文档视界 最新最全的文档下载
当前位置:文档视界 › 第九章分子结构

第九章分子结构

第九章分子结构
第九章分子结构

第九章分子结构

[教学要求]

1.熟悉化学键的分类、共价键价键理论的基本要点、共价键的特征和类型。

了解键能、键长、键角等概念。

2.熟悉杂化轨道理论的概念和类型,能用杂化轨道理论解释简单分子和离子的几何构型。

3.了解价层电子对互斥理论的要点和用该理论推测简单分子或离子的几何构型的方法。

4.了解分子轨道的概念、第二周期同核双原子分子的能级图核电子在分子轨道中的分步,并推测其磁性核稳定性(键级)。

[教学重点]

1.共价键的形成和本质,现代价键理论的要点和优缺点,共价键的方向性和

饱和性,б键和π键。

2.价层电子对互斥理论。

3.杂化轨道理论。

4. 共轭大π键

5.分子轨道理论简介:分子轨道的含义,分子轨道的形成,分子轨道中电子

的排布,键级。

6.共价分子的性质--键能、键长、键角,键的极性。分子偶级矩和磁性。

7.分子间的作用力和氢键。

[教学难点]

MO法,共轭大π键

[教学时数]10学时

[主要内容]

1.Lewis理论

2.价键理论

3.杂化轨道理论

4.价层电子对互斥理论

5.键参数

6.分子轨道理论

[教学内容]

§9.1 Lewis理论

19世纪的化学家们创造了用元素符号加划短棍“—”来表明原子之间按“化合价”相互结合的结构式。

分子中的原子间用“—”相连表示互相用了“1价”,如水的结构式为H—O—H;“=”为“2价”;“≡”为“3价”。

“化合价”概念:是由英国化学家弗兰克兰在1850年左右提出的。

H—H结构式称为弗兰克兰结构式。路易斯把弗兰克兰结构式中的“短棍”解释为两个原子各取一个电子配成对,即:“—”是一对共用电子,“ =”是2对共用电子,“≡” 是3对共用电子。路易斯还认为,稀有气体最外层电子构型(8e- )是一种稳定构型,其他原子倾向于共用电子而使他们的最外层转化为稀有气体的8电子稳定构型—8隅律。路易斯又把用“共用电子对”维系的化学作用力称为共价键。这种观念为路易斯共价键理论。

孤对电子:分子中除了用于形成共价键的键合电子外,存在未的用于形成共价键的非键合电子。在写结构式时常用小黑点表示孤对电子。

把这类添加了孤对电子的结构式叫路易斯结构式(Lewis structure),也叫电子结构式(electronic structure)

路易斯结构式的优缺点:

优点:给出了分子的总价电子数,用“电子对”的概念解释了经典结构式中表达弗兰克兰化合价的短横,并标出了未键合的孤对电子。

缺点:路易斯结构式不能很好地表达分子的立体结构,也不能表达比传统的单键、双键、叁键更复杂的化学键

§9.2 价键理论

9.2.1 共价键的形成和本质

Heitler和London用量子力学处理H2分子的形成过程,得到E—R关系曲线,如下图所示:

价键理论继承了Lewis共用电子对的概念,以量子力学为基础,揭示了共价键的本质——原子轨道重叠,原子核间电子概率密度大吸引原子核而成键。

9.2.2 价键理论的基本要点与共价键的特点

1. 基本要点:

未成对价电子自旋方向相反;

对称性一致,原子轨道最大程度重叠。

2. 特点:

饱和性:是指每种元素的原子能提供用于形成共价键的轨道数是一定的。

方向性:是因为每种元素的原子能提供用于形成共价键的轨道是具有一定的方向。

9.2.3 共价键的键型

1.σ键:原子轨道沿核间联线方向进行同号重叠(头碰头)。

2.π键:两原子轨道垂直核间联线并相互平行进行同号重叠(肩并肩)。

3. 配位键形成条件:成键原子一方有孤对电子,另一方有空轨道。

§9.3 杂化轨道理论

9.3.1 杂化轨道的概念

在形成分子的过程中,若干不同类型能量相近的原子轨道重新组合成一组新轨道。这种轨道重新组合的过程称为杂化,所形成的新轨道叫做杂化轨道。

9.3.2 杂化轨道的类型 1. sp 型杂化

sp 3杂化:sp 3杂化轨道由1个S 轨道和3个P 轨道组合而成。如CH 4 中心原子C 采用了

sp 3

杂化方式与配位原子成键。

sp 2

杂化:sp 2杂化轨道由1个S 轨道和2个P 轨道组合而成。如BF 3中心

原子B 采用了

SP 2杂化方式与配位原子成键。

sp 杂化:sp 杂化轨道由1个S 轨道和1个P 轨道组合而成。如BeCl 2分子中心原子Be 采用了SP 杂化方式与Cl 原子成键。

2. spd 型杂化

sp 3d 杂化:由1个S 轨道,3个P 和1个d 轨道组合成5个sp 3

d 杂化轨道而成。PCl 5(g)的几何构型为三角双锥。

P :3s 23p

3

sp 3d 2杂化:由1个S 轨道,3个P 和2个d 轨道组合成6个sp 3d 2

杂化轨道而成。

SF 6的几何构型为八面体。

S:3s 2

3p

4

杂化轨道与分子空间构型

3.不等性杂化

参与杂化的原子轨道s,p和d等成分不相等,所形成的杂化轨道是一组能量彼此不相等的轨道。

sp 3

不等性杂化:NH3 , H2O。

NH3:几何构型为三角锥,键角为:107。

N:2s 2

2p

3

一对孤对电子占据的杂化轨道能量较低,含更多的s成分。H2O:几何构型为V型,键角为:104.5。

O:2s 2

2p

4

sp 3

不等性杂化两个杂化轨道能量较低,被两对孤对电子占据。

小结:杂化轨道的类型与分子的空间构型

§9.4 价层电子对互斥理论(VSEPR)

9.4.1 价层电子对互斥理论的基本要点

1. AX m L n分子(A为中心原子,X为配位原子,m为配位原子的个数,L为孤对电子,n为孤电子对数。) 的几何构型取决于中心原子A的价电子层电子对数VPN。

VPN = m + n

2. 价层电子对尽可能远离,以使斥力最小。

价层电子对的排布方式表

3. 就只含单键的AX m L n分子而言,AX m L n分子的几何构型与价层电子对

的排布方式如下表

4. A与X间具有重键时当成单键处理。

5. 价层电子对间的斥力大小规律:

a)电子对间夹角愈小,斥力愈大;

b)LP-LP > LP-BP > BP-BP ;

c)叁键> 双键> 单键。

9.4.2 分子几何构型的预测

分子或离子几何构型的推断步骤:

1. 确定中心原子的价层电子对数

VPN= 1/2[A的价电子数+X提供的价电子数±离子电荷数(正负)]

A的价电子数=A所在的族数:ⅡA(2), 硼族(3), 碳族(4), 氮族(5),氧族(6),卤素(7),稀有气体(8)

X的价电子数:H和卤素记为1,氧和硫记为0。

例:CH4分子中,VPN = (4+1×4) /2 = 4

H2O,VPN = (6+1×2) /2 = 4

SO3,VPN = (6+0) /2 = 3

2. 确定价层电子对的排布方式

价层电子对尽可能远离,以使斥力最小。

3. 确定中心原子的孤对电子对数n,推断分子的几何构型

n=1

2

(A的价电子数-A用于与X成键的电子数之和)

