文档视界 最新最全的文档下载
当前位置:文档视界 › 碳酸盐岩基本特征

碳酸盐岩基本特征

碳酸盐岩储集层

碳酸盐岩储集层 碳酸盐岩油气储层在世界油气分布中占有重要地位,其油气储量约占全世界油气总储量的50%,油气产量达全世界油气总产量的60%以上。碳酸盐岩储集层构成的油气田常常储量大、单井产量高,容易形成大型油气田,世界上共有九口日产量曾达万吨以上的高产井,其中八口属碳酸盐岩储集层。世界许多重要产油气区的储层是以碳酸盐岩为主的;在我国,碳酸盐岩储层分布也极为广泛。[1] 碳酸盐岩的储集空间,通常分为原生孔隙、溶洞和裂缝三类。与砂岩储集层相比,碳酸盐储集层储集空间类型多、次生变化大,具有更大的复杂性和多样性。 砂岩与碳酸盐岩储集空间比较(据Choquette和Pray,1970 修改) (一)原生孔隙 1、粒间孔隙

多存在于粒屑灰岩,特征与砂岩的相似,不同之处是,易受成岩后生作用的改变,常具有较高的孔隙度。 另外,有的由较大的生物壳体、碎片或其它颗粒遮蔽之下形成的孔隙,称遮蔽孔隙,也属粒间孔隙。 2、粒内孔隙 是颗粒内部的孔隙,沉积前颗粒在生长过程中形成的,有两种: 生物体腔孔隙:生物死亡之后生物体内的软体腐烂分解,体腔内未被灰泥充填或部分充填而保留下来的空间。多存在于生物灰岩,孔隙度很高,但必须有粒间或其它孔隙使它相通才有效。 鲕内孔隙:原始鲕的核心为气泡而形成。 3、生物骨架孔隙 4、生物钻空孔隙 5、鸟眼孔隙 (二)次生孔隙 1、晶间孔隙 2、角砾孔隙 3、溶蚀孔隙 根据成因和大小,包括以下几种: 粒内溶孔或溶模孔:由于选择性溶解作用而部分被溶解掉所形成的孔隙,称粒内溶孔。整个颗粒被溶掉而保留原颗粒形态的孔隙称溶模孔。粒间溶孔:胶结物或杂基被溶解而形成。 晶间溶孔:碳酸盐晶体间的物质选择性溶解而形成。 岩溶溶孔洞:上述溶蚀进一步扩大或与不整合面淋滤溶解有关的岩溶带所形成的较大或大规模溶洞。孔径<5mm或1cm为溶孔;>5mm或1cm为溶洞。 4、裂缝

碳酸盐岩岩性识别技术综述

碳酸盐岩岩性识别技术综述 岩性识别是碳酸盐岩储层测井评价的首要任务。以测井资料为主,综合运用微观岩心分析技术、宏观岩相分析技术,对碳酸盐岩储层的岩性、沉积成岩环境进行研究,并划分出岩石的主要类型。 (一)岩性识别技术 复杂岩性碳酸盐岩储层,其岩石骨架的主要矿物成分是方解石和白云石,通常还含有一些粘土矿物、有机质、石膏、盐岩、黄铁矿、硅质等,它们虽然含量不多,但对储层的影响及对测井信息的贡献都较大。因此,利用测井资料或者与其它资料相结合对其进行有效识别是十分必要的,以下是中国石油常用的两个单项技术。 1.测井交会图矿物成分识别技术 u技术原理: 利用碳酸盐岩矿物成分在测井曲线上的响应差别,通过2条或多条对特定矿物敏感的测井曲线做交会图的方法,可以有效识别复杂岩性岩石的骨架、粘土矿物等组分。常用的测井资料包括:岩性密度、补偿中子、声波时差、光电系数、热中子俘获截面、自然伽马能谱等。 u技术特点: ○1以常规测井资料组合应用为主; ○2需要岩石物理标准解释图版做支撑; ○3矿物成分最优化测井解释。 u技术指标: ○1资料点在标准图版上的分布应符合剖面岩性特点; ○2资料点在标准图版上的分布应符合剖面物性范围; ○3有取芯段的岩性、物性资料点检验标准图版应在资料点分布范围之内。

u 适用范围: 孔隙型、溶孔型碳酸盐岩地层。 u 实例: ○ 1中子-声波交会图技术识别灰岩和白云岩 利用中子-声波时差交会法,能较好地识别白云岩和灰岩骨架。右图中2330-2333m 井段的蓝色点,全部落在灰岩线上,而2341m-2345m 井段红色点却大部分掉在灰岩线与白云岩线之间,仅少数点落在白云岩线上,说明该井上部地层岩性主要为纯灰岩,下部主要为灰质云岩,较纯的白云岩并不多。 ○ 2光电吸收指数-密度交会图技术识别灰岩和白云岩: 利用白云岩光电吸收指数值低于灰岩,而密度值却明显高于灰岩的特点,采用光电吸收指数值与密度交会可以较好地识别灰岩和白云岩。左图中, 2322-2340m 井段的红色点,全部落在白云岩线上,而2341m-2345m 井段的蓝色点却大部分掉在灰岩线 与白云岩线之间。说明该井上部地层岩性主要为纯白 云岩,下部主要为灰质云岩。 2.岩心分析与测井资料相结合矿物成分识别技术 u 技术原理: 岩心分析提供了一种直接测定岩石骨架矿物成分的方法,包括利用岩石学显微镜、扫描电镜、 阴极发光、微量元素分析、同位素分析等技术。它能够从微观角度,考察复杂岩性碳酸盐岩的岩石学特征、储集空间类型、物性特征及地球化学特征。将它与常规测井,声电成像、偶极子阵列声波及核磁等特殊测井方法相结合,以岩心资料刻度测井资料,就能够对地层的岩性、储渗特性及含油性进行综合识别和评价。 u 技术特点:

岩浆岩沉积岩变质岩的主要特征与类型,简述三大岩石的相互转化过程。

题目:试述岩浆岩、沉积岩、变质岩的主要特征与类型,简述三大岩石的相互转化过程。 一、岩浆岩:或称火成岩,是由岩浆凝结形成的岩石. 1、岩浆岩的主要特征:岩浆岩中有一些自己特有的结构和构造特征错误!、气孔状构造:在温度、压力骤然降低的条件下形成的,造成溶解在岩浆中的挥发份以气体形式大量逸出,形成气孔状构造。当气孔十分发育时,岩石会变得很轻,甚至可以漂在水面,形成浮岩. 错误!、杏仁状构造:上述气孔形成的空洞被后来的物质充填,就形成了杏仁状构造。 错误!、流纹构造、绳状构造:岩浆喷出到地表,熔岩在流动的过程中其表面常留下流动的痕迹,有时好像几股绳子拧在一起。 错误!、枕状构造:岩浆在水下喷发,熔岩在水的作用下会形成很多椭球体.上述这些特殊的构造只存在于岩浆岩中。还有块状构造和斑状构造.除了构造以外还有因为矿物的结晶程度、集合体形状与组合方式的不同可以有不同的结构,如玻璃质结构、隐晶质结构、显晶质结构。 2、岩浆岩的主要类型:岩浆岩依据矿物组成的差别,可以分为以下四类 错误!超基性岩类:二氧化硅含量小于45%,多铁、镁而少钾、钠,基本上由暗色矿物组成,主要是橄榄石、辉石,二者含量可以超过70%.其次为角闪石和黑云母;不含石英,长石也很少。这类岩石最常见侵入岩是橄榄岩类,喷出岩是苦橄岩类。 错误!基性岩类:化学成分的特征是SiO2为45-53%,Al2O3可达15%,CaO 可达10%;而铁镁含量约各占6%左右。岩石颜色比超基性岩浅,比重也稍小,一般在3左右。侵入岩很致密,喷出岩常具有气孔状和杏仁状构造。。在矿物成分上,铁镁矿物约占40%,而且以辉石为主,其次是橄榄石、角闪石和黑云母。基性岩和超基性岩的另一个区别是出现了大量斜长石。这类岩石的侵入岩是辉长岩,分布较少;而喷出岩-玄武岩,却有大面积分布。 错误!中性岩类:化学成分特征是SiO2为53-65%,铁、镁、钙比基性岩

常见沉积岩的特征碎屑岩类

常见沉积岩的特征碎屑岩类 砾岩:粒径大于2mm的碎屑占50%以上,具砾状结构,层理发育差。砾石一般为圆或次圆状者称砾岩,砾石呈棱角和次棱角状者称角砾岩。主要由一种砾石成分(含量75%)组成的砾岩,称单成分砾岩,这样的砾岩一般分选性和磨圆度均好,如石英砾岩。砾石成分复杂者称复成分砾岩,一般分选不良,圆度变化也大。砾岩的胶结物有硅质、钙质、铁质和泥质等。 砂岩:粒径介于2-0.05mm之间的砂粒占50%以上,具砂状结构,各类层理均可发育,胶结物多硅质、钙质、铁质及泥质等。按砂粒大小可分为粗粒砂岩(粒径2-0.5mm)、中粒砂岩(粒径0.5-0.25mm)、和细粒砂岩(粒径0.25-0.05mm)。按成分又可分为石英砂岩、长石砂岩和岩屑砂岩。石英砂岩中石英含量占75%以上,甚至95%以上,一般磨圆度高,分选好,颜色浅。长石砂岩中石英含量<75%,长石含量>25%,浅红色到浅灰色,圆度较差,分选中等或差。岩屑砂岩中石英含量<75%,岩屑含量>25%,甚至>60%,颜色深,圆度和分选都很差。 粉砂岩:粒径介于005-0.005mm的碎屑粒占50%以上,具粉砂状结构,多呈薄层状,水平或微波状层理,颗粒细小,肉眼难以辨认,放大镜下可识别石英颗粒或少量白云母。岩石断面粗糙,无滑感,可与粘土岩相区别。黄土则是未固结的粉砂,呈土黄色,松散状,层理不清,主要由石英、长石等粉砂组成,含粘土矿物及碳酸钙结核。 泥质岩类:分布最广的一类沉积岩,均为泥质结构,并常具水平层理,主要由各种粘土矿物组成。通常按固结程度分为以下三种: 粘土:未固结或弱固结的泥质岩,具吸水性和可塑性,在水中易泡软。单矿物粘土有高岭石粘土、蒙脱石粘土、水云母粘土等,但自然界多数为复矿物粘土。 泥岩:固结较紧的泥质岩,呈块状,吸水性和可塑性极弱,在水中不易泡软。成分较复杂,多水云母,含粉砂。 页岩:固结很好的泥质岩,成页片层,无吸水性和可塑性,水中不能泡软,可按其所含次要成分进一步命名,如炭质页岩、钙质页岩等。 化学岩及生物化学岩类:这类岩石结构多样,有碎屑结构和生物结构,但以化学结构为主。由于岩石多数为非晶质或隐晶质,肉眼不能分辩矿物颗粒,因此,要注意区分岩石种类众多的化学成分和矿物成分。其中主要的岩石种类有以下几种: 碳酸盐岩:主要由钙镁的碳酸盐组成,分布广泛,在沉积岩中仅次于页岩和砂岩,结构以碎屑结构和化学结构为主,最主要的岩石有石灰岩和白云岩。 石灰岩:主要由方解石组成,常呈灰或灰白色,由于含有机质多少不等,颜色可由浅灰到黑色,一般较致密,断口呈贝壳状,硬度不大,加稀盐酸起泡剧烈。常因结构不同而给予不同的名称,如豹皮灰岩、鲕状灰岩和竹叶状灰岩等。灰岩中常含有粘土矿物、硅质等杂质,含量较多时称为泥灰岩、硅质灰岩等。

碳酸盐岩储层与碎屑岩储层对比

碳酸盐岩储层与碎屑岩储层对比,具有以下主要特点:岩石为生物、化学、机械综合成因,其中化学成因起主导作用。岩石化学成分、矿物成分比较简单,但结构构造复杂。岩石性质活泼、脆性大。 以海相沉积为主,沉积微相控制储层发育。 成岩作用和成岩后生作用严格控制储集空间发育和储集类型形成。断裂、溶蚀和白云化作用是形成次生储集空间的主要作用。 次生储集空间大小悬殊、复杂多变。 储层非均质程度高。 碳酸盐岩储层描述的主要内容包括沉积相及成岩史、储集空间类型及控制因素、孔隙、裂缝、溶洞、储集空间体系,储层非均质性,储层参数确定及评价等。基本工作流程列入表5.1。 无论是以原生孔隙为主,还是以次生储集空间为主的碳酸盐岩储层,其沉积相及成岩史是这类储层形成和发育的基础。它决定储集类型、孔隙、裂缝、溶洞发育程度和分布、储渗能力、储层非均质性。也是储层层位对比划分的基础和依据。 一、沉积相描述

1.沉积相标志 (1)岩性标志。岩性标志包括颜色、自生矿物、沉积结构、构造、岩石类型等五方面。 ①岩石颜色: 岩石的颜色反映沉积古环境、古气候。 下面在表5.2中列出碳酸盐岩常见的几种颜色反映由氧化到还原环境的 ②自生矿物: a.海绿石:形成于水深10~50m,温度25~27℃。鲕绿泥石:形成于水深25~125m,温度10~15℃。二者均为海相矿物。 b.自生磷灰石(或隐晶质胶凝矿):海相矿物。 c. 锰结核: 分布于深海、开放的大洋底。 d,天青石、重晶石、萤石:咸化泻湖沉积。 e. 黄铁矿: 还原环境。 f.石膏、硬石膏:潮坪特别是潮上、潮间环境。 ③沉积结构。碳酸盐岩的结构分为粒屑(颗粒),礁岩和晶粒三种。不同的沉积结构反映不同的沉积环境。

