文档视界 最新最全的文档下载
当前位置:文档视界 › AASHTO柔性路面

AASHTO柔性路面

AASHTO柔性路面
AASHTO柔性路面

AASHTO法

美国各州公路及运输工作者协会(AASHTO)所推荐的方法是以50年代后期和60年代初在渥太华、伊利诺伊州进行的AASHTO道路试验得到的大量试验成果为基础的。AASHTO设计委员会于1961年第一次出版了暂行设计指南,1972和1981年又作了修订。1984~1985年,路面设计委员会和顾问小组根据NCHRP项目20-7/24的研究情况对指南作了修订和扩大,并于1986年出版了现行指南。

AASHTO道路试验所得到的经验性能方程,在现行的指南中仍用作为基本模型,但是作了修正和扩大,使其能适用于美国其他地区。应注意,初始方程是在给定的气候条件下,针对某种特定的路面材料和地基土推导出来的。试验地点气候温和,年降水量约为864mm(34in)。平均冰冻深度约为711mm(28in)。地基土属于A-6和A-7,排水条件不良,CBR值为2~4。

一、设计变量

本节介绍一些与柔性路面和刚性路面都有关的一般设计变量。其他变量如有效路基土回弹模量和结构数将分别在11.3.3和11.3.4中介绍。

(一)时间约束

为了充分利用可能获得的资金,AASHTO设计指南鼓励对交通量大的工程采用较长的分析年限,至少包括一次大修期。因而,分析年限应等于或大于工作年限,如下所述。

1、工作年限

工作年限是指初建的路面结构至需要大修以前的时间,或者是两次大修之间的时间。它相当于新建的、重建的或经过大修的结构,由其初始服务能力,损坏至最终服务能力所经过的时间。设计者必须在部门的经验和政策所规定的最小和最大允许范围内选定工作年限。工作年限的选定受如下因素的影响:路面的功能等级,维护的类型和水平,用于初期修建的资金,寿命周期费用和其它工程上的考虑。

2、分析年限

分析年限为任何设计策略所必须包括的时段。它可以和选用的工作年限相同。然而,由于实际工作制约,对所需的分析年限,可能要考虑分期修建或者计划大修。过去,路面常按20年工作年限进行设计和分析。现在建议采用较长的分析年限,因为根据寿命周期费用这样可能更符合比较长期的策略。表11.13为分析年限长短的一般准则。

分析年限长短的准则表11.13

来源:引自AASHTO(1986)

(二)交通

设计方法是以预计80KN(18kip)累积当量单轴荷载(ESAL)为根据的。

6.3.1节和6.3.2节介绍了用于柔性路面和刚性路面的当量轴载系数(EALF)的确定方法。6.4节论述了将混合交通换算成ESAL的方法。建议应用表6.13确定总增长系数,应用表6.16确定车道分布系数。

若路面设计采用的分析年限内没有任何大修或重新罩面,则所需要的是整个分析年限内的总ESAL。然而,若考虑分期修建,预期要进行大修或重新罩面,就需要有累积ESAL随时间变化的曲线或方程式,由此可以得到任意阶段的ESAL交通量。

(三)可靠度

路面可靠度的概念在10.2节已作过介绍。总的来说,可靠度是将某种可靠度引入设计过程的方法,保证各种设计方案在分析年限内一直有效。设计所用的可靠度水平应随交通量、交通疏散的难度和公众对预期效率的增加而提高。表11.14提供了不同功能等级所建议的可靠度水平。

对不同功能等级所建议的可靠度水平表11.14

注:成果基于AASHTO路面设计特别工作组的调查。

来源:引自AASHTO(1986)

应用可靠度的概念要求选用能反映当地条件的标准差。建议标准差对柔性路面采用0.45,对刚性路面采用0.35。这些相当于方差为0.2025和0.1225,小于表10.12中所示的值。

当考虑分期修建时,各时期的可靠度组合起来必须满足总的可靠度:

R

期=(R

)1/n

式中n为所考虑的期数。例如,预计分两期修建,要求的总可靠度为95%,各期的可靠度必须为(0.95)1/2,即97.5%。

(四)环境影响

AASHTO设计方程式是以为期两年的交通测试成果为基础的,没有包括温度和湿度长期作用对服务能力降低的影响。若在某一地区膨胀性粘土和冻胀问题严重,且没有作特殊的调正,应该计算分析年限内服务能力的降低量,并且加到由累积交通荷载要求能力上去。图11.23所示为某一地区服务能力随时间降低的曲线。环境引起的降低量为膨胀和冻胀两者降低量的总和。此曲线图可用于计算任意中间时刻服务能力的降低量。例如,在13年末,降低量为0.73。当然,若只考虑膨胀或冻胀,图中只有一条曲线。这些曲线的形状表明,随着因环境产生的服务能力降低量的增加,增长率随之减小。这对于分期修建是有利的,因为大部分降低发生在前期,而在后期可以以少量的附加降低量予以调正。

由于路基膨胀产生的服务能力降低取决于膨胀率常数,竖向升高的可能性和膨胀的概率;由于冻胀产生的服务能力降低取决于冻胀率、服务能力降低的最大可能性和冻胀的概率。计算这些降低量的方法见AASHTO设计指南附录G。

(五)服务能力

必须确定初始和最终的服务能力指数,以便计算用于设计方程的能力变化值△PSI。初始服务能力指数为路面类型和施工质量的函数。根据AASHTO 道路试验,其常用值对柔性路面为4.2,对刚性路面为4.5。最终服务能力指数为需要大修、重新罩面之前所允许的最低指数。对主要公路的设计建议取指数为2.5或更高的值,对交通量小的公路为2.0。对于较次要的公路,要求初期基建投资最少,建议减少设计年限或者总交通量,而不建议采用小于2.0的最终服务能力指数进行设计。

二、设计方程式

最初的方程式是完全基于AASHTO道路试验的成果,而后考虑到土基和气候条件与试验路不同,通过理论和经验对此作了修正。

(一)最初的方程式

以下为根据AASHTO道路试验,为柔性路面推导的基本方程式(HRB,1962):

G t =β(log W

t

-logρ)

β=

3.23

12

5.19 3.23

2

0.081()

0.40

(1)

L L

SN L

+

+

+

log ρ=5.93+9.36log (SN+1)-4.79log(L 1+L 2)+4.33logL 2

式中 G t —时间为t 时服务能力损失量与p t =1.5时可能的损失量之比的对数,即G t =log

[(4.2-p t )/(4.2-1.5)],应注意4.2为柔性路面的初始服务能力; β—设计与荷载变量的函数,如式(11.30)所示,该值影响 随W t 变化的曲线形状;

ρ—设计与荷载变量的函数,如式(11.31)所示它表示p t 为1.5时预期的荷载作用次数,由式(11.29)可以看出,当p t =1.5, ρ=W t W t —在时间t 末时的轴载作用次数; pt —在时间t 末时的服务能力; L1—单轴或双轴组荷载(kip)

L2—轴的编码,单轴为1,双轴为2; SN —路面结构数,用下式计算: SN=a 1D 1+a 2D 2+a 3D 3

式中a 1、a 2和a 3分别为面层、基层和底基层的层位系数;D 1、D 2和D 3分别为面层、基层和底基层的厚度。

若采用当量80KN(18kip)单轴荷载,方法大为简化。将式(11.29)、(11.30)和(11.31)合并,并令L 1=18和L 2=1,可得如下方程:

18 5.19

log[(4.2)/(4.2 1.5)]

log 9.36log(1)0.200.41094/(1)

t t p W SN SN --=+-+

++ (11.33) 式中W t18为t 时间内80kN 单轴荷载的作用次数而p t 为最终服务指数。式(11.33)仅适用于AASHO 道路试验,有效土基回弹模量为20.7MPa(3000psi)的柔性路面。

(二)修正的方程式

对于其它土基和环境条件,式(11.33)修正为

18 5.19

log[(4.2)/(4.2 1.5)]

log 9.36log(1)0.20 2.32log 8.070.41094/(1)t t R p W SN M SN --=+-+

+-++

(11.34)

式中M R 为路基土有效回弹模量。应注意,当M R =20.7MPa(3000psi),式(11.34)与式(11.33)相同。若考虑当地的降水和排水条件,式(11.32)修正为 SN=a 1D 1+a 2D 2m 2+a 3D 3m 3

式中m 2为基层的排水系数,和m 3为底基层的排水系数。

式(11.34)为性能方程式,它给出了PSI 使降至p t 的80kN(18kip)单轴荷载的允许作用次数。若预期的作用次数W 18等于W t18,设计的可靠度仅为50%,因为式(11.34)中的所有变量均为均值。为了得到较高的可靠速水平,W 18必须小于W t18 一个正态偏移Z R ,如图11.24所示:

1818

log log t R W W Z S -=

(11.36)

式中Z R 为给定可靠性R 的正态偏移,而S 0为标准离差。Z R 可由表10.1确定,由表11.15更为方便。

不同可靠度水平的标准正态偏移 表11.15

将式(11.34)和(11.36)合并,并以△PSI 代换(4.2-p t )得 log W 18=Z R S 0+9.36log(SN+1)-0.20 5.19

log[/(4.2 1.5)] 2.32log 8.070.41094/(1)

R

PSI M SN ?-+

+-++ 式(11.37)为柔性路面的最终设计方程式。图11.25为求解式(11.37)的诺谟图。AASHO 出版的DNPS86计算机程序也能求解式(11.37),并完成设计步骤。

AASHTO柔性路面设计方案

AASHTO柔性路面设计方案 美国各州公路及运输工作者协会(AASHTO)所推荐的方法是以50年代后期和60年代初在渥太华、伊利诺伊州进行的AASHTO道路试验得到的大量试验成果为基础的。AASHTO设计委员会于1961年第一次出版了暂行设计指南,1972和1981年又作了修订。1984~1985年,路面设计委员会和顾问小组根据NCHRP项目20-7/24的研究情况对指南作了修订和扩大,并于1986年出版了现行指南。 AASHTO道路试验所得到的经验性能方程,在现行的指南中仍用作为基本模型,但是作了修正和扩大,使其能适用于美国其他地区。应注意,初始方程是在给定的气候条件下,针对某种特定的路面材料和地基土推导出来的。试验地点气候温和,年降水量约为864mm(34in)。平均冰冻深度约为711mm(28in)。地基土属于A-6和A-7,排水条件不良,CBR值为2~4。 一、设计变量 本节介绍一些与柔性路面和刚性路面都有关的一般设计变量。其他变量如有效路基土回弹模量和结构数将分别在11.3.3和11.3.4中介绍。 (一)时间约束 为了充分利用可能获得的资金,AASHTO设计指南鼓励对交通量大的工程采用较长的分析年限,至少包括一次大修期。因而,分析年限应等于或大于工作年限,如下所述。 1、工作年限 工作年限是指初建的路面结构至需要大修以前的时间,或者是两次大修之间的时间。它相当于新建的、重建的或经过大修的结构,由其初始服务能力,损坏至最终服务能力所经过的时间。设计者必须在部门的经验和政策所规定的最小和最大允许范围内选定工作年限。工作年限的选定受如下因素的影响:路面的功能等级,维护的类型和水平,用于初期修建的资金,寿命周期费用和其它工程上的考虑。

第八章柔性路面结构设计8461515847

8.4以弯沉为设计指标的路面结构厚度计算方法 对结构组合设计初步拟定的路面结构方案,尚须验算其在荷载作下的各应力和位移分量的,并与相应的容许值比较,以判断所拟结构是满足要求。由于各应力、位移分量的大小,与土基、各路面结构层材料的弹性模量和厚度有关,当材料一经选定,亦即弹性模量值确定后,可通过调整各结构层厚度来满足设计要求。 我国现行柔性路面设计方法,以双圆竖直均布荷载作用下的弹性层状体系理论为基础,以路表弯沉值作为路面整体刚度的控制指标。对高等级道路的沥青混凝土面层和半刚性材料基层和底基层,还应验算其层底技应力。 现行城市道路设计规范还规定,对于经常承受较大水平荷载的停车站、交叉口等路段的沥青混凝土面层或沥青混合料面层,应验算在高温季节剪应力是否超出材料的抗剪强度。关于拉应力与剪应力的验算,将在8.5节中叙述。 轮载作用下双轮轮隙中心处的路表回弹弯沉值大小,反映了路基路面结构的整体承载能力。回弹弯沉值小的结构整体承载能力大,能经受轮载的很多次重复作用才出现损坏;而回弹弯沉值大的结构,在经受轮载不多次的重复作用后,路面即呈现某种形态的损坏。因而,在达到相同损坏程度时,回弹弯沉值的大小同该路面结构的累计荷载重复作用次数(即使用寿命)成反比。若能求得回弹弯沉值与使用寿命间的关系,则可依据该路面结构所要求的使用寿命,来确定路面结构设计应控制的路表回弹弯沉值。为此,就需要了解路面结构在使用期内的弯沉变化规律及其与路面结构损坏状态的关系。 根据对已成道路的多年实测资料分析,路表回弹弯沉值随着时间的推移而变化。图8-29所示为半刚性基层上沥青路面弯沉逐年变 化曲线。图中纵坐标是以竣工后第一年不利季节弯沉为基数的相对弯沉。由图可看出,路表面的弯沉变化过程可分为三个阶段。 (图8-29)

