文档视界 最新最全的文档下载
当前位置:文档视界 › 海上油气开采工程与生产系统

海上油气开采工程与生产系统

海上油气开采工程与生产系统
海上油气开采工程与生产系统

海上油气开采工程与生产系统

中海工业XX

第一章海上油气开采工程概述

海底油气资源的存在是海洋石油工业得以发展的前提。海洋石油资源量约占全球石油资源总量的34%,全球海洋石油蕴藏量约1000多亿吨,其中已探明的储量约为380亿吨。世界对海上石油寄予厚望,目前全球已有100多个国家在进行海上石油勘探,其中对深海进行勘探的有50多个国家。

一、海上油气开采历史进程、现状和将来

一个多世纪以来,世界海洋油气开发经历如下几个阶段:

早期阶段:1887年~1947年。1887年在墨西哥湾架起了第一个木质采油井架,揭开了人类开发海洋石油的序幕。到1947年的60年间,全世界只有少数几个滩海油田,大多是结构简单的木质平台,技术落后和成本高昂困扰着海洋石油的开发。

起步阶段:1947年~1973年。1947年是海洋石油开发的划时代开端,美国在墨西哥湾成功地建造了世界上第一个钢制固定平台。此后钢平台很快就取代了木结构平台,并在钻井设备上取得突破性进展。到20世纪70年代初,海上石油开采已遍及世界各大洋。

发展阶段:1973年~至今。1973年全球石油价格猛涨,进一步推进了海洋石油开发的历史进程,特别是为了应对恶劣环境的XX和深水油气开发的需要,人们不断采用更先进的海工技术,建造能够抵御更大风浪并适用于深水的海洋平台,如X力腿平台(TLP)、浮式圆柱型平台(SPAR)等。海洋石油开发从此进入大规模开发阶段,近20年中,海洋原油产量的比重在世界总产油量中增加了1倍。进军深海是近年来世界海洋石油开发的主要技术趋势之一。

二、海上油气开采流程

海上油气田开采可划分为勘探评价、前期研究、工程建设、油气生产和设施弃置五个阶段:

勘探评价阶段:在第一口探井有油气发现后,油气田就进入勘探评价阶段,这时开发方面的人员就开始了解该油气田情况,开展预可行性研究,将今后开发所需要的资料要求,包括销售对油气样品的要求,提交勘探人员。

前期研究阶段:一般情况,在勘探部门提交储量报告后,才进人前期研究阶段。前期研究阶段主要完成预可行性研究、可行性研究和总体开发方案(ODP)。前期研究阶段也将决定油气田开发基础,方案的优化是最能提高油气田经济效益的手段。因此,在可行性研究和总体开发方案( ODP )上都要组织专家进行审查,并得到石油公司高级管理层的批准。

工程建设阶段:在工程建设阶段,油藏、钻完井和海洋工程方面的主要工作是成立各自的项目组,建立有效的组织结构和管理体系,组织基本设计编写并实施,对工程质量、进度、费用、安全进行全过程的管理和控制,使之达到方案的要求。

油藏项目组主要进行随钻分析和井位、井数等方面调整;钻完井项目组密切与油藏项目组配合进行钻井、完井方案的实施;海洋工程项目组负海上生产设施的建造;生产方面的人员也会提前介入,并进行投产方面的准备。

生产阶段:生产阶段在油气田开发过程中延续的时间最长,从油气田投产开始,直至油气井废弃为止。该阶段由于平台到处有油、气的存在,操作人员除进行正常的设施操作和维护外还需要经常配合钻完井方面人员进行钻井、完井、修井等方面的作业,有时还要配合地面工程设施的改造,因此,安全工作尤为重要。

弃置阶段:海上油气生产设施的退役和拆除是海上油气田开发的组成部分和最后一个工作环节。设施废弃处置,不仅涉及拆除技术、费用,而且涉及海洋环境的保护。油气田设施弃置不仅要遵守国内有关法律、法规,而且需要履行国际公约所承担的义务。

三、海上油气开采工程系统构成

海洋石油工程建设的目的是为油气田生产提供必要的生产设施,主要有海上生产设施、油气储运设施及陆地终端三个部分。

1.海上生产设施

海上生产设施是指建立在海上的建筑物。由于海上设施是用于海底油气开采工作,加XX洋水深及海况的差异、油气藏类型和储量的不同、开采年限不一,因此海上生产平台类型众多。基本上可分为海上固定式生产设施(导管架式平台、重力式平台和人工岛以及顺应塔型平台)、浮式生产设施(潜式平台、TLP、SPAR及FPSO 等)、水下生产设施等三大类。

2.油气储运设施

海上油田原油的储存和运输,基本上有两种:储油设施安装在海上,采用运输油轮将原油直接运往用户;或利用安装海底输油管道将原油从海上输送到岸上的中转储油库,然后再用其他运输方式运往用户。

海上气田的气一般采用海底长输管线进行外输到岸上终端,然后再用其他运输方式运往用户。

3.陆地终端

陆上终端是建造在陆地上,通过海底管线接收和处理海上油气田或油气田群开采出来的油、气、水或其混合物的油气初加工厂,是海上终端的延伸。它一般设有原油或轻油脱水与稳定、天然气脱水、轻烃回收和污水处理以及原油、轻油、液化石油气储运等生产设施,并有供热、供排水、供变电、通讯等配套的辅助设施与生活设施。因此它具有大规模集中处理和储存油气,几乎不受气候影响的优点。

第二章海上油气生产系统

海上油气田开发具有高投入、高风险、高科技、高收益等特点,选择合适的生产设施和生产技术是减少海上油气生产投入的关键。为此,世界各大石油公司研制开发了适合不同海域、不同海况和不同产量的海上生产系统。本章主要就海上油气生产系

统的模式、平台型式、上部组块、水下生产系统和油气输送系统进行阐述,对海上油气生产系统的总体概况进行介绍。

第一节开发模式

要进行海上油气的开发,必须有井口系统、生产、辅助系统,还必须有钻井、安全和生活方面的系统,如何合理布置这些系统就要根据油气田的特性、规模、地理位置和海洋环境的具体情况而定,一般布置可分为全海式和半海半陆式两大类。

一、全海式海上油气田开发生产模式

全海式就是将开采和生产处理的全过程都在海上完成,经处理的合格原油由海上用穿梭油轮外输或管道外输。固定式生产设施、浮式生产设施和水下生产设施的不同组合形成了海上油气田全海式生产模式。国内全海式油气田的几种组合形式:

1.井口平台+中心处理平台+储油平台及输油码头(渤海的第一个海上油田-埕北油田)

2.井口平台+浮式生产储油轮(FPSO),由海底管线和电缆相连(涠州10-3,绥中36-1,XX油田群等油田)

3.水下井口+浮式生产系统由海底管线相连(如南海流花11-1油田,陆丰22-1油田)

4.自升式平台+漂浮软管+两点系泊的FSO

二、半海半陆式海上油气田的开发生产模式

半海半陆模式由海上生产设施、陆上处理设施(陆上终端)和连接它们的海底管线组成。在海上平台(井口平台、中心处理平台)上,将井流物在平台上计量并作简单处理后,用海底管线将油气集中输送到陆上终端做进一步的处理。陆上终端对原油进行处理、储存和外输。天然气和伴生气分离成为干气和其他深加工原料(如液化气和轻油),再经管线或汽、火车向外运输(如XX20-2油气田)。

采取此形式开采的油气田一般距海岸较近,尤其是气田的开发及在具有较多的伴生气可以利用时。由于气体的净化、分离等设施较复杂,占地面积多,且危险性也比较大,在海上建气体处理平台造价远高于海管的铺设和在陆上建处理厂,所以从经济和安全的考虑,半海半陆式是最合适的模式。

第二节主要平台形式

海洋平台主要是用于海洋石油勘探、开发,由于海洋水深和其他海况相差悬殊,

因此海洋平台也设计成很多种,以更好的适应具体环境。依据其结构形式的不同,将其分为:导管架平台、重力式平台、顺应塔式平台、自升式平台、半潜式平台、X力腿平台、浮式柱状海洋平台(以下称为SPAR)以及FPSO等八种,如上图所示。

