文档视界 最新最全的文档下载
当前位置:文档视界 › 马尔科夫链与马尔科夫过程

马尔科夫链与马尔科夫过程

马尔科夫链与马尔科夫过程
马尔科夫链与马尔科夫过程

关于马尔科夫链与马尔科夫过程

人生中第一次接触到马尔科夫链不是在随机过程的课上,是在大三时候通信大类开设的两门专业课上,一个是大名鼎鼎的通信原理,另一个是模式识别这门课。

1 关于马尔科夫脸的概念

在机器学习算法中,马尔可夫链(Markov chain)是个很重要的概念。马尔可夫链(Markov chain),又称离散时间马尔可夫链(discrete-time Markov chain),因俄国数学家安德烈·马尔可夫(俄语:АндрейАндреевичМарков)得名,不愧是切比雪夫同志的弟子。其为状态空间中经过从一个状态到另一个状态的转换的随机过程。

这个过程强调的性质,不光是独立性,还有记忆性。该过程要求具备“无记忆”的性质:下一状态的概率分布只能由当前状态决定,在时间序列中它前面的事件均与之无关。这种特定类型的“无记忆性”称作马尔可夫性质。马尔科夫链作为实际过程的统计模型具有许多应用。但是绝对意义上的这个时候的状态与之前的一切毫无关系的案例十分少见,只能人为的创造满足这样性质的条件,不光是在机器学习的实际应用上,在随机过程中的更新过程或者是其他的某些过程都是这种解题思路,使用一定的数学上的处理进行一定的转化,从而使得后来得到的序列可以适应马尔科夫链的相关性质。

在马尔可夫链的每一步,系统根据概率分布,可以从一个状态变到另一个状态,也可以保持当前状态。状态的改变叫做转移,与不同的状态改变相关的概率叫做转移概率。随机漫步就是马尔可夫链的例子。随机过程中反映这样的一个变化往往使用一个矩阵进行表示。

随机漫步(其实就是随机过程)中每一步的状态是在图形中的点,每一步可以移动到任何一个相邻的点,在这里移动到每一个点的概率都是相同的(无论之前漫步路径是如何的)。

2 一个经典的实例

概括马尔科夫链的话,那就是某一时刻状态转移的概率只依赖于它的前一个状态。这样做可以大大简化模型的复杂度,因此马尔科夫链在很多时间序列模型中得到广泛的应用,比如循环神经网络RNN,隐式马尔科夫模型HMM等。

这个马尔科夫链是表示股市模型的,共有三种状态:牛市(Bull market), 熊市(Bear market)和横盘(Stagnant market)。每一个状态都以一定的概率转化到下一个状态。比如,牛市以0.025的概率转化到横盘的状态。这个状态概率转化图可以以矩阵的形式表示。如果我们定义矩阵阵P某一位置P(i, j)的值为P(j|i),即从状态i变为状态j的概率。另外定义牛市、熊市、横盘的状态分别为0、1、2,这样我们得到了马尔科夫链模型的状态转移矩阵为:

不过对于初学者而言,经常容易写着写着就忘了各个状态的代号是什么了。。。。。

套用的相关的概率论模型中的理解如下图所示:

3 关于马尔科夫决策过程

3.1关于马尔科夫性

3.2关于马尔科夫决策过程MDP

意思是:在t时刻所在的状态是s,采取a动作后在t+1时刻到达s^的概率。

3.3公式说MDP

这个问题的求解很容易让人们想到经典的高考数学必考的数列问题

当然了,因为这个过程牵扯到了条件概率的问题,这一部分就说明这个过程中,与之前的相关部分是没有关系的,仅仅与此刻的时间有关。

这里感觉经过一定程度的拆解与简化与代换之后,并没有实质上简化很多的计算,无论是数量级还是作为开发者而言最为关心的计算量。

其实这个时候相当的设定就已经十分接近比较经典的贝叶斯分类器了,经过进一步的化简之后,可以进一步将模型变为更加像贝叶斯分类器的形式了

由于状态值函数是以期望定义的,根据期望的计算规则,状态值函数应该是:

根据需要,动作概率感觉也可以变成类似权值的东西

不过这里的理解根据实际情况的不同可能会有天差地别,根据我的经验,相关的理由有两点。一个是上文仿佛强调模型的重新构筑十分像是贝叶斯分类器,实际上如果使用上述的模型进行分类的时候,也确实需要满足贝叶斯分类器在进行分类的需要满足的先决条件——满足克摩洛哥莫夫定理,也就是说待分类的数据实际上在大多数条件之下是正态分布的,如果这个条件不满足,可能在代际设定的很大的前提之下看不出误差,但是需要强调的是,这个时候模型并不能发挥其本来的作用甚至是相关的性质也不能完整的体现出来。比如云南大学早几年有人使用贝叶斯分类器进行了垃圾邮件的分类操作,似乎还取得了不错的效果。但是实际上人工与邮件的接触的相关模型中,实际上垃圾邮件接收到的模型并不是完全符合正态分布的,而应该符合的是泊松分布,因为人类在一定时间内能够阅读的邮件是拥有一定数目的,而且邮箱的容量也并不是无穷大的。所以,这个时候模型应该套用数学建模中十分常见的排队模型,当然了数据的分布也就是经典的泊松分布。

然后,在训练的过程中,因为使用了很多权值或者是类似权值的东西,这就导致很可能粗看之下相当多的时候会造成越训练反倒结果越糟糕的情况,实际上大都由于最开始的训练的时候参数选择的不好或者是权值设定的不佳,实际上由于相关的机制问题这些权值进行翻天覆地的变化的概率是很大的,并不会出现一条路走到黑的情况,而且也可以根据实际上的需要引入相关的第三方算法,从而解决后期神经网络中会出现的梯度下降问题或者是局部极小值问题。

4 强化学习的目的

强化学习的目的就是找到最优的策略,使累计回报函数最大,同时,如果累计回报函数最大时,采用的策略也是最优的。

这里可以类比经典的Lagrange方程中的相关设定完成相关的理解,一方面希望目标函数很大,另一方面又要满足限定条件的相关规范。

所以强化学习的优化有两种方法:(1)基于策略的优化;(2)基于累计回报函数的优化。另外,强化学习算法根据策略是否是随机的,分为确定性策略强化学习和随机性策略强化学习。根据转移概率是否已知可以分为基于模型的强化学习算法和无模型的强化学习算法。另外,强化学习算法中的回报函数R十分关键,根据回报函数是否已知,可以分为强化学习和逆向强化学习

