.{-2-7,1,3} (2)(2015·北京)设函数f (x )=??? 2x -a ,x <1,4(x -a )(x -2a ),x ≥1. ①若a =1,则f (x )的最小值为________; ②若f (x )恰有2个零点,则实数a 的取值范围是________. 点评 确定函数零点的常用方法: (1)若方程易求解时,用解方程判定法; (2)数形结合法,在研究函数零点、方程的根及图象交点的问题时,当从正面求解难以入手时,可以转化为某一易入手的等价问题求解,如求解含有绝对值、分式、指数、对数、三角函数式等较复杂的函数零点问题,常转化为熟悉的两个函数图象的交点问题求解. 变式训练1 (·东营模拟)[x ]表示不超过x 的最大整数,例如[2.9]=2,[-4.1]=-5.已知f (x )=x -[x ](x ∈R ),g (x )=log 4(x -1),则函数h (x )=f (x )-g (x )的零点个数是( ) A.1 B.2 C.3 D.4 题型二 由函数零点求参数范围问题 例2 (·天津)已知函数f (x )=??? |x 2+5x +4|,x ≤0,2|x -2|,x >0. 若函数y =f (x )-a |x |恰有4个零点,则实数 a 的取值范围为________. 点评 利用函数零点的情况求参数值或取值范围的方法:

利用导数解决函数零点问题

1 利用导数解决函数零点问题(第二轮大题) 这是一类利用导数解决函数零点的问题,解决这类问题的一般步骤是:转化为所构造函数的零点问题(1)求导分解定义域(2)导数为零列表去,(先在草稿纸进行)(3)含参可能要分类 (4)一对草图定大局(零点判定定理水上水下,找端点与极值点函数值符号) 目标:确保1分,争取2分,突破3分. (一)课前测试 1.(2015年全国Ⅰ卷,21)设函数x a e x f x ln )(2-=. (1)讨论)(x f 的导函数)(x f '零点的个数; (二)典型例题 2.(2017年全国Ⅰ卷,21)已知函数 e a ae x f x x -+=)2()(2(2)若0>a 且)(x f 有两个零点,求a 的取值范围. 注: ①求导分解定义域,这1分必拿, )0)(2(1 )(2>-= 'x a xe x x f x ②草稿纸上令0)(='x f ,构造函数)0(2)(>-=x a xe x g x ,重复上 面步骤, 042)(22>+='x x xe e x g , )(x g 在),0(+∞递增 ③草图 a g -=)0(, +∞→+∞→)(x g x 时。 一定要用零点判定定理确定零点个数 )(x f ' )(x f

2 (三)强化巩固 3.(2017年全国Ⅱ卷,21)(2)证明:x x x x x f ln )(2--=存在唯一 的极大值点0x ,且2022)(--<

导数与函数的极值、最值问题(解析版)

【高考地位】 导数在研究函数的极值与最值问题是高考的必考的重点内容,已由解决函数、数列、不等式问题的辅助工具上升为解决问题的必不可少的工具,特别是利用导数来解决函数的极值与最值、零点的个数等问题,在高考中以各种题型中均出现,对于导数问题中求参数的取值范围是近几年高考中出现频率较高的一类问题,其试题难度考查较大. 【方法点评】 类型一 利用导数研究函数的极值 使用情景:一般函数类型 解题模板:第一步 计算函数()f x 的定义域并求出函数()f x 的导函数'()f x ; 第二步 求方程'()0f x =的根; 第三步 判断'()f x 在方程的根的左、右两侧值的符号; 第四步 利用结论写出极值. 例1 已知函数x x x f ln 1 )(+= ,求函数()f x 的极值. 【答案】极小值为1,无极大值. 【点评】求函数的极值的一般步骤如下:首先令'()0f x =,可解出其极值点,然后根据导函数大于0、小于0即可判断函数()f x 的增减性,进而求出函数()f x 的极大值和极小值. 【变式演练1】已知函数322()f x x ax bx a =+++在1x =处有极值10,则(2)f 等于( ) A .11或18 B .11 C .18

D .17或18 【答案】C 【解析】 试题分析:b ax x x f ++='23)(2,???=+++=++∴1010232 a b a b a ???-==????=----=?114012232b a a a a b 或???=-=33 b a .当???=-=3 3 b a 时,∴≥-=',0)1(3)(2x x f 在1=x 处不存在极值. 当? ??-==114b a 时, )1)(113(1183)(2-+=-+='x x x x x f ,0)(),1,3 11 (<'- ∈∴x f x ;0)(),,1(>'+∞∈x f x ,符合题意. 所以???-==114b a .181622168)2(=+-+=∴f .故选C . 考点:函数的单调性与极值. 【变式演练2】设函数()21 ln 2 f x x ax bx =--,若1x =是()f x 的极大值点,则a 的取值范围为 ( ) A .()1,0- B .()1,-+∞ C .()0,+∞ D .()(),10,-∞-+∞U 【答案】B 【解析】 考点:函数的极值.