一、导管架平台

导管架平台是通过打桩的方法将钢质导管架式平台固定于海底的一种固定式平台。导管架平台是最早使用的,也是目前技术最成熟的一种海上平台。迄今为止世界上建成的大、中型导管架式海洋平台已超过2000座。

导管架平台主要由三部分组成:上部模块、导管架和桩基础。

导管架平台的技术特点:

1)导管架平台主要由杆件组成。各杆件相交处形成了杆结点结构,由于结点的几何形状复杂并受焊接影响,故其应力集中系数很高,容易发生各种形式的破坏。对杆节点的校核是导管架分析的重要环节,API等规X对管节点的设计都有明确要求。

2)导管架是刚性结构,是靠自身的结构刚性来抵制外部载荷的,一般要求导管架不能随着波浪的冲击而大幅摆动。所以当水深越深时,要达到结构要求的刚性,必须增加材料,以致成本会成几何级数增长。所以,导管架结构不适合在较深的海域。

3)随着工程技术水平的发展,导管架形式越来越多。

4)导管架平台的分析计算一般包括就位、装船、运输、吊装、地震、疲劳等,需根据这一系列工况的分析和计算,最终确定结构形式及构件尺寸。

5)导管架的形式很大程度上取决于当地的运输及海上安装能力及设备。如海上吊装能力足够大,则导管架设计成吊装下水形式;如吊装能力不够,则导管架必须设计成滑移下水形式,需要专用的带滑道的下水驳船。

导管架平台的优点:1)技术成熟、可靠;2)在浅海和中深海区使用较为经济,尤其在浅海的边际油田,导管架平台有较强的成本优势;3)海上作业平稳、安全。

导管架平台的缺点:1)随着水深的增加,导管架平台的造价成指数级增长,所以不能继续向深水发展,一般适用于水深200米以内的油气田;2)海上安装工作量大,制造和安装周期长;3)当油田预测产量发生变化时,对油田开发方案调整的灵活性较差。

二、半潜式平台

半潜式生产平台是用于深海钻井及采油的一种平台型式,最初由半潜式钻井平台改造而成,由于其非常适合深水开发,现在的半潜式生产平台一般为新建平台,主要集中在墨西哥湾、XX和巴西海域,最深水深将达到2414米。半潜式平台一般选择适用的水下生产系统,并利用FPSO觧决原油的贮运问题。

除常规的动力系统和公用系统外,半潜式生产平台包括:船体和甲板系统、锚泊定位系统、生产系统和立管等,综合生产平台可能还有钻完井系统。

三、X力腿平台

X力腿平台是一种垂直系泊的顺应式平台。1954年,美国的R.O.Marsh率先提出了采用倾斜系泊索群固定的X力腿平台方案。1984年,Conoco公司在XX148米水深的Hutton油田安装了世界上第一座X力腿平台。在此后20多年中,X力腿平台得

到飞速发展,在建和在役的X力腿平台共有23座,大部分在墨西哥湾,最深工作水深达1425米。

X力腿平台通常简称TLP,它由上部设施、甲板、柱型船体、浮筒、X力腿构成,船体通过由钢管组成的X力腿与固定于海底的锚桩相连。船体的浮力使得X力腿始终处于X紧状态,从而使平台保持垂直方向的稳定。

根据X力腿平台结构形式进化的阶段,大致可以将它们分为第一代X力腿平台和第二代X力腿平台。

第一代X力腿平台又称为传统类型的X力腿平台,这种平台一般由4~6根立柱和连接立柱的浮筒组成。X力腿与立柱的数量关系一般是一一对应的,每条X力腿由2至4根X力筋腱组成,上端固定在平台本体上,下端与海底基座模板相连,或是直接接连在桩基顶端。

第二代X力腿平台出现于20世纪90年代初期,它在保持了传统类型X力腿平台优良的稳定性和良好的经济效益同时,同时又降低了建造成本,使X力腿平台更适合于深海环境。可分为三大系列:

-Atlantia公司的SeaStar系列单柱式X力腿平台;

-MODEC公司的Moses系列X力腿平台;

-ABB公司的延伸式X力腿平台(ETLP)。

虽然X力腿平台种类、形式繁多,但总体上仍可将其按结构分成五部分:平台上部结构、立柱(含横撑、斜撑)、浮体(含沉箱)、X力腿、锚固基础。平台上部结构是指TLP底甲板以上的部分,其上设有生产、生活设备和设施。

X力腿平台的系泊方式一般采用垂直系泊的X力腿系统。X力腿系泊系统不仅控制着平台与井口的相对位置,还对其安全性起着决定性的作用。

X力腿平台的系泊系统主要由两部分组成:

-X力腿(Tendon):X力腿一般是由空心钢管构成,直径从610毫米到1100毫米不等,厚度在20毫米到35毫米。

-锚固基础(Anchor foundation):锚固基础是X力腿平台的另一个重要部分,起着固定平台、精确定位的作用。其类型主要有打入桩基础、重

力式基础、吸力锚基础等三种形式。其中打入桩基础是目前使用最广泛

最具可靠性的基础形式。

X力腿平台的优点:1)可采用干式采油树,钻井、完井、修井等作业和井口操作简单,且便于维修;2)就位状态稳定,浮体几乎没有升沉、横摇和纵摇运动;3)完全在水面以上作业,采油操作费用低;4)简化了钢制悬链式立管的连接,可同时采用X紧式立管和刚性悬链立管;5)技术成熟,可应用于大型和小型油气田,水深从几百米到二千米左右。

X力腿平台的缺点:1)无储油功能,需海底管线或FPSO配套;2)对上部结构的重量非常敏感。载重的增加需要排水量增加,因此又会增加X力腿的预X力和尺寸;3)整个系统刚度较强,对高频波动力比较敏感;4)由于X力腿长度与水深成线性关系,而X力腿费用较高,水深一般限制在2000米内。

四、SPAR平台

1987年,Edward E Horton首先提出一种专门用于深海钻井和采油的浮式圆柱形R平台(SPAR)并获得专利。1996年,第一座SPAR深海采油平台建成投产,工作水深588米,取得了良好的经济效益。目前,全世界共有13座SPAR平台,继X力腿平台之后,SPAR已经成为当今世界上深海油气开采的第二大主力平台类型。目前世界上最深的SPAR平台是位于墨西哥湾的Devils Truss SPAR平台,水深1710米,它是桁架式单柱平台。其发展的时间顺序,SPAR平台可分为四代,分别是传统SPAR (Classic SPAR)、桁架式SPAR(Truss SPAR)、蜂巢式SPAR(Cell SPAR)以及属于第四代的最新设计的湿式采油树式SPAR(Wet tree SPAR)。

SPAR平台主要由浮体、上部组块和系泊系统组成,浮在水面的浮体支撑上部甲板结构,并通过具有X力的系泊系统固定在海底。这种平台的上部甲板由一根或多根的圆筒形柱体结构支撑,柱体下方用垂直的或斜向X力索系泊定位,具有很好的稳定性。并通过底部压载使浮心高于平台重心,形成不倒翁的浮体性能。浮体也称主体,是SPAR平台的重要组成部分。

传统式SPAR(Classic SPAR)平台,其主体为封闭式单柱圆筒结构,主体长度一般在200米以上,直径在20米以上。主体主要由三个舱组成,从上向下依次为:硬舱、中段、软舱。

桁架式SPAR平台:上部浮力系统和下部压载系统与传统式相似。中段为开放式的框架结构,采用垂荡板,分为数层。桁架部分是一个类似于导管架结构的空间钢架, 比传统SPAR 平台的中段结构, 可以节省大约50% 的钢材,同时也减少了水流阻力。

蜂巢式SPAR平台(又称多柱式SPAR):主体结构是由几个直径较小的筒体(约6~7米)组成,形成一个大浮筒支撑上部结构,再由很多在它们空隙间的水平的和垂直的结构单元将整个结构连接起来。