路面设计原理与方法

路面设计原理与方法 1.柔性路面,刚性路面定义,结构特性,二者在设计理论与方法上有何主要区别 在柔性基层上铺筑沥青面层或用有一定塑性的细粒土稳定各种集料的中、低级路面结构,因具有较大的塑性变形能力而称这类结构为柔性路面。它的总体结构刚度较小,刚性路面采用波特兰水泥混凝土建造,用水泥混凝土作面层或基层的路面结构。它的分析采用板体理论,不用层状理论。板体理论是层状理论的简化模型。它假设混凝土板是中等厚度的平板,其截面在弯曲前和弯曲后均保持平面形状。如果车轮荷载作用在板中,无论是板体理论,还是层状理论均可采用,两者将得到几乎相同的弯拉应力和应变。如果车轮荷载作用在板边,假定离板边距离小于0.61m(2ft),只能用板体理论分析刚性路面。层状理论之所以适用于柔性路面而不适合于刚性路面,是因为水泥混凝土的刚性比HMA大得多,荷载分布的范围很大。而且刚性路面有接缝存在,这也使得层状理论不能适用。 刚性路面和柔性路面不同,刚性路面可以直接铺设在压实的土基上,或者铺设在加铺的粒料或稳定材料层上。 柔性路面设计以层状理论为基础,假设各层在水平方向是无限的,且是连续的。刚性路面由于板的刚度大和存在接缝,设计基础采用板体理论。如果荷载作用在板中,层状理论同样也能用于刚性路面设计中。 2.机场道面、道路路面各有什么特点。二者在功能和构造方面有什么主要区别?各自的设计原理与方法有什么相同点和不同点 机场道面的功能性能包括平整度、抗滑性能(对于跑道和快滑道)、纵横坡和排水性能等。 道面使用要求:具有足够的结构强度 ?表面具有足够的抗滑能力 ?表面具有良好的平整度 ?面层或表层无碎屑 机场道面是指在民用航空运输机场飞行区范围内供飞机运行使用的铺筑在跑道、滑行道、站坪、停机坪上的结构物。由于飞机运行方式对安全使用的要求高、飞机荷载重量和轮胎接地压力大于车辆荷载等原因,机场道面一般采用热拌热铺沥青混凝土。最多采用的热拌沥青混凝土结构是连续式密级配沥青混凝土,也有少数OGFC,SMA的应用也较为广泛。由于机场沥青混凝土道面所要求具备的强度条件、耐久性、抗滑性能等,在道路路面工程中所采用的沥青表处、沥青贯入碎石等面层结构不适用于机场道面。机场沥青混凝土道面中面层和底面层一般采用密级配沥青混凝土。沥青碎石结构可用于机场沥青混凝土道面底面层。 由于飞机的荷载和轮胎压力比公路车辆的荷载和轮胎压力大很多,因此机场道面通常比公路路面厚一些,而且需要较好的面层材料。无论是公路路面,还是机场道面,任何力学设计方法对荷载和轮胎压力的作用均可自动予以考虑。然而,采用力学法应注意以下不同的地方: (1)、机场道面的荷载重复作用次数通常小于公路路面的荷载重复作用次数。对于机场道面,由于飞机的左右偏离,一组机轮通过若干次只认为是重复作用一次;而对于公路路面,一个车轴通过一次即认为是重复作用一次。实际上公路荷载并不是作用在同一位置,这个情况在破坏极限中用增加荷载容许重复次数加以考虑。对柔性路面的疲劳引入一个修正系数,而对刚性路面的疲劳引入一个当量损伤率。 (2)、公路路面设计采用移动荷载,以荷载作用时间作为输入量描述其粘弹性特性,以荷载重复作用下的回弹模量作为输入量描述其弹性特性。机场道面设计在跑道中部采用移动荷载,在跑道端部采用静荷载,因此,跑道端部的道面厚度大于中部的厚度。

刚性道面和柔性道面

道面设计原理与方法 路面类型一般按路面所使用的主要材料划分,如水泥混凝土路面、沥青路面、砂石路面等。但在进行路面结构设计时,主要从路面结构的力学特征出发,将路面划分为柔性路面和刚性路面。 刚性路面(rigid pavement)指的是刚度较大、抗弯拉强度较高的路面。一般指水泥混凝土路面。水泥混凝土的强度高,与其他筑路材料比较,其抗压强度、抗弯拉强度和弹性模量较其他各种路面材料要大得多,故呈现出较大的刚性。在行车荷载作用下,水泥混凝土结构层处于板体工作状态,竖向弯沉较小,路面结构主要靠水泥混凝土板的抗弯拉强度承受车辆荷载,通过板体的扩散分布作用,传递给基础上的单位压力较柔性路面要小得多。具有较强的扩散应力能力。另外,用水泥、石灰、粉煤灰等无机结合料稳定土或碎(砾)石来修筑的基层,通常称为半刚性基层。此类基层初期强度和刚度较小,其强度和刚度随龄期增长,所以后期体现出刚性路面的特性,但最终强度和刚度仍远小于刚性路面。用半刚性基层修筑的沥青类路面称为半刚性基层沥青路面,这类路面的设计仍然采用柔性路面理论来设计。 柔性路面(flexible pavement)指的是刚度较小、抗弯拉强度较低,主要靠抗压、抗剪强度来承受车辆荷载作用的路面。总体结构刚度较小,在行车荷载作用下的弯沉变形较大,路面结构本身抗弯拉强度较低,它通过各结构层将车辆荷载传递给土基,使土基承受较大的单位压力,路基路面结构主要靠抗压强度和抗剪强度承受车辆荷载的作用。这样的路面叫柔性路面。柔性路面主要包括各种未经处理的粒料基层和各类沥青面层、碎(砾)石面层或块石面层组成的路面结

构。因沥青混合料在配合比设计中有空隙率的考虑,高温环境下,碎石作为骨架基本不动,其他的细微膨胀由预留的空隙消化,即使多年的路面,空隙完全闭合,膨胀量也可以由沥青向上发展消化。更重要的是柔性路面的“柔”,其本身就有一定的低温抗裂性能,这也是柔性路面优势之一,而且低温环境下发生的部分细微裂缝在高温环境下也能自身愈合。 1.刚性路面和柔性路面计算方法分析 1.1 柔性路面 柔性路面的设计是按照弹性层状体系理论设计的。弹性层状理论体系是由两层或两层以上厚度方向上不同材料组成的复合弹性体。弹性层状体系的基本假设如下: (1)各层材料假定为连续,均匀,各向同性的弹性材料,并服从胡克定律; (2)各层平面无限大,垂直方向具有一定的厚度,最下层是半无限体,或不变形刚体; (3)各层水平无限远和最下层无限深度,应力和位移分量为零; (4)层间的结合状态可以是完全连续的,或者是完全光滑的也可以是介于两者之间的半接触状态,但层间不出现脱空的现象; (5)作用与弹性层状体系最上层表面的荷载是轴对称的; (6)体力忽略不计。

新公路沥青路面设计规范解读

新公路沥青路面设计规范解读 (沥青路面设计规范2017) 新的沥青路面设计规范2017年9月1日正式实施。公路路基和路面的所有设计规范至此全部更新完毕,系统基本形成。这次新的沥青路面设计规范改动很大,下面把一些问题和重点提出来。 1、明确了路面结构层和功能层的概念。路面结构层里没有垫层这一说法,路面结构层就由三部分组成:面层、基层和底基层。以前一直说的垫层,可归为功能层或路基处置层。 2、设计引入可靠度设计方法。 3、调整了交通荷载等级的划分方法,用设计年限内累计的大客车和货车交通量来确定。 4、标准轴载依然为单轴双轮100KN。但是轴载换算方法进行了很大调整。 5、最大的变动是沥青路面设计指标,摈弃了使用几十年的设计弯沉。设计指标采用了与路面使用性能相关的沥青混合料疲劳开裂、无机结合料稳定层疲劳开裂、沥青混合料永久变形、路基顶面竖向压应变等。