例:SF 4分子

n =

1

2

(6-1×4)=1 为变形四面体 n =0:分子的几何构型与电子对的几何构型相同。 n ≠0 :分子的几何构型不同于电子对的几何构型。 9.4.3 判断分子(离子)几何构型的实例

例如:判断BrF 3分子的几何构型

中心原子Br 的VPN=(7+1×3)/2=5,价层电子对排布呈三角双锥构型,

n =(7-3)/2=2

BrF 3属于AX 3L 2型分子,几何构型为T 形。

思考题:解释NO 2+, O 3, SnCl 3-, OF 2, ICl 3, I 3-, XeF 5+, ICl 4-

等离子或分子的空间构型, 并指出其中心原子的轨道杂化方式。

§9.5 分子轨道理论

9.5.1 分子轨道理论的要点

1. 分子中的电子在分子轨道中运动,其运动状态用 ψ表示,ψ称为分子轨道。

2. 分子轨道是由原子轨道线性组合而成。

1a 2b = c c ψψψ+Ⅰ 1a 2b = c c ψψψ-Ⅱ

c c ψψab12,—原子轨道,,—系数

ψψⅠⅡ:成键分子轨道;:反键分子轨道。

3. 原子轨道组合方式不同,将分子轨道分为σ轨道与π轨道。

s 轨道与s 轨道线性组合成s σ 和*

s σ

p 轨道与p 轨道的线性组合 “肩并肩”:

π分子轨道有通过键轴的节面。

4. 原子轨道线性组合遵循三原则:

a) 能量相近 b) 对称性匹配 c) 最大重叠

5. 电子在分子轨道中填充的原则:

a) 最低能量原理 b) Pauli 不相容原理 c) Hund 规则

9.5.2 分子轨道能级图及其应用 1. 同核双原子分子轨道能级图

下图:适合O 2,F 2

下图:适合N 2,C 2 , B 2

2. 同核双原子分子轨道电子排布式:

2

21s H ()σ????

H 2分子轨道能级图(从下向上能量升高)

1(2

=-键级成键轨道中的电子数反键轨道中的电子数) 键级 = 1

2*22*242

21s 1s 2s 2s 2p 2p N ()()()()(π)()σσσσσ????

键级 = 1/2( 10 – 4 ) = 3

2*22*224*22*2242

21s 1s 2s 2s 2p 2p 2p g u g u g O ()()()()()(π)(π)(2)(2)(3)(1π)(1π)KK σσσσσσσσ???????

?或

键级=1/2 ( 8 - 4 ) = 2

3. 异核双原子分子的分子轨道图及电子排布式: HF 分子的电子构型:2224[1231]σσσπ

9.5.3 关于原子轨道和分子轨道的对称性

o 180 x σψ对称:若以为旋转轴,每旋转,的数值恢复,且符号不变。

p x σ例如,轨道为对称。

π对称:绕 x 轴旋转180°,形状不变,符号改变。例如:原子轨道p z ,p y ,d xy ,d xz ,d yz 为π对称。

§9.6 键参数 9.6.1 键级 键级 1

B.O (2

=-成键电子数反键电子数)

2*22*242

211222p 2p N ()()()()(π)()s s s s σσσσσ????

B.O = 1/2( 10 – 4 ) = 3

2*224*22222p 2p 2p O ()()()(π)(π)s s KK σσσ????

B.O =1/2 ( 8 – 4 ) = 2

9.6.2 键能

1. 键解离能D :在双原子分子中,于100kPa 下将气态分子断裂成气态原子所需要的能量。

D (H —Cl)=432kJ·mol -1, D (Cl —Cl)=243kJ· mol -1

在多原子分子中,断裂气态分子中的某一个键,形成两个“碎片”时所需要的能量叫做此键的解离能。

121

H O(g)H(g)OH(g) (H OH)499kJ mol HO(g)H(g)O(g) (O H)429kJ mol

D D --→+-=?→+-=?

2. 原子化能 E atm :气态的多原子分子的键全部断裂形成各组成元素的气态原子

时所需要的能量。例如:

H 2O(g) = 2H(g) + O(g)

-1atm 2(H O)(H OH)(O H)928kJ mol E D D =-+-=?

3. 键能 E :标准状态下气体分子拆开成气态原子时,每种键所需能量的平均值。例如:

E (H – H)=436kJ·mol

-1

E (H – Cl)=432kJ·mol

-1

4. 键能、键解离能与原子化能的关系:

双原子分子:键能 = 键解离能 E (H -H) =D (H -H) 多原子分子:原子化能 = 全部键能之和 Eatm (H 2O) = 2E(O -H)

5. 键焓与键能:近似相等,实验测定中,常常得到的是键焓数据。

键能是指断键时的热力学能变化。

m

H r Θ? = m rU Θ?

+ ?nRT ?nRT 很小,m m H rU r ΘΘ

?≈?

9.6.3 键长

分子中两原子核间的平衡距离称为键长。例如,H 2分子,l = 74pm 。 单键、双键及叁键的键长依次缩短,键能依次增大,但与单键并非两倍、三倍的关系。 9.6.4 键角

键角和键长是反映分子空间构型的重要参数,它们均可通过实验测知。 如:

9.6.5 键矩与部分电荷

键矩是表示键的极性的物理量记作μ 。

μ= q ·l

式中 q 为电荷量,l 为核间距。μ为矢量,例如,实验测得H -Cl

303.5710C m μ-=??

键参数小结:

键的极性——键矩(μ)

作业:P297:2, 3, 4, 7, 9,13。

2020高考化学 考题 分子结构与性质

分子结构与性质 1.三硫化磷(P4S3)是黄绿色针状晶体,易燃、有毒,分子结构之一如下图所示,已知其燃烧热△H= -3677kJ/mol(P被氧化为P4O10),下列有关P4S3的说法中不正确的是 A.分子中每个原子最外层均达到8电子稳定结构 B.P4S3中硫元素为-2价,磷元素为+3价 C.热化学方程式为P4S3(s)+8O2(g)=P4O10(s)+3SO2(g);△H=-3677kJ/mol D.一个P4S3分子中含有三个非极性共价键 【答案】B 【解析】A、P原子最外层有5个电子,含3个未成键电子,S原子最外层有6个电子,含2个未成键电子,由P4S3的分子结构可知,每个P形成3个共价键,每个S形成2个共价键,分子中每个原子最外层均达到8电子稳定结构,A正确;B、由P4S3的分子结构可知,1个P为+3价,其它3个P都是+1价,正价总数为+6,而S为-2价,B错误;C、根据燃烧热的概念:1mol可燃物燃烧生成稳定氧化物放出的热量为燃烧热,则P4S3(s)+8O2(g)=P4O10(s)+3SO2(g);△H= -3677kJ/mol,C正确;D、由P4S3的分子结构可知,P-P之间的键为非极性键,P-S之间的键为极性键,一个P4S3分子中含有三个非极性共价键,D正确。 2.常温下三氯化氮(NCl3)是一种淡黄色的液体,其分子结构呈三角锥形,以下关于NCl3说法正确的是()A.该物质中N-C1键是非极性键 B.NCl3中N原子采用sp2杂化 C.该物质是极性分子 D.因N-C1键的键能大,所以NCl3的沸点高 【答案】C 【解析】A、N和Cl是不同的非金属,则N-Cl键属于极性键,故A错误;B、NCl3中N有3个σ键,孤 电子对数531 2 -? =1,价层电子对数为4,价层电子对数等于杂化轨道数,即NCl3中N的杂化类型为sp3, 故B错误;C、根据B选项分析,NCl3为三角锥形,属于极性分子,故C正确;D、NCl3是分子晶体,NCl3沸点高低与N-Cl键能大小无关,故D错误。 3.二氯化二硫(S2Cl2),非平面结构,常温下是一种黄红色液体,有刺激性恶臭,熔点80℃,沸点135.6℃,对干二氯化二硫叙述正确的是