Markov链预测法

我们仔细阅读了中国大学生数学建模竞赛的竞赛规则. 我们完全明白,在竞赛开始后参赛队员不能以任何方式(包括电话、电子邮件、网上咨询等)与队外的任何人(包括指导教师)研究、讨论与赛题有关的问题。 我们知道,抄袭别人的成果是违反竞赛规则的, 如果引用别人的成果或其他公开的资料(包括网上查到的资料),必须按照规定的参考文献的表述方式在正文引用处和参考文献中明确列出。 我们郑重承诺,严格遵守竞赛规则,以保证竞赛的公正、公平性。如有违反竞赛规则的行为,我们将受到严肃处理。 我们参赛选择的题号是(从A/B/C/D中选择一项填写): B 我们的参赛报名号为(如果赛区设置报名号的话): 所属学校(请填写完整的全名):贵州民族学院 参赛队员(打印并签名) :1. 龚道杰 2. 张凤 3. 姚肖伟 指导教师或指导教师组负责人(打印并签名): 日期: 2009 年 7 月 25 日 年凝冻日数的Markov链预测法 4# 【摘要】 本文根据所给数据,利用Markov链建立了预测年凝冻日数的模型,分别从整体和局部两个角度进行分析。

首先,我们直接以年凝冻日数为依据,对其进行K-均值聚类分析,划分 状态。用频率估计概率的方法,估算出一步转移概率矩阵,1/6 5/65/3328/33P ??=?? ??,然后建立Markov 链模型()1/6 5/6()(0)(0)5/3328/33n n P n P P P ??=?=??? ?? 。以2008年作为初始状态,估计出 2009 年凝冻日数所处状态为 (1)(0)P P P =?()0.1520.848=。按K-均值标准可知,即2009年凝冻的天数在 15天以内的可能性为84.8%,在15天以上的可能性为15.2%。 由于上述模型选取的是以年为单位的数据,只能估计出2009年的凝冻日 数所处区间。为提高精度,我们选取2000-2008年的具体凝冻天数和日期,记每一天只存在两种状态,出现雨凇为状态1,否则为状态0。然后由相邻两年间的状态转移变化,得出一步转移概率矩阵i P ,1,2,...,8i =。由这8个一步转移概率矩阵,根据一步转移矩阵P 的n 次方与n 步转移概率矩阵()n P 之差的范数和达到最小的准则,选出优化后的一步转移概率矩阵 0.95000.0500*0.78890.2111P ??=???? ,再次建立Markov 链模型。以2008年为初始状态,预测2009年的概率分布为 []*(2009)(2008)0.91060.0894P P P =?= ,由频率稳定于概率,知2009年凝冻天数的估计值为14天。 关键词: Markov 链 转移概率矩阵 频率估计概率 1. 问题提出 1.1背景知识 凝冻是指冬季出现的温度低于0℃有过冷却降水或固体降水和结冰现象发生的天气现象,即气象台所说的出现雨凇的天气。雨凇的形成与气温,降水量,湿度等因素有关,超冷却的降水碰到温度等于或低于零摄氏度的物体表面使所形成玻璃状的透明或无光泽的表面粗糙并覆盖层,就叫做雨凇。其造成的危害巨大,高压线塔的倒塌,电力瘫痪,交通瘫痪,农作物的冻亡等。因而对出现雨凇天气的预测显得尤为重要。

基于马尔可夫链的市场占有率的预测

市场占有率问题 摘要 本文通过对马尔可夫过程理论中用于分析随机过程方法的研究,提出了将转移概率矩阵法应用于企业产品的市场占有率分析当中,认为该理论的无后效性和稳定性特点能够帮助企业在纵向和横向资讯不够充分的情况下克服预测的误差和决策的盲目性,并给出了均衡状态下的市场占有率模型,以期通过不同方案的模拟分析,帮助企业优化决策. 关键词马尔科夫链转移概率矩阵 一、问题重述 1.1背景分析 现代市场信息复杂多变,一个企业在激烈的市场竞争环境下要生存和发展就必须对其产品进行市场预测,从而减少企业参与市场竞争的盲目性,提高科学性。然而,市场对某产品的需求受多种因素的影响,其特性是它在市场流通领域中所处的状态。这些状态的出现是一个随机现象,具有随机性。为此,利用随机过程理论的马尔可夫(Markov)模型来分析产品在市场上的状态分布,进行市场预测,从而科学地组织生产,减少盲目性,以提高企业的市场竞争力和其产品的市场占有率。 1.2问题重述 预测A、B、C三个厂家生产的某种抗病毒药在未来的市场占有情况 二、问题分析 第一步进行市场调查.主要调查以下两件事: (1)目前的市场占有情况.若购买该药的总共1000家对象(购买力相当的医院、药店等)中,买A、B、C三药厂的各有400家、300家、300家,那么A、B、C 三药厂目前的市场占有份额分别为:40%、30%、30%.称(0.4,0.3,0.3)为目前市场的占有分布或称初始分布. (2)查清使用对象的流动情况.流动情况的调查可通过发放信息调查表来了解顾客以往的资料或将来的购买意向,也可从下一时期的订货单得出.若从定货单得表1-0.

表(1-5) 顾客订货情况表 下季度订货情况 合计 来 自 A B C A 160 120 120 400 B 180 90 30 300 C 180 30 90 300 合计 520 240 240 1000 第二步 建立数学模型. 假定在未来的时期内,顾客相同间隔时间的流动情况不因时期的不同而发生变化,以1、2、3分别表示顾客买A 、B 、C 三厂家的药这三个状态,以季度为模型的步长(即转移一步所需的时间),那么根据表(1-5),我们可以得模型的转移概率矩阵: ? ???? ??=?????? ? ? ??=????? ??=3.01.06.01.03.06.03.03.04.03009030030 3001803003030090300180400120400120400160333231232221131211p p p p p p p p p P 矩阵中的第一行(0.4,0.3,0.3)表示目前是A 厂的顾客下季度有40%仍买A 厂的药,转为买B 厂和C 厂的各有30%.同样,第二行、第三行分别表示目前是B 厂和C 厂的顾客下季度的流向. 由P 我们可以计算任意的k 步转移矩阵,如三步转移矩阵: ???? ? ? ?=????? ? ?==252.0244 .0504.0244.0252.0504 .0252.0252.0496.03.01 .06.01.03.06 .03.03.04.03 3 ) 3(P P 从这个矩阵的各行可知三个季度以后各厂家顾客的流动情况.如从第二行(0.504, 0.252,0.244)知,B 厂的顾客三个季度后有50.4%转向买A 厂的药,25.2%仍买B 厂的,24.4%转向买C 厂的药. 三、模型假设 1、购买3种类型产品的顾客总人数基本不变; 2、市场情况相对正常稳定,没有出现新的市场竞争; 3、没有其他促销活动吸引顾客。 四、模型的建立与求解 4.1模型背景 在考虑市场占有率过程中影响占有率的大量随机性因素后,可以认为这一过程充

