文档视界 最新最全的文档下载
当前位置:文档视界 › 代数几何综合问题

代数几何综合问题

代数几何综合问题
代数几何综合问题

初中数学代数几何解题技巧

如何用好题目中的条件暗示 有一类题目,我们在解前面几小题时,其解题思路和方法往往对解后面问题起着很好的暗示作用,现以一次函数中出现的两道题目为例予以说明,供同学们在学习过程中参考。 【例1】直线与x轴、y轴分别交于B、A两点,如图1。 图1 (1)求B、A两点的坐标; (2)把△AOB以直线AB为轴翻折,点O落在平面上的点C处,以BC为一边作等边△BCD。求D点的坐标。 解析:(1)容易求得,A(0,1)。 (2)如图2, 图2 ∵,A(0,1), ∴OB=,OA=1。 ∴在Rt△AOB中,容易求得∠OBA=30° ∵把△AOB以直线AB为轴翻折, ∴∠OBC=2∠OBA=60°,BO=BC。 ∴△OBC是等边三角形 以BC为一边作等边△BCD,则D的落点有两种情形,可分别求得D的坐标为(0,0),。 反思:在求得第(1)小题中B、A两点的坐标分别为B(,0),A(0,1),实质上暗示着Rt△AOB中,OA=1,OB=,即暗示着∠OBA=30°,为解第(2)小题做了很好的铺垫。

【例2】直线与x轴、y轴分别交于A、B,以线段AB为直角边在第一象限内作等腰Rt△ABC,∠BAC=90°,且点P(1,a)为坐标系中的一个动点,如图3。 图3 (1)求三解形ABC的面积。 (2)证明不论a取任何实数,三角形BOP的面积是一个常数; (3)要使得△ABC和△ABP的面积相等,求实数a的值。 解析:(1)容易求得:A(,0),B(0,1), ∴。 (2)如图4,连接OP、BP,过点P作PD垂直于y轴,垂足为D,则三角形BOP的面积为,故不论a取任何实数,三角形BOP的面积是一个常数。 图4 (3)如图4,①当点P在第四象限时由第(2)小题中的结果:,和第(3)小题的条件可得: ∴, ∵,

中考数学复习检测第2部分专题突破专题十解答题突破—代数几何综合题(涉及二次函数)

2019-2020年中考数学复习检测第2部分专题突破专题十解答题突破—代数几何综合题(涉及二次函数) 类型一以几何图形为背景的综合题 【例1】(xx·苏州一模)如图1①,四边形ABCD中,AD∥BC,DC⊥BC,AD =6 cm,DC=8 cm,BC=12 cm.动点M在CB上运动,从C点出发到B点,速度每秒2 cm;动点N在BA上运动,从B点出发到A点,速度每秒1 cm.两个动点同时出发,当其中一个点到达终点时,另一个点也随即停止,设两个点的运动时间为t(秒). (1)求线段AB的长. (2)当t为何值时,MN∥CD? (3)设三角形DMN的面积为S,求S与t之间的函数关系式. (4)如图1②,连接BD,是否存在某一时刻t,使MN与BD互相垂直?若存在,求出这时的t值;若不存在,请说明理由. 图1

【例2】(xx·吉林)如图2,在等腰直角三角形ABC中,∠BAC=90°,AC=8 2 cm,AD⊥BC于点D,点P从点A出发,沿A→C方向以 2 cm/s的速度运动到点C停止,在运动过程中,过点P作PQ∥AB交BC于点Q,以线段PQ为边作等腰直角三角形PQM,且∠PQM=90°(点M,C位于PQ异侧).设点P的运动时间为x(s),△PQM与△ADC重叠部分的面积为y(cm2) 图2 备用图 (1)当点M落在AB上时,x=____________; (2)当点M落在AD上时,x=____________; (3)求y关于x的函数解析式,并写出自变量x的取值范围.

1.(xx·宁夏)如图3,在矩形ABCD中,AB=3,AD=4,动点Q从点A出发,以每秒1个单位的速度,沿AB向点B移动;同时点P从点B出发,仍以每秒1个单位的速度,沿BC 向点C移动,连接QP,QD,PD.若两个点同时运动的时间为x秒 (0<x≤3),解答下列问题: (1)设△QPD的面积为S,用含x的函数关系式表示S;当x为何值时,S有最大值?并求出最小值; 图3 (2)是否存在x的值,使得QP⊥DP?试说明理由. 2.(xx·梅州)如图4,在Rt△ABC中,∠ACB=90°,AC=5 cm,∠BAC=60°,动点M 从点B出发,在BA边上以每秒2 cm的速度向点A匀速运动,同时动点N从点C出发,在CB边上以每秒 3 cm的速度向点B匀速运动,设运动时间为t秒(0≤t≤5),连接MN. 图4 (1)若BM=BN,求t的值; (2)若△MBN与△ABC相似,求t的值; (3)当t为何值时,四边形ACNM的面积最小?并求出最小值.