湿式采油树SPAR平台:与桁架式SPAR平台不同,采用湿式采油树,可以适应更恶劣的海洋环境,目前这种SPAR仍然在研究和设计过程中。

SPAR平台的系泊系统,其作用是把平台锚泊在海底的桩基础上,使平台在环境力作用下的运动控制在允许X围内,SPAR的系泊缆是在一定的预X力作用下形成了一种半X紧半松弛的状态,因此能够在其自身重力作用下自然悬垂形成悬链线形,下桩点在水平距离上远离平台主体,由多条系泊索构成的缆索系统覆盖了很宽阔的区域。平台的定位力主要由各条系泊缆索的位能和平台主体的惯性力来提供。

SPAR平台的优点:1)具有可迁移性;2)对上部重量不敏感;通常主体结构的增加会导致主体部分的增加。但对锚固系统的影响不敏感;3)可同时采用X紧式立管和刚性悬链式立管;4)升沉运动和X力腿式平台比较要大的多,但和半潜式平台比较仍然很小。5)与TLP平台相比在更深水域开发投资费用低;6)由于其浮心高于重心,因此能保证无条件稳定;7)立管等钻井设备能装置在SPAR内部,从而得到有效的保护;8)机动性较大。通过调节系泊系统可在一定X围内移动进行钻井,重新定位比较容易9)可支持水上干式采油树,直接进行井口作业,便于维修。

SPAR平台的缺点:1)顶端X紧立管(TTR)和支撑以及筒体底部的立管容易产

全球海洋油气勘探开发前景大揭底

全球海洋油气勘探开发前景大揭底 发布时间:2011-11-14信息来源: 海洋石油资源量约占全球石油资源总量的34%,世界对海上石油寄予厚望。由于浅水油气产量的下降、勘探开发技术的进步及深水油气田平均储量规模巨大,吸引着许多油公司都竞相涉足深海豪赌,展示了世界海洋石油工业良好的发展前景。2030年99.72亿吨油当量的油气需求要得以满足,再加上陆上石油资源危机问题日渐突出,因此急需寻找储量的接替区域。而未来石油界的希望应该在海上。而且对于石油公司来说,海上油气的基础设施不易遭到恐怖袭击的破坏,这点使海上油气的勘探开发更有吸引力。研究世界海洋石油工业的现状特别是发展趋势,无论对于整个世界石油工业,还是对于未来世界经济的发展,都有非常重要的意义。 世界海洋石油资源量占全球石油资源总量的34%,全球海洋石油蕴藏量约1000多亿吨,其中已探明的储量约为380亿吨。目前全球已有100多个国家在进行海上石油勘探,其中对深海进行勘探的有50多个国家。 2003年世界海洋石油生产量达12.57亿吨,约占世界石油总生产量的34.1%;2003年世界海洋天然气生产量达6856亿立方米,占世界天然气总生产量约25.8%.1992年世界海洋石油生产量所占份额为26.5%,2002年提高到34%.1992年世界海洋天然气生产量所占份额为18.9%,2002年提高到近25.4%.2003年,世界海洋石油生产量比上年增长3.7%,稍高于世界石油生产量3.5%的增长率。1992-2002年世界石油生产量年均增长率为1.1%.在3.7%的增长速度下,世界海洋石油产量的增长速度是世界石油生产总量增速的3倍多,预计今后几年海洋石油生产仍将以更高的速率增长。2003年,海洋石油生产增速最快的地区依次是:中东11%、北美和中美7.3%、南美 深海石油的勘探开发是石油工业的一个重要的前沿阵地,是风险极高的产业。虽然国际上诸如北海、墨西哥湾、巴西以及西非等地深海石油开发已经有了极大的发展,但代价是极高的。与大陆架和陆上勘探钻井作业相比,深水作业的施工风险高、技术要求高、成本非常昂贵,因而资金风险也极高。 世界海洋油气产量将从2004年的3900万桶油当量/天增加到2015年的5500万桶油当量/日。2004年海洋油气产量分别占全球总产量的34%和28%,到2015年将分别达到39%和34%.而且该报告指出,世界海上石油产量从1960年开始,一直在稳步上升,大约在2010年左右将达到一个峰值。从各大区域来看,北美海上石油产量仍将有小幅度的增加,而西欧海上石油产量自2000年达到峰值后,将一直保持下降的势头。到2015年,非洲、中东和拉丁美洲将占世界海洋石油产量的50%以上。

国内外海洋石油开发现状与发展趋势

一、海洋石油开发现状 世界石油开发已有200 多年的历史,但直到19 世纪61 年代末期,才真正进入近代石油工业时代。1869 年是近代石油工业纪元年,从此,世界石油产量开始迅速增长。尽管在19 世纪末,美国已在西海岸水中打井,开始了海洋石抽生产,但真正成为现代化海洋石油工业,还是在第二次世界大战以后。海洋石袖是以1947 年美国成功地制造出第一座钢质平台为标志,逐步进人现代化生产。 1990-1995 年期间全世界除美国外有718 个海上新拙气田进行开发。最活跃的地区在欧洲,有265个油气田进行开发,其配是亚洲,有l88个,非洲102 个,拉丁美洲94 个,澳大利亚41 个,中东21 个。 1990 -1995 年期间开发的海上新油气目中,储量、天然气田生产能力、油田生产能力排在~ 前 5 位的国家如下图所示。在此期间,全世界18个国家开发的海上油气田数见表 发展最快的是北美,从1989 年的410 口上升到1993 年的500口。全世界有242 个海上油气田投入生产,其中油田139个,气田103个。从分布上看,西北欧居第一位,共投产67个油、气田,其中油田40个,气田27个。在此期间全球海洋石油总投资额为3379亿美元。 1990-1995年期间,全世界(不含美国)共安装了7113座平台,其中有83座不采用常规固定式平台,而采用半潜式、张力腿式和可移式生产平台。巴西建造了300~1400m深的采油平台,挪威建造的张力腿平台水深达350m,中国南海陆丰22I生产储

油船和浮式生产系统工作水深约为355m。有41个国家大约安装370多座水深不超过60m的浅水采油平台。 总之,世界平台市场需求量增加,利用率在提高。 二、海洋石油开发技术与发展趋势 石油是重要战略物资各国都很重视。21世纪,石油和天然气仍将是世界主要能源。世界油气资源潜力还相当大,有待发展先进技术,进一步加强勘探和开发,以提高发现成功率和采收率,降低勘探开发成本。 海洋石油的开发已为全世界所瞩目,世界海洋石油的日产量也在逐年增长。随着陆上石油逐渐枯竭,海上油气的开采将会越来越重要。同时,由于开采技术的不断提高,海洋石油的开发也将不断向南、深、难的方向发展,其总的趋势如下。 (一)石油地质勘探技术 今后的世界石油勘探业将是希望与困难井存。一方面,还有许多远景盆地有待勘探,成熟盆地还有很大的勘探潜力。油气新远景区可能是深海水域、深地层和北极盆地。另一方面,20世纪四年代的油气勘探己向广度和深度发展。世界范围内寻找新油气田,增加油气勘探储量,提高最终采收率的难度越来越大,油气田勘探开发成本直线上升。石油地质工作者将面临降低勘探成本、提高探井成功率,增加探明储量的挑战。在这种严峻的形势下,今后的石油地质科技将向三个方面发展. ①加强盆地数字模拟技术的研究,以深入解剖盆地,揭示油气分布规律, ②加强综合勘探技术的研究,以提高探井成功率,降低勘探成本; ③加强开发地质研究,探明石油储量,帮助油藏工程师优化石油开采,最大限度地提高采收率。 (二)地质勘探技术 海上地震勘探技术的发展趋势是:海上数据采集将越来越多地采用多缆、多震源及多船的作业方式,这样可大大提高效率,降低费用,研究和应用适于海上各种开发区的观测方法,实现海上真三维地震数据来集;研究大容量空气枪减少复杂的气枪组合;开发海上可控震源;不断增大计算机容量,提高三维处理技术,计算机辅助解释系统的发展将进一步满足人机交互解释的需要,并向小型、多功能、综合解释方向发展。对未来交互解释站计算机能力的期望是100 MB的随机存取存储器;2000万条指令∕s,高分辨率荧光屏,软件可移植性。新一代交互解释站将具有交互处理能力,具备叠前、叠后、反演、模拟等处理功能,能作地质、测井、VSP横波资料的综合分析和解释,将物理的定量分析和地质信息结合起来,进行地层和岩性解释。 (三)钻井工艺技术 钻井在油气勘探、开发中占有重要的地位。钻井技术水平不仅直接影响勘探的效果和油气的产量,而且由于钻井成本占勘探开发成本的大部分,因此,它直接关系到油田勘探开发所需要的投资额。基于这一点,提高钻井技本水平和钻井效率、降低钻井戚本对油气田勘报开发具再重要意义。 过去的10年是钻井技术发展的10年,钻井技术的各个领域都取得了明显的进步。随钻测量系统可以把井眼位置、钻井妻数和地层参数及时传送到地面,从而能够实时了解井下情况和监测钻进过程,随锚测量还大大提高了钻井的安全性相钻井效率,地面数据采集与处理计算机系统和计算机信息网络,提高了钻井过程的实时控制和预测能力,实现钻井过程的系统优化、连续控制井眼轨迹技术提高了定向钻井水平;基础研究的加强,促进了钻头设计、钻头性能预测等方面的改善;聚晶金刚石钻头的发展和新型的聚晶金刚石钻头的出现,不仅显著提高了钻头机械钻速,而且成功地解决了非均质破裂研磨性地层的经济钻进问题;优质泥浆和固控技术解决了复杂地层的钻井问题,提高了钻