Matlab学习系列34. 马尔可夫预测

33. 马尔可夫预测 马尔可夫预测,是一种预测事件发生的概率的方法。它是基于马尔可夫链,根据事件的目前状况预测其将来各个时刻(或时期)变动状况的一种预测方法。 马尔可夫预测法的基本要求是状态转移概率矩阵必须具有一定的稳定性。因此,必须具有足够的统计数据,才能保证预测的精度与准确性。换句话说,马尔可夫预测模型必须建立在大量的统计数据的基础之上。 (一)经典马尔可夫模型 一、几个概念 状态:指某一事件在某个时刻(或时期)出现的某种结果; 状态转移:事件的发展,从一种状态转变为另一种状态; 马尔可夫过程:在事件的发展过程中,若每次状态的转移都仅与前一时刻的状态有关,而与过去的状态无关,或者说状态转移是无后效性的,则这样的状态转移过程就称为马尔可夫过程。 状态转移概率:在事件的发展变化过程中,从某一种状态出发,下一时刻转移到其它状态的可能性,称为状态转移概率。由状态i E 转为状态j E 的状态转移概率 ()(|)i j j i ij P E E P E E p →== 状态转移概率矩阵:假定某一个事件的发展过程有n 个可能的状

态,即1,,n E E ,则矩阵 1111n n nn p p P p p ????=?????? 其中,ij p 为从状态i E 转为状态j E 的状态转移概率,称为状态转移概率矩阵。 状态转移矩阵满足: (i) 01, ,1,,ij p i j n ≤≤= (ii) 1 1n ij j p ==∑ 二、状态转移矩阵的计算 即求出从每个状态转移到其它任何一个状态的状态转移概率ij p ,一般采用频率近似概率的思想进行计算。 例1某地区农业收成变化的三个状态,即E1“丰收”、E2“平收”和E3“欠收”。下表给出了该地区1960~1999年期间农业收成的状态变化情况(部分)。 计算该地区农业收成变化的状态转移概率矩阵。 datas=xlsread('Agriculture.xlsx');

隐马尔科夫链及其应用

隐马尔科夫链及其应用学习概率的时候,大家一定都学过马尔科夫模型吧,当时就觉得很有意思,后来看了数学之美之隐马模型在自然语言处理中的应用后,看到隐马尔科夫模型竟然能有这么多的应用,并且取得了很好的成果,更觉的不可思议,特地深入学习了一下,这里总结出来。马尔科夫过程 马尔科夫过程可以看做是一个自动机,以一定的概率在各个状态之间跳转。考虑一个系统,在每个时刻都可能处于N 个状态中的一个,N 个状态集合是 {S1,S2,S3,...SN}。我们现在用q1,q2,q3,…qn 来表示系统在t=1,2,3,…n 时刻下的状态。在t=1时,系统所在的状态q 取决于一个初始概率分布PI ,PI(SN)表示t=1时系统状态为SN 的概率。马尔科夫模型有两个假设: 1. 系统在时刻t 的状态只与时刻t-1处的状态相关;(也称为无后效性) 2. 状态转移概率与时间无关;(也称为齐次性或时齐性)第一条具体可以用如下公式表示: P(q t =S j |q t-1=S i ,q t-2=S k ,…)= P(q t =S j |q t-1=S i )其中,t 为大于1的任意数值,Sk 为任意状态第二个假设则可以用如下公式表示:P(q t =S j |q t-1=S i )= P(q k =S j |q k-1=S i )其中,k 为任意时刻。下图是一个马尔科夫过程的样例图:卷问题,而且可保障各类管路习题到位。在管对全部高中资料试卷电气设备,在安装过程下高中资料试卷调控试验;对设备进行调整使卷总体配置时,需要在最大限度内来确保机组

可以把状态转移概率用矩阵A 表示,矩阵的行列长度均为状态数目,aij 表示P(Si|Si-1)。 隐马尔科夫过程 与马尔科夫相比,隐马尔科夫模型则是双重随机过程,不仅状态转移之间是个随机事件,状态和输出之间也是一个随机过程,如下图所示:此图是从别处找来的,可能符号与我之前描述马尔科夫时不同,相信大家也能理解。通过管线敷设技术不仅可以解决吊顶层配置不规范高中资料试卷问题,而且可保障各类管路习题到位。在管路敷设过程中,要加强看护关于管路高中资须同时切断习题电源,线缆敷设完毕,要进行检查和检测处理。对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料试卷相互作用与相互关系,根据生产工艺高中资料试卷要求,对电气设备进行空载与带负荷下高中资料试卷调控试验;对设备进行调整使其在正常工况下与过度工作下都可以正常工制造厂家出具高中资料试卷试验报告与相关技术资料,并且了解现场设备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。电力保护装置调试技术,电力保护高中资料试卷配置技术是指机组在进行继电保护高中资料试卷总体配置时,需要在最大限度内来确保机组高中资料试卷安全,并且尽可能地缩小故进行外部电源高中资料试卷切除从而采用高中资料试卷主要保护装置。

随机过程——马尔可夫过程的应用

随机过程——马尔可夫过程的应用 年级:2013级 专业:通信工程3班 姓名:李毓哲 学号:31

摘要:随机信号分析与处理是研究随机信号的特点及其处理方法的专业基础, 是目标检测、估计、滤波灯信号处理理论的基础,在通信、雷达、自动检测、随机振动、图像处理、气象预报、生物医学、地震信号处理等领域有着广泛的应用,随着信息技术的发展,随机信号分析与处理的理论讲日益广泛与深入。 随机过程是与时间相关的随机变量,在确定的时刻它是随机变量。随机过程的具体取值称作其样本函数,所有样本函数构成的集合称作随机过程的样本函数空间,所有样本函数空间及其统计特性即构成了随机过程。通信工程中存在大量的随机现象和随机问题。如:信源是随机过程;信道不仅对随机过程进行了变换,而且会叠加随机噪声等。 马尔可夫过程是一类非常重要的随机过程。随着现代科学技术的发展,很多在应用中出现的马氏过程模型的研究受到越来越多的重视。在现实世界中,有很多过程都是马尔可夫过程,马尔可夫过程在研究质点的随机运动、自动控制、通信技术、生物工程等领域中有着广泛的应用。我们可以通过对马尔可夫过程的研究来分析马尔可夫信源的特性。 关键词:随机过程,马尔可夫过程,通信工程,应用