一次函数代数几何综合问题

一次函数代几综合问题 一.填空题(共6小题) 1.如图,直线和x轴、y轴分别交于点A、B.若 以线段AB为边作等边三角形ABC,则点C的坐标是. 2.一次函数y=x+4分别交x轴、y轴于A、B两点,在x轴上取一点, 使△ABC为等腰三角形,则这样的点C的坐标为. 3.如图,平面直角坐标系中,已知直线y=x上一点P(1,1), C为y轴上一点,连接PC,线段PC绕点P顺时针旋转90°至线段 PD,过点D作直线AB⊥x轴,垂足为B,直线AB与直线y=x交 于点A,且BD=2AD,连接CD,直线CD与直线y=x交于点Q, 则点Q的坐标为. 4.如图,已知直线l:y=x,过点A(0,1)作y轴的垂线交直 线l于点B,过点B作直线l的垂线交y轴于点A1;过点A1作y轴 的垂线交直线l于点B1,过点B1作直线l的垂线交y轴于点A2;…; 按此作法继续下去,则点A4的坐标为. 5.在直角坐标系中,正方形A1B1C1O1、A2B2C2C1、…、A n B n C n C n﹣1 按如图所示的方式放置,其中点A1、A2、A3、…、A n均在一次函数 y=kx+b的图象上,点C1、C2、C3、…、C n均在x轴上.若点B1的坐标为(1,1),点B2的坐标为(3,2),则点A n的坐标为. 6.如图,直线1:与x轴、y轴分别相交于点A、B, △AOB与△ACB关于直线l对称,则点C的坐标为.

二.解答题(共24小题) 7.已知一次函数y=2x﹣4的图象与x轴、y轴分别相交于点A、B,点P在该函数的图象上,P到x轴、y 轴的距离分别为d1、d2.(1)当P为线段AB的中点时,求d1+d2的值; (2)直接写出d1+d2的范围,并求当d1+d2=3时点P的坐标; (3)若在线段AB上存在无数个P点,使d1+ad2=4(a为常数),求a的值. 8.在平面直角坐标系xOy中,边长为6的正方形OABC的顶点A,C分别在x轴和y轴的正半轴上,直线y=mx+2与OC,BC两边分别相交于点D,G,以DG为边作菱形DEFG,顶点E在OA边上. (1)如图1,当CG=OD时,直接写出点D和点G的坐标,并求直线DG的函数表达式; (2)如图2,连接BF,设CG=a,△FBG的面积为S. ①求S与a的函数关系式; ②判断S的值能否等于等于1?若能,求此时m的值,若不能,请说明理由; (3)如图3,连接GE,当GD平分∠CGE时,m的值为.

从综合几何到几何代数化的数学思想方法

从综合几何到几何代数化的数学思想方法 从综合几何到几何代数化的数学思想方法 一、几何代数化思想的由来 数学的发展是以数和形两个基本概念作为主干的,数学思想方法的各种变革也是通过这两个概念进行的。在数学的萌芽时期,数和形的研究并不是互相割裂的,长度、面积和体积的量度把数和形紧密地联系起来。可是,在尔后的数学发展中,数和形的联系却长期没能得到进一步的深化。这突出表现在几何和代数的不协调性发展上。 我们知道,几何学作为一门独立的数学学科,最先是在古希腊学者手中形成的,欧几里得《几何原本》的问世就是重要的标志。那时,代数尚处于潜科学阶段,尚未形成严谨的逻辑体系,只是以零散、片断的知识形态存在着。因此,从公元前3世纪到14世纪,几何学在数学中占据着主导地位,而代数则处于从属的地位。由于几何学有着严谨的推理方法和直观的图形,可以把种种空间性质、图形关系问题的探讨,归结成一系列基本概念和基本命题来推演、论证,所以数学家们大都喜欢运用几何思维方式来处理数学问题,甚至把代数看成是与几何不相干的学科。这种人为的割裂,不仅延误了代数的发展,也影响了几何学的进步。 随着数学研究范围的扩大,用几何方法来解决数学问题越来越困难,因为许多问题特别是证明问题往往需要高超的技巧才能奏效,而且推演、论证的步骤又显得相当繁难,缺乏一般性方法。正当几何学难于深入进展时,代数学日趋成熟起来。尤其是在16世纪代数学得到突破性进展,不仅形成了一整套简明的字母符号,而且成功地解决了二次、三次、四次方程的求根问题。这就使代数学在数学中的地位逐渐得到上升,于是综合几何思维占统治地位的局面开始被打破。

历史上最先明确认识到代数力量的是16世纪法国数学家韦达。他尝试用代数方法来解决几何作图问题,并隐约出现了用方程表示曲线的思想。他指出,几何作图中线段的加减乘除可以通过代数的术语表出,所以它们实质上属于代数的运算。随着代数方法向几何学的渗透,代数方法的普遍性优点日益表露出来,于是用代数方法来改造传统的综合几何思维,把代数和几何有机结合起来,互相取长补短,便成为十分必要的了。 实现代数与几何有机结合的关键,在于空间几何结构的数量化,即把形与数统一起来。这一项工作是由法国数学家笛卡儿完成的。笛卡儿继承和发展了韦达等人的先进数学思想,他充分看到代数思想的灵活性和方法的普遍性,为寻求一种能够把代数全面应用到几何中去的新方法思考了二十多年。1619年,他悟出建立新方法的关键,在于借助坐标系建立起平面上的点和数对之间的对应关系,由此可用方程来表示曲线。1637年,他的《几何学》作为《方法论》一书的附录出版,在这个附录中,他明确提出了坐标几何的思想,并用于解决许多几何问题。此书的问世,标志着解析几何的诞生。与笛卡儿同一时代、同一国度的另一位数学家费尔马,也几乎同时独立地发现了解析几何的基本原理。他的思想集中体现在他的《轨迹引论》一书中。 解析几何的出现开创了几何代数化的新时代,它借助坐标实现了空间几何结构的数量化,由此把形与数、几何与代数统一了起来。而坐标本身就是几何代数化的产物,是点与数的统一体,它既是点的位置的数量关系表现,又是数量关系的几何直观,因此它具有形与数的二重性。有了坐标概念,就可以把空间形式的研究转化为数量关系的研究了。 例如,求两点间的距离,如果两点的坐标(x1,y1)和(x2,y2)何学上两点之间的测量问题就转化成代数学上求一个代数式的值的问题。 再如,求两条曲线的交点,这是几何学中比较困难的一个问题,如果两条曲线的方程给定,那么通过解联立方程组就可求出交点的位置,因为方程组的解恰是二条曲线交点的坐标。