石油开采过程的主要危险及控制措施完整版

编号:TQC/K774 石油开采过程的主要危险及控制措施完整版 Through the proposed methods and Countermeasures to deal with, common types such as planning scheme, design scheme, construction scheme, the essence is to build accessible bridge between people and products, realize matching problems, correct problems. 【适用制定规则/统一目标/规范行为/增强沟通等场景】 编写:________________________ 审核:________________________ 时间:________________________ 部门:________________________

石油开采过程的主要危险及控制措 施完整版 下载说明:本解决方案资料适合用于解决各类问题场景,通过提出的方法与对策来应付,常见种类如计划方案、设计方案、施工方案、技术措施,本质是人和产品之间建立可触达的桥梁,实现匹配问题,修正问题,预防未来出现同类问题。可直接应用日常文档制作,也可以根据实际需要对其进行修改。 采油是高风险性的作业,采油生产的全过程中,针对原油和天然气易燃易爆、有毒有害的特点,应该采取相应的安全技术措施,主要应该注意采取“八防”——防火、防爆、防触电、防中毒、防高空坠落、防冻堵、防机械伤害、防物体打击。并对采油全过程进行危险因素排查,制定风险消减措施。 (一)自喷采油 自喷采油是指依靠油层本身所具有的

油气开发大数据管理关键技术与体系结构研究

53 1 引言 在石油天然气领域,从寻找油气到油气开发的整个过程中,都涉及海量数据的采集、存储及处理。例如从二维发展到三维甚至四维的地震勘探数据[1]、实时监控传感器流数据等。这些快速、大量的数据集对分析处理的计算模型、方法、平台提出了非常高的要求,而且由于缺乏有效统一的集成处理平台,规模性、实时性的需求难以统一在一个框架下得以实现。 油气工业上游和中游部分所涉及的这些数据典型的具有大数据的4V特性[2],即规模性(Volume)、多样性(Variety)、高速性(Velocity)、价值性(Value)。因此利用大数据相关技术解决上述问题成为一种思路,并受到越来越多的关注。本文结合油气勘探开发领域数据集的特点,研究了油气开发大数据管理技术及其关键问题, 提出了一种部署大数据应用的石油集团企业私有云的框架结构。 2 油气开发大数据管理技术概述 经过多年的信息化建设,油气开发领域的结构化数据不论在模型构建、优化存储、还是处理显示等方面都已臻于完善,但是对于地震解释图像、综合月、年报、高速传感器流等非结构化的图形、文档、大块数据等,仍然以一种近乎无序的状态存储,没能充分发挥其效力。 结合大数据的处理模式[3],我们将这些数据划分为静态和动态两类。实时传感器数据作为动态数据,可基于大数据的流处理模式进行处理。流处理通常采用在内存的处理方式,并不进行永久化的存储,典型的处理框架有Twitter的Storm 1和Yahoo!的S4[4]等。随着数字油田、智能油田建设的逐步推进,高速、实时的传感器数据流已成为当前油田企业主要面对的数据,将流处理模式应用于油田企业日益增长的传感器数据流,进行实时的预测性分析成为当前广为关注的一项研究内容。 相对于高速的传感器数据,地震野外采集数据、叠后数据、大量的地震解释图像等可以看作静态数据。它们主要关注的是巨大规模数据集上的并行处理能力、迭代计算能力以及大规模中间结果的存储能力等,可基于批处理模式进行处理。Apache推出的MapReduce 开源实现系统Hadoop [5]推动着MapReduce的应用,使其俨然已成为大数据分析与处理方面事实上的标准。将MapReduce用于油气开发静态大数据处理具有以下一些优势。①高度的并行性。这种并行处理能力是需要耗费大量CPU资源的地震数据处理过程所需的。②简单的并行编程机制。便于地震数据处理算法的MapReduce移植与并行化改进;③硬件要求低,且具有灵活的扩展能力。使得地震数据处理过程前移向采集现场成为可能。这些优势推动着地震勘探数据处理与解释过程的MapReduce移植与并行化研究的发展。 3 油气开发大数据管理的关键问题 尽管优势明显,但是面向油气开发领域的特定需求,大数据的分析与处理仍存在以下一些关键问题需要解决。 ①算法的移植与并行实现。当前油田企业对大数据的处理方法中,地震勘探数据被部署在高性能的并行计算平台上,基于专门的平台、特定的算法进行运算处理,成本高昂且移植困难;开发生产过程中的传感器数据能高速传回监控系统,但因缺乏有效的聚合、压缩、清洗等预处理算法及其实现,无法有效支持数据挖掘、分析等任务。因此,如何将地震采集数据的处理与解释过程移植到 油气开发大数据管理关键技术与体系结构研究 李润洲 (西安石油大学计算机学院 陕西西安 710065) 摘要:将大数据技术引入油气勘探开发领域,需要考虑的内容应包括:①构建适用于油气产业、能够集成/迁移现有系统、且便于部署大数据应用的基础设施;②选择能集成解决油气领域相对静态的巨大规模数据集与传感器实时数据的不同处理需求的大数据分析与处理框架。③开发部署或迁移当前应用到大数据平台。本文分析了当前的油气开发大数据管理技术及其关键问题,基于将实时处理应用和批处理应用统一在一个框架下的思路,提出了一种石油集团企业私有云体系结构。 关键词:大数据 流处理 批处理 云计算中图分类号:TP317 文献标识码: A 文章编号: 1007-9416(2014)10-0053-02 收稿日期:2014-10-12 作者简介:李润洲(1972 —),女,陕西靖边人,西安石油大学计算机学院,硕士,研究方向:计算机网络,管理信息系统。

深水油气勘探开发技术发展现状与趋势

深水油气勘探开发技术发展现状与趋势2015-04-01 10:06:00 0 深水勘探开发技术吕建中 文|吕建中等 中国石油集团经济技术研究院

目前,全球深水投资占海上总投资的1/3,深水项目占到全球海上项目的1/4。在全球排名前50的超大项目中,3/4是深水项目。近5年来,全球重大油气发现中70%来自水深超过1000m的水域。当前,深水油气产量大约占海上油气总产量的30%。深水,必然对现今以及未来的油气发展有着重要的意义。 1 深水油气勘探开发前景广阔 近年来全球新增的油气发现量主要来自于海上,尤其是深水和超深水。来自深水的发现数虽然不多,但发现量却十分巨大,同时表现出水深越深、发现量越大的趋势:2012年,全球超1500m水深的总发现量接近16.3亿吨油当量(120亿桶),相当于陆上的6倍,接近浅水的3倍。2011年全球排名前十的油气发现中,6个来自深水,且全部都是亿吨级油气发现。2012年全球排名前十的油气发现全部来自深水,其中的7个为亿吨级重大油气发现(下表)。