目录 一、摘要 二、随机过程 、随机过程的基本概念及定义 、随机过程的数学描述 、基于MATLAB的随机过程分析方法三、马尔可夫过程 马尔可夫过程的概念 马尔可夫过程的数学描述 四、马尔可夫过程的应用 马尔可夫模型在通信系统中的应用 马尔可夫模型在语音处理的应用 马尔可夫模型的其他应用 五、结论 参考文献

二、随机过程 、随机过程的基本概念及定义 自然界变换的过程通常可以分为两大类——确定过程和随机过程。如果每次试验所得到的观测过程都相同,且都是时间t的一个确定函数,具有确定的变换规律,那么这样的过程就是确定过程。反之,如果每次试验所得到观测过程都不相同,是时间t的不同函数,没有为确定的变换规律,这样的过程称为随机过程。 、随机过程的数学描述 设随机试验E的样本空间Ω,T是一个数集(T∈(-∞,∞)),如果对于每一个t ∈T,都有一个定义在样本空间Ω上的随机变量 X(w,t),w∈Ω,则称依赖于t的一族随机变量{X(w,t),t∈T}为随机过程或随机函数,简记为{X(t),t∈T }或X(t),其中t称为参数,T称为参数集。当T={0,1,2,…},T={1,2,…},T={…,-2,-1,0,1,2,…}时,{X(w,t)t∈T}称为随机序列或时间序列。 、基于MATLAB的典型随机过程的仿真 信号处理仿真分析中都需要模拟产生各种随机序列,通常都是先产生白噪声序列,然后经过变换得到相关的随机序列,MATLAB有许多产生各种分布白噪声的函数。

马尔科夫预测

第6章 马尔可夫预测 马尔可夫预测方法不需要大量历史资料,而只需对近期状况作详细分析。它可用于产品的市场占有率预测、期望报酬预测、人力资源预测等等,还可用来分析系统的长期平衡条件,为决策提供有意义的参考。 6.1 马尔可夫预测的基本原理 马尔可夫(A.A.Markov )是俄国数学家。二十世纪初,他在研究中发现自然界中有一类事物的变化过程仅与事物的近期状态有关,而与事物的过去状态无关。具有这种特性的随机过程称为马尔可夫过程。设备维修和更新、人才结构变化、资金流向、市场需求变化等许多经济和社会行为都可用这一类过程来描述或近似,故其应用范围非常广泛。 6.1.1 马尔可夫链 为了表征一个系统在变化过程中的特性(状态),可以用一组随时间进程而变化的变量来描述。如果系统在任何时刻上的状态是随机的,则变化过程就是一个随机过程。 设有参数集(,)T ?-∞+∞,如果对任意的t T ∈,总有一随机变量t X 与之对应,则称 {,}t X t T ∈为一随机过程。 如若T 为离散集(不妨设012{,,,...,,...}n T t t t t =),同时t X 的取值也是离散的,则称 {,}t X t T ∈为离散型随机过程。 设有一离散型随机过程,它所有可能处于的状态的集合为{1,2,,}S N =L ,称其为状态空间。系统只能在时刻012,,,...t t t 改变它的状态。为简便计,以下将n t X 等简记为n X 。 一般地说,描述系统状态的随机变量序列不一定满足相互独立的条件,也就是说,系统将来的状态与过去时刻以及现在时刻的状态是有关系的。在实际情况中,也有具有这样性质的随机系统:系统在每一时刻(或每一步)上的状态,仅仅取决于前一时刻(或前一步)的状态。这个性质称为无后效性,即所谓马尔可夫假设。具备这个性质的离散型随机过程,称为马尔可夫链。用数学语言来描述就是: 马尔可夫链 如果对任一1n >,任意的S j i i i n ∈-,,,,121Λ恒有 {}{}11221111,,,n n n n n n P X j X i X i X i P X j X i ----=======L (6.1.1) 则称离散型随机过程{,}t X t T ∈为马尔可夫链。 例如,在荷花池中有N 张荷叶,编号为1,2,...,N 。假设有一只青蛙随机地从这张荷叶上跳到另一张荷叶上。青蛙的运动可看作一随机过程。在时刻n t ,青蛙所在的那张荷叶,称为青蛙所处的状态。那么,青蛙在未来处于什么状态,只与它现在所处的状态()N i i ,,2,1Λ=有关,与它以前在哪张荷叶上无关。此过程就是一个马尔可夫链。 由于系统状态的变化是随机的,因此,必须用概率描述状态转移的各种可能性的大小。 6.1.2 状态转移矩阵 马尔可夫链是一种描述动态随机现象的数学模型,它建立在系统“状态”和“状态转移”的概念之上。所谓系统,就是我们所研究的事物对象;所谓状态,是表示系统的一组记号。当确定了这组记号的值时,也就确定了系统的行为,并说系统处于某一状态。系统状态常表示为向量,故称之为状态向量。例如,已知某月A 、B 、C 三种牌号洗衣粉的市场占有率分别是0.3、0.4、0.3,则可用向量()0.3,0.4,0.3P =来描述该月市场洗衣粉销售的状况。

markov链在天气中的应用

北方民族大学 信息与计算科学学院 课程名称: 应用随机过程 姓名:___ 何义连方芳朱雪梅阿热孜古丽 学号: 20093241 20093208 20093284 20093177 专业:数学与应用数学 班级: 09级(5)班

天气变化情况是人们普遍关注的重点问题之一。借助随机过程中著名的马尔可夫链模型,以某日天气的状态转移数据为算例,建立了天气情况预测模型,并借助该模型对未来天气的变化趋势作出了预测分析。马尔科夫过程应用广泛,它的重要特征是无后效性。事物第t 次出现的状态,只与其第t一1次的状态有关,它与以前的状态无关。因此,运用马尔科夫链,只需要最近或现在的动态资料则可按转移概率可预测将来。这一基本思想可应用于天气预报、作物产量预报、病虫害预报等,也可应用于水文、通信技术和遗传学研究中。 1马尔科夫链预测的数学模型 1.1马尔科夫链和马尔科夫预测法概念 马尔科夫链是与马尔科夫过程紧密相关的一个概念。满足马尔可夫链的事物过程具有如下的三个特点: a.过程的离散性.事物的发展在时间上可离散化为有限或可列个状态。 b.过程的随机性.系统内部从一个状态转移到另一个状态是随机的,转变的可能由系统内部的以前历史情况的概率值表示。 c.过程的无后效性.系统内部的转移概率只与当前状态有关而与以前的状态无关。 设有随机过程{X(t),t∈T),若对任意的整数t∈T,{X(t),t=0,1,2 ,3】(状态空间为I)参数为非负整数, 把这类过程称为马尔科夫链。马尔科夫链指出事物系统的状态由过去转变到现在,再由现在转变到将来,一环接一环像一根链条,而作为

