文档视界 最新最全的文档下载
当前位置:文档视界 › 光伏发电系统方案培训资料

光伏发电系统方案培训资料

光伏发电系统方案培训资料
光伏发电系统方案培训资料

光伏发电系统方案

光伏发电工程

目录

一、概述 (4)

1.1项目概况 (4)

1.2编制依据 (4)

二、建设地址资源简述 (4)

2.1日照资源 (4)

2.2接入系统条件 (6)

三、总体方案设计 (6)

3.1光伏工艺部分 (6)

3.2太阳电池组件选型 (6)

3.3光伏阵列设计 (12)

3.4系统效率分析 (15)

四、电气部分 (16)

4.1概述 (16)

4.2系统方案设计选型 (16)

4.3电气主接线 (20)

4.4主要设备选型 (20)

4.5防雷及接地 (29)

4.6电气设备布置 (30)

4.7电缆敷设及电缆防火 (30)

五、工程案例 ........................................................................................ 错误!未定义书签。

六、系统配置以及报价........................................................................ 错误!未定义书签。

一、概述

1.1 项目概况

1)建设规模:光伏系统用来供给小区道路亮化用电及楼宇亮化用电。该系统设计使用最大负荷50KVA,为保证系统在连续阴雨天或其它太阳辐射不足情况下正常使用,系统接入市电作为辅助能源,提高系统的稳定性能。为减少系统因直流端电流过大造成的线路损耗,系统采用220V直流接入逆变输出三相380V/220V交流。针对固定式安装电池板,采用最佳倾角进行安装,石家庄地区最佳角度为46度(朝向正南),控制柜、逆变器及蓄电池储能系统均须安放于在室内。

1.2 编制依据

本初步设计说明书主要根据下列文件和资料进行编制的:

1)GB50054《低压配电设计规范》;

2)GB50057《建筑物防雷设计规范》;

3)GB31/T316—2004《城市环境照明规范》;

4)GBJl33—90《民用建筑照明设计标准》;

5)JGG/T16—921《民用建筑电气设计规范》;

6)GBJ16—87《建筑设计防火规范》;

7)《中华人民共和国可再生能源法》;

8)国家发展改革委《可再生能源发电有关管理规定》;

二、建设地址资源简述

2.1日照资源

我国属世界上太阳能资源丰富的国家之一,全年辐射总量在917~2333kWh/㎡年之间。全国总面积2/3 以上地区年日照时数大于2000 小时。

我国的太阳能资源按日照时间和太阳能辐射量的大小,全国大致上可分为五类地区:

一类地区: 全年日照时数达到3200~3300小时的地区,主要包括青藏高原、甘肃省北部、宁夏北部和新疆南部等地。

二类地区: 全年日照时数达到3000~3200小时的地区,主要包括河北省西北部、山西省北部、内蒙古南部、宁夏南部、甘肃省中部、青海省东部、西藏东南部和新疆南部等地。

三类地区:全年日照时数达到2200~3000小时的地区,主要包括山东省、河南省、河北省东南部、山西省南部、新疆北部、吉林省、辽宁省、云南省、陕西省、甘肃省东南部、广东省南部、福建省南部、江苏省北部和安徽省北部等地。

四类地区: 全年日照时数达到1400~2200小时的地区,主要是长江中下游,福建省、浙江省和广东省的一部分地区,此类地区的特点是:春夏多雨或阴天,秋冬季太阳能资源较丰富。

五类地区: 全年日照时数达到1000~1400小时的地区,主要包括四川省、贵州省两省。此区是我国太阳能资源较少的地区。

一、二、三类地区,年日照时数大于2000h,是我国太阳能资源丰富或较丰富的地区,面积约占全国总面积的2/3以上,具有利用太阳能的良好条件。四、五类地区虽然太阳能资源条件较差,但仍有一定的利用价值。如图2-1

图2-1 全国太阳能资源分布图

项目所在

2.2 接入系统条件

本工程采用低压交流380V输出的方式。用户可以直接在交流输出端通过配电接入负载即可。该系统灵活方便,并配备了市电进行补充,保证系统安全稳定运行。

三、总体方案设计

3.1光伏工艺部分

3.1.1设计依据

?建筑结构平、立、剖面图,电气施工图等资料。

?国家颁布的有关的技术标准及行业技术标准、法规及规范的有效版本。3.1.2设计原则

本项目装机容量55.35kW,采用单晶硅太阳能电池组件270块固定式安装,安装倾角为朝南46度。

3.1.3设计内容

本项目光伏工艺设计内容包括太阳电池组件的选型,光伏阵列设计,系统效率分析,系统发电量计算,光伏工艺总平面布置,支架设计。

3.2太阳电池组件选型

太阳能光伏发电系统是利用光生伏打效应原理制成的太阳能电池将太阳能直接转换成电能的。工作原理的基础是半导体p-n结光生伏打效应,简言之,就是当物体内的电荷分布状态发生变化而产生电动势和电流的一种效应。当太阳光或其它光照射半导体p-n结时,就会在p-n结的两边出现电压,叫做光生电压。这种现象就是著名的光生伏打效应。使p-n结短路,就会产生电流。

太阳能电池单体是用于光电转换的最小单元。它的尺寸约4平方厘米到100平方厘米。太阳能电池单体工作电压为0.45~0.50伏,工作电流为20mA/cm2,一般不能单独作为电源使用。将姗能电池单体进行串联并联和封装后,就成为太阳能电池组件。太阳能电池再经过串联,并联装在支架上,就构成了大阳能电池方阵。它的功率从几瓦到几百瓦,可以单独作为电源,它也可以输出几百瓦,几千瓦或更大的功率,是光伏电站的电能产生器。太阳能电池的电气特性与参数:图3-1太阳能

电池的伏安特性图3-1

从图中可得当太阳能电池组件短路时,即负载v=0时,此时的电流为短路电流Isc,当电路开路时,I=0,此时的电压为开路电压VOC。当太阳能电池两端的电压从0上升时,例如逐渐增加负载电阻,在光辐射恒定的条件下,开始太阳能电池的输出电流几乎不变,输出功率不断增加。当电池电压增加到一定值时,输出电流开始变小,输出功率达到一个最大值,即最大功率点,之后随着电池电压的升高,输出电流和功率都不断变小,最后输出电流减为0,输出电压达到最大值开路电压。

太阳能电池的伏安特性还与温度有关系,随着温度的上升开路电压减小,在最大功率点的典型温度系数为-0.4%/℃。

在衡量太阳能电池组件的性能时需用到峰值功率,其单位是峰瓦(Wp)。在标准条件下(光谱幅照度1000W/mq,光谱AM1.5,电池温度25℃),太阳能电池组件所输出的最大功率被称为峰值功率。

目前整个光伏发电的行业使用的均为硅太阳能电池。以硅材料作为基体的太阳能电池。如单晶硅太阳电池,多晶硅太阳能电池和非晶硅太阳能电池等。制作多晶硅太阳能电池的材料,用纯度不太高的太阳级硅即可。而太阳级硅由冶金级规用简单的工艺就可以加工制成。多晶硅材料又有带状硅、铸造硅、薄膜多晶硅等。用它们制造的太阳能电池有薄膜和片状两种。

1)单晶硅太阳能电池

单晶硅太阳电池是当前开发最快的一种太阳电池,它的结构和生产工艺已定型,产品已广泛用于空间和地面。这种太阳电池以高纯的单晶硅棒为原料,纯度要求99.999%。为了降低生产成本,现在地面应用的太阳电池等采用太阳能级的单晶硅棒,材料性能指标有所放宽。单晶硅太阳能电池的制造成本较高,但光电转化效率也最高,国际公认最高效率在AM1.5条件下为24%,地面用大量生产的在AM1条件下多在11—18%之间。目前单晶硅的转化效率是其他晶硅材料中最高的。

2)多晶硅太阳能电池

目前多晶硅太阳电池使用的多晶硅材料多半是含有大量单晶颗粒的集合体,或用废次单晶硅材料和冶金级硅材料熔化浇铸而成,然后注入石墨铸模中,待慢慢凝固冷却后,即得多晶硅锭。这种硅锭可铸成立方体,以便切片加工成方形太阳电池片,可提高材料利用率和方便组装。多晶硅太阳电池的制作工艺与单晶硅太阳电池差不多,其光电转换效率约12%左右,稍低于单晶硅太阳电池,但其材料制造简便,节约电耗,总的生产成本较低,但转化率较单晶硅电池比低很多。