高中化学分子的结构与性质

分子的结构与性质 【知识动脉】 知识框架 产生原因:共价键的方向性 Sp3 决定因素:杂化轨道方式sp2 分子的空间构型sp 空间构型的判断:VSEPR理论 空间构型决定性质等电子原理 手性分子 配合物 一、杂化轨道理论 1. 杂化的概念:在形成多原子分子的过程中,中心原子的若干能量相近的原子轨道重新组合,形成一组新的轨道,这个过程叫做轨道的杂化,产生的新轨道叫杂化轨道。 思考:甲烷分子的轨道是如何形成的呢? 形成甲烷分子时,中心原子的2s和2p x,2p y,2p z等四条原子轨道发生杂化,形成一组新的轨道,即四条sp3杂化轨道,这些sp3杂化轨道不同于s轨道,也不同于p轨道。 根据参与杂化的s轨道与p轨道的数目,除了有sp3杂化外,还有sp2杂化和sp杂化,sp2杂化轨道表示由一个s轨道与两个p轨道杂化形成的,sp杂化轨道表示由一个s轨道与一个p轨道杂化形成的。 思考: 应用轨道杂化理论,探究分子的立体结构。

C2H4 BF3 CH2O C2H2 思考:怎样判断有几个轨道参与了杂化? [讨论总结]:三种杂化轨道的轨道形状,SP杂化夹角为°的直线型杂化轨道,SP2杂化轨道为°的平面三角形,SP3杂化轨道为°′的正四面体构型。 小结:HCN中C原子以sp杂化,CH2O中C原子以sp2杂化;HCN中含有2个σ键和2π键;CH2O中含有3σ键和1个π键 【例1】(09江苏卷21 A部分)(12分)生物质能是一种洁净、可再生的能源。生物质气(主要成分为CO、CO2、H2等)与H2混合,催化合成甲醇是生物质能利用的方法之一。甲醛分子中碳原子轨道的杂化类型为。甲醛分子的空间构型是;1mol甲醛分子中σ键的数目为。 解析与评价:甲醛分子中含有碳氧双键,故碳原子轨道的杂化类型为sp2杂化;分子的空间构型为平面型;1mol甲醛分子中含有2mol碳氢δ键,1mol碳氧δ键,故含有δ键的数目为3N A 答案:sp2平面型3N A 【变式训练1】(09宁夏卷38)[化学—选修物质结构与性质](15分) 已知X、Y和Z三种元素的原子序数之和等于42。X元素原子的4p轨道上有3个未成对电子,Y元素原子的最外层2p轨道上有2个未成对电子。X跟Y可形成化合物X2Y3,Z元素可以形成负一价离子。请回答下列问题: (1)X与Z可形成化合物XZ3,该化合物的空间构型为____________; 2、价层电子对互斥模型 把分子分成两大类:一类是中心原子上的价电子都用于形成共价键。如CO2、CH2O、CH4等分子中的C 原子。它们的立体结构可用中心原子周围的原子数来预测,概括如下: ABn 立体结构范例 n=2 直线型CO2 n=3 平面三角形CH2O n=4 正四面体型CH4 另一类是中心原子上有孤对电子 ............)的分子。如 ....(未用于形成共价键的电子对 H2O和NH3中心原子上的孤对电子也要占据中心原子周围的空间,并参与互相排斥。因而H2O分子呈V型,NH3分子呈三角锥型。 练习2、应用VSEPR理论判断下表中分子或离子的构型。进一步认识多原子分子的立体结构。 化学式中心原子含有孤对电子对数中心原子结合的原子数空间构型 H2S

分子结构与性质教案

第二章分子结构与性质 第一节共价键 【学习目标】 1、了解共价键的形成过程。 2、知道共价键的主要类型δ键和π键。 3、能用键参数――键能、键长、键角说明简单分子的某些性质 4、知道等电子原理,结合实例说明“等电子原理的应用” 【学习重点】 1、δ键和π键的特征和性质 2、用键能、键长、键角等说明简单分子的某些性质。 【学习难点】 1、δ键和π键的特征; 2、键角 【教学过程】 复习引入: 1.NaCl、HCl的形成过程 2.离子键:阴阳离子间的相互作用。 3.共价键:原子间通过共用电子对形成的相互作用。 4.使离子相结合或原子相结合的作用力通称为化学键。 一、共价键 1、定义:原子间通过共用电子对形成的相互作用。 2、练习:用电子式表示H2、HCl、Cl2的形成过程 H2 HCl Cl2 思考:为什么H2、Cl2 是双原子分子,而稀有气体是单原子分子? 3、形成共价键的条件:两原子都有单电子 讨论(第一组回答):按共价键的共用电子对理论,是否有H3、H2Cl、Cl3的分子存在? 4、共价键的特性:饱和性 对于主族元素而言,内层电子一般都成对,单电子在最外层。 如:H 1s1 、Cl 1s22s22p63s23p5 H、Cl最外层各缺一个电子,于是两原子各拿一电子形成一对 共用电子对共用,由于Cl吸引电子对能力稍强,电子对偏向Cl(并非完全占有),Cl略带部分负电荷,H略带部分正电荷。

讨论(第二组回答):共用电子对中H、Cl的两单电子自旋方向是相同还是相反? 设问:前面学习了电子云和轨道理论,对于HCl中H、Cl原子形成共价键时,电子云如何重叠? 例:H2的形成 1s1 相互靠拢1s1 电子云相互重叠形成H2分子的共价键 (H-H)由此可见,共价键可看成是电子云重叠的结果。电子云重叠程度越大,则形成的共价键越牢固。 H2里的共价键称为δ键。形成δ键的电子称为δ电子。 5、共价键的种类 (1)δ键:(以“头碰头”重叠形式) a、特征:以形成化学键的两原子核的连线为轴作旋转操作,共价键电子云的图形不变,这种特征称为轴对称。 讲:H2分子里的δ键是由两个s电子重叠形成的,可称为S-Sδ键。 下图为HCl、Cl2中电子云重叠: 未成对电子的电子云相互靠拢电子云相互重叠形成的共价单 键的电子云图 像 未成对电子的电子云相互靠拢电子云相互重叠形成的共价 单键的电子 云图像 HCl分子里的δ键是由H的一个s电子和Cl的一个P电子重叠形成的,可称为S-P δ键。 Cl2分子里的δ键是由Cl的两个P电子重叠形成的,可称为P-P δ键。 b、种类:S-S δ键 S-P δ键 P-P δ键