不同的路面结构类型,设计指标不同,比如对于常见的半刚性基层沥青路面,设计指标为半刚性基层疲劳开裂和沥青面层永久变形。这是和不同的结构类型的力学特性相关的,对于半刚性基层沥青路面,沥青面层主要受压力,当然就不会出现疲劳开裂,所以没有必要验算面层了。具体验算时,计算各结构层疲劳寿命不能小于承受的累计当量轴次。 弯沉作为设计指标取消了,但是在路基和路面交(竣)工验收时,要检测验收弯沉。 路基顶面竖向压应变对于半刚性基层沥青路面而言,不是设计指标,但它是路基的设计指标,这就跟路基设计规范统一起来了。 6、4.1.4条明确指明:沥青结合料类材料层与其他材料层间应设置封层。4.6.3条又说:无机结合料稳定类材料层与沥青结合料结构层之间宜设置封层。“应”和“宜”?为何两个条文用词前后不统一呢? 7、沥青路面结构类型调整为四种:无机结合料稳定类基层沥青路面(半刚性基层沥青路面)、粒料类基层沥青路面(柔性基层沥青路面)、沥青结合料类基层沥青路面(柔性基层沥青路面)和水泥砼基层沥青路面(刚性基层沥青路面)。这是按照基

第十四章 沥青路面设计

第十四章沥青路面设计 一、填空 1.在《柔规》中规定,路面设计以双轮组单轴载 100kN 为标准轴载,并以 _____ 表示。 2. 在《柔规》中采用 _____ 作为路面厚度计算的主要控制指标,所以轴次换算的等效原则是以 _____ 为准。 3. 路表容许弯沉值是柔性路面设计的 _____ 指标,而 _____ 是验算指标。 4. 在车辆垂直荷载作用下,柔性路面产生的总变形包括 _____ 以及 _____ 。 5. 路面弹性模量是表示路面弹性性质的力学指标,又称为 _____ 模量,它表征路面材料的 _____ 能力。 6. 路面弹性性质的力学指标以 _____ 模量表示,它表征了土基或路面材料 _____ 能力。 7. 由于路面的垂直变形实际上是由路面各结构层 ( 包括土基 )_____ 的总结果故它也就综合地反映了路面各结构层及土基的---。 8. 沥青混凝土面层及整体性的基层材料在行车荷载的多次重复作用下,由于疲劳现象而使其 _____ 强度降低,从而在板底出现拉伸裂缝,故对高等级公路必须验算其 _____ 强度。 9. 柔性路面结构设计包括 _____ 设计和 _____ 设计。 10. 通常应选用 ____ 的结合料和强度高的材料作为面层材料,且面层类型选择时,要考虑当地的 _____ 特征。 11. 路面的强度和稳定性并不单纯是一个厚度问题,也不是路面各结构层次的简单 _____ 问题,而是路面各结构层次的 _____ 是否合理的问题。 12. 防治路面翻浆要贯彻 _____ 的原则,最基本措施是防止或减少土基水分的—— 13.柔性路面设计是以 _____ 作为路面整体强度的设计控制指标。表征路面弹性性质的力学指标是 _____ 。 14. 路面结构层的整体强度,以 _____ 作用下轮隙中心处的 _____ 表示。 15. 目前,我国公路工程中确定 Zo 的方法主要有 _____ 和 _____ 。 16. 目前,我国测定柔性路面材料回弹模量的方法有 _____ 和 _____ 。 17. 整层材料测定路面材料回弹模量的方法有 _____ 和 _____ 。 18. 柔性路面设计年限内最基本的任务是:通过设计工作,防止路面结构_____ ,由于 _____ 和自然因素综合作用而出现各种损坏。 19. 为了调查 _____ 情况,应测定原有路面下 _____ 深度内路基分层含水量。 20.原有路面结构调查中,一般应每隔 ____ 挖一试坑,查明原有路面的 _____ 、各结构层厚度及材料组成等。 21. 若原有路面面层为 _____ 结构层,且厚度 _____ ,或气温等于 2 0 ℃±20 ℃时,所测得的弯沉值进行修正,其它情况下测得的弯沉值均应进行温度修正。 22. 对原有路面路况的调查的时间一般应安排在改建工程 _____ 的 _____ 进行。 23. 我国现行规范对原有路面补强时各路段的计算弯沉值的计算公式是。 24. 原有路面设计要得到正确的结果,正确地确定原有路面的 _____ 和 _____ 是非常重要的。

最新半刚性基层沥青路面典型结构设计

半刚性基层沥青路面典型结构设计

半刚性基层沥青路面典型结构设计 黄晓明 【东南大学交通学院南京210018】 摘要:通过对江苏、安徽、浙江三省高等级公路若干线段及沪宁高速公路无锡试验段的调查、测试和分析,提出了高等级公路半刚性基层沥青路面典型结构图式及其注意事项,对半刚性基层沥青路面的结构设计具有较好的参考价值。 关键词:半刚性基层沥青路面结构设计 1概述 我国90%以上的高等级公路沥青路面基层和底基层采用半刚性材料。半刚性基层沥青路面已经成为我国高等级公路沥青路面的主要结构类型。 在七·五期间,国家组织开展了“高等级公路半刚性基层、重交通道路沥青面层和抗滑表层的研究”的研究工作,对沥青混合料的高温稳定性、低温抗裂性,沥青面层的开裂机理、车辙和疲劳、抗滑表层设计和应用、半刚性基层材料的强度特性和收缩特性,组成设计要求等进行了深入的研究工作,提出了较为完整的研究报告,为高等级公路半刚性基层沥青路面的设计和施工提供了理论依据和技术保证。

由于现行的《柔性路面设计规范》颁布于1986年,随着国家对交通运输业的日益重视和人们筑路经验的不断提高,一致认为1986年版的《柔性路面设计规范》已不能满足高等级公路半刚性基层沥青路面的需要。由于对半刚性基层认识不足,使得设计结果具有一定的盲目性,设计结果要么过分保守,要么因路面结构设计不当而产生早期破坏,造成很大的经济损失。因此,如何利用七·五国家攻关项目取得的成果,结合近十年来半刚性基层沥青路面的设计和施工经验,根据实际使用效果,提出适合本地区特点的路面结构,对路面结构设计方法的更新和路面实际使用效果的改善具有重要的意义。根据江苏、安徽、浙江高等级公路的实际,江苏在镇江、无锡、苏州、徐州、连云港共计4线10段进行调查,安徽在合肥、马鞍山、淮南三市调查了3线8段,浙江在嘉兴和杭州调查了2线5段共计9线23段。调查的路面结构具有一定的典型性。 2国内外研究概况 2.1国外国道主干线基层的结构特点 国外国道主干线基层结构有以下特点: (1)多数采用结合料稳定的粒料(包括各种细粒土和中粒土)及稳定细粒土(如水泥土、石灰土等)只能用作底基层,有的国家只用作路基改善层。法国和西班牙在重交通的高速公路上,要求路面底基层也用结合料处治材料。 (2)使用最广泛的结合料是水泥和沥青,石灰使用得较少。此外,还使用当地的低活性慢凝材料和工业废渣,如粉煤灰、粒状矿渣等。