3)非晶硅太阳能电池

非晶硅太阳电池是1976年出现的新型薄膜式太阳电池,它与单晶硅和多晶硅太阳电池的制作方法完全不同,硅材料消耗很少,电耗更低,非常吸引人。非晶硅太阳电池的结构各有不同,其中有一种较好的结构叫PIN电池,它是在衬底上先沉积一层掺磷的N型非晶硅,再沉积一层未掺杂的I层,然后再沉积一层掺硼的P型非晶硅,最后用电子束蒸发一层减反射膜,并蒸镀银电极。此种制作工艺,可以采用一连串沉积室,在生产中构成连续程序,以实现大批量生产。同时,非晶硅太阳电池很薄,可以制成叠层式,或采用集成电路的方法制造,在一个平面上,用适当的掩模工艺,一次制作多个串联电池,以获得较高的电压。现在日本生产的非晶硅串联太阳电池可达2.4伏。非晶硅太阳电池存在的问题是光电转换率偏低,且不够稳定,所以尚未大量用作大型太阳能电源,多半用于如袖珍式电子计算器、电子钟表及复印机等方面。

综上所述在晶体硅系列太阳能电池中,单晶硅大阳能电池转换效率最高,技术也最为成熟,在大规模应用和工业生产中仍占据主导地位,而且由于目前单晶硅材料价格已经多晶硅材料相差不大,在光伏系统中被大量使用,该系统中设计使用单晶硅光伏电池组件,单块功率200W,电池片效率高达17.8%。参数如下表:

表3-1 光伏组件参数一览表

4.2 峰值电压37.5 V

4.3 峰值电流

5.33 A

4.4 短路电流

5.66 A

4.5 开路电压45 V

4.6 系统电压1000 V

5 峰值电流温度系数0.017 %/℃

6 峰值电压温度系数-0.34 %/℃

7 短路电流温度系数0.017 %/℃

8 开路电压温度系数-0.34 %/℃

9 温度范围-40/℃~+85℃

10 功率误差范围±3%

11 表面最大承压5400Pa

12 承受冰雹直径25 mm的冰球,试验速度 23 m/s

13 接线盒类型BOX07

14 接线盒防护等级IP65

15 电池片效率17.8%

16 组件效率15.6%

保证值15.3%

17

框架结构铝合金

18 背面材料TPT

19 重量16.2KG

3.2.1电池组件性能

目前我公司开发研制的HG系列太阳电

池组件,最大功率组件为280多瓦,最小

功率组件为1.5W,主要应用在光伏工程、

节能建筑、通讯、电力电子、太阳能灯具等领域。

产品结构:

标准晶体硅太阳电池组件采用的封装结构为:由低铁钢化玻璃一EVA一太阳电池一EVA一TPT层叠封装后,再组装铝合金边框和接线盒。

产品特点:

●按国际电工委员会IEC61215:1993标准进行设

计,并经过充分的试验论证,确保组件的质量、电性

能和寿命要求;

●组件的标称工作电压和标称输出功率可按不同

的要求设计,满足不同用户的需求;

●采用绒面低铁钢化玻璃 (又称为白玻璃),厚

度3.2mm, 透光率达89%以上,电池组件整体有足够

的机械强度,能经受运输、安装和使用过程中发生的

冲击、震动和其他应力,并具有优良的防腐、防风、

防水和防雹能力;

●采用加有抗紫外剂、抗氧化剂和固化剂的优质EVA(乙烯-醋酸乙烯共聚物)膜层作为太阳电池的密封剂和与玻璃、TPT之间的连接剂。具有高透光率(胶膜固化后透光率≥89.5%)和抗老化能力;

●TPT(聚氟乙烯复合膜):用于太阳电池组件封装的TPT至少应该有三层结构:外层保护层PVF具有良好的抗环境侵蚀能力,中间层为聚脂薄膜具有良好的绝缘性能,内层PVF需经表面处理和EVA具有良好的粘接性能。电池组件的绝缘强度大于100MΩ;

●专用太阳能电池组件优质密封硅胶,增加组件的绝缘性能和防止湿气进入组件,保证组件寿命;

●组件在-40℃的低温下和85℃的高温下可正常工作;产品使用寿命长:≥25年,功率衰减小;

●密封防水多功能接线盒,防护等级达到IP65,内装旁路二极管,有效防止热斑效应造成的电池烧毁等质量事故;

●阳极氧化铝边框和出厂所携带的接线盒确保安装简便快捷。

3.3光伏阵列设计

3.3.1光伏阵列倾角确定

本项目所在地地理坐标为:北纬38.54度,东经121度。

(1)不同朝向与倾角安装的太阳电池

的发电量比较(见图示):假定向南倾斜最佳

倾角安装的太阳电池发电量为100,则其它朝

向全年发电量均有不同程度的减少。

(2)光伏组件安装方向应一致,朝向正

南,有利于最大收集太阳辐射。

(3)离网发电太阳电池方阵的安装倾角与并网不同,并网光伏发电考虑的应该是取全年能接收到最大太阳辐射量所对应的角

度,而对于离网光伏系统来讲,着重考虑的是随

着季节性日照量的变化保持整个光伏系统的发电

均衡性来考虑。根据石家庄当地的气象和地理资

料,可以求出全年能均衡接收到太阳辐射量所对应的角度即为方阵最佳倾角。

(4)本工程在考虑发电效率的情况下,选择朝向南方安装,最佳倾角经过计算为46度。

3.3.2支撑结构

支撑结构是支撑固定太阳能电池板并且使其有一定倾斜角度,同时具防风沙雨水能力,以及具有一定的防腐性能。支撑结构与基础通过预埋件连接,型钢之间用紧固件连接,便于安装和维护。太阳能电池方阵支架选用钢、铝材制造,其强度达到可承受10级大风的能力。太阳能电池方阵支架的金属表面,必须进行热镀锌处理,以防止风沙雨水的冲刷和生锈腐蚀。太阳能电池方阵支架的连接件,包括组件和支架的连接件、支架与螺栓的连接件以及螺栓与方阵场的连接件,均以电镀钢材或不锈钢材制造。如下图为支架连接图:

图3-3-1组件阵列排布示意图(平地安放形式)

图3-3-2组件阵列间距排布示意图(立杆安放形式)

3.4系统效率分析

离网光伏发电系统的总效率由光伏阵列的效率、控制逆变器效率、蓄电池储能充放电效率等三部分组成。

(1)光伏阵列效率η1:光伏阵列在1000W/㎡太阳辐射强度下,实际的直流输出功率与标称功率之比。光伏阵列在能量转换过程中的损失包括:组件的匹配损失、表面尘埃遮挡损失、不可利用的太阳辐射损失、温度影响、最大功率点跟踪精度、及直流线路损失等,设计效率取95%。

(2)控制、逆变器转换效率η2:离网逆变器输出的交流电功率与直流输入功率之比,效率取90%。

(3)蓄电池充放电效率η3:控制器给蓄电池充电到蓄电池放电的过程中,有一定的效率损失,其中其中有效的效率取90%。

(4)系统总效率为:η总=η1×η2×η3=95%×90%×90%≈77.7%

四、电气部分

4.1 概述

系统采用220V直流接入逆变输出单相220V交流。发电系统可应满足40KW负荷日用电12小时。为保证系统在连续阴雨天或其它太阳辐射不足情况下正常使用,系统接入市电作为辅助能源。保证用电负荷全天候不断电。设计蓄电池容量满足负荷在当天充电当天使用蓄电池的电,不设置连续阴雨天的要求。

4.1.1 设计依据

国家及地方现行的有关设计规范和标准∶

《民用建筑电气设计规范》JGJ16-2008

《供配电系统设计规范》GB50052-95

《低压配电设计规范》GB50054-95

《通用用电设备配电设计规范》GB50055-93

《电力工程电缆设计规范》GB50217-94

《建筑物防雷设计规范》GB50057-94

《建筑物电子信息系统防雷技术规范》GB50343-2004

《建筑电气工程施工质量验收规范》GB50303-2002

《交流电气装置的接地》DL 621-1997

4.2 系统方案设计选型

本太阳能光伏发电工程拟定总装机容量约为55.35KWp,由270块、205Wp/块的单晶硅太阳电池组件组成。依据负荷分布的位置多地点的特点,按几何图形划分不规则子系统按模块化型式建设。根据光伏发电系统装机容量和供电系统实际接线情况,设计如下接入系统方案:

太阳能光伏发电通常有两种利用方式:一种是依靠蓄电池来进行能量的存储,即所谓的独立发电方式;另一种是不使用蓄电池,直接与公用电网并接,即并网方式。

4.2.1独立光伏发电方式

独立发电系统的基本工作原理就是在太阳光的照射下,将太阳电池组件产生的电能通过控制器的控制给蓄电池充电或者在满足负载需求的情况下直接给负载供电,如果日照不足或者在夜间则由蓄电池在控制器的控制下给直流负载供电,对于含有交流负载的光伏系统而言,还需要增加逆变器将直流电转换成交流电。

独立发电系统一般由太阳板、控制器、蓄电池、逆变器等组成。

独立系统一般也称为离网系统,多用在偏远地区、电网敷设较困难的地区以及需要夜间供电的光伏发电项目中,也用于太阳能路灯、草坪灯、监控摄像头等系统中作为独立电源使用。

图4-1 独立光伏系统示意图

4.2.2并网发电方式

并网发电系统一般由太阳组件、并网逆变器等组成。通常还包括数据采集系统、数据交换、参数显示和监控设备等。

并网发电方式是将太阳能电池阵列所发出的直流电通过逆变器转变成交流电能输送到公用电网中,无需蓄电池进行储能,相比较而言,并网发电较便宜,而且完全无污染。并网发电系统采用的并网逆变器拥有自动相位和电压跟踪装置,能够非

常好的配合电网的微小相位和电压波动,不会对电网造成影响。目前国际上90%以上的太阳能系统采用并网发电,并网发电是太阳能发电系统的趋势所在。

图4-2 并网光伏系统示意图

光伏发电并网模式的分类:

光伏并网发电方式又分为低压配电侧和高压输电侧发电并网模式。

1、低压配电侧并网

(1)配电侧并网的光伏发电处在负荷中心,可以起到消峰(Peak Shaving)的作用,是“黄金电力”;

(2)在配电网接入不超过15-20%的光伏发电系统,不需要对电网进行任何改造,也不存在电力送出(逆流)和电网能力的问题,对于电网公司仅仅是负荷管理;

(3)配电侧并网的光伏发电的经济效益明显,“自发自用”(Net Metering)运行方式相当于电力公司以销售电价购买光伏电量;

(4)光伏发电电力就地使用,减少了大量的传输、变电损耗。

2、高压输电侧并网

(1)在发电侧并网;

(2)电流是单方向的;

(3)不能自发自用,需要给出“上网电价”,电网公司以高电价收购光伏发电的电量,用户缴纳常规低价电费。

4.2.3光伏发电工程采用离网光伏发电的形式

1)该工程的用电负荷为小区内亮化用电;

2)光伏发电电量就地使用,减少了大量的传输、变电损耗;

3)光伏发电装机总容量55.35kwp,就近逆变后直接接入负载输入端,蓄电池容量

与光伏系统的容量相匹配,另逆变器配备市电旁路作为对光伏发电的补充。4.3 电气主接线

本太阳能光伏发电工程拟定总装机容量为55.35Wp,由270块,205Wp/块的单晶硅太阳能电池组件组成。因为控制器为MPPT结构,所以每台设备连接的组串是一定的,按照每个组件串列串联,9块太阳能电池组件为一组,所以总计756块太阳能电池组件共计输入30个串列,每个串列分别接入8路直流汇流箱的一路,共计需要4台直流汇流箱,4台直流汇流箱接入控制器、逆变器后通过用电方的交流配电柜即可得到负荷所需要的用电。整个系统共分两个相同的配置。

图4-3 光伏组件接线图

4.4 主要设备选型

4.4.1 控制器

该控制器具有太阳能电池阵列接反、夜间防反充电、蓄电池过充电、蓄电池过放电、过载、短路等保护和报警功能。其特点采用了共负极控制方式,多路太阳能电池方阵输入控制;微电脑芯片智能控制,充放电各参数点可设定,适应不同场合的需求;各路充电压检测具有“回差”控制功能,可防止开关进入振荡状态;控制电路与主电路完全隔离,具有极高的抗干扰能力;采用LCD 液晶显示屏,中英文菜单显示;具有历史记录功能和密码保护功能;具有电量AH累计功能,包括光伏发电量、负载用电量、蓄电池电量的累计功能;保护功能齐全,具有多种保护及告警功

(整理)光伏发电实训系统

KNT-SPV01 光伏发电实训系统 实验指导书 (2011年全国职业院校技能大赛指定设备) 南京康尼科技实业有限公司 2011年3月

第一部分光伏发电系统基础 1.1 光伏电池 1.1.1 半导体与PN结 1.本征半导体 纯净半导体是导电能力介于导体和绝缘体之间的一种物质,纯净的半导体称为本征半导体。制造半导体器件的常用半导体材料有硅(Si)、锗(Ge)和砷化镓(GaAs)等。本征硅半导体中的硅原子核最外层有四个价电子,硅晶体为共价键结构,硅原子最外层的价电子被共价键束缚,在低温下,这些共价键是完好的,本征硅半导体显示出绝缘体特性。当温度升高或受到光照等外界激发时,共价键中的某些价电子会获得能量,摆脱共价键束缚,成为可以自由运动的电子,在原来的共价键中留出空穴。这些空穴又会被邻近的共价键中的价电子填补,并在邻近的共价键中产生新的空穴,空穴运动是带负电荷的的价电子运动造成的,其效果是带正电荷的粒子在运动。可以认为,自由电子是带负电荷的载流子,空穴是带正电荷的载流子。因此,本征半导体中有两种载流子即电子和空穴,它们是成对出现的,称为电子-空穴对,两种载流子都可以传导电流。通常本征半导体中的载流子浓度很低,导电能力差。当温度升高或受到光照时,本征半导体中的载流子浓度按指数规律增加,半导体的导电能力也显著增加。 2.P型半导体和N型半导体 纯净半导体中加入了微量杂质,其导电能力会明显增强。在本征硅半导体中掺入微量三价元素,如硼(B)等,硼原子核的最外层有三个价电子,在形成共价键时,就产生了一个空穴,因此掺入微量三价元素后,本征硅半导体中的空穴浓度大大增加,半导体的导电能力明显提高,主要依靠空穴导电的半导体称为P型半导体。在P型半导体中,空穴浓度高于电子,空穴称为多数载流子,电子称为少数载流子。在本征硅半导体中掺入微量五价元素,如磷(P)等,磷原子核的最外层有五个价电子,在形成共价键时,就产生了一个自由电子,因此掺入微量五价元素后,本征硅半导体中的电子浓度大大增加,半导体的导电能力明显提高,主要依靠电子导电的半导体称为N型半导体。在N型半导体中,电子的浓度高于空穴,电子称为多数载流子,空穴称为少数载流子。无论是P型半导体还是N型半

光伏发电系统方案专业设计书

光伏发电工程 项 目 方 案 设 计 书

目录 一、概述 (4) 1.1项目概况 (4) 1.2编制依据 (4) 二、建设地址资源简述 (4) 2.1日照资源 (4) 2.2接入系统条件 (5) 三、总体方案设计 (6) 3.1光伏工艺部分 (6) 3.2太阳电池组件选型 (6) 3.3光伏阵列设计 (11) 3.4系统效率分析 (14) 四、电气部分 (15) 4.1概述 (15) 4.2系统方案设计选型 (15) 4.3电气主接线 (18) 4.4主要设备选型 (18) 4.5防雷及接地 (27) 4.6电气设备布置 (27) 4.7电缆敷设及电缆防火 (28) 五、工程案例........................................................................................... 错误!未定义书签。 六、系统配置以及报价 .......................................................................... 错误!未定义书签。