岩浆岩、沉积岩、变质岩的主要特征与类型,简述三大岩石的相互转化过程。

题目:试述岩浆岩、沉积岩、变质岩的主要特征与类型,简述三大岩石的相互转化过程。 一、岩浆岩:或称火成岩,是由岩浆凝结形成的岩石。 1、岩浆岩的主要特征:岩浆岩中有一些自己特有的结构和构造特征 ○1、气孔状构造:在温度、压力骤然降低的条件下形成的,造成溶解在岩浆中的挥发份以气体形式大量逸出,形成气孔状构造。当气孔十分发育时,岩石会变得很轻,甚至可以漂在水面,形成浮岩。 ○2、杏仁状构造:上述气孔形成的空洞被后来的物质充填,就形成了杏仁状构造。 ○3、流纹构造、绳状构造:岩浆喷出到地表,熔岩在流动的过程中其表面常留下流动的痕迹,有时好像几股绳子拧在一起。 ○4、枕状构造:岩浆在水下喷发,熔岩在水的作用下会形成很多椭球体。 上述这些特殊的构造只存在于岩浆岩中。还有块状构造和斑状构造。除了构造以外还有因为矿物的结晶程度、集合体形状与组合方式的不同可以有不同的结构,如玻璃质结构、隐晶质结构、显晶质结构。 2、岩浆岩的主要类型:岩浆岩依据矿物组成的差别,可以分为以下四类 ○1超基性岩类:二氧化硅含量小于45%,多铁、镁而少钾、钠,基本上由暗色矿物组成,主要是橄榄石、辉石,二者含量可以超过70%。其次为角闪石和黑云母;不含石英,长石也很少。这类岩石最常见侵入岩是橄榄岩类,喷出岩是苦橄岩类。 ○2基性岩类:化学成分的特征是SiO2为45-53%,Al2O3可达15%,CaO可达10%;而铁镁含量约各占6%左右。岩石颜色比超基性岩浅,比重也稍小,一般在3左右。侵入岩很致密,喷出岩常具有气孔状和杏仁状构造。。在矿物成分上,铁镁矿物约占40%,而且以辉石为主,其次是橄榄石、角闪石和黑云母。基性岩和超基性岩的另一个区别是出现了大量斜长石。这类岩石的

钻井地质基础知识

钻井地质基础知识 技术服务中心 1.地球及组成 地核的范围大约从地下2900公里至地心6371公里,主要是由铁镍组成。地馒的范围大约在地下33公里至2900公里之间,主要是由铁镁硅酸盐、金属氢化物和不同矿化物组成。最上面的一层硬壳,叫地壳,是由岩石组成的,又叫岩石圈。地壳的厚度各处不一:大陆上高山地区最厚可达60-75公里;大洋中一般小于10公里;平均厚度约33公里。 组成地壳的岩石,按成因的不同,分三大类:火成岩、变质岩、沉积岩。 2.地层知识 地层(stratum) ☆地质历史上某一时代形成的层状岩石成为地层,它主要包括沉积岩、岩浆岩以及由它们经受一定变质的浅变质岩。 ☆地层是指在某一地质年代因岩浆活动形成的岩体及沉积作用形成的地层的总称。 ☆所谓的地层是指在地壳发展过程中形成的各种成层和非成层岩石的总称。 从岩性上讲,地层包括各种沉积岩、岩浆岩和变质岩;从时代上讲,地层有老有新,具有时间的概念。)地壳中具一定层位的一层或一组岩石。地层可以是固结的岩石,也可以是没有固结的堆积物,包括沉积岩、火山岩和变质岩。在正常情况下,先形成的地层居下,后形成的地层居上。层与层之间的界面可以是明显的层面或沉积间断面,也可以是由于岩性、所含化石、矿物成分、化学成分、物理性质等的变化导致层面不十分明显。 (1)火成岩,又名岩浆岩。是高热的岩浆从地球较深处侵入地壳,或喷到地表冷凝后形成的.特点是无层次,块状,一般都很致密而坚硬。如花岗岩、玄武岩、正长岩等都是火成岩。(2)沉积岩。是母岩(即火成岩、变质岩和早期形成的沉积岩)受风吹雨打、温度的变化、生物的作用、水的溶解等因素的影响,逐渐地剥蚀、破碎,形成了碎屑物质、溶解物质和残余物质,这些物质经过流水、风力、冰川、海洋等搬运,离开了原地,在适当的条件下沉积下来,经过压实、交结、形成了沉积岩。沉积岩的特点是有层理,有化石(各种古代动植物的残骸遗体)。 (3)变质岩。是沉积岩或火成岩在地壳内部,由于物理化学因素(如高温、高压、岩浆的同化等)影响下,经过了变质作用改变了原来的成分和结构而变成新的岩石。例如石灰岩变成大理石;花岗岩变为片麻岩。变质岩中没有残存下来的化石,它与火成岩的主要差别是具有变晶结构。如片麻岩、片岩、板岩等。 岩石是由矿物组成的。组成岩石的主要矿物有十几种:如石英、长石、云母、方解石、粘土矿物等等。岩石的物理、机械性质(如硬度、塑性、研磨性的大小等)与组成岩石的矿物和胶结物的性质有密切关系。矿物硬度的比较级别如下: 1级——滑石 2级——石膏 3级——方解石, 4级——萤石 5级——石灰石 6级——正长石; 7级——石英 8级——黄玉 9级——刚玉; 10级——金刚石。 级数越高,硬度越大;目前发现的自然物质中,金刚石最硬。 3.沉积岩

碳酸盐岩储层评价技术综述

碳酸盐岩储层评价技术综述 储层评价是以测井资料为基础,结合地质、地震资料、岩心分析资料以及开发过程中的动静态资料等,从测井角度综合评价含油气储层,查明复杂岩性储层的参数计算方法、流体性质判别以及解决面临的某类特殊地质问题等。 中国石油拥有一批科研院所和测井公司,对碳酸盐岩复杂岩性测井评价方法有深入研究。其中在国内油田比较有特色的单位有四川地质勘探开发研究院、新疆塔里木塔河油田等,在国外区块对碳酸盐岩有深入研究的有长城钻探、石油勘探开发研究院等。过去几十年已经储备了一批碳酸盐岩测井评价专家,形成了多项特色评价技术。 (一)储层参数评价技术 复杂岩性碳酸盐岩储层通常具有较大的非均质性,它使得基于均质性地层模型的阿尔奇公式难以准确地描述储层岩性、物性、电性和含油性之间的复杂关系。为了获得这类储层的孔、渗、饱及其它关键参数,借助微观岩心分析、数字岩心技术和特殊测井方法,有针对性地改进了均质性储层参数评价方法,形成了新的针对非均质性储层的参数评价技术。 1.储层四性关系综合评价技术 u技术原理: 碳酸盐储层岩性复杂、储集空间类型多样、大小相差大、非均质性强,孔隙结构复杂,常规的孔隙不能完全反映储集性能,岩石物理研究采用薄片分析、X-衍射、毛管压力实验等多种手段解析岩石组分、内部结构、孔隙类型、裂缝发育情况、孔喉大小、孔喉配置关系等岩石内部的微观结构,充分了解岩石的岩性、物性特征,用岩心刻度测井,分析储层电性特征,结合录井、试油资料,确定储层的含油性,只有立足于充分的岩石物理研究才能更好地确定储层的“四性”关系。

u技术特点: 以岩石物理研究为坚实基础,确定岩性、物性特征,以测井资料为主,结合录井、试油资料进行储层综合评价。 u适用范围: 复杂岩性碳酸盐岩储层。 u实例: 下图为某油田碳酸盐岩储层研究实例,通过岩石物理研究确定储层岩性、物性、划分储层类型,通过岩心刻度测井,分析测井响应特征,结合录井和试油资料分析储层的流体性质。