代数几何综合题含答案

代数几何综合题 代数几何综合题是初中数学中覆盖面最广、综合笥最强的题型,近几年的中考试题很多以代数几何综合题的形式出现,其命题的主要结合点是方程与几何、函数与几何等,解代数几何综合题最常用的数学方法是数形结合,由形导数,以数促形。 例1、如图,已知平面直角坐标系中三点A (2,0),B (0,2),P (x ,0)()x <0,连结BP ,过P 点作P C P B ⊥交过点A 的直线a 于点C (2,y ) (1)求y 与x 之间的函数关系式; (2)当x 取最大整数时,求BC 与PA 的交点Q 的坐标。 解:(1) P C P B B O P O ⊥⊥, ∴∠+∠=?∠+∠ ∴∠=∠C P A O P B P B O O P B C P A P B O 90, A (2,0),C (2,y )在直线a 上 ∴∠=∠=? B O P P A C 90 ∴??B O PP A C ~ ∴ =P O A C B O P A ,∴=+||||||x y x 2 2 , x y x y x <<∴= -002 2,,∴=-+y x x 122 (2) x <0,∴x 的最大整数值为-1 , 当x =-1时,y =- 32,∴=CA 3 2

B O a B O Q C A Q O Q A Q B O C A //~,,∴∴=?? 设Q 点坐标为()m ,0,则A Q m =-2 ∴-=∴=m m m 2232 8 7 , ∴Q 点坐标为()8 7 0, 说明:利用数形结合起来的思想,考查了相似三角形的判定及应用。关键是搞清楚用坐标表示的数与线段的长度的关系。 练习 1.如图,从⊙O 外一点A 作⊙O 的切线AB 、AC ,切点分别为B 、C ,⊙O 的直径BD 为6,连结CD 、AO. (1)求证:CD ∥AO ;(3分) (2)设CD =x ,AO =y ,求y 与x 之间的函数关系式,并写出自变量x 的取值范围;(3分) (3)若AO +CD =11,求AB 的长。(4分) B

几何与代数历年真题版

01-02学年第二学期 几何与代数期终考试试卷 一(30%)填空题: 1. 设(1,2)α=,(1,1)β=-,则T αβ= ;T αβ== ; 100 () T αβ= ; 2. 设矩阵120031130A ?? ?= ? ???,234056007B ?? ? = ? ??? ,则行列式1AB -= ; 3. 若向量组123,,ααα线性无关,则当参数k 时,122331,,k αααααα---也线性无关; 4. 矩阵11110 11100110001A ?? ? ? = ? ???的伴随矩阵*A =? ? ? ? ? ?? ? ; 5. 设矩阵A 及A E +均可逆,则1 ()G E A E -=-+,且1 G -= ; 6. 与向量(1,0,1)α=,(1,1,1)β=均正交的单位向量为 ; 7. 四点(1,1,1),(1,1,),(2,1,1),(2,,3)A B x C D y 共面的充要条件为 ; 8. 设实二次型222 12312323(,,)2f x x x x kx x x x =+++,则当k 满足条件 时,123(,,)1f x x x =是椭 球面;当k 满足条件 时,123(,,)1f x x x =是柱面。 二(8%)记1π为由曲线23 z y x ?=-?=?绕z -轴旋转所产生的旋转曲面,2π为以1π与平面3:1x y z π++=的 交线为准线,母线平行于z -轴的柱面。试给出曲面12ππ及的方程,并画出13ππ被所截有界部分在x y -平面上的投影区域的草图(应标明区域边界与坐标轴的交点) 。 三(8%)求经过直线22 21x y z x y z +-=??-+-=? 且与x y -平面垂直的平面方程. 四(12%)求矩阵方程2XA X B =+的解,其中, 311101010,321003A B ?? -?? ? == ? ?-?? ? ?? . 五(12%)设线性方程组

初中数学用几何图示法解代数问题 学法指导

初中数学用几何图示法解代数问题 很多代数问题用纯代数知识来解答很繁琐,也很难解决。因此,许多代数问题用几何图示法来解决非常容易,下面列举几例进行探讨。 一. 线段图示法 例1. 甲、乙两车分别从A 、B 两地同时出发,相向而行,相遇时,甲车在已过中点15千米处,相遇后甲车再行8 9时到达B 地,乙车又行了2时到达A 地,求甲、乙两车每时各行多少千米? 分析:行程问题有三个基本量:路程、速度、时间,且有基本关系:路程=速度×时间。本题设甲车的速度为x 千米/小时,乙车的速度为y 千米/小时,由于同时出发到相遇时,甲车在已过(如图1)所示的线段AB 中点M 的15千米处C 点,继续前进后,甲车行的距离为x 89CB = 千米,乙车行的距离为CA=2y 千米。因此,甲车开始行驶的距离AC 的时间为x y 2时与乙车开始行驶的距离BC 的时间为y x 89时所用时间相同,而M 是AB 的中点, 即AM=BM ,MC=15千米, 则15x 8 9BM ,15y 2AM +=-=,由图所示易知: ???????=+=-y x 89x y 215x 8915y 2 解这个方程组,得??? ????=-=???==760y 780x ,60y 80x 2211 经检验,???????=-=???==760y 780x ,60y 80x 2211都是原方程组的解,但??? ????=-=760y 780x 22,不合题意,舍去。 所以,甲车的速度为80千米/小时,乙车的速度为60千米/小时。 图1 二. 三角形图示法 例2. 已知正数,x ,y 满足条件x+y=4,求1y 1x 22++的最小值。