一、概述 1.1 项目概况 1)建设规模:光伏系统用来供给小区道路亮化用电及楼宇亮化用电。该系统设计使用最大负荷50KVA,为保证系统在连续阴雨天或其它太阳辐射不足情况下正常使用,系统接入市电作为辅助能源,提高系统的稳定性能。为减少系统因直流端电流过大造成的线路损耗,系统采用220V直流接入逆变输出三相380V/220V交流。针对固定式安装电池板,采用最佳倾角进行安装,石家庄地区最佳角度为46度(朝向正南),控制柜、逆变器及蓄电池储能系统均须安放于在室内。 1.2 编制依据 本初步设计说明书主要根据下列文件和资料进行编制的: 1)GB50054《低压配电设计规范》; 2)GB50057《建筑物防雷设计规范》; 3)GB31/T316—2004《城市环境照明规范》; 4)GBJl33—90《民用建筑照明设计标准》; 5)JGG/T16—921《民用建筑电气设计规范》; 6)GBJ16—87《建筑设计防火规范》; 7)《中华人民共和国可再生能源法》; 8)国家发展改革委《可再生能源发电有关管理规定》; 二、建设地址资源简述 2.1日照资源 我国属世界上太阳能资源丰富的国家之一,全年辐射总量在917~2333kWh/㎡年之间。全国总面积2/3 以上地区年日照时数大于2000 小时。 我国的太阳能资源按日照时间和太阳能辐射量的大小,全国大致上可分为五类地区: 一类地区: 全年日照时数达到3200~3300小时的地区,主要包括青藏高原、甘肃省北部、宁夏北部和新疆南部等地。 二类地区: 全年日照时数达到3000~3200小时的地区,主要包括河北省西北部、

最新光伏发电实训系统

光伏发电实训系统

KNT-SPV01 光伏发电实训系统 实验指导书 (2011年全国职业院校技能大赛指定设备) 南京康尼科技实业有限公司 2011年3月

第一部分光伏发电系统基础 1.1 光伏电池 1.1.1 半导体与PN结 1.本征半导体 纯净半导体是导电能力介于导体和绝缘体之间的一种物质,纯净的半导体称为本征半导体。制造半导体器件的常用半导体材料有硅(Si)、锗(Ge)和砷化镓(GaAs)等。本征硅半导体中的硅原子核最外层有四个价电子,硅晶体为共价键结构,硅原子最外层的价电子被共价键束缚,在低温下,这些共价键是完好的,本征硅半导体显示出绝缘体特性。当温度升高或受到光照等外界激发时,共价键中的某些价电子会获得能量,摆脱共价键束缚,成为可以自由运动的电子,在原来的共价键中留出空穴。这些空穴又会被邻近的共价键中的价电子填补,并在邻近的共价键中产生新的空穴,空穴运动是带负电荷的的价电子运动造成的,其效果是带正电荷的粒子在运动。可以认为,自由电子是带负电荷的载流子,空穴是带正电荷的载流子。因此,本征半导体中有两种载流子即电子和空穴,它们是成对出现的,称为电子-空穴对,两种载流子都可以传导电流。通常本征半导体中的载流子浓度很低,导电能力差。当温度升高或受到光照时,本征半导体中的载流子浓度按指数规律增加,半导体的导电能力也显著增加。 2.P型半导体和N型半导体 纯净半导体中加入了微量杂质,其导电能力会明显增强。在本征硅半导体中掺入微量三价元素,如硼(B)等,硼原子核的最外层有三个价电子,在形成共价键时,就产生了一个空穴,因此掺入微量三价元素后,本征硅半导体中的空穴浓度大大增加,半导体的导电能力明显提高,主要依靠空穴导电的半导体称为P

太阳能光伏设计方案

前言 太阳能光伏发电是新能源和可再生能源的重要组成部分,由于它集开发利用绿色可再生能源、改善生态环境、改善人民生活条件于一体,被认为是当今世界上最有发展前景的新能源技术,因而越来越受到人们的青睐。随着世界光伏市场需求持续高速增长、我国《可再生能源法》的颁布实施以及我国光伏企业在国际光伏市场上举足轻重的良好表现,我国光伏技术应用呈现了前所未有的快速增长的态势并表现出强大的生命力。它的广泛应用是保护生态环境、走经济社会可持续发展的必由之路。 太阳能发电的利用通常有两种方式,一种是将太阳能发电系统所发出的电力输送到电网中供给其他负载使用,而在需要用电的时候则从电网中获取电能,称谓并网发电方式。另一种是依靠蓄电池来进行能量存储的所谓独立发电方式,它主要用于因架设线路困难市电无法到达的场合,应用十分广泛。

1.项目概况 1.1项目背景及意义 本项目拟先设计一个独立系统,安装在客户工厂的屋顶上,用于演示光伏阵列采取跟踪模式和固定模式时发电的情况,待客户参考后再设计一套发电量更大的系统,向工厂提供生产生活用电。本系统建成后将为客户产品做出很好的宣传,系统会直观的显示采用跟踪系统后发电总量的提升情况。 1.2光伏发电系统的要求 因本系统仅是一个参考项目,所以这里就只设计一个2.88kWp的小型系统,平均每天发电5.5kWh,可供一个1kW的负载工作5.5小时。 2.系统方案 2.1现场资源和环境条件 江阴市位于北纬31°40’34”至31°57’36”,东经119°至120°34’30”。气候为亚热带北纬湿润季风区,冬季干冷多晴,夏季湿热雷雨。年降水量1041.6毫米,年平均气温15.2℃。具有气候温和、雨量充沛、四季分明等特点。其中4月-10月平均温度在10℃以上,最冷为1月份,平均温度2.5℃;最热月7月份,平均温度27.6℃。

太阳能光伏发电原理与应用实验报告资料

太阳能光伏发电原理与应用 实验报告 课题名称:太阳能光伏发电原理与应用实验专业班级:12级应用光电子01 学生学号:1209040110 学生姓名:胡超 学生成绩: 指导教师:刘国华 课题工作时间:2015.6.1至2015.6.4

实验一、太阳辐射能的测量 下表是针对武汉市的日照情况,记录武汉市的某一天某一时段(每两分钟记 录一次)的太阳辐射强度: 太阳辐射监测系统 瞬时值累计值 时间 总辐射散射辐射直接辐射反射辐射净全辐射总辐射散射辐射直接辐射反射辐射净全辐射10:06 538 113 436 41 112 0.031 0.014 0.016 0.003 0.009 10:08 404 105 298 32 77 0.056 0.013 0.045 0.004 0.012 10:10 449 99 347 31 268 0.049 0.013 0.037 0.004 0.009 10:12 416 97 304 33 246 0.056 0.012 0.043 0.004 0.033 10:14 645 118 525 49 347 0.056 0.012 0.042 0.004 0.033 10:16 198 105 57 24 105 0.077 0.014 0.062 0.006 0.040 10:18 549 107 425 42 326 0.025 0.013 0.007 0.003 0.012 10:20 610 111 485 45 329 0.066 0.013 0.051 0.005 0.039 10:22 631 108 513 50 304 0.076 0.013 0.061 0.006 0.039 10:24 619 108 493 45 284 0.076 0.013 0.062 0.006 0.036 10:26 465 103 310 39 194 0.075 0.013 0.059 0.006 0.034 10:28 653 109 402 47 264 0.067 0.013 0.043 0.005 0.027 10:30 690 111 337 48 263 0.079 0.013 0.046 0.006 0.032 10:32 693 113 318 47 249 0.083 0.013 0.042 0.006 0.031 10:34 653 115 214 48 219 0.082 0.014 0.035 0.006 0.029 10:36 713 118 176 53 145 0.061 0.013 0.018 0.005 0.021 10:38 575 111 92 44 89 0.087 0.014 0.020 0.006 0.015 10:40 717 115 53 44 90 0.080 0.014 0.009 0.006 0.010