影响碳酸盐岩储集层物性的主要因素

影响碳酸盐岩储集层物性的主要因素 ?沉积环境 影响碳酸盐岩原生孔隙发育的主要因素是沉积环境,即介质的水动力条件。碳酸盐岩原生孔隙的类型虽然多种多样,但主要的是粒间孔隙和生物骨架孔隙。这类孔 隙的发育程度主要取决于粒屑的大小、分选程度、胶结物含量以及造礁生物的繁殖 情况。因此,水动力能量较强的或有利于造礁生物繁殖的沉积环境常常是原生孔隙 型碳酸盐岩储集层的分布地带。一般包括台地前缘斜坡相、生物礁相、浅滩相和潮 坪等。在水动力能量低的环境里形成微晶或隐晶石灰岩,由于晶间孔隙微小,加上 生物体少,不能产生较多的有机酸和CO2,因此不仅在沉积时期,就是在成岩阶段 要形成较多的次生溶孔也是比较困难的。 ?成岩后生作用 碳酸盐岩的孔隙在它形成的地质历史过程中是不断变化的。在沉积时期所形成的原生孔隙会因其后发生的各种成岩后生作用而改变。碳酸盐岩的成岩后生作用有些 有利于储层物性的改善,而有些则使储层物性变差。因此,研究成岩后生作用对孔 隙的影响是很重要的。碳酸盐岩的成岩后生作用主要有压实及压溶作用、胶结作用、重结晶作用、白云石化作用、溶解作用、方解石化作用、硅化作用、硫酸盐化作用 等。现择其对储层储集物性有重要影响的作用简述如下: (1)溶蚀作用:碳酸盐岩孔隙的形成和发育情况与地下水的溶解作用和淋滤作用关系密切,这是由碳酸盐岩的易溶性所决定的。地下水因溶解带走了易溶矿物是 造成溶蚀孔隙、孔洞的原因,也是溶蚀裂缝扩大的原因。在漫长的地质年代里,碳 酸盐岩的溶解是很可观的。巨大的岩溶洞穴、地下暗河等是碳酸盐岩发育区常见的 景观。碳酸盐岩结晶矿物的溶解度决定于它们本身的性质、地下水的溶解能力以及 热动力条件。 岩石的矿物成分不同其溶解度也不同。已有资料表明:方解石和白云石的溶解度决定于水中CO2的含量、地下水的温度和硫酸钙的含量等。随着水中CO2含量的增加,方解石和白云石的溶解度增大,且当水中CO2含量高时,方解石的溶解度比白云石高;相反,当水中CO2含量低时,白云石的溶解度比方解石高(图中B)。一般在CO2含量较高的水中,在低温条件下(小于0℃)方解石的溶解度比白云石的 溶解度大约高0.5倍。随着温度上升,这个差值变小,当温度为55℃时白云石的溶 解度和方解石相等。温度进一步升高,白云石的溶解度反比方解石高(图中A)。 水中硫酸钙含量对方解石和白云石溶解度影响问题还没有彻底弄清楚。一般说来, 白云石的溶解度与硫酸钙含量增加关系不大,而方解石的溶解度明显随之下降(图 中C)。 结晶矿物晶粒大小不同,它们的溶解度也不相同。如2mm石膏微粒比0.3mm的石膏微粒的溶解度低20%,碳酸盐矿物也是如此。因此,小颗粒的溶解有利于大颗粒的生长。 此外,碳酸盐岩中所含不溶矿物杂质对溶解过程也有很大的影响,当碳酸盐岩中存在泥质、硅质或有机物等杂质时会阻碍溶解过程进行。如我国四川乐山震旦亚界 白云岩,岩石不溶残余物含量小于1%者,孔洞发育;当不溶残余物含量大于10% 时,很少发育大溶洞。 碳酸盐岩的溶蚀孔洞一般均发育在岩溶带。岩溶带的发育状况与气候条件、地下水的活动情况有密切的关系。一般温暖潮湿气候区,地下水活动强烈,溶蚀作用也 相当活跃。在碳酸盐岩发育区,地下水的活动有明显的垂直分带性。接近地表部分

大理石基础知识

大理石基础知识 大理石:又称云石,是重结晶的石灰岩,只要成分是CaCO3。石灰岩在高温高压下变软,并在所含矿物质发生变化时重新结晶形成大理石。主要成分是钙和白云石,颜色很多,通常有明显的花纹,矿物颗粒很多。摩氏硬度在2.5到5之间。大理石是地壳中原有的岩石经过地壳内高温高压作用形成的变质岩。地壳的内力作用促使原来的各类岩石发生质的变化,即原来岩石的结构、构造和矿物成分发生改变。经过质变形成的新的岩石称为变质岩。大理石主要由方解石、石灰石、蛇纹石和白云石组成。其主要成分以碳酸钙为主,约占50%以上。由于大理石一般都含有杂质,而且碳酸钙在大气中受二氧化碳、碳化物、水气的作用,也容易风化和溶蚀,而使表面很快失去光泽。大理石一般性质比较软,这是相对于花岗石而言的。在室内装修中,电视机台面、窗台、室内地面等适合使用大理石。大理石是商品名称,并非岩石学定义。大理石是天然建筑装饰石材的一大门类,一般指具有装饰功能,可以加工成建筑石材或工艺品的已变质或未变质的碳酸盐岩类。它是由中国云南大理市点苍山所产的具有绚丽色泽与花纹的石材而得名。大理石泛指大理岩、石灰岩、白云岩、以及碳酸盐岩经不同蚀变形成的夕卡岩和大理岩等。大理石主要用于加工成各种形材、板材,作建筑物的墙面、地面、台、柱,是家具镶嵌的珍贵材料。还常用于纪念性建筑物如碑、塔、雕像等的材料。大理石还可以雕刻成工艺美术品、文具、灯具、器皿等实用艺术品。大理石的质感柔和美观庄重,格调高雅,花色繁多,是装饰豪华建筑的理想材料,也是艺术雕刻的传统材料。