深水产量逐年增加,至2013年全球深水油气产量已超过5亿吨油当量,占全球海上油气产量的20%以上,并且这个比例还将逐年上升。 过去几年的高油价,为海洋项目开启了较大的赢利空间。据PFC统计,深水盈亏平衡点为397美元/t(54美元/桶),一般的收益率都在15%以上,高的甚至可以达到28%,因此吸引了越来越多的公司参与其中。埃克森美孚等5家国际大石油公司的勘探开发重点正在由陆上向海上转移,并且加快进军深水,海洋勘探开发投资占总投资的比例已经达到60%~85%,海洋产量占比均超过50%,其中的深水勘探开发投资已经占到海洋总投资的50%以上。 国际大石油公司在深水领域获得了丰厚的产量,BP公司的深水油气年产量已接近5000万吨油当量;道达尔的深水油气年产量已超过3500万吨油当量;而巴西国油和挪威国油则依靠深水在10~13年的时间里新增产量5000万t。可以说,深水在未来油气产量增长中占有举足轻重的地位,是石油公司的必争之地。 我国的深水油气资源也十分丰富。在我国南海海域,整个盆地群石油地质资源量在230亿至300亿t之间,天然气总地质资源量约为16万亿m3,占中国油气总资源量的1/3,其中70%蕴藏于153.7万km2的深水区域。伴随着我国“建设海洋强国、提高海洋资源开发能力”战略的部署,未来我国的深水油气勘探开发前景广阔。 2 深水油气勘探开发面临的五大技术挑战

石油勘探开发全流程(经典再现珍藏版)

石油勘探开发全流程(经典再现、珍藏版)油气田勘探开发的主要流程:地质勘察—物探—钻井—录井—测井—固井—完井—射孔—采油—修井—增采—运输—加工等。这些环节,一环紧扣一环,相互依存,密不可分,作为专业石油人,我们有必要对石油勘探开发的流程有一个全局的了解! 一.地质勘探地质勘探就是石油勘探人员运用地质知识,携带罗盘、铁锤等简单工具,在野外通过直接观察和研究出露在地面的底层、岩石,了解沉积地层和构造特征。收集所有地质资料,以便查明油气生成和聚集的有利地带和分布规律,以达到找到油气田的目的。但因大部分地表都被近代沉积所覆盖,这使地质勘探受到了很大的限制。地质勘探的过程是必不可少的,它极大地缩小了接下来物探所要开展工作的区域,节约了成本。 地面地质调查法一般分为普查、详查和细测三个步骤。普查工作主要体现在“找”上,其基本图幅叫做地质图,它为详查阶段找出有含油希望的地区和范围。详查主要体现在“选”上,它把普查有希望的地区进一步证实选出更有力的含油构造。而细测主要体现在“定”上,它把选好的构造,通过细测把含油构造具体定下来,编制出精确的构造图以供进一步钻探,其目的是为了尽快找到油气田。 二.地震勘探在地球物理勘探中,反射波法地震方法是

一种极重要的勘探方法。地震勘探是利用人工激发产生的地震波在弹性不同的地层内传播规律来勘测地下地质情况的方法。地震波在地下传播过程中,当地层岩石的弹性参数发生变化,从而引起地震波场发生变化,并发生反射、折射和透射现象,通过人工接收变化后的地震波,经数据处理、解释后即可反演出地下地质结构及岩性,达到地质勘查的目的。地震勘探方法可分为反射波法、折射波法和透射波法三大类,目前地震勘探主要以反射波法为主。 地震勘探的三个环节:第一个环节是野外采集工作。这个环节的任务是在地质工作和其他物探工作初步确定的有含油气希望的探区布置测线,人工激发地震波,并用野外地震仪把地震波传播的情况记录下来。这一阶段的成果是得到一张张记录了地面振动情况的数字式“磁带”,进行野外生产工作的组织形式是地震队。野外生产又分为试验阶段和生产阶段,主要内容是激发地震波,接收地震波。第二个环节是室内资料处理。这个环节的任务是对野外获得的原始资料进行各种加工处理工作,得出的成果是“地震剖面图”和地震波速度、频率等资料。第三个环节是地震资料的解释。这个环节的任务是运用地震波传播的理论和石油地质学的原理,综合地质、钻井的资料,对地震剖面进行深入的分析研究,说明地层的岩性和地质时代,说明地下地质构造的特点;绘制反映某些主要层位的构造图和其他的综合分析

页岩油开采方法及关键技术

特殊油气田报告页岩油的开采方法及关键技术 汇报课程特殊油气田开发 汇报项目页岩油的开采方法及关键技术 院(系)石油工程学院 班级油工11-7 小组成员郭晓俊、辛晓霖、刘爽、 周楚琪、马晓曦 汇报日期 2014.12.15 指导教师刘丽 2014 年 12 月 14 日

目录 一、页岩油简介 ...................................... - 1 - 二、页岩油的发展现状 ................................ - 3 - (一)页岩油储量 ................................. - 3 - (二)页岩油产量 ................................. - 4 - 三、页岩油开采 ...................................... - 4 - (一)传统的直接开采方法——异地开采法............ - 5 - (二)油页岩地下转化原位开采技术.................. - 6 - 1、壳牌原位转化(ICP)工艺....................... - 7 - 2、埃克森美孚电压裂工艺....................... - 11 - 3、斯伦贝谢的临界流射频技术................... - 12 - 4、钻孔采矿技术............................... - 13 - 四、页岩油的发展前景............................... - 14 - (一)页岩油相对传统原油的优势................... - 15 - (二)页岩油发展的制约因素....................... - 15 - 五、小结........................................... - 16 -

《企业会计准则第27 号——石油天然气开采》应用指南

《企业会计准则第27 号——石油天然气开采》应用指南 一、矿区的划分 矿区,是指企业进行油气开采活动所划分的区域或独立的开发单元。矿区的划分是计提油气资产折耗、进行减值测试等的基础。矿区的划分应当遵循以下原则: (一)一个油气藏可作为一个矿区; (二)若干相临且地质构造或储层条件相同或相近的油气藏可作为一个矿区; (三)一个独立集输计量系统为一个矿区; (四)一个大的油藏分为几个独立集输系统并分别进行计量的,可以分为几个矿区; (五)采用重大、新型采油技术并实行工业化推广的区域可作为一个矿区; (六)在同一地理区域内不得将分属不同国家的作业区划分在同一个矿区或矿区组内。 二、钻井勘探支出的处理采用成果法 根据本准则第十三、十四和十五条规定,对于钻井勘探支出的资本化应采用成果法,即只有发现了探明经济可采储量的钻井勘探支出才能资本化,结转为井及相关设施成本,否则计入当期损益。 根据本准则第十四条(二)规定,完井一年时仍未能确定该探井 是否发现探明经济可采储量,如需继续暂时资本化的,应已实施或已有明确计划并即将实施进一步的勘探活动。 上述规定中的“已有明确计划”,是指企业管理层已通过了该计划并已开始组织实施,如已拨付资金、已制定出明确的时间表或已将相关计划任务落实给相关部门和人员。 三、油气资产及其折耗 (一)油气资产,是指油气开采企业所拥有或控制的井及相关设施和矿区权益。油气资产属于递耗资产。