【2019年整理】光伏发电实训系统.docx

KNT-SPV01光伏发电实训系统 实验指导书 (2011 年全国职业院校技能大赛指定设备) 南京康尼科技实业有限公司 2011 年 3 月

第一部分光伏发电系统基础 1.1光伏电池 1.1.1半导体与PN结 1.本征半导体 纯净半导体是导电能力介于导体和绝缘体之间的一种物质,纯净的半导体称 为本征半导体。制造半导体器件的常用半导体材料有硅( Si)、锗( Ge)和砷化镓(GaAs)等。本征硅半导体中的硅原子核最外层有四个价电子,硅晶体为共价键 结构,硅原子最外层的价电子被共价键束缚,在低温下,这些共价键是完好的,本 征硅半导体显示出绝缘体特性。当温度升高或受到光照等外界激发时,共价键中的 某些价电子会获得能量,摆脱共价键束缚,成为可以自由运动的电子,在原来的共 价键中留出空穴。这些空穴又会被邻近的共价键中的价电子填补,并在邻近的共价 键中产生新的空穴,空穴运动是带负电荷的的价电子运动造成的,其效果是带正电 荷的粒子在运动。可以认为,自由电子是带负电荷的载流子,空穴是带正电荷的载 流子。因此,本征半导体中有两种载流子即电子和空穴,它们是成对出现的,称为 电子- 空穴对,两种载流子都可以传导电流。通常本征半导体中的载流子浓度很低, 导电能力差。当温度升高或受到光照时,本征半导体中的载流子浓度按指数规律增 加,半导体的导电能力也显著增加。 2.P 型半导体和 N 型半导体 纯净半导体中加入了微量杂质,其导电能力会明显增强。在本征硅半导体中掺 入微量三价元素,如硼(B)等,硼原子核的最外层有三个价电子,在形成共价键时,就产生了一个空穴,因此掺入微量三价元素后,本征硅半导体中的空穴浓度 大大增加,半导体的导电能力明显提高,主要依靠空穴导电的半导体称为P 型半导体。在P 型半导体中,空穴浓度高于电子,空穴称为多数载流子,电子称为少 数载流子。在本征硅半导体中掺入微量五价元素,如磷(P)等,磷原子核的最外 层有五个价电子,在形成共价键时,就产生了一个自由电子,因此掺入微量五价元 素后,本征硅半导体中的电子浓度大大增加,半导体的导电能力明显提高,主 要依靠电子导电的半导体称为N 型半导体。在N 型半导体中,电子的浓度高于空穴,电子称为多数载流子,空穴称为少数载流子。无论是P 型半导体还是 N 型半

5kWp光伏太阳能离网发电系统设计方案

5kWp光伏太阳能离网发电系统 设 计 方 案

目录 一、光伏太阳能离网发电系统简介 (2) 二、项目地参数 (2) 三、相关规范和标准 (5) 四、系统组成与原理 (6) 五、设计过程 (8) 1、方案简介 (8) 2、用户信息 (8) 3、蓄电池设计选型 (8) 4、组件设计选型 (12) 5、离网逆变器设计选型 (16) 6、控制器设计选型 (18) 7、交直流断路器 (21) 8、电缆设计选型 (23) 9、方阵支架 (23) 10、配电室设计 (23) 11、接地及防雷 (23) 12、数据采集检测系统 (24) 六、仿真软件模拟设计 (25) 七、设备配置清单及详细参数 (31) 八、系统建设及施工 (31) 九、系统安装及调试 (32) 十、工程预算投资分析报告 (36) 十二、运行及维护注意事项 (38) 十三、设计图纸 (41)

5kWp光伏太阳能离网发电系统配置方案 一、光伏太阳能离网发电系统简介 独立光伏电站是独立光伏系统中规模较大的应用。它的主要特点就是集中供电,如在一个十几户的村庄就可建立光伏电站来利用太阳能,当然这是在该村庄地理位置较偏远,无法直接利用电力公司电能的情况下,所能用到的方法。用这种方式供电便于统一管理和维护。而户用系统是采用分散供电的方式提供电能,如果要在该村庄安装户用光伏系统,这样每一户都得需这么一套光伏系统,它比起独立光伏电站来,所需的元器件规格要小,控制器、逆变器和蓄电池及负载都比较小,但是独立光伏电站和户用光伏系统基本结构是完全一致的。 太阳能光伏建筑一体化(Building Integrated Photovoltaic——BIPV)是应用太阳能发电 的一种新形式,简单的讲就是将太阳能发电系统和建筑的围护结构外表面如建筑幕墙、屋顶等有机的结合成一个整体结构,不但具有围护结构的功能,同时又能产生电能供本建筑及周围用电负载使用。还可通过建筑物输电线路离网发电,向电网提供电能。太阳能光伏方阵与建筑的结合由于不占用额外的地面空间,是光伏发电系统在城市中广泛应用的最佳安装方式,因而备受关注。 二、项目地参数 图片来自Google地球 1、项目地点:江苏省泰州市XX区XX镇; 2、经度:120°12’ ,纬度:32°23’; 3、平均海拔高度:7m;

光伏发电设计方案

1概述 1.1设计依据 1.1.2设计范围 本工程光伏并网发电系统,一期工程规模10MW,本工程设计范围为(1)新建110KV升压站一座 (2)相关电器计算分析,提出有关电器设备参数要求 (3)相关系统继电保护、通信及调度自动化设计 2.电力系统概述 3..1.电气主接线 本期工程建设容量为20MWp,本期光伏电站接入110KV系统,光伏电站设110KV、35KV集电线路回,经一台升压变电站接入电站内110KV变电站,SVG容量为10Mvar 3.1.3.1 110KV升压站主接线设计 本期110KV升压站设计采用1台20MWa/110KV升压变压器,1回110KV出线。 3.1.3.2 光伏方阵接线设计 1概述;1.1设计依据;1.1.11遵循的主要设计规范、规程、规定等:;1)《变电所总布置设计技术规程》(DL/T205;2)《35kV-110kV无人值班变电

所设计规程;3)《3kV~110kV高压配电装置设计规范》(;4)《35-110KV 变电站设计规范》(GB20;5)《继电保护和安全自动装置技术规范》(GB14; 6)《电力装置的继电保护和自动装置设计 1 概述 1.1设计依据 1.1.11遵循的主要设计规范、规程、规定等: 1)《变电所总布置设计技术规程》(DL/T2056-1996); 2)《35kV-110kV无人值班变电所设计规程》(DL/T5103-1999); 3)《3kV~110kV高压配电装置设计规范》(GB20060-92); 4)《35-110KV变电站设计规范》(GB20059-92); 5)《继电保护和安全自动装置技术规范》(GB14285-93); 6)《电力装置的继电保护和自动装置设计规范》(GB20062-92); 7)《交流电气装置过电压保护和绝缘配合》; 8)《微机线路保护装置通用技术规程》(GB/T15145-94); 9)《电测量仪表装置设计规程》(DJ9-87); 10) 其它相关的国家规程、规范及法律法规。

光伏公司实习报告

竭诚为您提供优质文档/双击可除 光伏公司实习报告 篇一:光伏实习报告 光伏认识实习报告 太阳是能量的天然来源。地球上每一个活着的生物之所以具有发挥作用的能力,甚至于是它的生存,都是由于直接 或间接来自于太阳的能量。我们的地球处在离太阳差不多有一亿英里的地方。它所截取的辐射能少到难以置信(大约千万分之三),这么小的一点能量,实际上比整个世界目前现 有的发电能力还大十万倍。目前全世界尤其是工业发达国家开始感到能量短缺,因此,人们开始求助于太阳能,以解决能源危机。 光伏产业链包括硅料、硅片、电池片、电池组件、应用系统5个环节。上游为硅料、硅片环节;中游为电池片、电池组件环节;下游为应用系统环节。从全球范围来看,产业链5个环节所涉及企业数量依次大幅增加,光伏市场产业链呈金字塔形结构。 在整个产业链中,硅料尤其是高纯度的硅料毛利率最高。

由于近年来光伏产业的快速发展,硅料出现供不应求的状况,硅料的价格更是节节攀升。20XX年初从以工业硅为原料提纯后所得的多晶硅价格已经上涨至约300美元/公斤,部分高 纯度多晶硅甚至达到500美元/公斤。其次是硅片生产的利 润率较高,而组件生产和工程安装利润率最低,约为10%左右。 目前,大部分光伏企业的产品集中在硅片、电池片和电池组件,以及应用系统方面。硅料的利润增长点主要是来自高纯度的多晶硅,而纯度较低的工业硅(纯度为98%~99%)则价格极为低廉。工业硅料的生产主要在发展中国家进行,是产业链中高能耗、高污染的一环。工业硅料经提纯后得到高纯度的硅料(纯度在99.9999%以上)则价格高昂。高纯度硅料的供应商主要来自美国、德国和日本的公司。随着光伏产业的发展,这些公司有扩大高纯度硅料产能的趋势,如美国hsc公司(hemlocksemiconductorcorporation)的多晶 硅产能将从目前的1万吨增加到20XX年的1.45万吨,预计20XX年扩产至1.9万吨;另一家公司memc公司(memcelectronicmaterialsInc.)的产能也将由4900吨提高至20XX年的8000吨。 工业制作硅电池所用的单晶硅材料,一般采用坩锅直拉法制的太阳级单晶硅棒,原始的形状为圆柱形,然后切割成方形硅片(或多晶方形硅片),硅片的边长一般为10~15cm,