马尔科夫链的动态系统将来是什么状态,取什么值,只与现在的状态、取值有关,而与它以前的状态、取值无关。为了描述马氏链的(n+1)维概率分布,最重要的是条件概率P{X (t +1)=j ,X(t)=i ),称这条件概率为在时刻t 时的一步转移概率P 它表示在时刻t 时,X(t)=i 条件下,下一时刻t+l 时X(t +1) =j 的概率。将Pi ,依次排序,可得一步转移概率矩阵 ????? ???? ???=3332 31 30 2322212013 121110 03020100 p p p p p p p p p p p p p p p p p 我们称概率分布)i (I ∈,π为马尔可夫链的平稳分布,其中I 为状态空间,它满足下列关系: ) 0(>=∑∈i i ij I i i p πππ 1 =∑∈I i i π 1.2多步状态转移概率矩阵的计算 与起始时刻无关的马尔科夫链成为齐次马尔科夫链,m 步转移概率矩阵可以从一步转移概率矩阵P 自乘m 次得到,也可通过切普曼一柯尔莫格洛夫(c —k)方程得到。设P ∞)代表m 步转移概率矩阵,则根据切普曼一柯尔莫格洛夫(C 一k)方程可得 m 1() (P) (P =??==-) m m P p 其中 ) 1(p 即是一步转移概率矩阵P 。这样,如果知道了马尔科夫链的 初始概率分布,即初始时刻各个状态的概率,并且知道它的一步转移

马尔可夫链预测方法及其一类应用【文献综述】

文献综述 数学与应用数学 马尔可夫链预测方法及其一类应用 马尔可夫性是俄国数学家A.A.Mapkov 在1906年最早提出的. 但是, 什么是马尔可夫性呢? 一般来讲,认为它是“相互独立性”的一种自然推广. 设有一串随机事件,...,,...,,121n n A A A A -中(即n A 属于概率空间(P ,,ξΩ)中的σ代数ξ,1≥n ), 如果它们中一个或几个的发生, 对其他事件的发生与否没有影响, 则称这一串事件是相互独立的(用概率空间(P ,,ξΩ)的符号表示, 即))()(11n m n m n n A P A P X I ===, 推广下, 如果在已知,...,1+n n A A 中的某些事件的发生, 与,,...,,121-n A A A 中的事件发生与否无关, 则称这一串事件{1:≥n A n }具有马尔可夫性. 所以说, 马尔可夫性可视为相互独立性的一种自然推广. 从朴素的马尔可夫性, 到抽象出马尔可夫过程的概念, 从最简单的马尔可夫过程到一般的马尔可夫过程, 经历了几十年的发展过程. 它有极其深厚的理论基础, 如拓扑学、函数论、几何学、近世代数、泛函分析. 又有很广泛的应用空间, 如随机分形、近代物理、公共事业中的服务系统、电子信息、计算技术等. 在现实世界中, 有很多过程都是马尔可夫过程, 如软件可靠性测试、传染病受感染的人数、农村剩余劳动力流动趋势预测、液体中微粒所作的布朗运动、产品市场占有率及利润率的变动, 车站排队问题等等, 都可视为马尔可夫过程. 所谓马尔可夫链是指时间连续(或离散)、状态可列、时间齐次的马尔可夫过程. 之所以要研究这种过程, 一方面是由于它的理论比较完整深入, 可以作为一般马尔可夫过程及其他随机过程的借鉴; 二是由于它在自然科学和许多实际问题(如遗传学、教育学、经济学、建筑学、规则论、排队论等)中发挥着越来越大的作用. 自从我国著名数学家、教育家、中科院王梓坤院士在上世纪50年代将马尔可夫理论引入国内以后, 我国数学家对马尔可夫过程的研究也取得了非常好的效果, 在生灭过程的构造和它的积分型泛函的分布、马尔可夫过程的零壹律、Martin 边界与过份函数、马尔可夫过程

隐马尔科夫链及其应用

隐马尔科夫链及其应用 学习概率的时候,大家一定都学过马尔科夫模型吧,当时就觉得很有意思,后来看了数学之美之隐马模型在自然语言处理中的应用后,看到隐马尔科夫模型竟然能有这么多的应用,并且取得了很好的成果,更觉的不可思议,特地深入学习了一下,这里总结出来。 马尔科夫过程 马尔科夫过程可以看做是一个自动机,以一定的概率在各个状态之间跳转。 考虑一个系统,在每个时刻都可能处于N个状态中的一个,N个状态集合是{S1,S2,S3,...SN}。我们现在用q1,q2,q3,…qn来表示系统在t=1,2,3,…n时刻下的状态。在t=1时,系统所在的状态q取决于一个初始概率分布PI,PI(SN)表示t=1时系统状态为SN的概率。 马尔科夫模型有两个假设: 1.系统在时刻t的状态只与时刻t-1处的状态相关;(也称为无后效性) 2.状态转移概率与时间无关;(也称为齐次性或时齐性) 第一条具体可以用如下公式表示: P(q t=S j|q t-1=S i,q t-2=S k,…)= P(q t=S j|q t-1=S i) 其中,t为大于1的任意数值,Sk为任意状态 第二个假设则可以用如下公式表示: P(q t=S j|q t-1=S i)= P(q k=S j|q k-1=S i) 其中,k为任意时刻。 下图是一个马尔科夫过程的样例图:

可以把状态转移概率用矩阵A表示,矩阵的行列长度均为状态数目,aij表示P(Si|Si-1)。 隐马尔科夫过程 与马尔科夫相比,隐马尔科夫模型则是双重随机过程,不仅状态转移之间是个随机事件,状态和输出之间也是一个随机过程,如下图所示: 此图是从别处找来的,可能符号与我之前描述马尔科夫时不同,相信大家也能理解。