构造几何图形解决代数问题

构造几何图形解决代数问题 摘要 数与行是数学中的两个最古老,也是最基本的研究对象,它们在一定条件下可以相互转化。数形结合是数学解题中常用的思想方法,数形结合的思想可以使某些抽象的数学问题直观化、生动化,能够变抽象思维为形象思维,有助于把握数学问题的本质;另外,由于使用了数形结合的方法,很多问题便迎刃而解,且解法简捷。因此,数形结合的思想方法是数学教学内容的主线之一。数形结合的应用大致可分为两种情形:第一种情形是“以数解形”,而第二种情形是“以形助数”。本课题调查研究中主要研究“以形助数”的情形。 关键词 数形结合 解题 以形助数 教学 1.“以形助数”的思想应用 1.1解决集合问题:在集合运算中常常借助于数轴、Venn 图处理集合的交、并、补等运算,从而使问题得以简化,使运算快捷明了。 例:已知集合A=[0,4],B=[-2,3],求A B 。 分析:对于这两个有限集合,我们可以将它们在数轴上表示出来,就可以很清楚地知道结果。如下图,由图我们不难得出A B=[0,3] 例:(2009湖南卷文)某班共30人,其中15人喜欢篮球运动,10人喜欢乒乓球运动,8人对这两项运动都不喜爱,则喜爱篮球运动但不喜爱乒乓球运动的人数为 分析:如下图,设所求人数为x ,则只喜爱乒乓球运动的人数为10(15)5,155308x x x x --=-+-=-?=故。 B=[-2,3] A=[0,4]

评价:通过上面两个典型例题的学习,我们基本了解了构造几何图形在代数问题中的简单应用,将抽象的集合问题形象地用图形表现出来,形象生动便于思考,找出问题中条件间的相互关系进而方便快捷地解答。 1.2解决函数问题:借助于图象研究函数的性质是一种常用的方法。函数图像的几何特征与数量特征紧密结合,体现了数形结合的特征与方法。 例:(2009山东理)若函数 ()(01)x f x a x a a a a =-->≠且有两个零点,则实数的取值范围是 分析:设函数(0,1)x y a a a =>≠且和函数y x a =+,则函数 ()(01)x f x a x a a a =-->≠且有两个零点,就是函数(0,1)x y a a a =>≠且与函数y x a =+有两个交点,由图象可知当01a <<时两函数只有一个交点,不符合,当1a >时,因为函数(1)x y a a =>的图象过点(0,1),而直线y x a =+所过的点一定在点(0,1)的上方,所以一定有两个交点,所以一定有两个交点,所以实数a 的取值范围是1a >

一次函数的与几何图形综合的题目(含答案)

一次函数与几何图形综合专题讲座 思想方法小结 : (1)函数方法. 函数方法就是用运动、变化的观点来分析题中的数量关系,抽象、升华为函数的模型,进而解决有关问题的方法.函数的实质是研究两个变量之间的对应关系,灵活运用函数方法可以解决许多数学问题. (2)数形结合法. 数形结合法是指将数与形结合,分析、研究、解决问题的一种思想方法,数形结合法在解决与函数有关的问题时,能起到事半功倍的作用. 知识规律小结 : (1)常数k ,b 对直线y =kx +b (k ≠0)位置的影响. ①当b >0时,直线与y 轴的正半轴相交; 当b =0时,直线经过原点; 当b ﹤0时,直线与y 轴的负半轴相交. ②当k ,b 异号时,即-k b >0时,直线与x 轴正半轴相交; 当b =0时,即- k b =0时,直线经过原点; 当k ,b 同号时,即-k b ﹤0时,直线与x 轴负半轴相交. ③当k >O ,b >O 时,图象经过第一、二、三象限; 当k >0,b =0时,图象经过第一、三象限; 当b >O ,b <O 时,图象经过第一、三、四象限; 当k ﹤O ,b >0时,图象经过第一、二、四象限; 当k ﹤O ,b =0时,图象经过第二、四象限;

当b <O ,b <O 时,图象经过第二、三、四象限. (2)直线y =kx +b (k ≠0)与直线y =kx (k ≠0)的位置关系. 直线y =kx +b (k ≠0)平行于直线y =kx (k ≠0) 当b >0时,把直线y =kx 向上平移b 个单位,可得直线y =kx +b ; 当b ﹤O 时,把直线y =kx 向下平移|b |个单位,可得直线y =kx +b . (3)直线b 1=k 1x +b 1与直线y 2=k 2x +b 2(k 1≠0 ,k 2≠0)的位置关系. ①k 1≠k 2?y 1与y 2相交; ②?? ?=≠2 12 1b b k k ?y 1与y 2相交于y 轴上同一点(0,b 1)或(0,b 2) ; ③???≠=21 21,b b k k ?y 1与y 2平行; ④?? ?==2 121, b b k k ?y 1与y 2重合. 例题精讲: 1、直线y =-2x +2与x 轴、y 轴交于A 、B 两点,C 在y 轴的负半轴上,且OC =OB (1) 求AC (2) 在OA 的延长线上任取一点P ,作PQ ⊥BP ,交直线AC 于Q ,试探究BP 与PQ 的数量关系, 并证明你的结论。 (3) 在(2)的前提下,作PM ⊥AC 于M ,BP 交AC 于N ,下面两个结论:①(MQ +AC )/PM x y

方程解问题的代数解法与几何解法(含练习题)