递耗资产是指通过开采、采伐、利用而逐渐耗竭,以致无法恢复或难以恢复、更新或按原样重置的自然资源,如矿藏等。 开采油气所必需的辅助设备和设施(如房屋、机器等),作为一般固定资产管理,适用《企业会计准则第4 号——固定资产》。 (二)油气资产的折耗,是指油气资产随着当期开发进展而逐渐转移到所开采产品(油气)成本的价值。本准则第六条和第二十一条规定,企业应当采用产量法或年限平均法对油气资产计提折耗。 1.产量法,又称单位产量法。该方法是以单位产量为基础对探明矿区权益的取得成本和井及相关设施成本计提折耗。采用该方法对油气资产计提折耗时,矿区权益应以探明经济可采储量为基础,井及相关设施以探明已开发经济可采储量为基础。 2.年限平均法,又称直线法。该方法将油气资产成本均衡地分摊到各会计期间。采用该方法计算的每期油气资产折耗金额相等。 本准则规定了产量法,该方法能够更准确地反映油气资产在会计期间的消耗,同时也允许采用年限平均法。企业无论采用产量法或者年限平均法,一经确定不得随意变更。 四、弃置义务的处理 本准则第二十三条规定,满足《企业会计准则第13 号——或有事项》中预计负债确认条件的弃置义务,应确认为预计负债,并相应增加井及相关设施的成本。企业确认井及相关设施的成本时,应当预计因矿区废弃所承担的现时义务。 弃置义务应当以矿区为基础进行预计,通常涉及井及相关设施的弃置、拆移、填埋、清理、恢复生态环境等所发生的支出。 五、油气资产的减值 企业的矿区权益(探明矿区权益和未探明矿区权益)、井及相关设施等油气资产如发生减值,应当区别情况进行处理: (一)探明矿区权益、井及相关设施以及暂时资本化的油气勘探支出和开发支出的减值,适用《企业会计准则第8 号——资产减值》。

油气井智能开采技术综述与发展趋势

油气井智能开采技术综述与发展趋势 刘宁(长江大学石油工程学院)王英敏(河南油田勘探开发研究院) 摘要 油田数字化是目前油气田发展的新趋势,而智能井技术是实现油田数字化的主要构成部分,是实时油藏管理的关键结构单元,通过安置在油藏平面上的传感器与控制阀,可以对油藏与油井的动态进行实时监测,分析数据,制定决策,改变完井方式,以及对设备的性能进行优化,从而提高油藏采收率,增加油井产量;减少作业中投入的劳动力,更有效地进行油气藏管理。本文叙述了智能井技术的发展历史、原理及特点,并结合实例说明了其技术优势以及国内外智能井的发展趋势。 关键词 数字油田 智能井 系统 传感器 智能完井 DOI:10 3969/j.issn.1002-641X 2010 11 009 1 简介 智能井技术是为了适应现代油藏经营管理和信息技术应用于油气藏开采而发展起来的新技术,通过生产动态的实时监测和实时控制,达到提高油藏采收率和提高油藏经营管理水平的目的[1] 。 自从1997年世界上第一套智能井系统(SCRAM S)在北海首次安装,全球智能井系统的应用迅速加快,其功能和可靠性有了显著的提高。例如,贝克休斯公司1999年推出的液压智能井系统InForce TM 已商业化;2000年下半年将其全电力智能井系统InCharg efM 推向市场;其他的智能井系统有斯伦贝谢公司的油藏监测和控制(RM C)系统、BJ 公司的系列智能井仪器和威德福公司的Simply Intellig ent TM 智能井系统[2]。 目前,各种类型的电力智能井系统、电力-液压智能井系统与光纤-液压智能井系统均已成功应用,这些技术将油藏动态实时监测与实时控制结合在一起,为提高油藏经营管理水平提供了一条崭新的途径。 2 智能井技术原理及特点 智能井这个术语一般指基本过程控制向井下的 转移,是一个实时注采管理网络,是一种利用放置在井下的永久性传感器实时采集井下压力、温度、流量等参数,通过通信线缆将采集的信号传输到地面,利用软件平台对采集的数据进行挖掘、分析和学习,同时结合油藏数值模拟技术和优化技术,形成油藏管理决策信息,并通过控制系统实时反馈到井下对油层进行生产遥控、提高油井产状的生产系统[2]。智能井系统的主要构成和用途,如图1所示 [3] 。 图1 典型智能井系统组成和用途 在油田开发过程中,智能井的主要优点是: 优化产量和储量采收率; 最大限度地降低基建费用(CAPEX)和作业费用(OPEX);!更加有效地管理油藏。 在油田开发过程中,智能井的基本用途: 控制注入井内的注入水或注入气沿井眼分布; 控制或隔断生产井内无用流体从井眼流出;!通过合采加速生产。 智能井的其他用途: 能够有效地管理油藏采油过程,特别是对二次注水或三次EOR 采油项目尤为重要; 智能井还能控制注入水或注入气在井内层间、隔层间和油藏间的分布,从而限制或隔断无用的流出物从井内不同产层产出,因此,作业者能够管理注水或采油过程,使未波及到的储量得以动用;!控制压降,确保井眼的稳定性;不同储层流体组分混合;控制自流;连接井;气举和自动气举;减少干扰或进行遥控等作用[4]。 总之,智能井技术是一种强有力的工具,它有助于处理油田开发中经常遇到的各种地下不确定因素,解决各种挑战性问题。包括:驱动机理对采收 33 刘宁等:油气井智能开采技术综述与发展趋势

海洋油气田开发审批稿

海洋油气田开发 YKK standardization office【 YKK5AB- YKK08- YKK2C- YKK18】

中国海洋油气田开发 中国海洋油气资源现状 中国近海大陆架面积130多万平方公里,目前已发现7个大型含油气沉积盆地,60多个含油、气构造,已评价证实的油、气田30个,石油资源量8亿多吨,天然气1300多亿立方米。其中,石油储量上亿吨的有绥中36—1(2亿吨),埕岛(1.4亿吨),流花11—1(1.2亿吨),崖城13—1气田储量800—1000亿立方米。按照2008年公布的第三次全国石油资源评价结果,中国海洋石油资源量为246亿吨,占全国石油资源总量的23%;海洋天然气资源量为16万亿立方米,占总量的30%。而当时中国海洋石油探明程度为12%,海洋天然气探明程度为11%,远低于世界平均水平。在上述中国海洋的油气资源中,70%又蕴藏于深海区域。 近海油气勘探开发 自2005年来,我国近海油气开采勘探进入高速高效发展时期。尽管勘探工作一度遭遇了挫折,但长期的研究和勘探实践均表明中国近海盆地仍具有丰富的油气资源潜力。因此,我们转变了勘探思路, 首先鼓励全体人员坚定在中国近海寻找大中型油气田的信心,并以此为指导思想, 加大了勘探的投入, 狠抓了基础研究和区域评价, 通过科学策和合理部署, 依靠认识创新和技术进步, 勘探工作迅速扭转了被动局面,并取得了显着成效。 2005 年以来, 共发现了 20余个大中型气田, 储量发现迅速走出了低谷, 并自2007年以来达到并屡创历史新高, 步入了高速、高效发展的历史时期, 实现了中国近海勘探的再次腾飞。其中, 渤海海域以大面积精细三维地震资料为基础, 通过区域研究, 对渤海海域油气成藏特征的全面再认识促成了储量发现的新高峰; 南海东部的自营原油勘探获得了恩平凹陷和白云东洼的历史性突破, 有望首次建立自营的独立生产装置; 南海西部的天然气

油气藏开发与开采技术

第一章油气藏开发地质基础 1.要开发好一个油气田,需要掌握或认清该油气田哪几方面的地质特征? 答:油气田地质特征大致可以分为以下几个部分: 1)构造特征:地壳或岩石圈各个组成部分的形态及其相互结合的方式和面貌特征的总 称。因此我们需要搞清楚油气藏的构造类型及形态、断层性质及切割情况、裂缝密度及分布规律等问题; 2)沉积环境与沉积相特征:即在物理、化学、生物上不同于相邻地区的一块地球表面 与该表面上形成的沉积岩的组合与物质反应。我们需要了解各类沉积环境的联系与区别并且得出相应相态条件下的开发对策; 3)储层特征:即可以储集和渗滤流体的岩层。我们需要知道储层非均质性、油层划分 与对比等方面的问题 4)油气藏特征:油气在地壳中聚集的基本单位,是油气在单一圈闭中的聚集,具有统 一的压力系统和油水界面。我们需要了其类型、压力系统、温度及岩石热力学性质、其中油气水的分布等知识。 2.每一种地质特征是如何影响油气田高效开发的? (由上一题展开回答) 3.地质模型的分类?* 答:按不同勘探开发阶段任务分为概念模型、静态模型、预测模型; 按油藏工程的需要分为储层结构模型、流动单元模型、储层非均质模型、岩石物性物理模型; 按油藏开采过程的特点可分为气藏模型、黑油模型、组分模型; 针对特殊油藏开采可建立热采模型、化学驱模型等。 4.沉积相与油气田开发的关系?* 答:沉积相与油气田开发的关系如下: 1)为编制好油气田开发方案提供地质依据; 2)为培养高产井提供依据; 3)为及时夺高产,实现产量接替提供依据; 4)为合理划分动态分析区和进行动态分析提供依据; 5)为选择挖潜对象,发挥工艺措施作用提供依据; 6)为层系、井网及注水方式的调整提供依据; 第二章油气藏开发技术政策 1.开发对象的特点(用几条高度总结)? 答: 1)具有不同的驱动类型及开发方式; 2)具有不同的开发层系选择; 3)具有不同的开发井网部署; 4)具有不同的配产方式及开采速度; 5)具有不同的注水时机与压力系统。 2.高效开发一个油气田应该达到哪几个技术指标?