高中化学选修三——分子结构与性质

一、共价键 1.本质:原子间形成共用电子对 分类 思考:用电子式表示H 2 、HCl的形成 共价键特征: ①饱和性:每个原子形成共价键的数目是确定的 ②方向性:原子轨道沿一定方向重叠使成键的原子轨道最大程度地重叠 2.σ键和π键 ①σ键--原子轨道沿着连线方向以“头碰头”方式重叠形成的共价键 特点:以形成化学键的两个原子核的连线为轴旋转,σ键电子云的图形不变电子云描述氢原子形成氢分子的过程(s-s σ键) ②π键--原子轨道沿着连线方向以“肩并肩”方式重叠形成的共价键 特点:(1)电子云为镜像,即是每个π键的电子云由两块组成,分别位于由两个原子核构成的平面的两侧 (2)不稳定,容易断裂 p-p π键的形成 键型 特点 σ键π键 成键方向沿轴方向“头碰头”平行方向“肩并肩” 电子云形状轴对称镜像对称 牢固程度强度大,不易断裂强度较小,易断裂 成键判断规律共价单键全是σ键 共价双键中一个是σ键,另一个是π键共价叁键中一个σ键,另两个为π键 N 2 分子中的N≡N 思考:分析CH 3CH 3 、CH 2 =CH 2 、CH≡CH、CO 2 分子中键的类别和个数 3.键参数--键能、键长与键角 ①键能:气态基态原子形成1 mol化学键释放的最低能量 键能越大,即形成化学键时放出的能量越多,化学键越稳定 应用--计算化学反应的反应热ΔH=反应物键能总和-生成物键能总和 ②键长:形成共价键的两个原子之间的核间距 键长是衡量共价稳定性的另一个参数

规律:键长越短,一般键能越大,共价键越稳定 一般地,形成的共价键的键能越大,键长越短,共价键越稳定,含有该键的分子越稳定,化学性质越稳定 ③键角:两个共价键之间的夹角 键角是描述分子立体结构的重要参数,分子的许多性质与键角有关 思考:N 2、O 2 、F 2 跟H 2 的反应能力依次增强,从键能的角度如何理解 4.等电子原理 等电子体:原子总数相同、价电子(最外层电子)总数相同的分子如N 2 和CO 是等电子体,但N 2和C 2 H 4 不是等电子体 等电子体原理:原子总数、价电子总数相同的分子具有相似的化学键特征,它们的物理性质是相近的。例如N 2 和CO的熔沸点、溶解性、分子解离能等都非常接近 5.用质谱测定分子的结构 原理:不同质核比的粒子在磁场中运动轨迹不同 eg:1.下列物质中能证明某化合物中一定有离子键的是() A.可溶于水 B.熔点较高 C.水溶液能导电 D.熔融状态能导电 2.下列关于化学键的叙述中,正确的是() A.离子化合物可以含共价键 B.共价化合物可能含离子键 C.离子化合物中只含离子键 D.只有活泼金属与活泼非金属间才能形成离子键 3.能够用键能解释的是() A.氮气的化学性质比氧气稳定 B.常温常压下,溴呈液体,碘为固体 C.稀有气体一般很难发生化学反应 D.硝酸易挥发,硫酸难挥发 二、分子的立体结构 1.价层电子对互斥理论 对于AB n 型分子,价电子对数 =σ键电子对数+中心原子的孤电子对数 σ键电子对数=n,孤电子对数= (a-nb) a:中心原子价的价电子数 n:与中心原子结合的原子数 b:与中心原子结合的原子最多能接受的电子数(H为1,其他原子等于“8-该原子的价电子数”) 注意:①对于复杂离子,在计算价层电子对数时,还应加上负离子的电荷数或减

第二节分子的立体结构

第二节分子的立体结构

(2) 价电子对数运算方法 (3)确定价层电子对的空间构型 (4) 分子空间构型确定 教学过程 教学步骤、内容 教学方法、手段、 师生活动 [复习]共价键的三个参数。 [过渡]我们明白许多分子都具有一定的空间结构,如:……,是什么 缘故导致了分子的空间结构不同,与共价键的三个参数有什么关系? 我们开始研究分子的立体结构。 [板书]第二节分子的立体结构 一、形形色色的分子 [讲]大多数分子是由两个以上原子构成的,因此就有了分子中的原子 的空间关系咨询题,这确实是所谓〝分子的立体结构〞。例如,三原 子分子的立体结构有直线形和V形两种。如C02分子呈直线形,而H20 分子呈V形,两个H—O键的键角为105°。 [投影] [板书]1、三原子分子立体结构:有直线形C0 2 、CS 2 等,V形 如H 2 O、S0 2 等。 [讲]大多数四原子分子采取平面三角形和三角锥形两种立体结构。例 如,甲醛(CH20)分子呈平面三角形,键角约120°;氨分子呈三角锥形, 键角107°。 [投影] [板书]2、四原子分子立体结构:平面三角形:如甲醛(CH 2 0) 分子等,三角锥形:如氨分子等。 [讲]五原子分子的可能立体结构更多,最常见的是正四面体形,如甲

烷分子的立体结构是正四面体形,键角为109°28。 [投影] 等。[板书]3、五原子分子立体结构:正四面体形如甲烷、P 4 [讲]分子世界是如此形形色色,异彩纷呈,美不胜收,常使人流连忘返. 分子的立体结构与其稳固性有关。例如,S8分子像顶皇冠,假如把其中一个向上的硫原子倒转向下,尽管也能够存在,却不如皇冠式稳固;又如,椅式C6H12比船式稳固。 [投影] [设咨询]分子的空间结构我们看不见,那么科学家是如何样测定的呢? [投影] [阅读]科学视野—分子的立体结构是如何样测定的? 肉眼不能看到分子,那么,科学家是如何样明白分子的形状的呢?早年的科学家要紧靠对物质的宏观性质进行系统总结得出规律后进行估量,现在,科学家差不多制造了许许多多测定分子结构的现代仪器,

分子结构与性质

第38讲分子结构与性质 考纲要求 1.了解共价键的形成、极性、类型(σ键和π键),了解配位键的含义。2.能用键能、键长、键角等说明简单分子的某些性质。3.了解杂化轨道理论及常见的杂化轨道类型(sp、sp2、sp3)。4.能用价层电子对互斥理论或者杂化轨道理论推测常见的简单分子或离子的立体构型。 5.了解范德华力的含义及对物质性质的影响。 6.了解氢键的含义,能列举存在氢键的物质,并能解释氢键对物质性质的影响。 考点一共价键及其参数 1.本质 在原子之间形成共用电子对(电子云的重叠)。 2.特征 具有饱和性和方向性。 3.分类 特别提醒(1)只有两原子的电负性相差不大时,才能形成共用电子对,形成共价键,当两原子的电负性相差很大(大于1.7)时,不会形成共用电子对,而形成离子键。 (2)同种元素原子间形成的共价键为非极性键,不同种元素原子间形成的共价键为极性键。4.键参数 (1)概念

(2)键参数对分子性质的影响 ①键能越大,键长越短,分子越稳定。 ② 5.等电子原理 原子总数相同,价电子总数相同的分子具有相似的化学键特征和立体结构,许多性质相似,如N2与CO、O3与SO2、N2O与CO2、CH4与NH+4等。 (1)共价键的成键原子只能是非金属原子(×) (2)在任何情况下,都是σ键比π键强度大(×) (3)在所有分子中都存在化学键(×) (4)分子的稳定性与分子间作用力的大小无关(√) (5)s-s σ键与s-p σ键的电子云形状对称性相同(√) (6)σ键能单独形成,而π键一定不能单独形成(√) (7)σ键可以绕键轴旋转,π键一定不能绕键轴旋转(√) (8)碳碳三键和碳碳双键的键能分别是碳碳单键键能的3倍和2倍(×) (9)键长等于成键两原子的半径之和(×) (10)所有的共价键都有方向性(×) 1.有以下物质:①HF,②Cl2,③H2O,④N2,⑤C2H4,⑥C2H6,⑦H2,⑧H2O2,⑨HCN(H—C≡N)。只有σ键的是________(填序号,下同);既有σ键,又有π键的是________;含有由两个原子的s轨道重叠形成的σ键的是________;含有由一个原子的s轨道与另一个原子的p轨道重叠形成的σ键的是________;含有由一个原子的p轨道与另一个原子的p轨道重叠形成的