玉、松香黄、丹东绿、杭灰等。大理石的花纹、结晶粒度的粗细千变万化,有山水型、云雾型、图案型(螺纹、柳叶、文像、古生物等)、雪花型等。现代建筑是多姿多彩不断变化的,因此,对装饰用大理石也要求多品种、多花色,能配套用于建筑物的不同部位。一般对单色大理石要求颜色均匀;彩花大理石要求花纹、深浅逐渐过渡;图案型大理石要求图案清晰、花色鲜明、花纹规律性强。总之,花色美观、便于大面积拼接装饰、能够同花色批量供货为好。中国大理石工艺分类见表4.25.1。 (二) 矿物组成及主要特征 大理石的矿物组成及矿石特征直接关系到其制品的使用性能和装饰效果。 (三) 化学成分及物理性能 大理石的化学成分对其能否被利用,一般不起主要作用,但能直接说明岩性,并间接影响物理化学性质,对大理石的可加工性、抗风化耐腐蚀的评价有一定意义。 大理石的物理性能是判断其可加工性的重要指标,也是使用性能、使用范围的重要参考据。 大理石的用途 大理石有美丽的颜色、花纹,有较高的抗压强度和良好的物理化学性能,资源分布广泛,易于加工,随着经济的发展,大理石应用范围不断扩大,用量越来越大,在人们生活中起着重要作用。特别是在近10几年来大理石的大规模开采、工业化加工、国际性贸易,使大理石装饰板材大批量地进入建筑装饰装修业,不仅用于豪华的公共建筑物,也进入了家庭的装饰。大理石还大量用于制造精美的用具,如家具、灯具、烟具及艺术雕刻等。有些大理石(包括石灰岩、白云岩、大理岩等)还可以作耐碱材料。在大理石开采、加工过程中产生的碎石、边角余料也常用于人造石、水磨石、石米、石粉的生产,可用于涂料、塑料、橡胶等行业的填料。 现工业技术要求 对天然大理石因应用方面的不同,其工业技术要求有不同的侧重。 1.天然大理石荒料的主要要求 建材行业标准(JC202-92)对天然大理石荒料的主要要求如下: 荒料必须具有直角平行六面体的形状。 荒料的规格尺寸要求长度大于或等于100cm,宽度大于或等于50cm,高度大于或等于70cm。 外观质量要求同一批荒料的色调花纹应基本一致;荒料的缺角、缺棱、裂纹等外观质量等级应符合表4.25.6的规定。 物理性能要求:体积密度不小于2.6g/cm3;吸水率不大于0.75%;干燥压缩强度不小于20MPa;弯曲强度不小于7.0MPa。 2.工艺雕刻用大理石质量要求 要求大理石结构致密,颗粒均匀不易脱落,无裂隙,无包裹体,颜色、花纹、块度、形状符合造形要求,一般要求大于0.15m3。如用于室外,不需岩面新鲜,但要求抗风化性好,吸水率低。 3.电气绝缘板质量要求

碳酸盐岩储层评价方法及标准

碳酸盐岩储层评价 一、储层岩石学特征评价 1、内容和要求 (1)颜色; (2)矿物成分、含量、结构等,其中矿物结构分粒屑结构、礁岩结构、残余结构、晶粒结构。 粒屑结构:要求描述粒屑组分、含量、基质、胶结物等特征。粒屑组分描述应包括内碎屑、生屑和其他颗粒(鲕粒、球粒、团粒)的大小、形态、分选、磨圆、排列方向、破碎程度等方面的内容。对鲕粒还应描述内部结构;粒屑含量是指采用镜下面积目估法或计点统计法确定各种碎屑的含量;基质(一般把粒径<0.032mm的颗粒划为基质=成分、含量、颗粒形态、结晶程度、类型、成因及胶结物(亮晶)成分、含量、晶体的大小、结晶程度、与颗粒接触关系、胶结物形态(栉壳状、粒状、再生边或连生胶结)、胶结世代及胶结类型等都是应描述的内容。 礁岩结构:分析原地生长的生物种类、骨架孔隙的发育情况,确定粘结结构类型(叠层状、席状、皮壳状)、规模大小及成因;分析异地堆积的类型(分散礁角砾、接触礁角砾)、成因、各类礁角砾的大小和含量,描述其形态、分布等。 残余结构:确定原结构类型、残余程度,分析成因。 晶粒结构:描述晶体形态、晶粒间接触关系以及晶间孔发育和连通程度,确定晶粒大小、各种晶粒的比例。 (3)沉积构造 物理成因构造 a.流动构造:确定类型(冲刷痕、皱痕、微型层理及渗流砂),描述形态、大小和排列方向; b.变形构造:确定类型(滑塌构造、水成岩墙),描述特征; c.暴露构造:确定类型(雨痕、干裂、席状裂隙、鸡丝构造、帐蓬构造),描述特征; d.重力成因构造:确定类型(递变层理、包卷构造,枕状构造、重荷模构造),描述特征。 化学成因构造

a.结晶构造:确定类型(晶痕、示底构造),描述特征; b.压溶构造:确定类型(缝合线、叠锥构造)描述特征; c.交代增生构造:确定类型(结核、渗滤豆石),描述特征。 生物沉积构造 a.生物遗迹:确定类型(足迹、爬痕、潜穴、钻孔),描述形态和分布; b.生物扰动构造:确定类型(定形扰动、无定形扰动),描述形态和分布; c.鸟眼构造:描述鸟眼孔的大小、充填物质与充填情况、分布特点,分析成因。 生物—化学沉积构造 a. 葡萄状构造:确定大小、藻的类型,分析成因; b. 叠层石构造:确定大小、藻的类型,分析成因; (4)、沉积层序研究 在单井剖面上划分沉积旋回,确定其性质、大小;分析旋回间的接触及组合关系;在旋回内部划分次级旋回并分析不同级别沉积旋回的成因及控制因素。 建立研究井的沉积层序及单维模式。 2、技术和方法 (1)岩心观察和描述 系统地观察描述岩心的颜色、矿物成分、肉眼可见的沉积结构和构造、古生物类型以及孔、洞、缝发育情况。 (2)岩心实验室分析 岩心薄片鉴定。 酸蚀分析。将岩石制成光面,放入酸液(浓度为23%的醋酸或5%~10%的盐酸)中,作用一定时间后取出,清洗干净,用放大镜或显微镜观察岩石的结构、构造和不溶组分。 揭片分析。将涂有醋酸盐的薄膜覆盖在经酸蚀后的岩石光面上,作用一定时间后揭下该薄膜,在显微镜下观察岩石的结构和构造。 非碳酸盐组分分离。把岩石制成3cm×3cm×0.6cm的样品,放入浓度为20%的醋酸中浸泡,使碳酸盐全部溶解掉,然后在显微镜下观察酸不溶物的成分和特征。 扫描电镜观察。鉴定岩石的矿物成分、超显微结构和构造、超微古生物化石。