模拟“太阳能”光伏发电实训装置概要

模拟“太阳能”光伏发电实训装置 摘要:在全球能源形势紧张,气候变暖严重威胁经济发展和人民生活健康的今天,世界各国都在寻求新的能源,以求得可持续发展和日后的发展中获取优势地位。太阳能以其清洁、环保、源源不断、取之不尽、安全等显著优势,成为世界各国人们的关注、研究的重点。在近几年,我国出台了一系列利用太阳能的鼓励、支持、发展的政策,太阳能热水器、太阳能光伏发电技术迅速发展并已进入了职业技术院校的教科书,作为教学中的一个重要环节,演试和实训所用的仪器、设备也急需跟上去。 关键词:太阳能实训装置教学 据我所了解,现在在职业技术学院的教学中,这种演示试验设备几乎是空白,因为购置费太贵,每台费用约近25万元左右。 本文介绍一种投资少、结构简单、表达清晰,学生操作一遍就能很快领会的“太阳能光伏发电”的基本原理的演示实训装置。有关这方面的教学老师可以自己动手制作,投资费用可控制在几万以内。光伏发电实训装置主要是: (1)模拟太阳能光源及光伏电池板的安装控制装置。 (2)能量转换存储系统。 (3)电流逆变及负载系统。 (4)监控电流能量显示系统。 1、模拟太阳能光源及光伏电池板的安装控制装置 由3盏300瓦投射灯排成一条直线间距约0.25米,作为太阳能光源,中间一盏灯作为中午照射的太阳,两边两盏灯分别作东升西落的太阳,灯的光照度强弱可控制。光伏电池板约1平方米左右,用支架安装在灯泡的下面约0.5米处,让投射灯泡的投射光源充分的照射在光伏电池板上,光伏电池板可以上下升降,也可以任意翻转,这样可调节投射灯投射在光伏电池板上的光照强弱。上下移动光伏电池板与投射灯的照射距离或改变投射灯泡的投射角度与控制投射灯光照度的强弱都可以改变光伏电池所获的电能的大小。

10MW光伏电站设计方案

10MW光伏电站设计方案 10兆瓦的太阳能并网发电系统,推荐采用分块发电、集中并网方案,将系统分成10个1兆瓦的光伏并网发电单元,分别经过0.4KV/35KV变压配电装置并入电网,最终实现将整个光伏并网系统接入35KV中压交流电网进行并网发电的方案。 本系统按照10个1兆瓦的光伏并网发电单元进行设计,并且每个1兆瓦发电单元采用4台250KW并网逆变器的方案。每个光伏并网发电单元的电池组件采用串并联的方式组成多个太阳能电池阵列,太阳能电池阵列输入光伏方阵防雷汇流箱后接入直流配电柜,然后经光伏并网逆变器和交流防雷配电柜并入0.4KV/35KV变压配电装置。 (一)太阳能电池阵列设计 1、太阳能光伏组件选型 (1)单晶硅光伏组件与多晶硅光伏组件的比较 单晶硅太阳能光伏组件具有电池转换效率高,商业化电池的转换效率在15%左右,其稳定性好,同等容量太阳能电池组件所占面积小,但是成本较高,每瓦售价约36-40元。 多晶硅太阳能光伏组件生产效率高,转换效率略低于单晶硅,商业化电池的转换效率在13%-15%,在寿命期内有一定的效率衰减,但成本较低,每瓦售价约34-36元。 两种组件使用寿命均能达到25年,其功率衰减均小于15%。 (2)根据性价比本方案推荐采用165WP太阳能光伏组件。 2、并网光伏系统效率计算 并网光伏发电系统的总效率由光伏阵列的效率、逆变器效率、交流并网等三部分组成。 (1)光伏阵列效率η1:光伏阵列在1000W/㎡太阳辐射强度下,实际的直流输出功率与

标称功率之比。光伏阵列在能量转换过程中的损失包括:组件的匹配损失、表面尘埃遮挡损失、不可利用的太阳辐射损失、温度影响、最大功率点跟踪精度、及直流线路损失等,取效率85%计算。 (2)逆变器转换效率η2:逆变器输出的交流电功率与直流输入功率之比,取逆变器效率95%计算。 (3)交流并网效率η3:从逆变器输出至高压电网的传输效率,其中主要是升压变压器的效率,取变压器效率95%计算。 (4)系统总效率为:η总=η1×η2×η3=85%×95%×95%=77% 3、倾斜面光伏阵列表面的太阳能辐射量计算 从气象站得到的资料,均为水平面上的太阳能辐射量,需要换算成光伏阵列倾斜面的辐射量才能进行发电量的计算。 对于某一倾角固定安装的光伏阵列,所接受的太阳辐射能与倾角有关,较简便的辐射量计算经验公式为: Rβ=S×[sin(α+β)/sinα]+D 式中: Rβ--倾斜光伏阵列面上的太阳能总辐射量 S--水平面上太阳直接辐射量 D--散射辐射量 α--中午时分的太阳高度角 β--光伏阵列倾角 根据当地气象局提供的太阳能辐射数据,按上述公式计算不同倾斜面的太阳辐射量,具体数据见下表:

最新光伏发电实训系统使用手册

光伏发电实训系统使 用手册

KNT-SPV01 光伏发电实训系统 使用说明书 (2011年全国职业院校技能大赛指定设备) 南京康尼科技实业有限公司 2011年3月

本使用说明书配系统使用光盘。在使用KNT-SPV01 光伏发电实训系统之前,请仔细阅读本使用说明书和系统使用光盘。

目录 1.1 KNT-SPV01 光伏发电实训系统简介 (4) 1.2 光源模拟跟踪装置和光源模拟跟踪控制系统 (4) 1.3 能量转换控制存储系统 (6) 1.4 离网逆变负载系统 (7) 1.5 监控系统 (8) 2.1 GE PLC的工作任务 (9) 2.2 能量转换控制存储系统的工作任务 (16) 2.3 离网逆变负载系统的工作任务 (44) 2.4 监控系统的工作任务 (52) 附件1:能量转换控制存储系统电气原理框图 附件2:离网逆变负载系统电气原理框图 附件3:接线图

1.1 KNT-SPV01 光伏发电实训系统简介 KNT-SPV01光伏发电实训系统由光源模拟跟踪装置、光源模拟跟踪控制系统、能量转换控制存储系统、离网逆变负载系统、监控系统组成,如图1所示。 (a)(b)(c)(d)(e) 图1 光伏发电系统 (a)光源模拟跟踪装置 (b)光源模拟跟踪控制系统 (c)能量转换控制存储系统 (d)离网逆变负载系统 (e)监控系统 1.2 光源模拟跟踪装置和光源模拟跟踪控制系统 1. 光源模拟跟踪装置 光源模拟跟踪装置由4块太阳能电池板组件、3盏300W投射灯、追日跟踪传感器、X和Y方向运动机构、直流电动机和支架组成。 太阳能电池板组件的主要参数: 额定功率 20W

太阳能光伏照明控制系统的硬件电路项目设计方案

太阳能光伏照明控制系统的硬件电路项 目设计方案 1.1概述 传统的化石能源资源日益枯竭,严重的环境污染制约了世界经济的可持续发展。能 源的需求有增无减,能源资源已成为重要的战略物资,化石能源储量的有限性是发展可 再生能源的主要因素之一。根据世界能源权威机构的分析,按照目前已经探明的化石能 源储量以及开采速度来计算,全球石油剩余可采年限仅有 41年,其年占世界能源总消 耗量的40.5%,国内剩余可开采年限为15年;天然气剩余可采年限61.9年,其年占世 界能源总消耗量的24.1%,国内剩余可开采年限30年;煤炭剩余可采年限230年,其 年占世界能源总消耗量的25.2%,国内剩余可开采年限81年;铀剩余可采年限71年, 其年占世界能源总消耗量的 7.6%,国内剩余可开采年限为50年。 太阳能利用和光伏发电是最有发展前景的可再生能源,因此,世界各国都把太阳能 光伏发电的商业化开发和利用作为重要的发展方向,制定了相应的导向政策。在光伏发 电的历史上,最早规模化推广的是日本,而后是德国,再发展到现在大力推广的包括美 国、西班牙、意大利、挪威、澳大利亚、韩国、印度等超过 40个国家与地区,如日本 “新阳光计划”、欧盟“可再生能源白皮书”,以及美国国家光伏发展计划、百万太阳能 屋顶计划、光伏先锋计划等的相继推出,成为近年来推动太阳能光伏发电产业的主要动 力。根据欧盟的预测:到2030年太阳能发电将占总能耗10%以上,到2050年太阳能发 电将占总能耗20% 1.2光伏照明系统的结构 光伏照明系统主要由五大部分组成,即太阳能电池、蓄电池、控制器、照明电路、 负载,如下图1-1所示。 在系统中,控制器是整个系统的核心。它控制蓄电池的充电及蓄电池对负载的供电, 对蓄电池性能、使用寿命有非常大的影响。目前,光伏系统主要由于控制器控制蓄电池 充电方式不合理,降低了蓄电池寿命而导致整个系统可靠性不高,因此,在控制器的设 计中采用什么样的充电 图1- 1光伏系统组成框图

