文档视界 最新最全的文档下载
当前位置:文档视界 › 三坐标测量坐标系的建立

三坐标测量坐标系的建立

三坐标测量坐标系的建立
三坐标测量坐标系的建立

零件坐标系

在精确的测量中,正确地建坐标系,与具有精确的测量机,校验好的测头一样重要。由于我们的工件图纸都是有设计基准的,所有尺寸都是与设计基准相关的,要得到一个正确的检测报告,就必须建立零件坐标系,同时,在批量工件的检测过程中,只需建立好零件坐标系即可运行程序,从而更快捷有效。

机器坐标系MCS与零件坐标系PCS:

在未建立零件坐标系前,所采集的每一个特征元素的坐标值都是在机器坐标系下。通过一系列计算,将机器坐标系下的数值转化为相对于工件检测基准的过程称为建立零件坐标系。

PCDMIS建立零件坐标系提供了两种方法:“3-2-1”法、迭代法。

一、坐标系的分类:

1、第一种分类:机器坐标系:表示符号STARTIUP(启动)

零件坐标系:表示符号A0、A1…

2、第二种分类:直角坐标系:应用坐标符号X、Y、Z

极坐标系:应用坐标符号A(极角)

R(极径)

H(深度值即Z值)

二、建立坐标系的原则:

1、遵循原则:右手螺旋法则

右手螺旋法则:拇指指向绕着的轴的正方向,顺着四指旋转的方向角度为正,反之为负。

2、采集特征元素时,要注意保证最大范围包容所测元素并均匀分布;

三、建立坐标系的方法:

(一)、常规建立坐标系(3-2-1法)

应用场合:主要应用于PCS的原点在工件本身、机器的行程范围内能找到的工件,是一种通用方法。又称之为“面、线、点”法。

建立坐标系有三步:

1、找正,确定第一轴向,使用平面的法相矢量方向

2、旋转到轴线,确定第二轴向

3、平移,确定三个轴向的零点。

适用范围:

①没有CAD模型,根据图纸设计基准建立零件坐标系

②有CAD模型,建立和CAD模型完全相同的坐标系,需点击CAD=PART,使模型和零件实际摆放位置重合

第一步:在零件上建立和CAD模型完全相同的坐标系

第二步:点击CAD=PART,使模型和零件实际摆放位置重合

建立步骤:

●首先应用手动方式测量建立坐标系所需的

元素

●选择“插入”主菜单---选择“坐标系”---

进入“新建坐标系”对话框

●选择特征元素如:平面PLN1用面的法矢方

向作为第一轴的方向如Z正,点击“找平”。

●选择特征元素如:线LIN1用线的方向作为

坐标系的第二个轴向如X正,点击“旋转”。

●选择特征元素如:

点PNT6,用点的X坐标分量作为坐标系的

X方向的零点,然后点击原点。

线LIN1,用线的Y坐标分量作为坐标系的Y方向的零点,然后点击原点。

平面PLN1,用面的Z坐标分量作为坐标系的Z方向的零点,然后点击原

点。

上述步骤完成后,如果有CAD模型,需要执行CAD=工件,使模型和零件实际摆放位置重合●最后,按“确定”按钮,即完成零件坐标系的建立。

●验证坐标系

原点-------将测头移动到PCS的原点处,查看PCDMIS界面右下角“X、Y、Z”(或者打开侧头读出窗口:CTRL+W)三轴坐标值,若三轴坐标值近似为零,则证

明原点正确;

轴向--------将其中两个坐标轴锁定,只移动未锁定的坐标轴,查看坐标值的变化,验证轴向是否正确。

此方法还可引申为一个平面、两个圆;一个圆柱、两个圆(球)等。

注意:在手动测量特征元素时,必须考虑元素的工作平面(投影面),因此在手动测量完面后可以先建立一个坐标系,给以后手动测量特征一个正确的投影面。(eg.装夹

倾斜,线的投影面不再是Z+,而是工件的上平面)

(二)、坐标系的平移与旋转

坐标系的平移:即坐标系的方向不变,坐标原点移动到一个新的位置。

操作步骤:

A:选择平移的坐标轴如:

B:在偏置距离的方框里输入偏移的距离

C:点击原点:

坐标系的旋转:即围绕着某个坐标轴旋转一定的角度,从而得到一个新的坐标系。

旋转角度正负的确定:由右手螺旋法则判定。

操作步骤:

A:选择旋转的坐标轴:

B:输入旋转的角度:

C:点击旋转:

(三)、迭代法建立零件坐标系

1、应用场合:主要应用于PCS的原点不在工件本身、或无法找到相应的基准元素(如面、孔、线等)来确定轴向或原点,多为曲面类零件(汽车、飞机的配件,这类零件的坐标系多

在车身或机身上)。

2、用于建坐标系的元素及相关要求:

A:圆、球、柱、槽

①需要的特征数:3

②需具备的条件:有理论值或CAD模型

③迭代次数:1

④原理:此类元素为三维元素,1次即可达到精确测量

注:薄壁件圆、槽和柱体至少需要三个样例测点(指定特征所在的平面)。

B:矢量点、曲面点、边界点

①需要的特征数:6

②需具备的条件:有理论值及矢量方向或CAD模型

1、第1、

2、3点的法矢方向尽量一致

2、第4、5点的法矢方向尽量一致,且与前三点矢量方向垂直。

3、第6点法矢方向与前5点法矢方向尽量垂直。

③迭代次数:1次或多次或无法迭代成功。

④原理:首先,PC-DMIS 将测定数据“最佳拟合”到标称数据。接着,PC-DMIS

检查每个测定点与标称位置的距离。如果距离大于在点目标半径框中指定的

量,PC-DMIS 将要求重新测量该点,直至所有测定点都处于“公差”范围内。

使用测定点的困难在于只有在建坐标系后,才能知道在何处进行测量。这样就存在一个问题:必须在建坐标系之前测量点。而三维元素在用途方面的定义就是第一次即可精确测量的元素。

注:1、尽量使用三维元素如:圆、槽、柱体、球体或隅角点,可提高测量精度。

2、PC-DMIS 的一项特殊功能是允许槽的中心点根据需要在轴上上下滑动。因此,如果

将槽用作原点特征组的一部分,迭代法建坐标系就无法会聚。要将槽用作原点特征组的一部分,一种可能的方法是首先用槽构造一个点,然后将原点特征组中使用该构造点。

建议不要将槽用作迭代法建坐标系的原点特征组的一部分。(槽的加工误差和定位误差比较大,即使使用它们,也不要在最后找正圆点的时候使用,使用槽建立的坐标系,但轴方向的误差不一定为零)

3、建立迭代法坐标系步骤:(以矢量点建坐标系为例)

●(1)导入数模,观察方向

●(2)手动模式下取得基准的理论值,在手动模式下用自动测量命令测元素

●(3)选定执行这些元素,按提示手动测量这些元素,取得在机床坐标系下的实测值

●(4)迭代,找正、旋转、原点。

●(5)按提示自动迭代

●自动测量矢量点

没有CAD模型,而有理论点的话,在点坐标位置输入区输入理论点坐标,在法线矢

量输入区输入点坐标的矢量方向,点击创建。(注意:测量不要勾选)

如果有CAD模型,可直接在CAD模型上选取特征点,PC-DMIS会自动在点坐标显示

区和法线矢量显示区计算出特征点的坐标及矢量。并将点的性质设为“标称值”点击创建。

●重复上述步骤,共得到6个点的测量程序。

●在第一个测点之前,将测量方式改为手动模式(注意:新建一个程序,模式就为手动模

式),标记所有的测点程序,并运行程序。

●所有点测量完毕,此时PC-DMIS已得到两组数据,即一套理论点数据,一套实测点数

据。

●进入“插入”主菜单---“坐标系”---“新建坐标系”---进入“迭代法”建坐标系

迭代法建坐标系对话框

●选择矢量方向一致的前三个点,点击“选择”按钮,用于找平。

●选择第4、5点,点击“选择”按钮,用于旋转。

●选择最后1点,点击“选择”按钮,用于确定原点。

●选择“一次全部测量”