沉积岩

第九讲陆源碎屑岩各论—砂岩(Discription of the Clastic Rocks, Respectively—Sandstone) 学时: 1学时 基本内容: 1、基本概念 砂岩、巨砂岩、粗砂岩、中砂岩、细砂岩、石英砂岩、长石砂岩、岩屑砂岩、杂砂岩 2、基本原理 砂岩的一般特征,砂岩的分类,各类砂岩(石英砂岩、长石砂岩、岩屑砂岩、杂砂岩)的特点及其形成环境,粉砂岩的一般特征及粉砂岩的成因,通过砂岩资料研究物源区构造背景。 教学重点与难点: 砂岩的分类,石英砂岩、长石砂岩、岩屑砂岩、杂砂岩的主要特征及其形成条件。 教学思路: 首先介绍砂岩的概念及其基本特征;然后重点讲解砂岩的分类,及重要砂岩分类方法评述;重点详细地介绍石英砂岩、长石砂岩、岩屑砂岩、杂砂岩的主要特征及其形成条件;最后简要介绍粉砂岩的一般特征及粉砂岩的成因。 主要参考书: 1、冯增昭主编《沉积岩石学》上册第七章,石油工业出版社,1993. 2、曾允孚、夏文杰主编《沉积岩石学》第六章,地质出版社,1986. 复习思考题: 1、克里宁(1948)、福克(1954, 1968)和裴蒂庄(1975)的砂岩分类方案的优缺点。 2、评述本教材采用的砂岩的四组分三端元分类体系的原则、分类依据和分类方案。 3、总结对比石英砂岩类、长石砂岩类、岩屑砂岩类、杂砂岩类在成分、结构、构造、沉积环境、形成条件(母岩、气候、大地构造)等方面的特点。 4、砂岩中长石含量的大地构造意义。 5、试述石英含量极高(95%)的石英砂岩的形成条件。 6、试述杂砂岩的沉积条件。浊流沉积中主要是砂屑岩还是杂砂岩。 7、试对粉砂岩的一般特征进行成因解释。

沉积岩的成因及分类特征

沉积岩的成因及分类特征 沉积岩:沉积岩曾经有过另一个名称,叫水成岩。组成沉积岩的物质是一些砾石、砂、粘土、灰泥和生物残骸等松散物质(这些物质大多来自风化的岩石,其次是火山喷发物、有机物和来自宇宙的一些物质)。这些物质有的是溶解在水里的。更多的则是被水搬运,它们逐年累月地集聚起来并沉积,最终压实并变成了岩石。 沉积岩分布在地壳的表层。露出地面的面积约占75%。沉积岩种类很多,其中最常见的是页岩、砂岩和石灰岩,它们占沉积岩总数的95%。这三种岩石的分布随沉积区的地质构造和古代地理位置不同而不一样。总的说,页岩最多,其次是砂岩,石灰岩数量最少。沉积岩地层中蕴藏着绝大部分矿产,如煤、石油、非金属、金属和稀有元素矿产等。 水和风将陆地上的泥沙,碎石等物质带到江河湖海,这些物质一层层沉积下来,年长日久变成了岩石。 水和风将陆地上的泥沙,碎石等物质带到江河湖海,这些物质一层层沉积下来, 年长日久变成了岩石。 我们知道了沉积岩是由一些松散的物质经过沉积而形成的。这些松散的物质来自各个不同地方(如磷质岩中的磷来自海洋生物骨骸或陆地的鸟粪)、不同时期、有不同的化学成分、经历过不同的化学变化过程等等。在形成沉积岩的漫长时间里,它们中的物质还会发生这样那样的变化,生成各种各样的岩石或矿物(如在强烈蒸发条件下,可出现石膏、硬石膏、石盐、镁盐或钾-镁盐,或天然碱、苏打等;如各种动植经沉积埋藏和细菌分解,可衍变为由碳、氢、氧不同比例聚合而成的有机酸、脂酸、醣、纤维素和有机碳等多种物质并最终构成煤、石油、天然气、油页岩等的主要成分。此外,微生物或细菌活动的参与还可以造成一些自

然硫、锰、铁、铜、铅、锌、铀等在沉积岩中的聚集)。火山喷发可以带出多种元素,这些元素聚集到一起,可在沉积岩、沉积层内形成矿床。 沉积岩中含少量宇宙物质,如陨石、宇宙尘。宇宙尘的研究不仅可了解沉积岩本身,而且还可进一步了解各地质时代沉积岩形成时,天体可能发生的某些事件或变化。如在代表某一地质年代的沉积岩中,发现一层超乎寻常的宇宙物质,经过研究分析,科学家可以知道那时究竟发生了什么。 由此我们可以知道,沉积岩中包含着很多地质变化的信息,甚至古代生物及宇宙发展变化的情况。它就像是一页页的地质历史教科书。 沉积岩构成的壮丽景观 沉积岩形成的过程中,地理、气候等环境和大地构造种种变化化也会造成沉积岩的种种不同情况。陆地沉积岩的分布范围要比海洋沉积岩分布范围小得多。在干旱古气候条件下,会形成大面积的红色沉积岩,这是由于沉积物中的氧化铁容易氧化为三氧化二铁。而潮湿气候条件下,有机物质就会增多,较多的有机质进入沉积物中使沉积岩颜色成为暗灰或黑色。盐类在炎热干旱气候形成,煤炭则在温暖潮湿气候聚集。这都说明古气候对沉积岩形成是有制约作用的。生物的进化、繁盛或衰亡也在沉积岩的形成中留下了印迹。如在石炭纪,全球性的植物繁茂,就形成了大量煤炭层。不同的水流条件形成不同的沉积或造成不同的结构构造。如从高处流向低处的水流不会改变方向,这就常形成一个方向层理的沉积区,比如江河的三角洲就是这种情况。在海边,潮汐是来回往复流动的双向水流,这样就常形成另外一种交错层理的滨海和潮汐沉积,等等。 人们可以根据沉积岩层面上表现出来的种种特征来推断过去发生沉积时的条件,判断地层的顺序等等。比如看沉积岩表面痕迹和堆积形态,可知道当初风、水流及波浪的运动方向等。沉积岩可简单地分为2类: 1.一是陆源碎屑岩,主要由陆地岩石风化、剥蚀产生的各种碎屑物组成。按 它们颗粒粗细不同又分为砾岩、砂岩、粉砂岩和泥质岩。 2.二是内积岩,主要指在盆地内沉积的。内积岩中有一种是我们所熟悉的,