半刚性基层和柔性基层路面运营期养护对比分析

半刚性基层和柔性基层路面运营期养护对比分析 半刚性基层和柔性基层路面运营期养护对比分析 摘要:公路半刚性基层和柔性基层路面由于力学性能的不同, 在运营期间会出现不同的路面病害,通过对公路运营期间养护的对比分析,为公路改建和新建沥青路面方案比选提供参考意义。结合安徽省宣城市S322水仙路宣城至泾县段的运营期养护工作,从半刚性基 层路面和柔性基层路面受力特性、路面病害类型、养护对策和费用等方面进行了对比分析,全面阐述了半刚性基层和柔性基层路面的优缺点。 关键词:半刚性基层;柔性基层;路面养护;对比 Abstract: The highway semi-rigid and flexible base pavement due to the different mechanical properties, during the operation period will appear different pavement distress, through comparative analysis of highway maintenance operation period, for the highway reconstruction and new asphalt pavement scheme selection of reference significance. Unifies the Anhui province Xuancheng city Xuancheng road to Jingxian County S322 Narcissus operation maintenance work, are compared and analyzed from the semi-rigid base pavement and flexible base pavement stress characteristics, pavement type, maintenance and cost etc, a comprehensive exposition of the advantages and disadvantages of semi-rigid base and flexible base pavement. Key words: semi-rigid base; flexible base pavement maintenance; comparison; 中图分类号:U415 一、前言 我市升级改造后国省干线公路绝大部分都采用半刚性基层沥青 混凝土路面,半刚性基层具有一定的抗拉强度、抗疲劳强度、良好的水稳定特性。这些都符合路面基层的要求,使得路面基层受力性能良

复合式路面结构特点及应用1

复合式路面结构特点及应用 1、复合式路面 1.1无论从经济、技术、使用性能方面都优于单一柔性或刚性路面结构。 规范定义:面层由两层不同材料类型和力学性质的结构层复合而成的路面 1.2种类: 1)水泥复合式路面:碾压砼—普通砼(RCC —PCC )、贫砼—普通砼(EPCC —PCC )、 2)水泥混凝土加铺沥青混凝土复合路面: 碾压混凝土—沥青面层(RCC —AC )、 普通混凝土—沥青面层(PCC —AC )、 钢筋混凝土—沥青面层(JRC —AC )、 连续配筋混凝土—沥青面层(CRC —AC )。 1.3 水泥混凝土——沥青混凝土(CC-AC )复合路面特点: 在水泥混凝土路面上加铺沥青层,即修筑水泥混凝土与沥青混凝土复合式路面结构,不仅可减少沥青用量(与柔性路面相比),而且可弥补刚性路面的不足(行车舒适性差、养护难度大等)。 沥青面层薄时的应力分布 沥青面层厚时的应力分布 2.1 沥青

路面路用性能 (1)足够的力学强度,能承受车辆荷载施加到路面上的各种作用力; (2)一定的弹塑性变形能力,能承受应变而不破坏; (3)与汽车轮胎附着力较好,可保证行车安全; (4)有高度的减震性,可使汽车快速行驶,平稳而低噪音; (5)不扬尘,且容易清扫和冲洗; (6)维修工作比较简单,且沥青路面可再生利用。 2.2 沥青路面不同于其他路面的使用性能 1)沥青路面高温性能 沥青路面高温性能习惯上是指沥青混合料在荷载作用下抵抗永久变形的能力。稳定性不足,一般出现在高温、低加荷速率以及抗剪切能力不足时,也既沥青路面的劲度较低情况下(劲度——一定温度条件下的应力) 对于渠化交通的沥青路面,高温稳定性问题主要表现为车辙; 推移、拥包、波浪等类损坏,主要是由于沥青路面在水平荷载作用下抗剪强度不足所引起的。 2)沥青路面的低温稳定性 沥青路面在低温环境下,失去柔性,变现出一定程度的脆性,并出现各种形式的低温裂缝。路面上出现的各种裂缝,包括纵向裂缝、横向裂缝、龟裂、网裂等多与沥青路面低温下的脆性有关。 从国内路面裂缝的调查结果可知,由于路面设计不周或施工原因,而导致结构层本身强度不足,不能适应日益增长的交通量及轴载作用而产生的开裂,最初一般表现为纵向开裂,然后发展为网裂,这一类由荷载引起的裂缝,在中、低级道路及一些超载严重的高等级道路车道轮迹处常见。对于大多数高等级公路来说,由于普遍采用了半刚性基层,有足够的强度,因此这一类荷载裂缝并不是主要的。相反另一类裂缝即非荷载裂缝(低温裂缝)则普遍存在。 非荷载裂缝大部分为横向裂缝,主要为:①由于降温及温度循环反复作用,在离去路面产生的温度收缩裂缝;②由于半刚性基层收缩开裂产生的反射裂缝。但是许多裂缝是多方面原因共同作用而产生的。 沥青路面的低温性能与沥青混凝土的低温变形能力有关,在很大程度上取决于沥青材料的低温性质、沥青与矿料的黏结强度、级级配类型以及沥青混合料的均匀性。从低温抗裂性能要求出发,沥青混合料在低温时应具有良好的低温松弛性能,有较低的劲度和较大的变形适应能力,在降温收缩过程中不产生大的应力积聚,在行车荷载和其他因素的反复作用下不致产生疲劳开裂。 3)沥青路面水稳定性