基于绝对分布的马尔可夫链预测方法

基于绝对分布的马尔可夫链预测方法 对于一列相依的随机变量,用步长为一的马尔可夫链模型和初始分布推算出未来时段的绝对分布来做预测分析,即为传统的马尔可夫链预测方法之一,可称之为“基于绝对分布的马尔可夫链预测方法”,不妨记其为“ADMCP法”。其具体方法步骤如下: (1)计算指标值序列均值x,均方差s,建立指标值的分级标准(相当于确定马尔可夫链的状态空间),可根据资料序列的长短及具体间题的要求进行。例如,可以样本均方差为标准(也可以用有序聚类的方法建立分级标准等)将指标值分级,即按4.2.1中指出的方法确定马尔可夫链的状态空间E=[1, 2,一,m]; (2)按(1)所建立的分级标准,确定资料序列中各时段指标值所对应的状态; (3)对(2)所得的结果进行统计计算,可得步长为一的马尔可夫链的转移概率矩阵 ,它决定了指标值状态转移过程的概率法则; (4)“马氏性”检验(应用工作者使用该方法时,一般都不做这一步,本文加上这一步意在完善"ADMCP法,’); (5)若以第1时段作为基期,该时段的指标值属于状态i,则可认为初始分布为 这里P(0)是一个单位行向量,它的第i个分量为1,其余分量全为0。于是第l+1时段的绝对分布为 第l+1时段的预测状态j满足: ;为预测第l+k时段的状态,则可 得到所预测的状态j满足: (6)可进一步对该马尔可夫链的特征(遍历性、平稳分布等)进行分析。 4.3.2叠加马尔可夫链预测方法 对于一列相依的随机变量,利用各阶(各种步长)马尔可夫链求得的绝对分布叠加来做预测分析,也是传统的马尔可夫链预测方法之一,可称之为“叠加马尔可夫链预测方法”不妨记其为“SPMCP 法’,。其具体方法步骤如下: (1)计算指标值序列均值x,均方差s,建立指标值的分级标准(相当于确定马尔可夫链的状态空间),可根据资料序列的长短及具体问题的要求进行; (2)按“(1)"所建立的分级标准,确定资料序列中各时段指标值所对应的状态: (3)对“(2)”所得的结果进行统计,可得不同滞时(步长)的马尔可夫链的转移概率矩阵,它决定了指标值状态转移过程的概率法则; (4)“马氏性”检验(应用工作者使用该方法时,一般也不做这一步,本文加上这一步同样意在完善,"SPMCP法”): (5)分别以前面若干时段的指标值为初始状态,结合其相应的各阶转移概率矩阵即可预测出该时段指标值的状态概率 (6)将同一状态的各预测概率求和作为指标值处于该状态的预测概率,即 ,所对应的i即为该时段指标值的预测状态。待该时段的指标值确定之后,将其加入到原序列之中,再重复步骤"(1)一(6)",可进行下时段指标值状态的预测。

实验7 马尔科夫预测

实验7:马尔柯夫预测 7.1实验目的 1、了解状态及状态转移的概念,理解马尔科夫链定义和性质,能根据具体实例和研究目的划分状态; 2、掌握用Excel 软件计算一步转移概率矩阵的全过程; 3、掌握利用Excel 软件进行马尔科夫链、市场占有率、马尔科夫稳态的相关预测。 7.2实验原理 7.2.1 马尔柯夫预测的基本原理 马尔可夫预测法是马尔科夫过程和马尔科夫链在经济预测领域的一种应用,这种方法通过对事物状态划分、研究各状态的初始概率和状态之间转移概率来预测事物未来状态变化趋势,以预测事物的未来。 7.2.1.1马尔可夫链 若时间和状态参数都是离散的马尔科夫过程,且具有无后效性,这一随机过程为马尔可夫链。无后效性可具体表述为如果把随机变量序列{}(),Y t t T ∈的时间参数s t 作为“现在”,那么s t t >表示“将来”,s t t <表示“过去”,那么,系统在当前的情况()s Y t 已知的条件下,()Y t “将来”下一时刻所处的的情况与“过去”的情况无关,随机过程的这一特性称为无后效性。 7.2.1.2状态及状态转移 1、状态是指客观事物可能出现或存在的状况。在实际根据研究的不同事物、不同的预测目的,有不同的预测状态划分。 (1)预测对象本身有明显的界限,依状态界限划分。如机器运行情况可以分为“有故障”和“无故障”两种状态,天气有晴、阴、雨三种状态。(2)研究者根据预测事物的实际情况好预测目的自主划分。如:公司产量按获利多少人为的分为畅销、一般销售、滞销状态。这种划分的数量界限依产品不同而不同。 2、状态转移是指所研究的系统的状态随时间的推移而转移,及系统由某一时期所处的状态转移到另一时期所处的状态。发生这种转移的可能性用概率描述,称为状态转移概率 7.2.2状态转移概率矩阵及计算原理 1、概念:状态转移概率指假如预测对象可能有E 1,E 2,…,E n 共n 种状态,

马尔可夫链预测方法及其一类应用【开题报告】

开题报告 数学与应用数学 马尔可夫链预测方法及其一类应用 一、综述本课题国内外研究动态, 说明选题的依据和意义 概率论自1654年创立以来, 已由最初的博弈分析问题发展成为现今的方法论综合性学科. 而其中随机过程已经是现代概率论发展的必然性. 在这其中, 马尔可夫在1906年的"大数定理关于相依变量的扩展"(Extension de la loi de grands bombers etc)论文中首次创立的马尔可夫链已经成为了概率论的重中之重. 马尔可夫是世界上著名的数学家、社会学家. 他所研究的范围非常的广泛, 涉及到概率论、数论、数的集合、函数逼近论、数理统计、微分方程等方面. 马尔可夫在1906~1912年间, 他提出并研究了一种能用数学分析方法研究自然过程的一般图示, 后人把这种图示以他的姓氏命名为马尔可夫链(Markov Chain). 在当时, 马尔可夫开创性地采用了一种对无后效性的随机过程的研究范式, 即在已知当前状态的情况下, 过程的未来状态与其过去状态无关, 这就是现在大家非常熟悉了解的马尔可夫过程. 在现实生活当中, 有许多过程都能被看作成马尔可夫过程. 如软件可靠性测试、传染病受感染的人数、农村剩余劳动力流动趋势预测、液体中微粒所作的布朗运动、产品市场占有率及利润率的变动等等. 也正是由于马尔可夫链在生活中所具有的普遍存在性, 马尔可夫链理论才被广泛应用于近代的物理学, 生物学, 地质学, 计算机科学, 公共事业, 教育管理、经济管理、以及企业人员管理、桥梁建筑等各个领域. 马尔可夫链运用数学模型对定性问题进行预测提供了一种思路, 丰富了预测的内容. 其大体上可以分为以下几个步骤: 首先, 把现象看作成为一个系统, 并对该系统进行科学的划分. 根据系统的实际和需要划分出多个状态, 系统所划分出来的各个状态就是要预测的内容. 其次, 对现象各种状态的状态概率进行统计测定, 也就是判定出系统当前处于什么状态. 然后, 对各系统未来发展的每次转移概率进行预测, 就是要确定出系统是如何转移的. 最后, 根据系统当前的各种状态和转移概率矩阵, 推测出系统经过若干次转移后, 到达