方程解问题的代数解法与几何解法 一般地,讨论方程的解可以有两种解法,一是利用代数方法,最终把比较复杂的 方程化为比较简单的一元一次方程或一元二次方程或其他基本方程(如简单的三角方程),二是转化为函数或方程的曲线,利用图形进行分析,即几何解法.要根据具体问题灵活选用这两种解法,而且两种解法要相互补充,灵活运用.下面举例说明这两种解法的具体应用. 例题1:设方程340x x +-=的根为1x ,方程3log 40x x +-=的根为2x , 求12x x +. 代数解法:因为13140+-=,所以1x =方程340x x +-=的一个根, ()34x f x x =+-在R 上为增函数,所以()34x f x x =+-在R 上最多只有一个零 点,所以1 1.x =因为3log 3340+-=,所以3x =方程3log 40x x +-=的一个根,3 ()log 4 f x x x =+-在(0,)+ 上为增函数,所以3()lo g 4f x x x =+-在(0,)+ 上最多只有一个零点,所以2 3.x = 所以12 4.x x += 显然上面提供的代数解法仅仅局限于能够用观察法求出方程根的情况,对于含有指数式、对数式及整式的方程,一般无法用初等方法求出方程的根,因此可以考虑从整体上求出12x x +. 此题的特殊性决定了题目的确具有更有一般性的代数方法,但是要用到指数与对数的互化,很难想到,下面提供给同学们仅供参考: 11340x x +-= ① 322log 40x x +-= ② ①式可以变形为1 13 4x x =-+,即为 311log (4)x x -+=,若设14x t -+=, 则14x t =-,于是3log 4t t =-, ②式变为322log 4x x =-,t 与2x 都是方程3log 4x x =-的根,而这个方程即3log 40 x x -+=,又函数3()log 4f x x x =+-在(0,)+ 上为增函数,最多只有一个实数根,因此必有214x x =-+,所以12 4.x x += 几何解法:将方程340x x +-=变形为34x x =-+,将方程

初三数学代数几何综合题

代数几何综合题 【题型特征】代数、几何知识相结合的综合题是以几何知识为主体,以代数知识为工具(背景),来确定图形的形状、位置、大小(坐标)的问题.解答时往往需要从代数几何的结合点或在几何图形中寻找各元素之间的数量关系或在代数条件中探讨各个量的几何模型,进行数与形之间的互相转化,使问题得到解决. 为了讲解方便,我们将代数几何综合题按题目叙述的背景分为:坐标系、函数为背景的代数几何综合题和以几何图形为背景的代数几何综合题. 【解题策略】几何图形为背景的代数几何综合题,建立函数表达式的常见思路是:利用图形的面积公式建立函数表达式;或利用勾股定理或解直角三角形知识建立函数表达式;或利用相似三角形的线段成比例建立函数表达式. 类型一坐标系、函数为背景 典例1(2015·湖南怀化)如图(1),在平面直角坐标系中,AB=OB=8,∠ABO=90°,∠yOC=45°,射线OC以每秒2个单位长度的速度向右平行移动,当射线OC经过点B时停止运动,设平行移动x秒后,射线OC扫过Rt△ABO的面积为y. (1)求y与x之间的函数表达式; (2)当x=3秒时,射线OC平行移动到O'C',与OA相交于点G,如图(2),求经过G,O,B三点的抛物线的表达式; (3)现有一动点P在(2)中的抛物线上,试问点P在运动过程中,是否存在三角形POB的面积S=8的情况?若存在,求出点P的坐标,若不存在,请说明理由. (1)

(2) 【全解】 (1)∵AB=OB,∠ABO=90°, ∴△ABO是等腰直角三角形. ∴∠AOB=45°. ∵∠yOC=45°, ∴∠AOC=(90°-45°)+45°=90°. ∴AO⊥CO. ∵C'O'是CO平移得到, ∴AO⊥C'O'. ∴△OO'G是等腰直角三角形. ∵射线OC的速度是每秒2个单位长度, ∴OO'=2x. ∴其以OO'为底边的高为x. ∴点G的坐标为(3,3). 设抛物线表达式为y=ax2+bx,

2019届中考数学总复习:代数几何综合问题

2019届中考数学总复习:代数几何综合问题 【中考展望】 代几综合题是初中数学中覆盖面最广、综合性最强的题型.近几年的中考压轴题多以代几综合题的形式出现.解代几综合题一般可分为“认真审题、理解题意;探求解题思路;正确解答”三个步骤,解代几综合题必须要有科学的分析问题的方法.数学思想是解代几综合题的灵魂,要善于挖掘代几综合题中所隐含的重要的转化思想、数形结合思想、分类讨论的思想、方程(不等式)的思想等,把实际问题转化为数学问题,建立数学模型,这是学习解代几综合题的关键. 题型一般分为:(1)方程与几何综合的问题;(2)函数与几何综合的问题;(3)动态几何中的函数问题;(4)直角坐标系中的几何问题;(5)几何图形中的探究、归纳、猜想与证明问题. 题型特点:一是以几何图形为载体,通过线段、角等图形寻找各元素之间的数量关系,建立代数方程或函数模型求解;二是把数量关系与几何图形建立联系,使之直观化、形象化.以形导数,由数思形,从而寻找出解题捷径. 解代几综合题要灵活运用数形结合的思想进行数与形之间的相互转化,关键是要从题目中寻找这两部分知识的结合点,从而发现解题的突破口. 【方法点拨】 方程与几何综合问题是中考试题中常见的中档题,主要以一元二次方程根的判别式、根与系数的关系为背景,结合代数式的恒等变形、解方程(组)、解不等式(组)、函数等知识.其基本形式有:求代数式的值、求参数的值或取值范围、与方程有关的代数式的证明. 函数型综合题主要有:几何与函数结合型、坐标与几何、方程与函数结合型问题,是各地中考试题中的热点题型.主要是以函数为主线,建立函数的图象,结合函数的性质、方程等解题.解题时要注意函数的图象信息与方程的代数信息的相互转化.例如函数图象与x轴交点的横坐标即为相应方程的根;点在函数图象上即点的坐标满足函数的解析式等. 函数是初中数学的重点,也是难点,更是中考命题的主要考查对象,由于这类题型能较好地考查学生的函数思想、数形结合思想、分类讨论思想、转化思想,能较全面地反映学生的综合能力,有较好的区分度,因此是各地中考的热点题型. 几何综合题考查知识点多、条件隐晦,要求学生有较强的理解能力,分析能力,解决问题的能力,对数学知识、数学方法有较强的驾驭能力,并有较强的创新意识与创新能力. 1.几何型综合题,常以相似形与圆的知识为考查重点,并贯穿其他几何、代数、三角等知识,以证明、计算等题型出现. 2.几何计算是以几何推理为基础的几何量的计算,主要有线段和弧长的计算,角的计算,三角函数值的计算,以及各种图形面积的计算等. 3.几何论证题主要考查学生综合应用所学几何知识的能力. 4.解几何综合题应注意以下几点: (1)注意数形结合,多角度、全方位观察图形,挖掘隐含条件,寻找数量关系和相等关系; (2)注意推理和计算相结合,力求解题过程的规范化; (3)注意掌握常规的证题思路,常规的辅助线作法; (4)注意灵活地运用数学的思想和方法. 【典型例题】 类型一、方程与几何综合的问题 1.如图所示,在梯形ABCD中,AD∥BC(BC>AD),∠D=90°,BC=CD=12,∠ABE=45°,若AE =10,则CE的长为_________.