我国油气田井开采的基本方法

我国油气田井开采的基本方法 目录 第一章油气井的基本概念 第一节油气井的基本概念 第二节不同类型气藏的压力特征 第三节油气流动特点 第四节油气的采输 第二章采油采气井控的基本概念及特点 第一节压力的概念及相互关系 第二节采油采气井控 第三章采油采气井控的基本装备 第一节采油采气井的井控设备 第二节采油采气井下管串 第三节井口井控设备 第四节采油气流程 第四章采油采气井控 第一节采油采气井控设计基本要求 第二节采油井的井控 第三节采气井井控 第四节注入井井控 第五节长停井、废弃井井控 第六节含硫化氢井的井控 第五章高压油气井操作规程及应急管理 第一节高压油气井操作规程 第二节油气井的压井技术 第三节井控应急管理 第六章附录 附录1:中国石油化工集团公司石油与天然气井井控管理规定([2006]47号) 附录2:中国石化股份有限公司采油采气井井控安全技术管理规定([2006]426号) 附录3:华北石油局、华北分公司采油采气井井控实施细则 附录4:油气井井喷着火抢险作法

第一章油气井的基本概念 随着油气勘探开发领域的不断延伸和扩大,特别是深层、高压油气藏的开发对井控和相关人员的技术要求也越来越高。震惊中外的2003年12月23日四川开县“罗家16H”井特大恶性井喷、硫化氢泄漏事故,再次提醒人们油气井井喷就是事故,井喷失控或着火是油气勘探开发中性质最为恶劣,损失难以估计的灾难性事故。地层流体(油,气、水)一旦失去控制就会导致井喷和井喷失控,就会打乱正常的采油采气生产秩序,甚至毁坏采输设备、破坏油气资源、污染自然环境,危及生产人员和油气井的安全。也由此产生了涵盖油气井勘探开发全过程的钻井、测井、录井、测试、井下作业、油气生产、注水(气)和报废井弃置处理等各环节的大井控理念,形成了钻井井控、作业井控、采油采气井控三项配套的井控技术系列。 与钻井井控、作业井控经历的经验、理论、现代井控发展阶段及配套的装备、工艺技术相比,采油采气井控工艺技术因其特殊性正在探索和走向成熟。一些高级别的先进的井控装置,大大地增强了采油采气监测、控制和处理突发事件的能力。本章是学习采油采气井控工艺技术的基础,从基础理论入手设置了油气井的基本知识、不同类型油气藏的压力特征、油气流动特点三节内容。力求让学员从先进、实用、操作性上,掌握学习采油采气井控的必备基础知识。 第一节油气井的基本概念 人们为了取得地下水开凿了水井。水井实际是水层与地面的通道。石油和天然气是埋藏在地下的宝贵矿产资源,为寻找开采和利用这些资源把它开采出来,也需要在地面和地下油(气)层之间建立一条油气通道,称为油井。 一般把进行油气勘探、索取油气层地质资料和开采石油、天然气所钻凿的岩石通道,统称为油气井。为使油气井在油田开发过程中充分发挥作用,取得较好的经济效益,必须了解和掌握油气井的钻凿、油气井的完井井身结构、井身质量等方面的基础知识和工艺技术,对于采油采气和充分利用油气资源有着极为重要的意义。 一、油气井的基本知识 自然界中,某些矿藏深埋在地下,要想把它们开采出来,需要在地面和目的层之间建立一条通道,这条通道称为井。井的最古老的说法如水井就是水层到地面的取水通道。一般矿山把煤层、矿层到地面的运煤、运矿石的垂直通道叫竖井或斜井。油气工业把油气层至地面的采油气通道称为油气井。典型的石油钻井如图1-1所示。 1.油气井的定义

海洋油气技术及装备现状

海洋油气技术及装备现状 文/江怀友中国石油经济技术研究院 一、概述。 发达国家海洋勘探开发技术与装备日渐成熟,海上油气产量继续增长,开采作业的范围和水深不断扩大,墨西哥湾、西非、巴西等海域将继续引领全球海洋油气勘探开发的潮流。 二、世界海洋油气资源的现状。 海洋油气的储量占全球总资源量的34%,目前探明率为30%,尚处于勘探早期阶段。 油气资源分布,主要分布在大陆架,占60%,深水和超深水占30%。目前国际上流行的浅海和深海的划分标准,水深小于500米为浅海,大于500米为深海,1500米以上为超深海。目前从全球来看,形成的是“三湾两海两湖”的格局。海洋油气产量,海洋油气产量在迅速增长,以上是第二部分。

三、世界海洋油气资源勘探开发的历程。 海洋油气的勘探开发是陆上石油的延续,经历了从浅水深海、从简单到复杂的发展过程,1887年在美国的加利福尼亚海岸钻探了世界上第一口海上探井,拉开了世界海洋石油工业的序幕。 四、海洋油气勘探开发的特点。 1.工作环境的特点。与陆上相比,海洋有狂风巨浪,另外平台空间也比较狭窄,这是美国墨西哥湾在05年因为飓风的平台遭到了损坏。 2.勘探方法的特点。陆上的油气勘探方法和技术,原理上来讲,陆上和海洋是一样的,但是如果我们把陆上的地质调查到海上就很难大规模开展,主要是要受海水的物理化学性质的影响。 3.就是钻井工程的特点。无论是勘探还是采油都要钻井,但是在海上,要比陆上复杂得多,因为海上我们要到平台上进行钻井,根据不同的水深,有不同的钻井平台。 4.投资风险特点。因为海上特殊的环境,因此它的勘探投资是陆上的3-5倍,这张图,随着深度的增加,成本在增加。但是海洋勘探开发也有优势,比如说在海洋的地震,地震船是边前进边测量,效率比陆上要高。以上是第四部分。 五、世界海洋工程装备的概况。 我们讲一下世界海洋的格局,找到我们自己的发展方向,海洋工程装备指海洋工程的勘探、开采加工、储运管理及后勤服务等大型工程装备和辅助性的装备,但是目前把开发装备认为是主体,世界海洋油气工程装备设计与制造的格局,目前

海洋石油勘探开发环境保护管理条例定稿版

海洋石油勘探开发环境 保护管理条例精编 W O R D版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

中华人民共和国海洋石油勘探开发环境保护管理条例 第一条为实施《中华人民共和国海洋环境保护法》,防止海洋石油勘探开发对海洋环境的污染损害,特制定本条例。 第二条本条例适用于在中华人民共和国管辖海域从事石油勘探开发的企业、事业单位、作业者和个人,以及他们所使用的固定式和移动式平台及其他有关设施。 第三条海洋石油勘探开发环境保护管理主管部门是中华人民共和国国家海洋局及其派出机构,以下称"主管部门"。 第四条企业或作业者在编制油(气)田总体开发方案的同时,必须编制海洋环境影响报告书,报中华人民共和国城乡建设环境保护部。城乡建设环境保护部会同国家海洋局和石油工业部,按照国家基本建设项目环境保护管理的规定组织审批。 第五条海洋环境影响报告书应包括以下内容: (一)油田名称、地理位置、规模; (二)油田所处海域的自然环境和海洋资源状况; (三)油田开发中需要排放的废弃物种类、成分、数量、处理方式; (四)对海洋环境影响的评价;海洋石油开发对周围海域自然环境、海洋资源可能产生的影响;对海洋渔业、航运、其他海上活动可能产生的影响;为避免、减轻各种有害影响,拟采取的环境保护措施; (五)最终不可避免的影响、影响程度及原因; (六)防范重大油污染事故的措施:防范组织,人员配备,技术装备,通信联络等。 第六条企业、事业单位、作业者应具备防治油污染事故的应急能力,制定应急计划,配备与其所从事的海洋石油勘探开发规模相适应的油收回设施和围油、消油器材。 配备化学消油剂,应将其牌号、成分报告主管部门核准。