导数与函数的极值与最值

y=xf '(x) -1 11 -1 o y x 导数与函数的单调性 题型1.导数与函数图象(,0)(>'x f 函数单调递增;,0)(<'x f 函数单调递减;即导数看正负,函数看增减。 1. 设函数()x f 在定义域内可导,()x f y =的图象如图2所示,则导函数()x f '可能为D 2. 设)(x f '是函数)(x f 的导函数,)(x f y '=的图象如图所示,则)(x f y =的图象最有可能的是C 3. )(x f '是)(x f 的导函数,)(x f '的图象如图所示,则)(x f 的图象只可能是D A B C D 4.已知函数)(x f x y '=的图像如右图所示,下面四个图象中)(x f y =的图象大致是(C ) 31 -2 1-122-2o y x 1-2 1 -122o y x 4 2 1 -2 o y x 42 2 -2 o y x 5. 设()f x '是函数()f x 的导函数,将()y f x =和()y f x '=的图象画在同一个直角坐标系中,不可能正确的是D x y O A x y O B x y O C y O D x x y O o y x -33 y x O y x O y x O y x O A . B . C . D . 6题图

6.如图为函数32()f x ax bx cx d =+++的图象,'()f x 为函数()f x 的导函数,则不等式 '()0x f x ?<的解集为__()() 3,03,?∞-__. 7.已知()f x 在R 上是可导函数,则 ()f x 的图象如图所示,则不 等 式 ()()2 230 x x f x '-->的解集为 ____________ 题型2.利用导数求单调区间(1.定义域2.求导3.令,0)(>'x f 求增区间;令,0)(<'x f 求减区间) 1. 函数13)(23+-=x x x f 是减函数的区间为 D A.),2(+∞ B.)2,(-∞ C.)0,(-∞ D.(0,2) 2. 函数x x x f ln 3)(+=的单调递增区间是C A.)1,0(e B.),(+∞e C.),1(+∞e D.(e 1 ,e ) 3. 函数x x y ln 82-=在区间)1,2 1 ()41,0(和内分别为 A A.单调递减,单调递增 B.单调递增,单调递增 C.单调递增,单调递减 D.单调递减,单调递减 题型3.由单调区间求参数取值范围(函数在区间(),a b 上增,,0)(≥'x f 恒成立; 函数在区间(),a b 上减,,0)(≤'x f 恒成立;) 1. 已知()321 233 y x bx b x =++++是R 上的单调增函数,则b 的范围D A.1b <-或2b > B.1b ≤-或2b ≥ C.21b -<< D.12b -≤≤ 2. 若m mx x x x f +++-=23)((m 为常数)在(-1,1)上是增函数,则m 的取值范围是D A.[)∞+,1 B.[]3,1 C.[]5,1 D. [)∞+,5 练2.【2014·全国卷Ⅱ(文11)】若函数()ln f x kx x =-在区间(1,+∞)单调递增,则k 的取值范围是( ) (A )(],2-∞- (B )(],1-∞- (C )[)2,+∞ (D )[)1,+∞ 【答案】D 练3.)(3 24)(3 2R x x ax x x f ∈-+=在区间[-1, 1]上是增函数。则a 的范围是____}{11/≤≤-a a 3.(江西理科19)设.22 1 31)(23ax x x x f ++-= 若)(x f 在),3 2 (+∞上存在单调递增区间,求a 的取值范围; 解:已知()ax x x x f 221 3123++-=,()a x x x f 22++-='∴,函数()x f 在),3 2(+∞上存在单调递 增区间,即导函数在),3 2 (+∞上存在函数值大于零的部分,