解析几何中的几何条件代数化

解析几何中的几何条件代数化 综合分析:解析几何是用代数的方法研究几何问题,通过曲线的几何性质帮助解析几何是其解题策略之一,几何性质帮助解题,一是直接参与思维推理过程,二是指以形引导代数推理的方向、方法。 【课前小练】 1.设抛物线y 2=8x 的焦点为F ,准线为l ,P 为抛物线上一点,PA ⊥l ,A 为垂足.如果直线AF 的斜率为3- ,那么PF =_______________. 2.过抛物线y 2=4x 的焦点F 作弦AB ,若BF AF 2=,则弦AB 所在直线的方程是____________. 3.抛物线x 2=2py (p >0)的焦点为F ,其准线与双曲线13 322=-y x 相交于A ,B 两点,若△ABF 为等边三角形,则p=_______________. 4.椭圆T :122 22=+b y a x (a >b >0)的左.右焦点分别为21,F F ,焦距为2c ,若直线)(3c x y +=与椭圆T 的一个交点M 满足,则该椭圆的离心率等于__________ 5.如图F 1、F 2是椭圆C1:x 24 +y 2=1与双曲线C2的公共焦点A 、B 分别是C 1、C 2在第二、四象限的公共点,若四边形AF 1BF 2为矩形,则C 2的离心率是_________________, 6.已知直线y =a 交抛物线y =x 2于A ,B 两点.若该抛物线上存在点C ,使得∠ACB 为直角,则a 的取值范围为_________

【典型例题】 例1.已知,,A B C 是椭圆2 2:14 x W y +=上的三个点,O 是坐标原点. (Ⅰ)当点B 是W 的右顶点,且四边形OABC 为菱形时,求此菱形的面积; (Ⅱ)当点B 不是W 的顶点时,判断四边形OABC 是否可能为菱形,并说明理由. 例2.椭圆1:22 22=+b y a x C 的离心率为2 3,长轴端点与短轴端点间的距离为5. (Ⅰ)求椭圆C 的方程; (Ⅱ)过点D (0,4)的直线l 与椭圆C 交于两点E ,F , ①设)4 1,0(-B ,若BF BE =,求直线l 的斜率。 变式1.A 是椭圆的右顶点,且EAF ∠的角平分线是x 轴,求直线l 的斜率。

代数几何综合题(含答案)

代数几何综合题 x<0,连 1、如图,已知平面直角坐标系中三点A(2,0),B(0,2),P(x,0)() ⊥交过点A的直线a于点C(2,y) 结BP,过P点作PC PB (1)求y与x之间的函数关系式; (2)当x取最大整数时,求BC与PA的交点Q的坐标。 2.如图,从⊙O外一点A作⊙O的切线AB、AC,切点分别为B、C,⊙O的直径BD为6,连结CD、AO. (1)求证:CD∥AO; (2)设CD=x,AO=y,求y与x之间的函数关系式,并写出自变量x的取值范围; (3)若AO+CD=11,求AB的长. B

3.如图,A 、B 两点的坐标分别是(x 1,0)、(x 2,O),其中x 1、x 2是关于x 的方程x 2 +2x+m-3=O 的两根,且x 1<0

1、已知抛物线)0(22 >--=m m x x y 与y 轴的交于C 点,C 点关于抛物线对称轴的对称点为C ′。 (1)求抛物线的对称轴及C 、C ′的坐标(可用含m 的代数式表示); (2)如果点Q 在抛物线的对称轴上,点P 在抛物线上,以点C 、C ′、P 、Q 为顶点的四边形是平行四边形,求Q 点和P 的坐标(可用含m 的代数式表示); (3)在(2)的条件下,求出平行四边形的周长。 2、如图,抛物线)0(2≠++=a c bx ax y 与x 轴、y 轴分别相交于 A (-1,0)、 B (3,0)、 C (0,3)三点,其顶点为 D . (1)求:经过A 、B 、C 三点的抛物线的解析式; (2)求四边形ABDC 的面积; (3)试判断△BCD 与△COA 是否相似若相似写出证明过程;若不相似,请说明理由. A B D C o x y