陈晶_2011010949_碳酸盐岩储层成因类型及其基本特征

碳酸盐岩储集层的成因类型 及其基本特征 姓名:陈晶班级:地质11-7 学号:2011010949 碳酸盐岩储层分类受到岩相、成岩、构造、流体等多方面的控制,根据储层成因机理、主要储渗空间类型和岩石特征将碳酸盐岩储层分为4种类型:礁滩型储集层、岩溶型储集层、裂缝性储集层、白云岩储集层。 1 礁滩型储集层 1.1 成因 礁型地貌隆起和海平面相对变化控制礁滩体的成岩早期暴露, 准同生期大气淡水溶蚀、淋滤作用和岩溶作用是控制台缘礁滩体优质储层发育的根本原因。 礁丘在纵向上营建,形成隆起,礁丘顶部及礁前发育礁坪及中高能的生屑砂砾屑滩,向两翼逐渐相变为礁翼和棘屑滩,横向上过渡为礁后低能带、中低能砂屑滩和滩间海。在海平面相对变化和礁丘营建的共同作用下,礁丘的顶部间歇性暴露于大气淡水环境中,受大气淡水溶蚀淋滤作用,在纵向上区别为大气淡水渗流岩溶带和大气淡水潜流岩溶带。 在暴露期间由礁型地貌转化而成的岩溶地貌,已形成岩溶发育规模。礁滩复合体核部形成岩溶高地,礁翼形成岩溶斜坡,礁后低能带、礁滩间海形成岩溶洼地、洼坑。储层在侧向上主要发育礁滩复合体核部和翼部,核部以好—中等储层为主,翼部以好储层为主,礁后低能滩和低能泥晶灰岩沉积区储层变薄变差。 碳酸盐岩的埋藏溶蚀作用是提高储层孔渗性的一种重要的建设性成岩作用。多期油气运聚和埋藏溶蚀作用增加了储层的有效储集能力。多期构造破裂作用所形成的裂缝改善了储层的渗流条件,增加了储层和微观孔隙结构的连通性。

1.2 特征 1.2.1 礁滩型储集层岩石类型 塔中礁滩体储层主要岩石类型为礁滩相礁灰岩类和颗粒灰岩类,其中生屑粘结岩、生屑灰岩、生物砂砾屑灰岩是发育孔洞型储层的岩石类型,而砂屑灰岩、砂砾屑灰岩、鲕粒灰岩是孔隙型储层潜在储集岩类型。以塔中82井区为例,在剖面上一般以内碎屑灰岩和隐藻泥晶灰岩为主,一般占地层厚度的25% 以上;生屑灰岩、生物礁灰岩和泥晶灰岩相对少一些,一般占地层厚度的10%~15%。 1.2.2 储集空间类型及特征 礁滩体储层储集空间以大型溶洞、溶蚀孔洞、粒内及粒间孔、裂缝为主。 溶蚀孔洞一般为肉眼可见的小洞、大孔,岩心显示礁滩体储层溶蚀洞比较发育,孔洞呈圆形、椭圆形及不规则状,孔洞发育段岩石呈蜂窝状。 粒内溶孔主要见于砂屑内,少数见于生屑和鲕粒内,是同生期大气淡水选择性溶蚀所致。 粒间溶孔指粒间方解石胶结物被溶蚀形成的孔隙,主要溶蚀粒间中细晶粒状方解石,溶蚀强烈时,可溶蚀纤维状方解石甚至颗粒边缘,使颗粒边缘呈港湾状或锯齿状。 裂缝是碳酸盐岩重要储集空间,也是主要的渗流通道之一,从成因来分主要有3种类型,即构造缝、溶蚀缝和成岩缝。 1.2.3 储层控制因素及分布特征 礁滩体储层发育受多种因素控制,主要控制因素表现为以下3个方面。 一是沉积微相控制了岩石的岩性和结构,从而控制了岩石原生孔隙的发育。生屑滩、粒屑滩由于颗粒支撑作用形成大量的粒间孔,虽然大部分孔洞为灰泥、生物碎屑和多期方解石充填、半充填,但仍有1%~3%残余孔隙被保存,同时为组构的选择溶蚀奠定了基础。 二是早期暴露蜂窝状溶蚀是形成优质孔洞层的重要因素。中—晚奥陶世构造与海平面振荡变化频繁,造成沉积的多旋回叠加,海平面的相对下降可能造成短暂的同生期大气淡水岩溶成岩环境,使礁滩复合体形成的古地貌高部位露出海面。在潮湿多雨的气候下,受到富CO2 的大气淡水的淋滤,选择性地溶蚀了准稳定矿物组成的颗粒或第一期方解石胶结物,形成粒内溶孔、铸模孔和粒间溶孔;又可沿着裂缝、残留原生孔发生非选择性溶蚀作用,形成溶缝和溶蚀孔洞,从而形成优质孔洞层。 三是构造作用是改善礁滩体储层储集性能的关键,走滑断裂活动的断裂和裂

砂岩与碳酸盐岩储集性质比较

碳酸盐岩储集层与砂岩储集层比较 碳酸盐岩储集层与砂岩储集层相比,前者储集空间类型多,影响因素多,次生变化大,致使碳酸盐岩储集层比砂岩储集层具有更大的差异性、复杂性和非均质性等特点。现将这两类储集层的主要特征对比如下表: 岩石类型特征 砂岩 碳酸盐岩 沉积物中的原始孔隙度 一般为25-40% 一般为40%-70% 成岩后的孔隙度 一般为原始孔隙度的一半或一半以上,储层普遍为15-30% 一般只有原始孔隙度很小一部分或接近于零,储层中通常为5-15% 原始孔隙类型 几乎全为粒间孔隙 粒间孔隙较多,但其他孔隙类型也很重要 最终孔隙类型 虽受成岩后生变化影响,但几乎仍为粒间孔隙 由于经受沉积后的各种改造,溶洞、裂缝发育,变化极大 孔隙大小 与颗粒直径、分选好坏等有密切关系

与颗粒直径和分选好坏关系较少,受次生作用影响大 孔隙形状 主要取决于颗粒形态、胶结情况和溶蚀程度的大小 变化极大 孔隙大小、形状和分布的一致性 在均匀的砂岩体内,一般有好的一致性 即使在单一类型的岩体内,变化也很大 成岩作用的影响 由于压实作用和胶结作用,孔隙有所减小,但溶蚀作用也会扩大孔隙影响很大,能够形成、消失甚至完全改变原有孔隙 裂隙的影响 除低渗透层外,对储层性质的影响一般不重要 对储层性质影响很大 孔隙性和渗透性的目估情况 能大体进行估量 从能大体进行目估到不能目估,而需要仪器测量 岩心分析对储集层估价的作用 适合作岩心分析 对非均质性很强的储层,用大直径的岩心也难于对储层进行评价

孔隙度与渗透率之间的关系 有一定相关关系 从有一定相关关系到不相关 从表中不难看出,碳酸盐岩储集层具有以下特点: 1.孔隙大小、形状变化极大,从主要取决于岩石的组构要素直至完全无关。组构要素是指岩石中原生和次生的实体组分(如原生沉积颗粒和次生矿物晶体),也包括结构和较小的构造。 2.孔隙成因复杂,次生孔隙占有十分重要的地位。沉积物的收缩和膨胀作用,岩石的破裂作用,沉积颗粒的选择性溶解和非选择性溶解、生物钻孔或有机质的分解等作用,皆可在碳酸盐岩中形成各种孔隙。