数学高考导数难题导数零点问题导数

含参导函数零点问题的几种处理方法 方法一:直接求出,代入应用 对于导函数为二次函数问题,可以用二次函数零点的基本方法来求。 (1)因式分解求零点 例1 讨论函数)(12)2 1 (31)(23R a x x a ax x f ∈+++-= 的单调区间 解析:即求)('x f 的符号问题。由)2)(1(2)12()('2 --=++-=x ax x a ax x f 可以因式分 方法二:猜出特值,证明唯一 对于有些复杂的函数,有些零点可能是很难用方程求解的方法求出的,这时我们可以考虑用特殊值去猜出零点,再证明该函数的单调性而验证其唯一性。 例4 讨论函数ax x a x e a x x f x ++-+ --=23)1(2 1 31)1()(,R a ∈,的极值情况 解析:)1)(()1()()('2 -+-=++-+-=x e a x a x a x e a x x f x x ,只能解出)('x f 的一个零点为a ,其它的零点就是01=-+x e x 的根,不能解。 例5(2011高考浙江理科)设函数R a x a x x f ∈-=,ln )()(2 (Ⅰ)若e x =为)(x f y =的极值点,求实数a (Ⅱ)求实数a 的取值范围,使得对任意的],3,0(e x ∈恒有2 4)(e x f ≤成立(注:e 为自然对数), 方法三:锁定区间,设而不求 对于例5,也可以直接设函数来求, ①当10≤=a a h , 且(3)2ln(3)12ln(3)13a h e e e e =+-≥+- =2(ln 30e 。 故0)('=x f 在),1(a 及(1,3e )至少还有一个零点,又()h x 在(0,+∞)内单调递增,所以函数()h x 在]3,1(e 内有唯一零点,但此时无法求出此零点怎么办。我们可以采取设而不求的方法,记此零点为0x ,则a x <<01。 从

高中数学-函数零点问题

函数零点问题 [题型分析·高考展望] 函数零点问题是高考常考题型,一般以选择题、填空题的形式考查,难度为中档.其考查点有两个方面:一是函数零点所在区间、零点个数;二是由函数零点的个数或取值范围求解参数的取值范围. 常考题型精析 题型一 零点个数与零点区间问题 例1 (1)(湖北)已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-3x ,则函数g (x )=f (x )-x +3的零点的集合为( ) A.{1,3} B.{-3,-1,1,3} C.{2-7,1,3} D.{-2-7,1,3} (2)(北京)设函数f (x )=????? 2x -a ,x <1,4(x -a )(x -2a ),x ≥1. ①若a =1,则f (x )的最小值为________; ②若f (x )恰有2个零点,则实数a 的取值范围是________. 点评 确定函数零点的常用方法: (1)若方程易求解时,用解方程判定法; (2)数形结合法,在研究函数零点、方程的根及图象交点的问题时,当从正面求解难以入手时,可以转化为某一易入手的等价问题求解,如求解含有绝对值、分式、指数、对数、三角函数式等较复杂的函数零点问题,常转化为熟悉的两个函数图象的交点问题求解. 变式训练1 (东营模拟)[x ]表示不超过x 的最大整数,例如[2.9]=2,[-4.1]=-5.已知f (x )=x -[x ](x ∈R ),g (x )=log 4(x -1),则函数h (x )=f (x )-g (x )的零点个数是( ) A.1 B.2 C.3 D.4 题型二 由函数零点求参数范围问题 例2 (天津)已知函数f (x )=? ??? ? |x 2+5x +4|,x ≤0,2|x -2|,x >0. 若函数y =f (x )-a |x |恰有4个零点,则实 数a 的取值范围为________. 点评 利用函数零点的情况求参数值或取值范围的方法:

导数中两种零点问题解决方法

导数中的零点问题解决方法 解决零点问题,需要采用数形结合思想,根据函数的图像或者趋势图像找出符合题意的条件即可,因此用导数判断出单调性作出函数图像或趋势图像至关重要。 一、能直接分离参数的零点题目 此类问题较为简单,分离之后函数无参数,则可作出函数的准确图像,然后上下移动参数的值,看直线与函数交点个数即可。 例1.已知函数(),()ln a f x x g x x x =+ =,若关于x 的方程2()()2g x f x e x =-只有一个实数根,求a 的值。 解析:22()ln ()22g x x f x e a x ex x x =-?=-+,令2ln ()2x h x x ex x =-+,'21ln ()22x h x x e x -=-+,令'()0h x =,则x e = 当0x e <<时,'()0h x >,()h x 单调递增;当x e >时,'()0h x <,()h x 单调递 减,2max 1()()h x h e e e ==+ 注意这里()h x 的单调性不是硬解出来的,因为你会发现'()h x 的式子很复杂,但是 如果把()h x 当成两个函数的和,即2ln (),()2x m x n x x ex x = =-+,此时(),()m x n x 的单调性和极值点均相同,因此可以整体判断出()h x 的单调性和极值点。 所以21a e e =+(注意:有一个根转化为图像只有一个交点即可) 二、不能直接分离参数的零点问题(包括零点个数问题) 这里需要注意几个转化,以三次函数为例,若三次函数有三个不同的零点,则函数必定有两个极值点,且极大值和极小值之积为负数,例如()f x 在区间(0,1)上有零点,此时并不能确定零点的个数,只能说明至少有一个零点,若函数在区间上单调,只需要用零点存在性定理即可,但是若函数在区间上不单调,则意味着()f x 在区间(0,1)上存在极值点。 在解决此类问题时常用的知识是零点存在定理和极限的相关知识,但必不可少的是求出函数的趋势图像,然后根据趋势图像找符合零点问题的条件即可,这里需要说明一下,参数影响零点的个数问题主要有两个方向,一是参数影响单调性和单调区间

导数和函数零点问题

导数和函数零点问题 Prepared on 24 November 2020

导数和函数零点 1、已知函数3()31,0f x x a x a =--≠ (1)求()f x 的单调区间; (2)若()f x 在1x =-处取得极值,直线y=m 与()y f x =的图象有三个不同的交 点, 求m 的取值范围。 2、设a 为实数,函数a x x x f ++-=3)(3 (1)求)(x f 的极值; (2)若方程0)(=x f 有3个实数根,求a 的取值范围; (3)若0)(=x f 恰有两个实数根,求a 的值。 3、已知函数)(ln 2)(2R a x ax x f ∈-= (1)讨论)(x f 的单调性; (2)是否存在a 的值,使得方程3)(=x f 有两个不等的实数根 若存在,求出a 的取值范围;若不存在,说明理由。 4、已知函数a ax x a x x f ---+=232 131)(,x R ∈,其中0>a 。 (1)求函数)(x f 的单调区间; (2)若函数)(x f 在区间)0,2(-内恰有两个零点,求a 的取值范围; 5、已知函数)0()23()(2 3>+--++=a d x b a c bx ax x f 的图象如图所示. (1)求c ,d 的值; (2)若函数,01132)(=-+=y x x x f 处的切线方程 在求函数)(x f 的解析式; (3)在(2)的条件下,函数m x x f y x f y ++= =5)(3 1)('与的图象有三个不同的交点, 求m 的取值范围; 6、已知定义域为R 的奇函数)(x f ,当0>x 时,)(1ln )(R a ax x x f ∈+-=

导数与函数的极值、最值

导数与函数的极值、最值 【题型突破】 利用导数解决函数的极值问题 ?考法1根据函数图象判断函数极值的情况 【例1】设函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图象如图所示,则下列结论中一定成立的是() A.函数f(x)有极大值f(2)和极小值f(1) B.函数f(x)有极大值f(-2)和极小值f(1) C.函数f(x)有极大值f(2)和极小值f(-2) D.函数f(x)有极大值f(-2)和极小值f(2) D ?考法2求已知函数的极值 【例2】已知函数f(x)=(x-2)(e x-ax),当a>0时,讨论f(x)的极值情况.[解]∵f′(x)=(e x-ax)+(x-2)(e x-a) =(x-1)(e x-2a), ∵a>0,由f′(x)=0得x=1或x=ln 2a. ①当a=e 2时,f′(x)=(x-1)(e x-e)≥0,∴f(x)单调递增,故f(x)无极值. ②当0<a<e 2时,ln 2a<1,当x变化时,f′(x),f(x)的变化情况如下表: x (-∞,ln 2a)ln 2a (ln 2a,1)1(1,+∞) f′(x)+0-0+ f(x)极大值极小值 ③当a>e 2时,ln 2a>1,当x变化时,f′(x),f(x)的变化情况如下表: x (-∞,1)1(1,ln 2a)ln 2a (ln 2a,+∞) f′(x)+0-0+ f(x)极大值极小值