●设定点目标半径:不小于0.5mm

●选择“确定”按钮,PC-DMIS 将测定数据“最佳拟合”到标称数据,并提示“是否立

即测量所有迭代法建坐标系的特征”回答“是”PC-DMIS将每测一点,提示一次,接着,PC-DMIS 检查每个测定点与标称位置的距离。如果距离大于在点目标半径框中指定的量,PC-DMIS 将要求重新测量该点,直至所有测定点都处于“公差”范围内。

对于,第一次进行自动迭代,通常选择“一次全部测量”。

4、迭代法坐标系参数设置说明:

找平- 3:至少三个选定特征。此组特征将使平面拟合特征的质心,以建立当前工作平面法线轴的方位。

旋转-2:至少两个选定特征。该组特征将使拟合直线特征,从而将第二个轴向旋转到该方向。

注:如果未标记任何特征,坐标系将使用“找平”部分中的倒数第二和第三个特征。

原点-1:设置原点时必须使用一个特征。此特征组用于将零件原点平移(或移动)到指定位置。

注:如果未标记任何特征,坐标系将使用“找平”部分中的最后一个特征。

全部测量至少一次:

●PC-DMIS 将以DCC 模式对所有输入特征至少重新测量一次。

●它们将按照“编辑”窗口中迭代法建坐标系命令所指定的顺序来进行测量。

●PC-DMIS 将在测量特征前给出一个消息框,显示将要测量的特征。

●在接受移动之前,请确保测头能够接触指定特征而不会与零件发生碰撞。

●将不会执行在每个特征之前或之后找到的存储移动,但会执行侧头转角。

●在对所有特征测量至少一次后,对于未命中其点目标半径目标的点,将继续对特征进行

重新测量。

●对于第一次用迭代法建立坐标系通常使用全部测量至少一次

注:在此模式下,由于圆的位置从不改变,PC-DMIS 测量圆的次数不会多于一次。指定元素测量:

PC-DMIS 将以DCC 模式从起始标号处至少重新执行一次。

如果提供起始标号

●PC-DMIS 将从该定义标号重新执行

如果未提供起始标号

●PC-DMIS 将从程序中迭代法建坐标系命令所使用的第一个测定特征开始重新执

行。

●如果第一个特征之前有存储移动点,PC-DMIS 还将执行这些移动点。

●重新执行过程将持续到迭代法建坐标系命令所使用的最后一个测定特征为止。

●如果最后一个测定特征之后有存储移动,将不会执行这些移动。

重新执行一旦完成,PC-DMIS 将重新计算坐标系,并测试所有测定输入点,检查它们是否都处于点目标半径值所指定的目标半径内。

●如果它们都处于目标半径内,则无需继续重新执行,PC-DMIS 将认为迭代法建坐

标系命令已完成。

●如果有任何点未命中目标区域,则将按上述方法重新执行程序的相同部分。

如果未定义起始标号:

●PC-DMIS 将转到组成迭代法建坐标系的第一个特征,从此处开始进行DCC 测量

点目标半径:用于指定在坐标系中用作输入的测定点特征的目标半径公差。

测定输入点包括以下类型:

●测定/点

●自动/矢量点

●自动/棱点

●自动/曲面点

●自动/角度点

注:切勿将矢量点目标半径的值设置得太小(如 50 微米)。许多 CMM 无法准确定位测头,使其接触极小目标上的每个测定点。所以最好将公差设置在 0.5 毫米左右。如果重新测量无休止地继续,则将增加该值。