化学选修3第二章-分子结构与性质--教案

化学选修3第二章-分子结构与性质--教案 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

第二章分子结构与性质 教材分析 本章比较系统的介绍了分子的结构和性质,内容比较丰富。首先,在第一章有关电子云和原子轨道的基础上,介绍了共价键的主要类型σ键和π键,以及键参数——键能、键长、键角;接着,在共价键概念的基础上,介绍了分子的立体结构,并根据价层电子对互斥模型和杂化轨道理论对简单共价分子结构的多样性和复杂性进行了解释。最后介绍了极性分子和非极性分子、分子间作用力、氢键等概念,以及它们对物质性质的影响,并从分子结构的角度说明了“相似相溶”规则、无机含氧酸分子的酸性等。 化学2已介绍了共价键的概念,并用电子式的方式描述了原子间形成共价键的过程。本章第一节“共价键”是在化学2已有知识的基础上,运用的第一章学过的电子云和原子轨道的概念进一步认识和理解共价键,通过电子云图象的方式很形象、生动的引出了共价键的主要类型σ键和π键,以及它们的差别,并用一个“科学探究”让学生自主的进一步认识σ键和π键。 在第二节“分子的立体结构”中,首先按分子中所含的原子数直间给出了三原子、四原子和五原子分子的立体结构,并配有立体结构模型图。为什么这些分子具有如此的立体结构呢?教科书在本节安排了“价层电子对互斥模型”和“杂化轨道理论”来判断简单分子和离子的立体结构。在介绍这两个理论时要求比较低,文字叙述比较简洁并配有图示。还设计了“思考与交流”、“科学探究”等内容让学生自主去理解和运用这两个理论。 在第三节分子的性质中,介绍了六个问题,即分子的极性、分子间作用力及其对物质性质的影响、氢键及其对物质性质的影响、溶解性、手性和无机含氧酸分子的酸性。除分子的手性外,对其它五个问题进行的阐述都运用了前面的已有知识,如根据共价键的概念介绍了键的极性和分子的极性;根据化学键、分子的极性等概念介绍了范德华力的特点及其对物质性质的影响;根据电负性的概念介绍了氢键的特点及其对物质性质的影响;根据极性分子与非非极性分子的概念介绍了“相似相溶”规则;根据分子中电子的偏移解释了无机含氧酸分子的酸性强弱等;对于手性教科书通过图示简单介绍了手性分子的概念以及手性分子在生命科学和生产手性药物方面的应用 第二章分子结构与性质 第一节共价键 第一课时 教学目标: 1.复习化学键的概念,能用电子式表示常见物质的离子键或共价键的形成过程。 2.知道共价键的主要类型δ键和π键。

分子结构与性质最全版

分子结构与性质 知识网络: 一、化学键 相邻的两个或多个原子之间强烈的相互作用,通常叫做化学键。例如:水的结构式为 , H -O 之间存在着强烈的相互作用,而H 、H 之间相互作用非常弱,没有形成化学键。 化学键类型: 1.三种化学键的比较: ※ 配位键:配位键属于共价键,它是由一方提供孤对电子,另一方提供空轨道所形成的共价 键,例如:NH 4+的形成 在NH 4+中,虽然有一个N -H 键形成过程与其它3个N -H 键形成过程不同,但是一旦 形成之后,4个共价键就完全相同。

键长、键能决定共价键的强弱和分子的稳定性:原子半径越小,键长越短,键能越大,分子越稳定。例如HF、HCl、HBr、HI分子中: X原子半径:FHCl>HBr>HI H-X分子稳定性:HF>HCl>HBr>HI 判断共价键的极性可以从形成分子的非金属种类来判断。 例1.下列关于化学键的叙述正确的是: A 化学键存在于原子之间,也存在于分子之间 B 两个原子之间的相互作用叫做化学键 C 离子键是阴、阳离子之间的吸引力 D 化学键通常指的是相邻的两个或多个原子之间强烈的相互作用 解析:理解化学键、离子键等基本概念是解答本题的关键。化学键不存在于分子之间,也不仅是两个原子之间的相互作用,也可能是多个原子之间的相互作用,而且是强烈的相互作用。所以A、B都不正确。C项考查的是离子键的实质,离子键是阴、阳离子间通过静电作用(包括吸引力和排斥力)所形成的化学键,故C项也不正确。正确选项为D。 二、分子间作用力 1、分子间作用力 把分子聚集在一起的作用力叫分子间作用力,又称范德华力。分子间作用力的实质是电性引力,其主要特征有:⑴广泛存在于分子间;⑵只有分子间充分接近时才存在分子间的相互作用力,如固态和液态物质中;⑶分子间作用力远远小于化学键;⑷由分子构成的物质,其熔点、沸点、溶解度等物理性质主要由分子间作用力大小决定。 2、影响分子间作用力大小的因素

高中化学选修三——分子结构与性质

分子结构与性质 一、共价键 1.本质:原子间形成共用电子对 分类{非极性共价键:两个相同的非金属元素的原子间形成的共价键 极性共价键:两个不相同的非金属元素的原子间形成的共价键 、HCl的形成 思考:用电子式表示H 2 共价键特征: ①饱和性:每个原子形成共价键的数目是确定的 ②方向性:原子轨道沿一定方向重叠使成键的原子轨道最大程度地重叠 2.σ键和π键 ①σ键--原子轨道沿着连线方向以“头碰头”方式重叠形成的共价键 特点:以形成化学键的两个原子核的连线为轴旋转,σ键电子云的图形不变 电子云描述氢原子形成氢分子的过程(s-s σ键) ②π键--原子轨道沿着连线方向以“肩并肩”方式重叠形成的共价键 特点:(1)电子云为镜像,即是每个π键的电子云由两块组成,分别位于由两个原子核构成的平面的两侧 (2)不稳定,容易断裂 p-p π键的形成

N 2 分子中的N≡N 思考:分析CH 3CH 3 、CH 2 =CH 2 、CH≡CH、CO 2 分子中键的类别和个数 3.键参数--键能、键长与键角 ①键能:气态基态原子形成1 mol化学键释放的最低能量 键能越大,即形成化学键时放出的能量越多,化学键越稳定 应用--计算化学反应的反应热ΔH=反应物键能总和-生成物键能总和 ②键长:形成共价键的两个原子之间的核间距 键长是衡量共价稳定性的另一个参数 规律:键长越短,一般键能越大,共价键越稳定 一般地,形成的共价键的键能越大,键长越短,共价键越稳定,含有该键的分子越稳定,化学性质越稳定 ③键角:两个共价键之间的夹角 键角是描述分子立体结构的重要参数,分子的许多性质与键角有关 思考:N 2、O 2 、F 2 跟H 2 的反应能力依次增强,从键能的角度如何理解 4.等电子原理 等电子体:原子总数相同、价电子(最外层电子)总数相同的分子如N 2 和CO 是等电子体,但N 2和C 2 H 4 不是等电子体 等电子体原理:原子总数、价电子总数相同的分子具有相似的化学键特征,它们的物理性质是相近的。例如N 2 和CO的熔沸点、溶解性、分子解离能等都非常接近 5.用质谱测定分子的结构 原理:不同质核比的粒子在磁场中运动轨迹不同 eg:1.下列物质中能证明某化合物中一定有离子键的是() A.可溶于水 B.熔点较高 C.水溶液能导电 D.熔融状态能导电 2.下列关于化学键的叙述中,正确的是() A.离子化合物可以含共价键 B.共价化合物可能含离子键 C.离子化合物中只含离子键 D.只有活泼金属与活泼非金属间才能形成离子键