中考数学代数几何综合题2

中考数学代数几何综合题2 Ⅰ、综合问题精讲: 代数几何综合题是初中数学中覆盖面最广、综合性最强的题型,近几年中考试题中的综合题大多以代数几何综合题的形式显现,其解题关键点是借助几何直观解题,运用方程、函数的思想解题,灵活运用数形结合,由形导数,以数促形,综合运用代数和几何知识解题. Ⅱ、典型例题剖析 【例1】(2005,温州,12分)如图,已知四边形ABCD 内接于⊙O,A 是BDC 的中点,AE⊥AC 于A ,与⊙O 及CB 的延长线分别交于点F 、E ,且BF AD =,EM 切⊙O 于M 。 ⑴ △ADC∽△EBA ;⑵ AC2=1 2 BC·CE; ⑶假如AB =2,EM =3,求cot∠CAD 的值。 解:⑴∵四边形ABCD 内接于⊙O,∴∠CDA=∠ABE, ∵BF AD =,∴∠DCA=∠BAE, ∴△CAD∽△AEB ⑵ 过A 作AH⊥BC 于H(如图) ∵A 是BDC 中点,∴HC=HB =1 2 BC , ∵∠CAE=900,∴AC 2 =CH·CE=12 BC·CE ⑶∵A 是BDC 中点,AB =2,∴AC=AB =2, ∵EM 是⊙O 的切线,∴EB·EC=EM 2 ① ∵AC 2 =12 BC·CE,BC·CE=8 ② ①+②得:EC(EB +BC)=17,∴EC 2 =17 ∵EC 2 =AC 2 +AE 2 ,∴AE=17-22=13 ∵△CAD∽△ABE,∴∠CAD=∠AEC, ∴cot∠CAD=cot∠AEC =AE AC =13 2 点拨:此题的关键是树立转化思想,将未知的转化为已知的.此题表现的专门突出.如,将∠CAD 转化为∠AEC 就专门关键. 【例2】(2005,自贡)如图 2-5-2所示,已知直线y=2x+2分 别与x 轴、y 轴交于点A 、B ,以线段AB 为直角边在第一象限内 作等腰直角△ABC ,∠BAC=90○ 。过C 作CD ⊥x 轴,D 为垂足. (1)求点 A 、B 的坐标和AD 的长; (2)求过B 、A 、C 三点的抛物线的解析式。

2019年中考数学突破专题之 阅读理解问题——几何问题代数化

阅读理解问题——几何问题代数化 1.观察下图: 第1题图 我们把正方形中所有x、y相加得到的多项式称为“正方形多项式”,如第1个图形中的“正方形多项式”为4x+y,第2个图形中的“正方形多项式”为9x+4y,遵循以上规律,解答下列问题: (1)第4个图形中的“正方形多项式”为,第n(n为正整数)个图形中的“正方形多项式”为; (2)如果第1个图形中的“正方形多项式”为5,第4个图形中的“正方形多项式”为2. ①求x和y的值; ②求“正方形多项式”的值Q的最大值(或最小值),并说明是第几个图形. 解:(1)25x+16y,(n+1)2x+n2y; 【解法提示】∵第1个图形中“正方形多项式”为4x+y, 第2个图形中“正方形多项式”为9x+4y, 第3个图形中“正方形多项式”为16x+9y, ∴第4个图形中的“正方形多项式”为25x+16y,

第n (n 为正整数)个图形中的“正方形多项式”为(n +1)2x +n 2y . (2)①依题意,得45 25162 x y x y +=??+=?, 解得 2 3x y =?? =-? , ②Q =(n +1)2x +n 2y =?n 2+4n +2=?(n ?2)2+6, 当n =2时,Q 最大值为6, ∴第2个图形中,“正方形多项式”的值最大,最大值为6. 2.如图,正方形ABCD 内部有若干个点,用这些点以及正方形ABCD 的 顶点A 、B 、C 、D 把原正方形分割成一些三角形(互相不重叠): 第2题图 (1)填写如表: (2)如果原正方形被分割成2018个三角形,此时正方形ABCD 内部有多少个点? (3)上述条件下,正方形又能否被分割成2019个三角形?若能,此时正方形ABCD 内部有多少个点?若不能,请说明理由. 解:(1)如下表: 正方形ABCD 内点的个数 1 2 3 4 … n 分割成三角形的个数 4 6 ____ ____ … ____

代数几何综合题含答案

代数几何综合题 1、如图,已知平面直角坐标系中三点A (2,0),B (0,2),P (x ,0) ()x <0,连结BP ,过P 点作PC PB ⊥交过点A 的直线a 于点C (2,y ) (1)求y 与x 之间的函数关系式; (2)当x 取最大整数时,求BC 与PA 的交点Q 的坐标。 2.如图,从⊙O 外一点A 作⊙O 的切线AB 、AC ,切点分别为B 、C ,⊙O 的直径BD 为6,连结CD 、AO. (1)求证:CD ∥AO ; (2)设CD =x ,AO =y ,求y 与x 之间的函数关系式,并写出自变量x 的取值范围; (3)若AO +CD =11,求AB 的长. 3.如图,A 、B 两点的坐标分别是(x 1,0)、(x 2,O),其中x 1、x 2是关于x 的方程x 2+2x+m -3=O 的两根,且x 1<0--=m m x x y 与y 轴的交于C 点,C 点关于抛物线对称轴的对称点为C ′。 (1)求抛物线的对称轴及C 、C ′的坐标(可用含m 的代数式表示); (2)如果点Q 在抛物线的对称轴上,点P 在抛物线上,以点C 、C ′、P 、Q 为顶点的四边形是平行四边形,求Q 点和P 的坐标(可用含m 的代数式表示); (3)在(2)的条件下,求出平行四边形的周长。 B

中考数学冲刺拔高:代数几何综合问题--巩固练习(有答案)