油气开采污染及应对措施

油气开采污染及应对措施 在如今的21 世纪,随着科技发展以及工业生产的进步,人们的生活发生了翻天覆地的变化,人类的无限需求使得生产速度大大增快,而能源需求也日益增加以至于能源短缺。因此,能源的短缺使得世界各国开始了能源争夺战争。 但是,正是因为对能源的急需,人类对环境的破坏和污染也日益严重,环境问题也成为了人们现在不得不面对和重视的问题。环境污染会给生态系统造成直接的破坏和影响,如沙漠化、森林破坏、也会给生态系统和人类社会造成间接的危害,有时这种间接的环境效应的危害比当时造成的直接危害更大,也更难消除。例如,温室效应、酸雨、和臭氧层破坏就是由大气污染衍生出的环境效应。这种由环境污染衍生的环境效应具有滞后性,往往在污染发生的当时不易被察觉或预料到,然而一旦发生就表示环境污染已经发展到相当严重的地步。当然,环境污染的最直接、最容易被人所感受的后果是使人类环境的质量下降,影响人类的生活质量、身体健康和生产活动。例如城市的空气污染造成空气污浊,人们的发病率上升等等;水污染使水环境质量恶化,饮用水源的质量普遍下降,威胁人的身体健康,引起胎儿早产或畸形等等。严重的污染事件不仅带来健康问题,也造成社会问题。 随着污染的加剧和人们环境意识的提高,由于污染引起的人群纠纷和冲突逐年增加。所以,保护、预防环境污染是至关重要的事情,也是当前人类不可忽视的问题。 在目前因为能源开采而产生的环境污染以石油开采最为突出,并且因为石油在各国家之间产生的矛盾也是最多的。这是因为通过对石油的炼制可得到汽油、煤油、柴油等燃料以及各种机器的润滑剂、气态烃。通过化工过程,可制得合成纤维、合成橡胶、塑料、农药、化肥、医药、油漆、合成洗涤剂等。因此,石油被广泛运用于交通运输、石化等各行各业,被称为经济乃至整个社会的“黑色黄金”、“经济血液”。石油的流动改变着世界政治经济的格局,只要没有一种新的能源能取代石油,国际间石油的争夺就不会停止。 由此可以看出石油的重要性。而在石油的开采整个过程所产生的污染中主要有4 方面。 (1)石油勘探过程中对环境的污染 石油工业在带动当地经济发展的同时,也带来了水环境污染问题。对环境的污染问

海洋油气勘探新技术

海洋油气勘探新技术 摘要:近些年来,陆地油气资源逐渐面临枯竭,大家都将目光转向海洋。而海洋油气资源的开发的第一步就是海洋油气资源的勘探,本文通过对几种海洋油气资源勘探技术的描述,介绍一下海洋油气资源勘探技术的发展历程,以及目前的技术水平。 关键词:海洋油气勘探技术新发展 1.引言 我国是海洋大国,传统海域辖区总面积近3×106km2[3,4]。以300 m水深为界,浅水区面积约1.46×106km2、深水区面积约1.54×106km2{2]。南海我国传统疆界内石油地质储量为1.6439×1010t、天然气地质资源量为1.4029×1013 m3,油当量资源量约占我国总资源量的23 %,油气资源潜力巨大;其中300 m以下深水区盆地面积为5.818×105km2,石油地质储量为8.304×109t、天然气地质资源量为7.493×1012m3。目前我国在南海的油气勘探主要集中在北部4个盆地,面积约3.64×105km2[3,4]。 陆地油田经过长期的勘探开发,大部分已进入勘探开发的后期,受勘探资源枯竭以及油田开发规律的影响,陆地油田产量增长难度较大,不仅如此,大庆油田、胜利油田等陆地典型老油田的产量已进入递减阶段。图1给出了1971年到2013年全国石油产量构成柱状图,全国石油产量整体上呈稳步增长的趋势,但中国石油天然气股份有限公司、中国石油化工集团公司等以陆地油田为主的公司年产油增长缓慢,自1990年以来,全国石油增长总量的60 %来自中国海洋石油总公司。我国近海油气资源丰富,勘探开发的程度远低于陆地,尚处于蓬勃发展期,近海油气田将是我国油气产量主要的增长点。当前中国海洋石油总公司年产油气当量规模在5×107t,根据中国海洋石油总公司的发展规划,到2030年国内海上将建成1×108t油气当量年产规模,未来17年将增加一倍的产能,届时近海油气产量在我国石油产量构成中的比重将更加突出,近海油气对我国国民经济的支撑作用将更加凸显[1]。

石油勘探开发全流程(经典再现珍藏版)

石油勘探开发全流程(经典再现、珍藏版) 油气田勘探开发的主要流程:地质勘察—物探—钻井—录井—测井—固井—完井—射孔—采油—修井—增采—运输—加工等。这些环节,一环紧扣一环,相互依存,密不可分,作为专业石油人,我们有必要对石油勘探开发的流程有一个全局的了解! 一.地质勘探地质勘探就是石油勘探人员运用地质知识,携带罗盘、铁锤等简单工具,在野外通过直接观察和研究出露在地面的底层、岩石,了解沉积地层和构造特征。收集所有地质资料,以便查明油气生成和聚集的有利地带和分布规律,以达到找到油气田的目的。但因大部分地表都被近代沉积所覆盖,这使地质勘探受到了很大的限制。地质勘探的过程是必不可少的,它极大地缩小了接下来物探所要开展工作的区域,节约了成本。 地面地质调查法一般分为普查、详查和细测三个步骤。普查工作主要体现在“找”上,其基本图幅叫做地质图,它为详查阶段找出有含油希望的地区和范围。详查主要体现在“选”上,它把普查有希望的地区进一步证实选出更有力的含油构造。而细测主要体现在“定”上,它把选好的构造,通过细测把含油构造具体定下来,编制出精确的构造图以供进一步钻探,其目的是为了尽快找到油气田。

二.地震勘探在地球物理勘探中,反射波法地震方法是一种极重要的勘探方法。地震勘探是利用人工激发产生的地震波在弹性不同的地层内传播规律来勘测地下地质情况的方法。地震波在地下传播过程中,当地层岩石的弹性参数发生变化,从而引起地震波场发生变化,并发生反射、折射和透射现象,通过人工接收变化后的地震波,经数据处理、解释后即可反演出地下地质结构及岩性,达到地质勘查的目的。地震勘探方法可分为反射波法、折射波法和透射波法三大类,目前地震勘探主要以反射波法为主。 地震勘探的三个环节:第一个环节是野外采集工作。这个环节的任务是在地质工作和其他物探工作初步确定的有含油气希望的探区布置测线,人工激发地震波,并用野外地震仪把地震波传播的情况记录下来。这一阶段的成果是得到一张张记录了地面振动情况的数字式“磁带”,进行野外生产工作的组织形式是地震队。野外生产又分为试验阶段和生产阶段,主要内容是激发地震波,接收地震波。第二个环节是室内资料处理。这个环节的任务是对野外获得的原始资料进行各种加工处理工作,得出的成果是“地震剖面图”和地震波速度、频率等资料。第三个环节是地震资料的解释。这个环节的任务是运用地震波传播的理论和石油地质学的原理,综合地质、钻井的资料,对地震剖面进行深入的分析研究,说明地层的岩性和地质时代,说明地下地质构造

相关文档
相关文档 最新文档