无机化学化学键与分子结构选择题

(三)化学键与分子结构 1.下列分子中,两个相邻共价键的夹角最小的是A、BF3 B、H2S C、NH3D、H2O 2.下列分子中,两个相邻共价键的夹角最小的是A、BF3 B、CCl4 C、NH3 D、H2O 3.下列分子和离子中,中心原子成键轨道不是sp2杂化的是A、NO 3-B、HCHO C、BF3 D、NH3 4.NCl3分子中,N原子与三个氯原子成键所采用的轨道是 A、两个sp轨道,一个p轨道成键 B、三个sp3轨道成键 C、P X、P y 、P z 轨道成键 D、三个sp2轨道成键 5.水分子中氧原子的杂化轨道是A、sp B、sp2C、sp3D、dsp2 6.下列化合物中,极性最大的是A、CS2B、H2S C、SO3D、SnCl4 7.下列分子中,偶极矩不等于零的是A、BeCl2B、BF3C、NF3 D、CO2 8.下列液态物质中只需克服色散力就能使之沸腾的是A、H2O B、CO C、HF D、Xe 9.极化能力最强的离子应具有的特性是 A、离子电荷高、离子半径大 B、离子电荷高、离子半径小 C、离子电荷低、离子半径小 D、离子电荷低、离子半径大 10.下列各组离子中,离子的极化力最强的是A、K+、Li+B、Ca2+、Mg2+C、Fe3+、Ti4+D、Sc3+、Y3+ 11.比较下列各组物质的熔点,正确的是A、NaCl > NaF B、CCl4> CBr4C、H2S > H2Te D、FeCl3 < FeCl2 12.下列各分子中,偶极矩不为零的分子为A、BeCl2B、BF3C、NF3D、CH4 13.下列各组离子化合物的晶格能变化顺序中,正确的是 A、MgO> CaO> Al2O3 B、LiF> NaCl >KI C、RbBr< CsI BaO> BaCl2 14.下列物质熔点变化顺序中,不正确的是 A、NaF> NaCl > NaBr > NaI B、NaCl< MgCl2< AlCl3 NaCl >KBr > CsI D、Al2O3>MgO> CaO> BaO 15.下列原子轨道的n相同,且各有一个自旋方式相反的不成对电子,则沿X 轴方向可形成π 键的是 A、P X-P X B、P X-P y C、P y-P Z D、P z-P z 16.下列分子或离子中,键角最大的是A、XeF2B、NCl3C、CO32-D、PCl4+ 17.下列分子或离子中,具有反磁性的是A、O2B、O2-C、O2+D、O22- 18.按分子轨道理论,下列稳定性排列正确的是A、O2 > O2+> O22-B、O2+> O2 > O22-C、O22-> O2 > O2+D、O2+> O22-> O2 19.下列各组原子轨道中不能叠加成键的是A、P X-P X B、P X-P Y C、S

分子结构与性质 专题训练及答案

分子结构与性质专题训练及答案 非选择题(本题包括7小题,共100分) 1.(14分)(2018南充模拟)可以由下列反应合成三聚氰胺:CaO+3C CaC2+ CO↑,CaC2+N2CaCN2+C,CaCN2+2H2O NH2CN+Ca(OH)2,NH2CN与水反应生成尿素 [CO(NH2)2],尿素合成三聚氰胺。 (1)写出与Ca在同一周期且最外层电子数相同、内层排满电子的基态原子的电子排布式:________;CaCN2中阴离子为C错误!未找到引用源。,与C错误!未找到引用源。互为等电子体的分子有N2O和________(填化学式),由此可以推知C错误!未找到引用源。的空间构型为________。 (2)三聚氰胺()俗称“蛋白精”。动物摄入三聚氰胺和三聚氰酸 ()后,三聚氰酸与三聚氰胺分子相互之间通过________结合,在肾脏内易形成结石。 (3)CaO晶胞如图所示,CaO晶体中Ca2+的配位数为________,Ca2+采取的堆积方式为________,O2-处于Ca2+堆积形成的空隙中;CaO晶体和NaCl晶体的晶格能分别为3 401 kJ·mol-1、786 kJ·mol-1。导致两者晶格能差异的主要原因是 ________________。 (4)配位化合物K3[Fe(CN)n]遇亚铁离子会产生蓝色沉淀,因此可用于检验亚铁离子,已知铁原子的最外层电子数和配体提供电子数之和为14,求n=________。 【解析】(1)与Ca在同一周期且最外层电子数相同、内层排满电子的基态原子是锌,根据构造原理,基态的锌原子核外电子排布式为1s22s22p63s23p63d104s2或[Ar]3d104s2;与C错误!未找到引用源。互为等电子体的分子有N2O和CO2;等电子体具有相同的价电子数、原子总数,结构相似,二氧化碳分子是直线形,所以C错误!未找到引用源。离子的空间构型是直线形。 (2)三聚氰酸与三聚氰胺分子相互之间能形成氢键,所以是通过分子间氢键结合,在肾脏内易形成结石。 (3)以钙离子为中心,沿X、Y、Z三轴进行切割,结合图片知,钙离子的配位数是6,Ca2+采取的堆积方式为面心立方最密堆积,O2-处于Ca2+堆积形成的八面体空隙中;晶格能大小与离子带电量成正比,CaO晶体中Ca2+、O2-的带电量大于NaCl晶体中Na+、Cl-的带电量,导致的氧化钙晶格能大于氯化钠的晶格能。 (4)CN-是常见的配位体,在配位化合物K3[Fe(CN)n]中每个配体可以提供2个电子,而铁原子最外层有2个电子,根据铁原子的最外层电子数和配体提供电子数之和为14,可得2+2n=14,所以n=6。 答案:(1)1s22s22p63s23p63d104s2或[Ar]3d104s2CO2直线形(2)氢键(3)6 面心立方最密堆积CaO晶体中Ca2+、O2-的带电量大于NaCl晶体中Na+、Cl-的带电量(4)6 2.(14分)(2018·汉中模拟)X、Y、Z、W为原子序数递增的短周期主族元素,R为过渡元素。Y的最高价氧化物对应的水化物是强酸,Z元素基态原子中有2个未成对电子,基态W原子的价层电子排布式为n s n-1n p n-1,X与W为同主族元素。基态的R原子M能层全充满,核外有且仅有1个未成对电子。请回答下列问题: (1)基态R原子的核外价层电子排布式为________。 (2)X、Y、Z三种元素的第一电离能由大到小的顺序为________(填“元素符号”)。