综上,当0<a <e 2时,f (x )有极大值-a (ln 2a -2)2,极小值a -e ; 当a =e 2 时,f (x )无极值; 当a >e 2时,f (x )有极大值a -e ,极小值-a (ln 2a -2)2. ?考法3 已知函数极值求参数的值或范围 【例3】 (1)已知f (x )=x 3+3ax 2+bx +a 2在x =-1时有极值0,则a -b =________. (2)若函数f (x )=e x -a ln x +2ax -1在(0,+∞)上恰有两个极值点,则a 的取值范围为( ) A .(-e 2,-e) B .? ? ???-∞,-e 2 C .? ? ???-∞,-12 D .(-∞,-e) (1)-7 (2)D [方法总结] 1.利用导数研究函数极值问题的一般流程 2.已知函数极值点和极值求参数的两个要领 (1)列式:根据极值点处导数为0和极值列方程组,利用待定系数法求解. (2)验证:因为一点处的导数值等于零不是此点为极值点的充要条件,所以利用待定系数法求解后必须验证根的合理性. A .2或6 B .2 C .23 D .6 (2)(2019·广东五校联考)已知函数f (x )=x (ln x -ax )有极值,则实数a 的取值范围 是( )

导数中两种零点问题解决方法

导数中的零点问题解决方法 解决零点问题,需要采用数形结合思想,根据函数的图像或者趋势图像找出符合 题意的条件即可,因此用导数判断出单调性作出函数图像或趋势图像至关重要。 一、能直接分离参数的零点题目 此类问题较为简单,分离之后函数无参数,则可作出函数的准确图像,然后上下 移动参数的值,看直线与函数交点个数即可。 例 1.已知函数 f (x) = x + a g ( x) x , g (x) = ln x ,若关于 x 的方程 x 2 = f (x) - 2e 只有 一个实数根,求 a 的值。 g ( x) ln x ln x 解析: x 2 = f (x) - 2e ? a = x - x 2 + 2ex ,令 h (x) = x - x 2 + 2ex , 1- ln x h ' (x) = - 2x + 2e ,令 h ' (x) = 0 ,则 x = e x 2 当 0 < x < e 时, h ' (x) > 0 , h (x) 单调递增;当 x > e 时, h ' (x) < 0 , h (x) 单调 1 递减, h (x) max = h (e ) = e + e 2 注意这里 h (x) 的单调性不是硬解出来的,因为你会发现 h ' (x) 的式子很复杂,但是如 ln x 果把 h (x) 当成两个函数的和,即 m (x) = x , n(x) =- x 2 + 2ex ,此时 m (x), n (x) 的 单调性和极值点均相同,因此可以整体判断出 h (x) 的单调性和极值点。 所以 a = 1 e + e 2 (注意:有一个根转化为图像只有一个交点即可) 二、不能直接分离参数的零点问题(包括零点个数问题) 这里需要注意几个转化,以三次函数为例,若三次函数有三个不同的零点,则函 数必定有两个极值点,且极大值和极小值之积为负数,例如 f (x) 在区间 (0,1) 上有零 点,此时并不能确定零点的个数,只能说明至少有一个零点,若函数在区间上单调, 只需要用零点存在性定理即可,但是若函数在区间上不单调,则意味着 f (x) 在区间 (0,1) 上存在极值点。 在解决此类问题时常用的知识是零点存在定理和极限的相关知识,但必不可少的是 求出函数的趋势图像,然后根据趋势图像找符合零点问题的条件即可,这里需要说明一 下,参数影响零点的个数问题主要有两个方向,一是参数影响单调性和单调区间

导数与函数的极值、最值练习含答案

第2课时 导数与函数的极值、最值 一、选择题 1.下列函数中,既是奇函数又存在极值的是 ( ) A .y =x 3 B .y =ln(-x ) C .y =x e -x D .y =x +2 x 解析 由题可知,B ,C 选项中的函数不是奇函数,A 选项中,函数y =x 3单调递增(无极值),D 选项中的函数既为奇函数又存在极值. 答案 D 2.(2017·石家庄质检)若a >0,b >0,且函数f (x )=4x 3-ax 2-2bx +2在x =1处有极值,若t =ab ,则t 的最大值为 ( ) A .2 B .3 C .6 D .9 解析 f ′(x )=12x 2-2ax -2b ,则f ′(1)=12-2a -2b =0,则a +b =6, 又a >0,b >0,则t =ab ≤? ????a +b 22 =9,当且仅当a =b =3时取等号. 答案 D 3.已知y =f (x )是奇函数,当x ∈(0,2)时,f (x )=ln x -ax ? ???? a >12,当x ∈(-2,0)时, f (x )的最小值为1,则a 的值等于 ( ) A.14 B.13 C.1 2 D .1 解析 由题意知,当x ∈(0,2)时,f (x )的最大值为-1. 令f ′(x )=1x -a =0,得x =1 a , 当00;当x >1 a 时,f ′(x )<0.