马尔可夫过程的发展和应用

H a r b i n I n s t i t u t e o f T e c h n o l o g y 课程设计(论文) 课程名称:应用随机过程 设计题目:马尔可夫过程的发展与应用 院系:电子信息与工程学院 班级:通信一班 设计者: 学号: 指导教师:田波平 设计时间: 2009/12/17 马尔可夫链(过程)的发展与应用

1. 随机过程发展简述 在当代科学与社会的广阔天地里,人们都可以看到一种叫作随机过程的数学模型:从银河亮度的起伏到星系空间的物质分布、从分子的布朗运动到原子的蜕变过程,从化学反应动力学到电话通讯理论、从谣言的传播到传染病的流行、从市场预测到密码破译,随机过程理论及其应用几乎无所不在。 一些特殊的随机过程早已引起注意,例如1907年前后,Α.Α.马尔可夫研究过一列有特定相依性的随机变量,后人称之为马尔可夫链(见马尔可夫过程);又如1923年N.维纳给出了布朗运动的数学定义(后人也称数学上的布朗运动为维纳过程),这种过程至今仍是重要的研究对象。虽然如此,随机过程一般理论的研究通常认为开始于30年代。1931年,Α.Η.柯尔莫哥洛夫发表了《概率论的解析方法》;三年后,Α.Я.辛钦发表了《平稳过程的相关理论》。这两篇重要论文为马尔可夫过程与平稳过程奠定了理论基础。稍后,P.莱维出版了关于布朗运动与可加过程的两本书,其中蕴含着丰富的概率思想。1953年,J.L.杜布的名著《随机过程论》问世,它系统且严格地叙述了随机过程的基本理论。1951年伊藤清建立了关于布朗运动的随机微分方程的理论(见随机积分),为研究马尔可夫过程开辟了新的道路;近年来由于鞅论的进展,人们讨论了关于半鞅的随机微分方程;而流形上的随机微分方程的理论,正方兴未艾。60年代,法国学派基于马尔可夫过程和位势理论中的一些思想与结果,在相当大的程度上发展了随机过程的一般理论,包括截口定理与过程的投影理论等,中国学者在平稳过程、马尔可夫过程、鞅论、极限定理、随机微分方程等方面也做出了较好的工作。 2. 马尔可夫过程发展 2.1 马尔可夫过程简介 马尔科夫过程(MarKov Process)是一个典型的随机过程。设X(t)是一随机过程,当过程在时刻t0所处的状态为已知时,时刻t(t>t0)所处的状态与过程在t0时刻之前的状态无关,这个特性成为无后效性。无后效的随机过程称为马尔科夫过程。马尔科夫过程中的时同和状态既可以是连续的,又可以是离散的。我们称时间离散、状态离散的马尔科夫过程为马尔科夫链。马尔科夫链中,各个时刻的状态的转变由一个状态转移的概率矩阵控制。 2.2 马尔可夫过程的发展 20世纪50年代以前,研究马尔可夫过程的主要工具是微分方程和半群理论(即分析方法);1936年前后就开始探讨马尔可夫过程的轨道性质,直到把微分方程和半群理论的分析方法同研究轨道性质的概率方法结合运用,才使这方面的研究工作进一步深化,并形成了对轨道分析必不可少的强马尔可夫性概念。1942年,伊藤清用他创立的随机积分和随机微分方程理论来研究一类特殊而重要的马尔可夫过程──扩散过程,开辟了研究马尔可夫过程的又一重要途径。

马尔可夫链预测股票例1

1、对单支股票走势、收益的预侧 现以上海A股精伦电子的股价时间序列为例(原始资料如表1),应用马尔可夫链对股价分别进行中短期和长期预测分析,这里不妨将时间序列的单位以天记。 表1:上海A股精伦电子2002年6月13日一7月17日23个交易日的收盘价格资料 将表1中这23个收盘价格划分成4个价格区间(由低到高每区间1.5个价格单位),得到区间状态为: S1:(26.00以下)、S2:(26.00--27.50)、S3:(27.50--28.00)、S4:(28.00及以上)。则到达个区间的频数分别为5, 3, 9, 6。综合这些资料于是得到这23个交易日的收盘价格状态转移情况如表2, 由此得到各状态之间的转移概率和转移概率矩阵: 表1知,第23个交易日的收盘价格是27.53(即为k状态区间),所以用马尔可夫链进行预测时初始状态向量,P(0) =( 0,0,1,0),第24, 25日的收盘价格状态向量分别为即

P(1)=P(0)P=(0,0.125,0.625,0.25); P(2)=P(1)P=(0.042,0.078,0.451,0.323) 预测这两日的收盘价格处于k状态区间的概率最大,与实际情况27.21和27.39一致. 随着交易日的增加,即n足够大时,只要状态转移概率不变(即稳定条件),则状态向量趋向于一个和初始状态无关的值,并稳定下来.按马尔可夫系统平稳定条件,可得一个线性方程组: 解得的数值即为较长时间后股价处于各区间的平稳分布。对照资料可以看出,由上述公式计算出的各收盘价格状态区间基本上是准确的。 2、用马氏链对沪市的走势进行预铡及相应分析 我们利用沪市1998年1月5日至2001年11月2日的上证综合指数每周收盘资料,将上证指数划分为六个区间,即六种状态:区间1(1000点一1300点);区间2 (1300点一1600点);区间3 (1600点一1800点):区间4 (1800点~2000点);区间 5 (2000点~2200点);区间6 (2200点以上)。即可得到上证综合指数以周为单位的转移概率矩阵 因为11月2日上证综合指数周收盘为1691点,处于状态3,所以在对沪市进行预测时,初始状态向量P(0)=(0,0,1,0,0,0),然后按上例中的马尔可夫方法进行中短期和长期预测分析。通过对比可以发现,马尔可夫链对整个证券市场的预测结果是比较准确的,而且长期预测所得的结论与股票价格根本上是由股票内在投资价值决定的这一基本原理也是惊人的一致。