KNT-WP01型 风光互补发电实训系统1解析

风光互补发电实训系统 技 术 方 案 南京康尼科技实业有限公司 2013年2月26日

第一部分:技术参数 KNT-WP01型风光互补发电实训系统 一、概述 2013年全国职业院校技能大赛高职组“风光互补发电系统安装与调试”赛项使用的大赛设备是由南京康尼科技实业有限公司研发生产的产品“KNT-WP01型风光互补发电实训系统”。 二、设备组成 KNT-WP01型风光互补发电实训系统主要由光伏供电装置、光伏供电系统、风力供电装置、风力供电系统、逆变与负载系统、监控系统组成,如图1所示。KNT-WP01型风光互补发电实训系统采用模块式结构,各装置和系统具有独立的功能,可以组合成光伏发电实训系统、风力发电实训系统。 (1)、设备尺寸:光伏供电装置1610×1010×1550mm 风力供电装置1578×1950×1540mm 实训柜3200×650×2000mm (2)、比赛场地面积:20平方米 图1 KNT-WP01型风光互补发电实训系统 三、各单元介绍 1、光伏供电装置 (1)、光伏供电装置的组成 光伏供电装置主要由光伏电池组件、投射灯、光线传感器、光线传感器控制盒、水平方

向和俯仰方向运动机构、摆杆、摆杆减速箱、摆杆支架、单相交流电动机、电容器、直流电动机、接近开关、微动开关、底座支架等设备与器件组成,如图2所示。 图2 光伏供电装置 4块光伏电池组件并联组成光伏电池方阵,光线传感器安装在光伏电池方阵中央。2盏300W的投射灯安装在摆杆支架上,摆杆底端与减速箱输出端连接,减速箱输入端连接单相交流电动机。电动机旋转时,通过减速箱驱动摆杆作圆周摆动。摆杆底端与底座支架连接部分安装了接近开关和微动开关,用于摆杆位置的限位和保护。水平和俯仰方向运动机构由水平运动减速箱、俯仰运动减速箱、直流电动机、接近开关和微动开关组成。直流电动机旋转时,水平运动减速箱驱动光伏电池方阵作向东方向或向西方向的水平移动、俯仰运动减速箱驱动光伏电池方阵作向北方向或向南方向的俯仰移动,接近开关和微动开关用于光伏电池方阵位置的限位和保护。 (2)、光伏电池组件 光伏电池组件的主要参数为: 额定功率 20W 额定电压 17.2V 额定电流 1.17A 开路电压 21.4V 短路电流 1.27A 尺寸 430mm×430mm×28mm 2、光伏供电系统 (1)、光伏供电系统的组成 光伏供电系统主要由光伏电源控制单元、光伏输出显示单元、触摸屏、光伏供电控制单

离网光伏系统设计方案

太阳光伏系统设计方案

南京格瑞能源科技有限公司. 总体方案描述一 在能源供应方面必须走可持续发面对化石燃料的逐渐枯竭和人类生态环境的日益恶化, 展的道路,逐渐改变能源消费结构,大力开发利用以太阳能为代表的可再生能源,已逐步成为人们的共识。由于太阳能发电具有节能、环保,安装使用方便,一次投资,长期受益等特点,目前广泛应用在别墅群、旅游渡假村、草原牧区、偏远山村、高山海岛等。太阳太阳能阵列把光能转换为电能,210W单晶太阳电池组件组成太阳电池阵列,采用充电控制器作过充、灯控电池阵列通过防雷汇流箱后,进线通过防雷处理进入光伏控制器,交流电且和市电形成互2%)AC220V频率(50Hz±制进入蓄电池组,逆变器把蓄电池逆变为LED等照明灯使用。共462盏,补,通过AC220V交流配电柜输出配电和后级防雷保护处理后可分别安装在屋顶相应的朝南位120平方米左右,太阳能电池板总共需安装占地面积约(东经)置,电池板支架采用全铝结构,具体方案在图纸深化设计中体现。万泽大厦位于:E °48′光伏组件安装倾角确定为3258°′N(北纬)31°119发电系统包括太阳能电池板、组件支架、防雷汇流箱、蓄电池组,控制器,逆变器及配电箱其附件。系统介绍二 灯后地下车库照明负载总功率采用LED本系统的主要目的是给照明设备供 电, 灯管的LED462盏 12W车道、为5544W,车位共采用,220V,负载需要电压为交流11340,方阵支8小时。根据电量平衡原理,需要太阳电池方阵功率为:Wp负载每天工作㎡。系统设计列。太阳能电池方阵占地面积:9120架的倾角为32°,组件排列方式为6行。蓄电池,控制器,逆变器,以180Ah/DC220V2个阴雨能正常工作,蓄电池配置容量为:及输出控制柜安装在空置房内。 本图供示意参考系统核心配置2.1 名称型号参数备注 单晶210Wp/DC96V 太阳电池组件. 180Ah/DC220V 蓄电池 智能自动控制GESM60/220 控制器DC220V/60A 汇流箱汇流箱6进一出GEHL10-S6 带市DC220V/10KW 逆变器GEII10K/220 正弦波逆变器() 电互补太阳电池组件支架 负载用电(2.2 AC220V)数量工作时间用电功率项目名称总功率

光伏发电并网系统Simulink仿真实验

光伏发电并网系统Simulink仿真实验 报告电气工程学院 王安20 一.光伏发电系统基本原理与框架图 基本原理为:光伏阵列接受太阳能产生直流电流电压,同时电流电压受光照和温度的影响,而后经DC\DC(BOOST升压电路)转化将电压升高,再经DC\AC逆变产生交流电压供给负载使用。在这中间需要用MPPT使光伏电池始终工作在最大功率点处。 二.光伏电池的工作原理 光伏发电的能量转换器件是太阳能电池,又叫光伏电池。光伏电池发电的原理是光生伏打效应。光伏电池应用P-N结的光伏效应(Photovoltaic Effect)将来自太阳的光能转变为电能。当太阳光照射到太阳能电池上时,电池吸收光能,产生光电子-空穴对。在电池内电场的作用下,光生电子和空穴被分离,电池两端出现异号电荷的积累,即产生“光生电压”,这就是“光生伏打效应”。若在内建电场的两侧引出电极并接上负载,则负载就有“光生电流”流过,从而获得功率输出。这样,太阳的光能就变成了可以使用的电能。 三.光伏发电系统并网Simulink仿真 利用MTALAB中的simulink软件包,可以对10KW,380V光伏发电系统进行仿真,建立仿真模型如下: 输入参数如下: Simulink提供的子系统封装功能可以大大增强simulink系统模型框图的可读性封装子模块如下: 光伏电池封装模块: 最大功率点跟踪模块:

PWM模块如下: 并网端PWM内部PI模块: 运行结果如下图所示: 光伏电池输出电压如下: 光伏电池输出电流如下: 光伏电池输出功率波形如下: 并网(220V)成功后输出电流波形: 结果分析:通过对光伏发电的matlab-simulink仿真,得到了与理论曲线基本相同的电压、电流、功率曲线,但仍有不足之处,比如产生了许多谐波。通过这次的仿真实验,让我更加深刻认识了光伏发电的工作原理和过程,对光伏发电过程中可能出现的问题也有了一定的了解。虽然自己现在没办法解决,但随着自己学习的深入,以后会有办法解决的。另外,此次试验是和几个同学一起完成过程中也遇到了很多问题,最后集思广益解决了很多的问题,这让我也明白了合作的重要性。