柔性基层沥青路面结构分析

74 总382、383、384期 2016年第04、05、06期(2月合刊) 道路工程 收稿日期:2016-01-28 作者简介:满长波(1980—),男,助理工程师,主要从事公路设计及管理方面的工作。 柔性基层沥青路面结构分析 满长波 (保定市保通公路勘测设计有限责任公司,河北 保定 071000) 摘要:柔性基层沥青路面具有较强的抗疲劳和抗剪切强度,能有效克服半刚性基层沥青路面容易出现裂缝的情况。介绍柔性基层的特点,对柔性基层沥青路面结构进行受力分析,提出柔性基层与半刚性基层沥青路面的优化组合方式,在高速公路施工中应用的可行性,从而有效减少沥青路面病害的出现,延长公路的使用寿命。关键词:柔性基层;沥青路面;受力;破坏中图分类号:U416.2 文献标识码:B 0 引言 目前,半刚性基层沥青路面由于具有材料来源广泛、施工便捷、成本低廉等优点,所以依旧是我国大多数高等级公路所采用的路面结构类型。近年来,随着交通运输业的迅猛发展,道路路面的车载量与日俱增,大多数的半刚性基层沥青路面的破坏问题日益严峻,甚至部分高等级公路已经处于大修期阶段,直接影响了道路行车的安全性和稳定性。而柔性基层沥青路面的出现则弥补了上述路面形式的缺点和不足,对其进行分析和探究具有重要的意义。 1 半刚性基层特点分析 有关数据表明,当前我国高等级公路路面中,沥青路面所占有比例高达80%~90%,且其中很大一部分采用了半刚性基层类型。通常半刚性基层具有刚度大、强度高、板体性强,并且取材便捷、成本低等特点,但是在使用的过程中也存在一定的缺陷和不足,具体主要表现为因温度或者干缩所引发的裂缝问题,并且裂缝的发展速率比较快,而一旦渗入雨水,就会使公路基层的顶面出现软化,进而可能在裂缝周边出现坑槽或者龟裂问题。 2 柔性基层的特点 柔性基层沥青路面在我国的应用处于起步阶段,目前已逐渐成为我国国内研究的重点和热点内容。沥青稳定碎石等公路柔性基层都具有较强的抗疲劳和抗剪切强度,并且韧性和自愈能力比较好,有利于克服半刚性基层所存在的各种缺点,比如层间结合度不好,或者基层出现反射裂缝以及唧浆等问题 [1][2] 。比如沥青稳定碎石作为一种重要的 柔性基层结构材料,与半刚性基层材料相比,具有较强的抗疲劳性和抗剪强度,所以裂缝不太容易出现,同时其与沥青面层所共同构成的全厚式沥青路面的厚度可达20cm 以上,所以整体沥青路面层的结构比较均匀,施工时间短, 维修比较简便,使用年限也比较长。就具体的内容而言,其主要包括以下几个方面: ⑴相比于半刚性基层结构,沥青稳定碎石基层结构类型的公路,其基层施工对交通产生的影响比较小,有利于缩短工期,增强运营的经济效益。一般来说,公路的面层结构铺设可以在沥青稳定碎石基层施工完毕后的一天时间后来进行,而其他类型的公路基层则需要比较长的时间进行合理的养护,所以工期会较长[3]。 ⑵相比于半刚性基层结构,沥青碎石稳定基层结构类型具有更好的使用性能。不仅可以确保公路面层结构的平整度,为行车人员提供一个安全、稳定的使用环境,还可以增强公路路面的耐久性和舒适度,尤其有利于消除半刚性基层所存在的早期损坏问题。 ⑶相比于半刚性基层结构,沥青稳定碎石基层结构类型具有保护环境的特性。这种全厚式沥青路面结构除了具有均匀性外,还有利于改建和维修已经出现质量问题的路面,同时也可以全面重复利用公路基层和面层的各种施工材料,节省后续的维修费用以及资源,污染性比较小,所以是一种典型的环保基层结构。 3 柔性基层沥青路面弯沉及拉应力分析 3.1 路表弯沉分析 弯沉作为反映路面总体刚度的一个重要表征指标,在相同荷载和相同土基支承的条件下,弯沉值越小,表明总体刚度越大、抗变形能力也越强。相关研究表明:在轴载逐步增长的背景下,无论是半刚性基层沥青路面还是柔性基层沥青路面,其对应的路面弯沉值均会相应的增大,这实际上也反映了路表弯沉对车辆轴载变化具有很强的敏感性,但是半刚性路面的弯沉增长率要远小于柔性基层沥青路面,所以柔性基层沥青路面的路表弯沉对于车辆轴载变化更加敏感[4]。

柔性沥青路面结构研究

柔性沥青路面结构研究 发表时间:2019-08-29T11:36:27.733Z 来源:《防护工程》2019年11期作者:王圣心林昆 [导读] 目前K0+000~K1+200段通车已达半年,在频繁的轻微地震与重车荷载作用下无任何明显车辙及不均匀沉降。 中交第四航务工程勘察设计院有限公司广东广州 510230 摘要:本文以澳洲标准和巴新西高地省芒特哈根市凯尔特格路口至芒特哈根机场四车道高速公路升级改造项目为依托,研究柔性沥青路面在海外工程的应用,希望能为类似项目提供借鉴。 关键词:巴新;澳标;高速;沥青路面结构;柔性路面 Study on asphalt pavement structure of road Abstract: Based on the Australian?Standard and Reconstruction and Upgrade of 4 Lane Highway Project in Mount Hagen of Papua New Guinea, research the application of flexible asphalt pavement structure in overseas project, hoping to provide reference for similar projects. Keywords: Papua New Guinea; Australian standard; Highway; Asphalt Pavement structure; Flexible Pavement 引言 沥青路面在各国高等级公路中被广泛应用,许多国家和地区制订或采用了不同的标准,如日本的《路面设计施工指针》、美国的《路面结构设计指南》、澳大利亚的《澳大利亚公路路面设计指南》、我国的《公路沥青路面设计规范》等。巴布亚新几内亚的设计标准主要采用澳大利亚标准(以下简称“澳标”)。 1柔性路面的特点 柔性路面是指抗弯拉强度和刚度较低,主要靠抗压和抗剪强度来承受车辆荷载并在此荷载作用下产生一定弯沉变形的路面。其受力特性决定了柔性路面具有优异的抗裂性。 柔性路面工作时主要依靠抗压强度和抗剪强度来抵抗行车荷载,其承载能力取决于整个层状体系的荷载扩散特性,受土基强度和稳定性的影响较大,设计时需综合考虑路基结构。 2国内外柔性基层沥青路面的应用与研究 2.1国内柔性基层沥青路面的应用与研究 我国对柔性基层材料的研究起步较晚,主要研究方向为沥青级配碎石类材料。由于地理位置、自然环境以及交通量的不同,我国在借鉴国外研究成果的基础上根据国情进行了进一步的研究,如:东南大学的杨群教授提出了沥青稳定基层混合料的设计方法。长安大学的袁宏伟教授提出了柔性基层的设计与施工方法,并实践证明了柔性基层的低温抗裂性优于半刚性基层。 我国已建成道路采用柔性基层的道路较少,但根据现有经验,柔性基层的道路在经过长期使用之后仍能保持良好的路面结构与较高的技术指标,例如:成渝高速以及上海市部分道路均采用了级配碎石的柔性基层,目前相关段落仍运行良好。 现阶段我国在柔性路面的研究成果相对匮乏,仍需广大专家及从业人员继续加大对柔性基层沥青路面的研究力度。 2.2 国外柔性基层沥青路面的应用与研究 根据国外使用经验,柔性基层的沥青路面在耐久性、低温抗裂性等技术指标均优于半刚性沥青路面。德国的沥青路面以柔性结构为主,一般采用稳定碎石作为基层,半刚性材料一般应用于底基层。日本的沥青路面主要采用沥青混凝土作为面层,沥青稳定碎石作为基层。 LTTP DPS-6 (FHWA-RD-00-165)[3]中的数据揭示:绝大部分的柔性基层沥青路面在使用15年以上才需要维修,很多柔性基层沥青路面超过20年才出现损坏。 目前国际上广泛采用的沥青路面设计方法有两种:1、经验法,包括CBR法和AASHTO法。2、力学经验法:包括AI法和SHELL法。表2.1 部分国家路面结构形式