马尔可夫链预测方法

马尔可夫链预测方法 一、基于绝对分布的马尔可夫链预测方法 对于一列相依的随机变量,用步长为一的马尔可夫链模型和初始分布推算出未来时段的绝对分布来做预测分析方法,称为“基于绝对分布的马尔可夫链预测方法”,不妨记其为“ADMCP 法”。其具体方法步骤如下: 1.计算指标值序列均值x ,均方差s ,建立指标值的分级标准,即确定马尔可夫链的状态空间I ,这可根据资料序列的长短及具体间题的要求进行。例如,可用样本均方差为标准,将指标值分级,确定马尔可夫链的状态空间 I =[1, 2,…,m ]; 2.按步骤1所建立的分级标准,确定资料序列中各时段指标值所对应的状态; 3.对步骤2所得的结果进行统计计算,可得马尔可夫链的一步转移概率矩阵1P ,它决定了指标值状态转移过程的概率法则; 4.进行“马氏性” 检验; 5.若以第1时段作为基期,该时段的指标值属于状态i ,则可认为初始分布为 (0)(0,,0,1,0,0)P = 这里P (0)是一个单位行向量,它的第i 个分量为1,其余分量全为0。于是第2时段的绝对分布为 1(1)(0)P P P =12((1),(1),,(1))m p p p = 则第2时段的预测状态j 满足:(1)max{(1),}j i p p i I =∈; 同样预测第k +1时段的状态,则有 1()(0)k P k P P =12((),(),,())m p k p k p k = 得到所预测的状态j 满足: ()max{(),}j i p k p k i I =∈ 6.进一步对该马尔可夫链的特征(遍历性、平稳分布等)进行分析。 二、叠加马尔可夫链预测方法 对于一列相依的随机变量,利用各种步长的马尔可夫链求得的绝对分布叠加来做预测分析,的方法,称为“叠加马尔可夫链预测方法”,不妨记其为“SPMCP 法’。其具体方法步骤如下: 1) 计算指标值序列均值x ,均方差s ,建立指标值的分级标准(相当于确定马尔可夫链的状态空间),可根据资料序列的长短及具体问题的要求进行; 2) 按1)所建立的分级标准,确定资料序列中各时段指标值所对应的状态; 3) 对2)所得的结果进行统计,可得不同滞时(步长)的马尔可夫链的转移概率矩阵,它决定了指标值状态转移过程的概率法则; 4) 马氏性检验; 5) 分别以前面若干时段的指标值为初始状态,结合其相应的各步转移概率矩阵即可预测出该时段指标值的状态概率 (6)将同一状态的各预测概率求和作为指标值处于该状态的预测概率,即 ,所对应的i 即为该时段指标值的预测状态。待该时段的指标值确定之后,将其加 入到原序列之中,再重复步骤"(1)一(6)",可进行下时段指标值状态的预测。 (7)可进一步对该马尔可夫链的特征(遍历性、平稳分布等)进行分析。

马尔科夫链模型的应用研究

管理预测与决策马尔科夫链模型的应用研究 姓名: 学号: 专业: 指导教师: 2012年11月1日

摘要 预测春运客流量是铁路部分的一项重要工作。运用马尔科夫链模型可以对 春运期间一天中的客流量进行预测。 首先,介绍了马尔科夫链模型及其预测的基本原理;其次,分析了**火车站2011年春运期间每天的客流量,并按照**火车站突发事件三级预警方案将客流量数据处理为三个状态;最后,运用马尔科夫链模型对2011年的春运客流进行预测,结果表明,运用马尔科夫链模型具有良好的预测结果。 关键词:马尔科夫链模型;火车站;客流量

马尔科夫链模型的应用研究 **站每年春运都面临着大规模客流。大量人群的聚集会带来许多安全隐 患,相关领导部门非常重视。如果能够根据以往的客流量,对下一年的春运客流量做出正确预测,就能够为领导决策层提供有力的信息支持,使他们能够提前做好应对高峰客流的准备,从而降低风险。影响春运客流的因素很多,并且各个因素的作用机制无法用精确的熟悉模型描述。目前常用的预测方法主要有数学模型方法和人工经验模型法。对客流量做预测,目前所知道的是以前客流量的记录。 如何从大量已知的数据中挖掘出有用的信息或知识,为下一步工作服务,这是数据挖掘技术所完成的工作。数据挖掘领域中有许多新的研究成果,如关联规则、Web挖掘、马尔科夫链模型等。其中马尔科夫链模型是近年来在数据挖掘方法的 一个研究热点。本文运用该方法对**站春运客流进行预测。 1.马尔科夫链模型 1.1马尔科夫链 马尔科夫链,是数学领域中具有马尔科夫性质的离散时间随机过程。该过 程中,在给定当前指示或信息的情况下,过去(即现在时期以前的历史状态)对 与预测将来(即现在时期以后的状态)是无关的。如果n个连续变动事物在变动过程中,其中任一次变动的结果都具有无后效性,那么,这n个连续变动事物的集合就叫做马尔科夫链,这类事物演变的过程称为马尔科夫过程。 1.2 马尔科夫预测的基本原理 对事件的全面预测,不仅要能够指出事件发生的各种可能结果,而且还必 须给出每一种结果出现的概率,说明被预测的事件在预测期内出现每一种结果的 可能性程度。这就是关于事件发生的概率预测。马尔科夫预测法,就是一种关于事件发生的概率预测方法。它是根据事件的目前状况来预测其将来各个时刻(或时期)变动状况的一种预测方法。

马尔科夫链决策方法

马尔科夫预测与决策法

马尔科夫预测与决策法——是应用随机过程中马尔科夫链的理论和方法研究分析有关经济现象变化规律并借此对未来进行预测和决策的一种方法。 池塘里有三张荷叶,编号为1,2,3,假设有一只青蛙随机地在荷叶上跳来跳去。在初始时刻t ,它在第二张荷叶上。在时 ,它有可能跳到第一张或者第三张荷叶上,也有可能在原刻t 1 地不动。我们把青蛙某个时刻所在的荷叶称为青蛙所处的状态。这样,青蛙在未来处于什么状态,只与它现在所处的状态有关,与它以前所处的状态无关。实际上青蛙在一段时间内在荷叶间跳或不跳的过程就是一个马尔科夫过程。 2010年6月6日Sunday2

马尔可夫性与转移概率矩阵 一个过程或系统在未来时刻的状态只依赖于现状时刻的状态,而与以往更前的时刻无关,这一特性就成为无后效性(无记忆性)或马尔可夫性(简称马氏性)。换一个说法,从过程演变或推移的角度上考虑,如果系统在时刻的状态概率,仅依赖于当前时刻的状态,而与如何达到这个状态的初始概率无关,这一特性即马尔可夫性。 2010年6月6日Sunday3

设随机变量序列,{X ,X2, ···,X n, ···},它的状态集合记为 1 S= {s1,s2 , ···, s n, ···} 若对任意的k和任意的正整数i , i2 , ···,i k, i k+1,有下式成 1 立: P{X k+1= s ik+1| X1= s i1, X2= s i2, ···X k= s ik} = P{X k+1= s ik+1| X k= s ik} ,X2, ···,X n, ···} 为一个马尔可夫则称随机变量序列{X 1 链(Markov chains)。 2010年6月6日Sunday4

相关文档
相关文档 最新文档