分布式光伏发电系统设计方案

分布式光伏发电系统 设 计 方 案 编制人: 审核人: 批准人: 20 年月

目录 1 工程概述 (3) 1.1 工程名称 (3) 1.2 地理简介 (3) 1.3 气象资料 (3) 2 太阳能并网发电系统介绍 (4) 2.1 太阳能并网发电系统工作原理 (4) 2.2 主要组成设备介绍 (4) 3 方案设计 (5) 3.1 设计依据 (5) 3.2 设计原则 (5) 3.3 系统选型设计 (6) 3.4 主要设备的选型说明 (6) 4 发电量估算 (11) 5 系统的经济和社会效益 (11) 5.1 经济效益 (11) 6 设备材料清单 (12) 7 工程业绩表及典型工程照片 (12) 8 英利介绍............................................................................................... 错误!未定义书签。 9 附图1 .................................................................................................... 错误!未定义书签。

1 工程概述 1.1 工程名称 河北省分布式光伏发电项目。 1.2 地理简介 项目地点位于河北省保定市,保定市地处太行山东麓,冀中平原西部。北纬38°10′-40°00′,东经113°40′-116°20′之间。北邻北京市和张家口市,东接廊坊市和沧州市,南与石家庄市和衡水市相连,西部与山西省接壤。保定年平均气温12℃,年降水量550毫米,属于温带季风性气候。这里四季分明,冬季寒冷有雪,夏季炎热干燥,春季多风沙,来此旅游一般以夏秋季为宜。 1.3 气象资料 气象资料以NASA数据库中保定市气象数据为参考。 表1 气象资料表

光伏发电的MATLAB仿真

一、实验过程记录 1.画出实验接线图 图1 实验接线图 图2 光伏电池板图3 实验接线实物图 2.实验过程记录与分析 (1)给出实验的详细步骤 ○1 实验前根据指导书要求完成预习报告 ○2 按预习报告设计的实习步骤,利用MATLAB建立光伏数学模型,如下图4所示。

图4 光伏电池模型其中PV Array模块里子模块如下图5所示。 图5 PV Array模型其中Iph,Uoc,Io,Vt子模块如下图6-9所示。 图6Iph子模块

图7Uoc子模块 图8 Io子模块 图9Vt子模块 ○3 在光伏电池建模的基础上,输入实际光伏电池参数值,研究不同光照强度下、不同温度下光伏电池的I-V、P-V特性曲线,并得出结论。 ○4 设计光伏电池测试平台,在不同光照、温度情况下测试光伏电池输出电压、输出电流值,对实测数据进行处理并加以分析,记录实际光伏电池的I-V、P-V 特性曲线,与仿真结果进行对比,得出有意义的结论。 ○5 确定电力变换电路拓扑结构,设计电路中的相关参数值,通过MATLAB搭 建电路并仿真分析,搭建电路如图10所示。

图10离网型光伏发电系统 ○6 确定系统MPPT控制策略,建立MPPT模块仿真模型,并仿真分析。 系统联调,调节离网型光伏发电系统的电路和控制参数值,仿真并分析最大功率跟踪控制效果。 (2)记录实验数据 m2 表1当T=290K时S=1305W/时的测试数据 I(A)0 1.03 1.25 2.65 3.79 5.97 6.287.867.98 U(V)27.326.226252421.516 1.10 P(W)026.98632.566.2590.96128.35100.488.6460 m2 表2当T=287K时S=1305W/时的测试数据 I(A)01 1.5 2.6 3.93 6.0 6.688.048.12 U(V)27.626.225.825.123.921.620.510 P(W)026.238.765.2693.93129.6136.948.040 m2 表3当T=287K时S=1278W/时的测试数据 I(A)0 1.04 1.49 2.25 3.66 6.06 6.737.98.06 U(V)26.826.22625.424.321.913.40.50 P(W)027.24838.7457.1588.94132.7190.18 3.950

光伏发电系统支架设计

新能源科学与工程学院 光伏系统设计与施工课程设计 学院:新能源科学与工程学院 专业班级: 11级光伏发电2班 学生姓名: 学号: 1103030239 指导教师: 实施时间:2013.11.18—2013.11.22 项目课程成绩:

一、课程设计目的: 课程设计是《光伏系统设计与施工》课程的一个总结性教学环节,是培养学生综合运用本门课程及有关选修课程的基本知识去解决某一设计任务的一次训练。在整个教学计划中,它也起着培养学生独立工作能力的重要作用。 课程设计不同于平时的作业,在设计中需要学生自己做出决策,即自己确定方案,选择流程,查取资料,进行过程和设备计算,并要对自己的选择做出设计和核算,经过反复的分析比较,择优选定最理想的方案和合理的设计。所以,课程设计是培养学生独立工作能力的有益实践。 通过课程设计,学生应该注重以下几个能力的训练和培养: 1. 查阅资料,选用公式和搜集数据(包括从已发表的文献中和从生产现场中搜集)的能力; 2. 树立既考虑技术上的先进性又考虑经济上的合理性正确设计思想,在这种设计思想的指导下去分析和解决实际问题的能力; 3. 用简洁的文字或清晰的图表来表达自己设计思想的能力; 4.综合运用了以前所学的各门课程的知识(高数、CAD制图、机械制图、计算机等等)使相关学科的知识有机地联系起来; 5.运用太阳能光伏发电系统设计与施工中的知识解决工程中的实际问题。 二、课程设计日程安排: 实施时间实习内容安排地点 2013年11月18日讲解任务、设计原理及要求主附西多媒体5 2013年11月19日学生选定实验室电池组件对其长度 及质量进行测量,讲解参观学习实 验室屋顶及学习地面电站支架,对 关键部位的连接进行深入观测。 主A210教室 2013年11月20日针对新余地区的光伏并网电站,对 给定的电池组件进行荷载计算,包 括风压荷载计算,下载相关支架图 片手绘制图纸 主A210教室 2013年11月21日出具图纸(用CAD制图),打印报 告,请指导教师批阅并给出评语 主A210教室 2013年11月22日提交设计书、答辩报告书、分组交 叉答辩 主A210教室 三|、课程设计任务: 1、光伏发电系统支架设计书 2、光伏发电系统支架设计图纸:支架整体及侧面的CAD制图 3、课程设计答辩 四、课程设计成绩 本课程设计成绩的评定为百分制,其中支架设计书/满分40、支架CAD制

太阳能光伏发电系统工程实训实

太阳能光伏发电系统工程实训实验 实验一太阳能光伏发电系统设计(4课时) 一、实验目的: 1、了解太阳能光伏发电系统的组成和原理; 2、了解太阳能电池板的参数测试; 3、了解蓄电池充放电性能及测试; 二、实验设备 照度计 太阳能电池板 数字万用表 导线 三、实验注意事项 实验中注意电池板不得承受压力 四、实验原理 当物体受到光照时,物体内的电荷分布状态发生变化而产生电动势和电流,这种现象称为光生伏打效应。太阳能电池是一种利用光生伏打效应把光能转换为电能的器件,当太阳光照射到半导体P-N结时,就会在P-N 结两边产生电压,使P-N 结短路,从而产生电流。这个电流随着光强度的加大而增大,当接受的光强度达到一定数量时,就可以将太阳能电池看成恒流电源。 太阳能电池开路电压 (Voc) 一般在3 V 至0.6 V 范围,短路电流

(Isc)

通常低于8A。 太阳能电池板通常定义为封装和连接在一起的一个以上电池。太阳能电池板有不同的电压和电流范围,但功率产生能力一般为50 W至300 W。太阳能电池和电池板有许多相同的需要测试参数,如Voc, Isc, Pmax 图1: 太阳能电池I-V 曲线 五、实验内容 1、太阳能控制系统的设计 利用SMA软件设计一个太阳能控制系统方案 2、太阳能电池板参数测试 (1)开路电压VOC测量 用太阳能功率计记录不同光照强度E时的电压值VOC (2)短路电流ISC测量。

用太阳能功率计记录不同光照强度E时的电流值ISC (3)太阳能电池板伏安特性测试 用太阳能功率计记录不同的光照强度E时,从大到小调节负载电阻R,测量相应的电压V电流I。 找出电池输出最大功率时的电压值和电流值。I-V曲线(图1)上的Pmax点通常被称为最大功率点(MPP) Vmax——在Pmax点,电池的电压值。 Imax——在Pmax点,电池的电流值。 (4)器件的转换效率η测量。当太阳能电池连接到某个电路时,这个值等于被转换的能量(从吸收的太阳光到电能)与被采集的能量的百分比。这个值可以通过将Pmax除以输入的光辐照度(E,单位是W/m2,在标准测试条件下进行测量),再乘以太阳能电池的表面积(AC, 单位是平方米)计算得到。 (5)填充因子(FF)—Pmax除以VOC再乘上ISC 。

相关文档
相关文档 最新文档