中考冲刺:代几综合问题—知识讲解(提高) 【巩固练习】 一、选择题 1. 如图,正方形ABCD的边长为2, 将长为2的线段QF的两端放在正方形相邻的两边上同时滑动.如果点Q 从点A出发,沿图中所示方向按滑动到点A为止,同时点F从点B出发,沿图中所示方向按滑动到点B为止,那么在这个过程中,线段QF的中点M所经过的路线围成的图形的面积为() A. 2 B. 4- C. D. 2. 如图,夜晚,小亮从点A经过路灯C的正下方沿直线走到点B,他的 影长y随他与点A之间的距离x的变化而变化,那么表示y与x之间函 数关系的图象大致为() 二、填空题 3.在平面直角坐标系中,点A的坐标为(4,0),点B的坐标为(4,10),点C在y轴上,且△ABC 是直角三角形,则满足条件的C点的坐标为______________.

4.如图,(n+1)个边长为2的等边三角形有一条边在同一直线上,设△B2D1C1的面积为S1,△B3D2C2 的面积为S2,…,△B n+1D n C n的面积为S n,则S2=______________;S n=__________________ (用含的式子表示). 三、解答题 5. 如图,在Rt△ABC中,∠C=90°,AC=4cm,BC=5cm,点D在BC上,且CD=3cm,现有两个动点P,Q分别从点A和点B同时出发,其中点P以1厘米/秒的速度沿AC向终点C运动;点Q以1.25厘米/秒的速度沿BC向终点C运动.过点P作PE∥BC交AD于点E,连接EQ.设动点运动时间为t秒(t>0). (1)连接DP,经过1秒后,四边形EQDP能够成为平行四边形吗?请说明理由; (2)连接PQ,在运动过程中,不论t取何值时,总有线段PQ与线段AB平行.为什么? (3)当t为何值时,△EDQ为直角三角形.

代数几何综合题含答案

,即t DH=﹣﹣( ,∴,即

,∴t= ,即BM= t=t (t ,∴,即CN=t t=10t t t t t t 化简得:t t= t=. t=秒或t=秒时, °, DE= ,

< DFE=,∴∠ == MN ,即MN= BD﹣ (x ﹣

NF= MN MN+x=MN MN= AB BF ×x <=(=﹣ y= y=﹣、

争分夺秒 分秒必争 我的人生 我做主 只要认真做事 一切皆有可能 东升求实学校2015 分析:(1)令y=0,解方程x 2 ﹣x ﹣3=0可得到A 点和D 点坐标;令x=0,求出y=﹣3,可确定C 点坐标; (2)根据抛物线的对称性,可知在在x 轴下方对称轴右侧也存在这样的一个点;再根据三角形的等面积法,在x 轴上方,存在两个点,这两个点分别到x 轴的距离等于点C 到x 轴的距离; (3)根据梯形定义确定点P ,如图所示:①若BC ∥AP 1,确定梯形ABCP 1.此时P 1与D 点重合,即可求得点P 1的坐标;②若AB ∥CP 2,确定梯形ABCP 2.先求出直线CP 2的解析式,再联立抛物线与直线解析式求出点P 2的坐标. 解:(1)∵y=x 2 ﹣x ﹣3,∴当y=0时,x 2 ﹣x ﹣3=0, 解得x 1=﹣2,x 2=4.当x=0,y=﹣3. ∴A 点坐标为(4,0),D 点坐标为(﹣2,0),C 点坐标为(0,﹣3); (2)∵y=x 2 ﹣x ﹣3,∴对称轴为直线x= =1. ∵AD 在x 轴上,点M 在抛物线上, ∴当△MAD 的面积与△CAD 的面积相等时,分两种情况: ①点M 在x 轴下方时,根据抛物线的对称性,可知点M 与点C 关于直线x=1对称, ∵C 点坐标为(0,﹣3),∴M 点坐标为(2,﹣3); ②点M 在x 轴上方时,根据三角形的等面积法,可知M 点到x 轴的距离等于点C 到x 轴的距离3.当y=4时,x 2 ﹣x ﹣3=3,解得x 1=1+,x 2=1﹣ , ∴M 点坐标为(1+,3)或(1﹣,3). 综上所述,所求M 点坐标为(2,﹣3)或(1+ ,3)或(1﹣ ,3); (3)结论:存在. 如图所示,在抛物线上有两个点P 满足题意: ①若BC ∥AP 1,此时梯形为ABCP 1. 由点C 关于抛物线对称轴的对称点为B ,可知BC ∥x 轴,则P 1与D 点重合, ∴P 1(﹣2,0).∵P 1A=6,BC=2,∴P 1A ≠BC ,∴四边形ABCP 1为梯形; ②若AB ∥CP 2,此时梯形为ABCP 2. ∵A 点坐标为(4,0),B 点坐标为(2,﹣3),∴直线AB 的解析式为y=x ﹣6, ∴可设直线CP 2的解析式为y=x+n ,将C 点坐标(0,﹣3)代入,得b=﹣3, ∴直线CP 2的解析式为y=x ﹣3.∵点P 2在抛物线y=x 2 ﹣x ﹣3上, ∴x 2 ﹣x ﹣3=x ﹣3,化简得:x 2 ﹣6x=0,解得x 1=0(舍去),x 2=6, ∴点P 2横坐标为6,代入直线CP 2解析式求得纵坐标为6,∴P 2(6,6). ∵AB ∥CP 2,AB ≠CP 2,∴四边形ABCP 2为梯形. 综上所述,在抛物线上存在一点P ,使得以点A 、B 、C 、P 四点为顶点所构成的四边形为梯形;点P 的坐标为(﹣2,0)或(6,6).

相关文档
相关文档 最新文档