道路基层的分类

道路基层的分类: 柔性基层 半刚性基层 刚性基层 复合式基层 柔性基层:采用热拌或冷拌沥青混合料、沥青贯入式碎石,以及不加任何结合料的粒料类等材料铺筑的基层。 特性:不易产生温缩和干缩开裂,可以有效抑制和减少沥青路面反射裂缝的产生 半刚性基层:用无机结合料稳定土铺筑的能结成板体并具有一定抗弯强度的基层 特性:基层整体好、承载力高、刚度大、水稳定性好,作为路面的主要承重层,可以减薄沥青面层厚度,节省工程造价 主要材料:水泥稳定粒料、二灰稳定粒料 刚性基层:采用普通混凝土、碾压式混凝土、贫混凝土、钢筋混凝土、连续配筋混凝土等材料铺筑的路面基层。 特性:刚度大、强度高、稳定耐久、板体性好等特点 复合基层:上部使用柔性材料(沥青稳定碎石、沥青贯入碎石、热拌沥青碎石、乳化沥青碎石、级配碎石、级配砂砾等),下部使用半刚性材料(无机结合料的稳定类)的铺筑的路面基层。 特性:力学性能均介于柔性基层与半刚性基层之间,因此该基层不会发生如半刚性路面中由于基层疲劳开裂引起的自下而上的结构性破坏,也缓解了面层的剪应力水平,整体受力状态大为改善;具有抗疲劳性能好、板体性强、分散荷载能力强、减小土基应力等特点 武金堤路基层采用20cm贫混凝土基层+20cm5%水泥稳定碎石基层+20cm3.5%水泥稳定碎石基层,下面将就贫混凝土基层及水泥稳定碎石基层进行分析阐述 在级配碎石中,掺入适量的水泥,加水经拌和压实及养生后得到的混合料,其抗压强度符合规定的要求时,称为水泥稳定级配碎石。用水泥稳定级配碎石铺筑的基层称为水泥稳定级配碎石基层。 水泥稳定级配碎石做基层是,水泥剂量不超过6%,压实厚度不应超过20cm 一、水泥稳定碎石的强度特征 1.水泥稳定碎石的强度形成机理 水泥稳定碎石作用原理:水泥稳定碎石是以级配碎石作骨料,采用一定数量的胶凝材料和足够的灰浆体积填充骨料的空隙,按嵌挤原理摊铺压实。其压实度接近于密实度,强度主要靠碎石间的嵌挤锁结原理,同时有足够的灰浆体积来填充骨料的空隙。它的初期强度高,并且强度随龄期而增加很快结成板体,因而具有较高的强度,抗渗度和抗冻性较好。水泥稳定碎石水泥用量一般为混合料3%~7%,7天的无侧限抗压强度可达5.0Mpa,较其他路基材料高。水泥稳定碎石成活后遇雨不泥泞,表面坚实,是高级路面的理想基层材料。

柔性基层沥青路面结构设计研究

柔性基层沥青路面结构设计研究 发表时间:2015-06-15T11:26:47.770Z 来源:《工程管理前沿》2015年第7期供稿作者:吴强 [导读] 柔性基层沥青路面的结构特征在柔性基层沥青路面施工的过程中主要通过加厚基层的方式来对柔性基层进行实现。 吴强(中铁四局集团有限公司设计研究院安徽合肥 230023) 摘要:柔性基层沥青路面是道路结构设计与施工的重要内容之一,同时也是安全隐患出现较多的一部分。因此加强柔性路面结构设计工作的研究是非常有必要的,需要引起我们的重视,从而为后面的施工奠定基础,基于此本文分析了柔性基层沥青路面结构设计的相关方面。 关键词:柔性基层;沥青路面;结构设计 1、柔性基层沥青路面的结构特征在柔性基层沥青路面施工的过程中主要通过加厚基层的方式来对柔性基层进行实现。在具体的施工过程中其结构主要分为两个层次,第一层次为刚性基层,此部分基层的施工与传统施工方式类似,不同的是在基层厚度方面存在一定的差异;刚性基层主要分为三个层次,第一层次为土基,即道路施工过程中攫取土方之后的裸土,此基层在施工中需要注意平整度,其他材料与性质方面并没有特殊要求。 第二层次为垫层,此层级施工中与传统施工相同,采用砂砾为主要垫层材料,压实后要求其干密度在2.13-2.26g/cm3 之间。第三个层级为底基层,此层级在施工时是主要区别于刚性基层的关键,在具体的工艺层面分为两个不同的部分,第一部分为5-10cm 的石灰水泥稳定土,采用少量水泥混合石灰与回填土搅拌的方式来进行,在首次铺垫之后进行逐层的压实,压实后密度要求在1.85g/cm3 之上。第二部分为水泥稳定碎石,采用碎石搅拌干水泥的工艺进行供料处理。此部分是保障基层具有较高的柔性的核心,铺设厚度在2-3cm 之间,如果铺设厚度较高则会造成成本过高,同时使得路面柔性过大,承载力不足。 柔性基层沥青路面的第二个层次为柔性基层,此部分基层铺设只要分为三个层次;首先,采用规范级碎石进行铺设,压实后密度为2.28-2.30g/cm3 之间;其次,采用断级碎石进行铺设,压实后密度在2.30-2.38g/cm3 之间;最后,表层基层采用连续级碎石进行铺设,压实后密度在2.36-2.45 之间。不同层级之间的压实密度逐层递增,这使得柔性基层的柔性主要来源于基层深处的内在柔性指标,而非面层提供的单一柔性。同时,此种施工工艺能够在一定程度上保障整体柔性的表达,在承载力方面更为突出,这主要是由于三层碎石基层的共同承载以及承载力传导所带来的积极效能。 在基层铺设完成之后,最外层进行沥青铺设,由于柔性基层的结构特点,在面层铺设的过程中多采用改性沥青(AC13,马歇尔)的方式进行面层施工。此种施工方式在保障了基层柔性的基础上,以刚性表层为依托,加大的路面整体的磨损指标,对车辙等压痕具有显著的规避效果。 2、柔性基层沥青路面结构的价值2.1、自我修复能力。随着道路运输压力的增加和道路使用年限的增加,路面有可能出现一些裂缝。而柔性基层沥青路面结构的基层材料粘弹性强,它有自我修复能力,可以避免裂缝的扩大化,从而有效提高使用寿命。 2.2、经济效益和社会效益高。从短期来看,柔性基层沥青路面结构的成本远高于半刚性基层沥青路面结构,但是,其使用寿命、耐久性、性能都比半刚性基层沥青路面要好,而且维修费用少,只要做好基本的日常维护管理工作就好。所以说,从长远角度来看,柔性基层沥青路面结构将会创造更大的经济效益。另外,柔性基层沥青路面结构节约了能源,因此,又能创造良好的社会效益和环境效益。 2.3、减少路面的损坏。柔性基层沥青路面一般不会发生结构性损坏,而半刚性基层沥青路面的耐久性差,容易出毛病和故障,一旦出现问题就只能挖掉重建,进而就带来—大笔财政支出。而柔性基层沥青路面不容易出现结构性损坏,其重建工程少,大大节约了成本,所以说,从长远来看具有良好的经济效益。 2.4、剪应力计算。我们都知道,在停车场、车站、交通拥挤处、交叉口等地的路面容易出现车撤、坑槽等破坏现象。车辆的水平力系数与其轮胎与路面的摩擦力有关,在正常行驶状态下,水平力系数小,而转弯、紧急停车等状态下,水平力系数大。在进行剪应力计算时,为了确保路面结构的质量,我们一般选择最大水平力系数作为参考系数。在沥青路面结构上,其路表、车轮边缘的剪应力较大路表下内的剪应力最大,因此,我们将这一点作为剪应力的验算是比较安全的。 3、柔性基层沥青路面结构设计原则沥青路面结构层次的合理选择和安排能发挥各结构层的最大效能,使整个路面结构经济合理的关键。在路面结构组合设计中要遵循下列原则。 1)适应行车荷载作用的要求作用在路面上的行车荷载,通常包括垂直力和水平力。路面在垂直力作用下,内部产生的应力和应变随深度向下递减。水平力作用产生的应力、应变,随深度递减的速率更快。路面表面还同时承受车轮的磨耗作用,因此,要求路面面层具有足够的强度和抗变形能力。 2)在各种自然因素作用下稳定性好如何保证沥青路面的水稳性,是路面结构层选择与组合需要解决的重要问题。在潮湿和某些中湿路段上修筑沥青路面时,由于沥青层不透气,使路基和基层中水分不断向基层积聚,尤其是土的塑性指数较大时,遇水变软,强度和刚度急剧下降,结果导致路面开裂破坏。所以,沥青路面的基层一般应选择水稳性好的材料。 3)考虑结构层的特性路面结构层通常是用密实级配、嵌挤以及形成板体等方式构成的,因而如何构成具有要求强度和刚度并且稳定的结构层是设计施工都必须注意的问题。因此,为了保证路面结构的整体性和结构层之间应力传递的连续性,应尽量使结构层之间结合紧密稳定。在进行路面设计时,要按照面层耐久、基层监视、土基稳定的要求,贯彻因地制宜、合理选材、方便施工、利于养护的原则以及上述结构组合原则,拟定结构方案,做到技术先进,经济合理。 4、柔性基层路面的结构设计4.1、不同结构层的极限标准1)路基的永久变形为了避免路基发生剪切破坏或沉陷,路基的永久变形应控制在一定的范围内,以避免路面发生沉陷、车辙甚至整体性损坏,保证路面具有良好的使用性能,使用的指标有:路基表面的垂直应变或应力,路基表面的活动剪应力。 2)整体性基层和沥青面层底部的拉裂为保证水泥或石灰等稳定材料构成的整体性基层和沥青混合料面层在重复荷载作用下不出现疲劳开裂,采用沥青面层或基层底面的拉应变或拉应力为设计指标。 3)路表面综合弯沉用该指标表征路面各层抵抗垂直变形的综合能力,反映路基路面结构整体的刚度,用于控制沉陷和变形。 4.2、柔性基层路面的结构设计1)沥青路面结构类型。沥青路面结构层通常包括四大部分,即:面层、基层、垫层以及底基层等。经过多年的研究与实践,人们习惯把沥青路面结构分成半刚性基层沥青路面结构、组合式工结构、组合式II 结构、柔性基层沥青路面结构以