第二节 分子的立体构型

《第二节 分子的立体构型》 1.能说明CH 4分子的5个原子不在同一平面而为正四面体构型的是( ) A .两个键之间夹角为109°28′ B . C —H 键为极性共价键 C .4个C —H 键的键能、键长相同 D .碳的价层电子都形成共价键 2.(2010年扬州高二检测)下列说法中正确的是( ) A .NO 2、SO 2、BF 3、NCl 3分子中没有一个分子中原子的最外层 电子都满足了8电子稳定结构 B .P 4和CH 4都是正四面体分子且键角都为109°28′ C .NH 4+ 的电子式为[H ··N ··H ··H]+,离子呈平面正方形结构 D. NH 3分子中有一对未成键的孤电子对,它对成键电子的排斥作 用较强 3.(2010年泉州高二检测)用价层电子对互斥理论预测H 2S 和BF 3的立体构型,两个结构都正确的是( ) A .直线形;三角锥形 B .V 形;三角锥形 C .直线形;平面三角形 D .V 形;平面三角形 4.(2010年普宁高二检测)有关乙炔分子中的化学键描述不. 正确的是( ) A .两个碳原子均采用sp 杂化方式 B .两个碳原子均采用sp 2杂化方式 C .每个碳原子都有两个未杂化的2p 轨道形成π键 D .两个碳原子形成两个π键 5.下列有关苯分子中的化学键描述正确的是( ) A .每个碳原子的sp 2杂化轨道中的一个形成大π键 B .每个碳原子的未参与杂化的2p 轨道形成大π键 C .每个碳原子的三个sp 2杂化轨道与其他两个碳原子和一个氢原 子形成三个σ键 D .每个碳原子的未参加杂化的2p 轨道与其他原子形成σ键 6.下列对二氧化硫与二氧化碳的说法中正确的是( ) A .都是直线形结构 B .中心原子都采取sp 杂化 C .硫原子和碳原子上都没有孤电子对 D .SO 2为V 形结构,CO 2为直线形结构 7.下列分子中的中心原子的杂化轨道类型相同的是( ) A .CO 2与SO 2 B .CH 4与NH 3 C .BeCl 2与BF 3 D .C 2H 4与C 2H 2 8.膦(PH 3)又称磷化氢,在常温下是一种无色、有大蒜臭味的有毒气体,电石气的杂质中常含有磷化氢。它的分子构型是三角锥形。则下列关于PH 3的叙述正确的是( ) A .PH 3分子中有未成键的孤电子对 B .PH 3是空间对称结构 C .PH 3是一种强氧化剂 D .PH 3分子中的P —H 键间夹角是90° 9.已知:①红磷在氯气中燃烧可以生成两种化合物——PCl 3和PCl 5,氮与氢也可形成两种化合物——NH 3和NH 5。 ②PCl 5分子中,磷原子的1个3s 轨道、3个3p 轨道和1个 3d 轨道发生杂化形成5个sp 3d 杂化轨道,PCl 5分子呈三角双锥形

化学选修3第二章 分子结构与性质--教案

第二章分子结构与性质 教材分析 本章比较系统的介绍了分子的结构和性质,内容比较丰富。首先,在第一章有关电子云和原子轨道的基础上,介绍了共价键的主要类型σ键和π键,以及键参数——键能、键长、键角;接着,在共价键概念的基础上,介绍了分子的立体结构,并根据价层电子对互斥模型和杂化轨道理论对简单共价分子结构的多样性和复杂性进行了解释。最后介绍了极性分子和非极性分子、分子间作用力、氢键等概念,以及它们对物质性质的影响,并从分子结构的角度说明了“相似相溶”规则、无机含氧酸分子的酸性等。 化学2已介绍了共价键的概念,并用电子式的方式描述了原子间形成共价键的过程。本章第一节“共价键”是在化学2已有知识的基础上,运用的第一章学过的电子云和原子轨道的概念进一步认识和理解共价键,通过电子云图象的方式很形象、生动的引出了共价键的主要类型σ键和π键,以及它们的差别,并用一个“科学探究”让学生自主的进一步认识σ键和π键。 在第二节“分子的立体结构”中,首先按分子中所含的原子数直间给出了三原子、四原子和五原子分子的立体结构,并配有立体结构模型图。为什么这些分子具有如此的立体结构呢?教科书在本节安排了“价层电子对互斥模型”和“杂化轨道理论”来判断简单分子和离子的立体结构。在介绍这两个理论时要求比较低,文字叙述比较简洁并配有图示。还设计了“思考与交流”、“科学探究”等内容让学生自主去理解和运用这两个理论。 在第三节分子的性质中,介绍了六个问题,即分子的极性、分子间作用力及其对物质性质的影响、氢键及其对物质性质的影响、溶解性、手性和无机含氧酸分子的酸性。除分子的手性外,对其它五个问题进行的阐述都运用了前面的已有知识,如根据共价键的概念介绍了键的极性和分子的极性;根据化学键、分子的极性等概念介绍了范德华力的特点及其对物质性质的影响;根据电负性的概念介绍了氢键的特点及其对物质性质的影响;根据极性分子与非非极性分子的概念介绍了“相似相溶”规则;根据分子中电子的偏移解释了无机含氧酸分子的酸性强弱等;对于手性教科书通过图示简单介绍了手性分子的概念以及手性分子在生命科学和生产手性药物方面的应用 第二章分子结构与性质 第一节共价键 第一课时 教学目标: 1.复习化学键的概念,能用电子式表示常见物质的离子键或共价键的形成过程。 2.知道共价键的主要类型δ键和π键。

高中化学—分子结构与性质测试题

分子结构与性质测试题 A卷(基础知识卷) 一、选择题(本题包括15小题,每小题3分,共45分。每小题只有一个正确答案) 1.关于氢键,下列说法正确的是()。 A.氢键比分子间作用力强,所以它属于化学键 B.冰中存在氢键,水中不存在氢键 C.分子间形成的氢键使物质的熔点和沸点升高 D.H2O是一种非常稳定的化合物,这是由于氢键所致 2在以下的分子或离子中,空间结构的几何形状不是三角锥形的是()。 A.NF3 B. C.BF3 D. 3.能说明CH4分子的5个原子不在同一平面而为正四面体构型的是 ( )。 A.两个键之间夹角为109°28′ B.C—H键为极性共价键 C.4个C—H键的键能、键长相同 D.碳的价层电子都形成共价键 4.用价层电子对互斥理论判断SO3的分子构型 ( )。 A.正四面体形 B.V形 C.三角锥形 D.平面三角形 5.乙炔分子中的碳原子采取的杂化轨道是()。 A.sp杂化 B.sp2杂化 C.sp3杂化 D.dsp杂化 6..下列分子中,所有原子不可能共处在同一平面上的是 ( )。 A.C2H2 B.CS2 C.NH3 D.C6H6 7.下列说法中正确的是 ( )。 A.NO2、SO2、BF3、NCl3分子中没有一个分子中原子的最外层电子都满足了8电子稳定结构 B.P4和CH4都是正四面体分子且键角都为109°28′ C.NH4+的电子式为[H··N··H ··H]+,离子呈平面正方形结构 D. NH3分子中有一对未成键的孤电子对,它对成键电子的排斥作用较强 8.用价层电子对互斥理论预测H2S和BF3的立体构型,两个结构都正确的是( )。 A.直线形;三角锥形 B.V形;三角锥形 C.直线形;平面三角形 D.V形;平面三角形 9.若的中心原子A上没有孤对电子,运用价层电子对互斥模型,下列说法正确的是() A.若=2,则分子的立体结构为V形 B.若=3,则分子的立体结构为三角锥形 C.若=4,则分子的立体结构为正四面体形 D.以上说法都不正确