第十一章 沉积岩的基本特征详解

第十一章沉积岩的基本特征 第一节概述 但以体积而言,沉积岩仅占岩石圈体积的5%,结晶岩占95%。 各类沉积岩的分布各不相同。分布最广的是泥质岩(72.2%)、砂岩(13.2%)和碳酸盐岩(7.7%),其余的沉积岩及其沉积矿产仅占1%—2%。 沉积岩在地表广泛分布,是储油、储水的有利场所。沉积岩中的矿产不仅种类多,而且储量大。据统计沉积和沉积变质矿产占世界矿产总储量的75—85%。煤、石油、油页岩和天然气等全是沉积形成。铁、锰、铝、磷、放射性金属及铜、铅、铅、锌、汞、锑等矿产,多属沉积成因或、、与沉积有成因关系。有些沉积岩本身就是矿产。 二.沉积岩的成分特征 (一)化学成分特征 沉积岩的主要物质来源于火成岩的风化产物,所以两者的平均化学成分非常相似。但由于火成岩转变为沉积岩要经过风化、搬运、沉积、成岩等一系列转 沉积岩的平均矿物成分与火成岩相比有明显差别。构成沉积岩的主要矿物是:①云母及粘土矿物,②碳酸盐矿物,③石英族矿物(石英、玉髓、蛋白石等)。

二. 沉积岩的结构构造特征 沉积岩的结构构造明显不同于岩浆岩。岩浆岩多为晶粒结构;而沉积岩的结构则随岩石的类型和成因而变化,最常见碎屑结构(陆源碎屑岩)、泥状结构(泥质岩)、晶粒结构(化学及生物化学岩)、颗粒结构(内源沉积岩)等。 沉积岩具特征的层理和层面构造。 第二节沉积岩的形成和变化 沉积岩的形成作用可概括为以下3个阶段:①沉积岩原始物质的形成阶段(风化阶段),②沉积岩原始物质的搬运和沉积作用阶段,③沉积物的同生、成岩作用和沉积岩的后生作用阶段。 一.沉积物质的形成作用 沉积岩的原始物质有四类: 1.母岩风化所提供的物质:陆源碎屑、粘土物质、溶解物质。 2.生物成因的物质:生物残骸及有机质。 3.深部来源的物质:火山碎屑物质、深部来的卤水、温泉水、喷气物质等。 4.宇宙来源的物质:陨石及宇宙尘埃。 以下主要介绍风化作用形成的物质。 1.物理风化作用 使母岩发生机械破碎为主的风化作用称为物理风化作用。 它为沉积岩的形成提供各种碎屑物质。 2.化学风化作用 不仅使母岩破碎,而且其矿物成分和化学成分也发生本质的改变,直至形成在地表条件下稳定的矿物组合的过程称为化学风化作用。 它为沉积岩的形成提供各种溶解物和不溶残余物。 3.生物风化作用 生物对岩石产生的机械和化学的破坏作用。 风化作用的产物: ⑴碎屑物质碎屑岩 ⑵溶解物质(真溶液、胶体溶液)化学岩和生物化学岩 ⑶粘土物质泥质岩 (二)主要造岩矿物和岩石在风化过程中的稳定性 1.长石类矿物 长石类矿物是地壳中分布最广的矿物。受到各种酸,尤其是碳酸的作用极易发生分解,析出K、Na、Ca等离子,同时发生水化而变为水云母,并继续分解。以钾长石为例: K[AlSi3O8] K<1Al2[(Si,Al)4O10](OH)?nH2O Al4[Si4O10](OH)8 钾长石水云母高岭石 Al2O3?nH2O (铝土矿) SiO2?nH2O (蛋白石)

沉积岩的基本沉积构造总结(有图)

沉积构造 Section two Sedimentary Structures 沉积构造是由沉积物的成分、结构、颜色的不匀一性而表现出的宏观特征。根据形成时间可划分为原生沉积构造和次生沉积构造(如周口店八角寨燧石结核)。原生沉积构造是在沉积物沉积时或沉积后不久、以及其固结以前形成,因而是沉积环境的重要判别标志。 §2.1 物理构造(Physical Structures) 层面构造[表面痕迹(surface marks), 底面印痕(bottom imprints)]和层理构造(bedding Structures)1、表面痕迹(Surface marks)——波痕(ripple marks), 雨痕(raindrop mark), 细流痕(rill marks), 泥裂(cracks) (1) 雨痕(Raindrop marks)圆形或椭圆形,在少雨区发育较好。指示水上环境或半干旱环境,说明沉积物曾经出露水上(暴露标志)。 (2) 泥裂(Cracks)平面上为多边形,剖面上为“V”字形,由泥岩脱水、收缩或干化而成。指示干旱气候或水上环境(暴露标志) 。 (3) 细流痕(Rill marks)由于细小水流侵蚀沉积物表面所形成的树支状痕迹。指示水面下降或水上环境。 (4) 其它表面痕迹(The other surface marks)工具痕迹、障碍痕迹、弹跳痕迹等 2 底面印痕(Bottom Imprints)底面印痕发育于沉积物(砂层)底部,为表面痕迹的铸型。 (1)槽铸型(Flute imprints): 平行水流方向的瘤状突起,上游端高而窄,下游端低而宽,可以指示水流方向。(2)纵向脊和沟铸型(Longitudinal furrows and ridge imprints):相间排列的沟和脊,平行水流方向,但不能指示上、下游方向。(3)沟铸型(Furrow imprint):窄而长的脊,平行水流方向。(4)其它铸型(The other imprints): 不规则,不能指示古水流方向。 3 层理(Bedding)层理是肉眼能够识别的最显著的宏观沉积特征。 纹层(Laminae):组成层理的最小宏观单位,具有相对一致的成分和结构。 单层(Single Bed):层理的基本单元,由成分和形态对一致的纹层组成。 层组(Bedset):形态一致且具有成因联系的一组单层。如果单层的成分相似或一致,称“简单层组”,构成的层理称为简单层理;如果单层的成分不同,称“复合层组”,构成的层理称为复合层理。 层理面(Bedding Surfaces):单层或层组的分界面。 (1)简单层理(Simple Bedding) a) 交错层理(Cross-bedding): 形态类型: 板状交错层理(Tabular cross bedding):层理面为相互平行的平面,内部纹层与层理面斜交。楔状交错层理(Wedge-shaped cross ):层理面为平面,但纹层面不平行,内部纹层与层理面斜交。上述两类层理可统称为面状交错层理(Planar cross bedding) 槽状交错层理(Trough cross-bedding):层理面为曲面,纹层呈槽状或弧形 波状交错层理(Ripple bedding):层理面不规则,内部纹层与界面平行或斜交。一般,波状交错层理的规模较小,多为小型交错层理。 b) 爬生波痕纹理(Climbing ripple lamination)爬生波痕纹理是在波痕迁移过程中,同时向上生长所形成的。其形成条件是:沉积物供给丰富,向流面纹层能够保留下来,波痕向上生长。 同相位爬生波痕纹理Climbing ripple laminations in-phase:后一波痕直接盖在前一波痕之上,前后波痕在水平方向上的位移很小,向流面和背流面纹层的厚度近于相等。

相关文档