基层是柔性路面和半刚性路面的主要承重层

基层是柔性路面和半刚性路面的主要承重层。对于沥青路面和水泥混凝土路面,影响其使用性能和寿命的最关键因素是基层的材料和质量。在任何公路路面工程基层施工过程中,施工质量控制流程从原材料选取、混合料配合比设计抓起,并进行混合料含水量、水泥剂量、强度和压实度等指标的现场检测,最后做好养生和交通管制工作。 一般认为,基层要有足够的强度、刚度、平整度,还应有足够的水稳性、冰冻稳定性和抗冲刷能力,同时,要求其收缩性小,并与面层结合良好。为此,需要做好以下几个方面工作。 1 原材料选取 1.1 材料种类及要求 水泥稳定碎石基层施工时,为使混凝土有足够的时间进行搅拌、运输、摊铺、振捣等工序,要求水泥的初凝时间不能过短;在振捣工作结束后,则要求能尽早凝结并硬化,故水泥的终凝时间不宜过早。水泥的终结时间一般要求6h~10h,其中,夏季施工时,气温很高,表面层的凝结硬化速度很快,水泥终凝时间应尽可能达到10h左右;春秋季施工时水分蒸发缓慢,终凝时间可缩短至6h左右。因此,宜选用初凝时间3h以上和终凝时间较长(宜在6h以上)的水泥,不可使用快硬、早强以及已受潮变质的水泥。同时水泥标号不应太高,宜为32.5。 一般情况,不宜轻易更改、掺混原材料,特别是粗、细集料。若选取多处料源将增加拌合场地面积,增大配合比工作量,并加大现场施工、检测费用。因此,要找准开采量大、质量高的矿口,以破碎出稳定的高质量的粗细集料。 1.2 集料 料源的稳定是混合料获得良好级配的基本保证。相对于沥青面层的料源来讲,基层的料源由于规模相对偏小,机械化程度不高,因面造成石料加工质量普遍不够稳定。存在着最大粒径超标现象以及石屑加工偏粗的问题,这两方面都对基层的施工质量造成很大的影响。集料最大粒径越大,则摊铺的平整度越难以达到,且容易出现分层离析现象,摊铺机也易损

小议市政道路柔性基层沥青路面结构

小议市政道路柔性基层沥青路面结构 摘要:柔性基层结构的沥青路面比传统的半刚性基层结构沥青路面有更多优越性,能取得更好的经济效益和社会效益,在发达国家公路建设中被广泛运用。随着社会经济的快速发展,我国的公路网越来越完善,而以前的市政道路大部分是半刚性基层结构的沥青路面,随着运输压力的增加,半刚性基层结构的沥青路面逐渐无法满足基本运输需求,急需在公路建设中推广柔性基层结构的沥青路面。 关键词:柔性基层沥青路面;半刚性;特点;碾压 我国的公路建设大部分采用的是半刚性基层沥青路面结构,这种路面结构内部排水性能弱,损坏后没有自我愈合能力,必须挖掉重建。而柔性基层沥青路面的使用寿命长,维护费用少,对自然环境的影响小,但是其成本相对较高。随着社会经济的快速发展,传统半刚性基层沥青路面承受的压力越来越大,无法满足日益增长的运输需求,推广柔性基层沥青路面是很有必要的。 1柔性基层沥青路面结构的特点 沥青路面是一种多层结构路面,一般可以分为:面层、基层、底基层和垫层。根据沥青路面的结构,我们可以将目前的沥青路面分成五种类型:半刚性基层沥青路面、组合式Ⅰ结构沥青路面、组合式Ⅱ结构沥青路面、柔性基层沥青路面、全厚式沥青路面。 柔性基层指的是采用沥青混合料、沥青贯入式碎石、粒料类等柔性材料形成的基层。一般将级配碎石和沥青碎石等柔性材料采用冷拌或热拌的方式形成基层路面。这样可以使面层和基层之间实现承受力的传递,保证路面排水的顺畅,使路面结构尽量避免因水带来的损害,提高路面的抗剪性。同时,运用级配碎石组成的柔性基层可以有效减少路面的反射裂缝情况的出现,这样就可以有效提高路面的使用寿命。为柔性基层沥青路面制定完善的日常维护管理计划,可以提高其使用寿命,提高经济效益和社会效益。 在柔性基层沥青路面的建设中,采用密实度高的沥青材料级配可以提高路面的抗变形能力和强度。一般而言,柔性基层沥青路面的沥青层比较厚,所以说传递给柔性基层的压应力就变小了,而路面抗变形的能力也就提高了。而且,柔性基层中的级配碎石基层不会对柔性基层沥青路面结构的抗车撤功能产生不良影响。级配碎石基层的下面就是具有高强度的路基土,这样就一定程度上降低了路基上层的压应力。 级配碎石基层有利于提高路面结构的排水性能。传统的半刚性基层沥青路面结构的排水性能差,受水资源的影响大。而级配碎石基层可以提高路面结构的排水性能,这样就可以有效减少水害。而且,在建设施工过程中,可以利用沥青来稳定级配碎石基层,然后再根据实际情况的需要加厚沥青路面层,这样就可以使

相关文档