人教版高中化学选修3知识点总结:第二章分子结构与性质

第二章分子结构与性质 课标要求 1.了解共价键的主要类型键和键,能用键长、键能和键角等说明简单分子的某些性质 2.了解杂化轨道理论及常见的杂化轨道类型(sp、sp2、sp3),能用价层电子对互斥理论或者杂化轨道理论推测常见的简单分子或离子的空间结构。 3.了解简单配合物的成键情况。 4.了解化学键合分子间作用力的区别。 5.了解氢键的存在对物质性质的影响,能列举含氢键的物质。 要点精讲 一.共价键 1.共价键的本质及特征 共价键的本质是在原子之间形成共用电子对,其特征是具有饱和性和方向性。 2.共价键的类型 ①按成键原子间共用电子对的数目分为单键、双键、三键。 ②按共用电子对是否偏移分为极性键、非极性键。 ③按原子轨道的重叠方式分为σ键和π键,前者的电子云具有轴对称性,后者的电子云具有镜像对称性。 3.键参数 ①键能:气态基态原子形成1 mol化学键释放的最低能量,键能越大,化学键越稳定。 ②键长:形成共价键的两个原子之间的核间距,键长越短,共价键越稳定。 ③键角:在原子数超过2的分子中,两个共价键之间的夹角。 ④键参数对分子性质的影响 键长越短,键能越大,分子越稳定. 4.等电子原理[来源:学§科§网] 原子总数相同、价电子总数相同的分子具有相似的化学键特征,它们的许多性质相近。 二.分子的立体构型 1.分子构型与杂化轨道理论 杂化轨道的要点 当原子成键时,原子的价电子轨道相互混杂,形成与原轨道数相等且能量相同的杂化轨道。杂化轨道数不同,轨道间的夹角不同,形成分子的空间形状不同。 2分子构型与价层电子对互斥模型 价层电子对互斥模型说明的是价层电子对的空间构型,而分子的空间构型指的是成键电子对空间构型,不包括孤对电子。 (1)当中心原子无孤对电子时,两者的构型一致; (2)当中心原子有孤对电子时,两者的构型不一致。 3.配位化合物 (1)配位键与极性键、非极性键的比较 (2)配位化合物 ①定义:金属离子(或原子)与某些分子或离子(称为配体)以配位键结合形成的化合物。 ②组成:如[Ag(NH3)2]OH,中心离子为Ag+,配体为NH3,配位数为2。 三.分子的性质 1.分子间作用力的比较

化学选修三第二章《分子结构与性质》知识点及全套练习题

第二章分子结构与性质 一.共价键 1.共价键的本质及特征 共价键的本质是在原子之间形成共用电子对,其特征是具有饱和性和方向性。 2.共价键的类型 ①按成键原子间共用电子对的数目分为单键、双键、三键。 ②按共用电子对是否偏移分为极性键、非极性键。 ③按原子轨道的重叠方式分为σ键和π键,前者的电子云具有轴对称性,后者的电子云具有镜像对称性。 3.键参数 ①键能:气态基态原子形成1 mol化学键释放的最低能量,键能越大,化学键越稳定。 ②键长:形成共价键的两个原子之间的核间距,键长越短,共价键越稳定。 ③键角:在原子数超过2的分子中,两个共价键之间的夹角。 ④键参数对分子性质的影响:键长越短,键能越大,分子越稳定. 4.等电子原理 原子总数相同、价电子总数相同的分子具有相似的化学键特征,它们的许多性质相近。二.分子的立体构型 1.分子构型与杂化轨道理论 杂化轨道的要点: 当原子成键时,原子的价电子轨道相互混杂,形成与原轨道数相等且能量相同的杂化轨道。杂化轨道数不同,轨道间的夹角不同,形成分子的空间形状不同。 2.分子构型与价层电子对互斥模型 价层电子对互斥模型说明的是价层电子对的空间构型,而分子的空间构型指的是成键电子对空间构型,不包括孤对电子。 (1)当中心原子无孤对电子时,两者的构型一致; (2)当中心原子有孤对电子时,两者的构型不一致。

3.配位化合物 (1)配位键与极性键、非极性键的比较 (2)配位化合物 ①定义:金属离子(或原子)与某些分子或离子(称为配体)以配位键结合形成的化合物。 ②组成:如[Ag(NH3)2]OH,中心离子为Ag+,配体为NH3,配位数为2。 三.分子的性质 1.分子间作用力的比较 2.分子的极性 (1)极性分子:正电中心和负电中心不重合的分子。 (2)非极性分子:正电中心和负电中心重合的分子。 3.溶解性 (1)“相似相溶”规律:非极性溶质一般能溶于非极性溶剂, 极性溶质一般能溶于极性溶剂.若存在氢键,则溶剂和溶质之间的氢键作用力越大,溶解性越好。 (2)“相似相溶”还适用于分子结构的相似性,如乙醇和水互 溶,而戊醇在水中的溶解度明显减小. 4.手性 具有完全相同的组成和原子排列的一对分子,如左手和右手一样互为镜像,在三维空间里不能重叠的现象。 5.无机含氧酸分子的酸性 无机含氧酸可写成(HO)mROn,如果成酸元素R相同,则n值越大,R的正电性越高,使R—O—H 中O的电子向R偏移,在水分子的作用下越易电离出H+,酸性越强,如HClO<HClO2<HClO3<HClO4

高中化学选修3第二章第二节分子的立体结构

第二章分子结构与性质 第二节分子的立体结构 第一课时 教学目标: 1、认识共价分子的多样性和复杂性; 2、初步认识价层电子对互斥模型; 3、能用VSEPR模型预测简单分子或离子的立体结构; 4、培养学生严谨认真的科学态度和空间想象能力。 重点难点: 分子的立体结构;利用价层电子对互斥模型预测分子的立体结构教学过程 创设问题情境: 1、阅读课本P 37-40 内容; 2、展示CO 2、H 2 O、NH 3 、CH 2 O、CH 4 分子的球辊模型(或比例模型); 3、提出问题: ⑴什么是分子的空间结构? ⑵同样三原子分子CO 2和H 2 O,四原子分子NH 3 和CH 2 O,为什么它们的空间结构不同? [讨论交流] 1、写出CO 2、H 2 O、NH 3 、CH 2 O、CH 4 的电子式和结构式; 2、讨论H、C、N、O原子分别可以形成几个共价键; 3、根据电子式、结构式描述CO 2、H 2 O、NH 3 、CH 2 O、CH 4 的分子结构。 [模型探究] 由CO 2、H 2 O、NH 3 、CH 2 O、CH 4 的球辊模型,分析结构不同的原因。 [引导交流] 引导学生得出由于中心原子的孤对电子占有一定的空间,对其他成键电子对存在排斥力,影响其分子的空间结构。 ——引出价层电子对互斥模型(VSEPR models) [讲解分析] 价层电子对互斥模型 把分子分成两大类:一类是中心原子上的价电子都用于形成共价键。如CO 2、CH 2 O、CH 4 等分子中的C原子。它们的立体结构可用中心原子周围的原子数来预测,概括如下: H 2O和NH 3 中心原子上的孤对电子也要占据中心原子周围的空间,并参与互相排斥。因而H 2 O 分子呈V型,NH 3 分子呈三角锥型。(如图)课本P40。[应用反馈]

相关文档
相关文档 最新文档