∴f (x )max =f ? ???? 1a =-ln a -1=-1,解得a =1. 答案 D 4.已知函数f (x )=x 3+ax 2+(a +6)x +1有极大值和极小值,则实数a 的取值范围是 ( ) A .(-1,2) B .(-∞,-3)∪(6,+∞) C .(-3,6) D .(-∞,-1)∪(2,+∞) 解析 ∵f ′(x )=3x 2+2ax +(a +6), 由已知可得f ′(x )=0有两个不相等的实根, ∴Δ=4a 2-4×3×(a +6)>0,即a 2-3a -18>0, ∴a >6或a <-3. 答案 B 5.设函数f (x )=ax 2+bx +c (a ,b ,c ∈R ),若x =-1为函数f (x )e x 的一个极值点,则下列图像不可能为y =f (x )图像的是 ( ) 解析 因为[f (x )e x ]′=f ′(x )e x +f (x )(e x )′=[f (x )+f ′(x )]e x ,且x =-1为函数f (x )e x 的一个极值点,所以f (-1)+f ′(-1)=0;选项D 中,f (-1)>0,f ′(-1)>0,不满足f ′(-1)+f (-1)=0. 答案 D 二、填空题 6.(2017·咸阳模拟)已知函数f (x )=x 3+ax 2+3x -9,若x =-3是函数f (x )的一个极值点,则实数a =________.

函数与函数的零点知识点总结

函数及函数的零点有关概念 函数的概念:设A 、B 是非空的数集,如果按照某个确定的对应关系f ,使对于集合A 中的任意一个数x ,在集合B 中都有唯一确定的数f(x)和它对应,那么就称f :A →B 为从集合A 到集合B 的一个函数.记作: y=f(x),x ∈A .其中,x 叫做自变量,x 的取值范围A 叫做函数的定义域;与x 的值相对应的y 值叫做函数值,函数值的集合{f(x)| x ∈A }叫做函数的值域. 要点一:函数三要素及分段函数 (一)函数三要素 1.定义域:能使函数式有意义的实数x 的集合称为函数的定义域。 1.1求函数的定义域时从以下几个方面入手: (1)分式的分母不等于零; (2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零; (4)指数、对数式的底必须大于零且不等于1. (5)指数为零底不可以等于零。 (6)如果函数是由一些基本函数通过四则运算结合而成的.那么,它的定义域是使各部分都有意义的x 的值组成的集合即交集.(7)三角函数正切函数tan y x =中()2 x k k Z π π≠+ ∈. (8)实际问题或几何问题中的函数的定义域不仅要考虑使其解析式有意义,还要保证实际问题或几何问题有意义. (9)以上这些在题目中都没出现,则函数的定义域为R. 1.2复合函数定义域的求法: 复合函数:如果y=f(u)(u ∈M),u=g(x)(x ∈A),则 y=f[g(x)]=F(x)(x ∈A) 称为f 、g 的复合函数。 (1)已知f(x)的定义域是[a,b],求f[g(x)]的定义域,是指满足()a g x b ≤≤的x 的取值范围; (2)已知f[g(x)]的定义域是[a,b],求f(x)的定义域,是指在[,]x a b ∈的条件下,求g(x)的值域; (3) 已知f[g(x)]的定义域是[a,b],求f[h(x)]的定义域,是指在[,]x a b ∈的条件下,求g(x)的值域,g(x)的值域就是h(x)的值域,再由h(x)的范围解出x 即可。 2).求函数的解析式的常用求法: 1、定义法; 2、换元法; 3、待定系数法; 4、函数方程法; 5、参数法; 6、配方法 3).值域 : 先考虑其定义域 3.1求函数值域的常用方法 1、图像法; 2、层层递进法; 3、分离常数法; 4、换元法; 5、单调性法; 6、判别式法; 7、有界性; 8、奇偶性法; 9、不等式法;10、几何法; 3.2分段函数的值域是各段的并集 3.3复合函数的值域

相关文档
相关文档 最新文档