实际上,PC-DMIS 会在每个矢量点、曲面点或棱点的理论位置周围设置一个柱形公差区。

此公差区的半径就是在对话框中指定的点目标半径。点目标半径只影响测定点。

夹具公差:用于键入一个拟合公差值,PC-DMIS 将根据该值对组成迭代法坐标系的元素与其理论值进行比较,如果有一个或多个输入特征在其指定基准轴上的误差超过此

公差值,PC-DMIS 将自动转到误差标号(如果有)。

如果未提供误差标号,PC-DMIS 将显示一条错误消息,指出每个基准方

向上的误差。然后,您将可以选择接受基准并继续执行零件程序的其余

部分,或取消零件程序的执行。

注意:如果为每个基准轴提供最小的输入特征数(三个用于找平基准,两个用于旋转基准,一个用于原点基准),PC-DMIS 就可以将输入特征的测量值拟合到其理论值,而不会出现误差。这种情况下,PC-DMIS 实际上并不需要夹具公差。如果您为任何定义基准提供的输入特征超出最小值,零件或夹具误差就可能会使 PC-DMIS 无法将测量值拟合到理论值,可能出现超出公差的情况。

误差标号:用于定义一个标号当每个输入特征在基准方向上的误差超过在夹具公差

框中定义的夹具公差时,PC-DMIS 将转到此标号。

5、例子

如何运用迭代法建立如下图所示坐标系?

分析:对于此零件坐标系是由三个点、二个圆作为特征元素建立的。PCS坐标轴向及原

点如方框图所示,具体操作步骤如下:

一、由理论值创建程序

●新建零件程序----“TEST-diedai”;

●配置测头系统;

●导入CAD模型,并进行相关图形处理与操作;

●确认程序开头为“手动”模式;

●选择“自动特征”,打开自动测量矢量点对话框;

●确定当前模式为“曲面模式”;

●用鼠标在CAD模型“点1”位置点击一下,注意此点的法线矢量方向,对照工件图纸的

要求,在“自动测量”界面中对该点的坐标值进行相应的更改,点击“查找(F)”按钮;在不激活“测量”的前提下,点击“创建”;(注意:设置“移动”距离);

●此时,PCDMIS将自动在编辑窗口中创建该点的程序,同时在视图窗口中出现“点1”的

标识;

●如上步骤,创建其余2点程序;

●打开自动测量圆界面,按照有CAD模型的工件方法及步骤进行测量,并配置相关测量参

数,不激活“测量”选项的情况下点击“创建”按钮,产生测圆的程序及标识;(注意:若参与迭代的特征元素有圆,“起始”、“永久”必须为“3”),如下图所示:

●按此方法创建“圆1、圆2”的程序;

二、手动操纵机器,产生实测值

●将所有的理论值创建的程序进行标记(光标选中程序段,点击快捷键“F3”),执行

此三个矢量点、二个圆的程序,在PCDMIS软件的提示下,手动采集特征元素;(注意:打圆时先采表面三点)

三、按照相应的规则配置参数,进行自动迭代

●将光标移动到程序的末尾,打开“插入---坐标系---新建”界面,点击“迭代法”;

●点击“迭代法”按钮之后,迭代法建立零件坐标系的界面就打开了,如下图所示:

●在左下角的特征列表中选择相应的特征元素,“点1”、“点2”、“点3”,点击

上图的“选择”按钮,这样,PCS的一个轴向就确定了,同时“找正”选项前面的选择点自动调转到“旋转”;

●再选择“圆1”、“圆2”,点击功能按钮“选择”,如下图所示:

●最后,选择特征元素“圆2”,“原点”、“选择”,PCS的坐标轴向、原点确定完

毕;

四、保存坐标系:(*.aln)

保存坐标系选项用于将当前坐标系保存在外部文件中,以供其它零件程序回调。

保存坐标系步骤:

1. 路径:插入/坐标系/保存

2. 在文件名框中键入坐标系名称(最多十个字符)。

3. 选择英寸或毫米选项,以英寸或毫米为单位保存坐标系。所有坐标系的默认测量单

位都将是为其创建坐标系的零件程序所使用的测量单位。如果要在其它零件程序中使用坐标系,不必将该坐标系的测量单位另存为新零件程序的单位类型。坐标系将自动转换为与新坐标系相同的单位。

4. 单击确定按钮。

如果未键入坐标系标识的名称,PC-DMIS 将自动复制文件名用于外部保存。坐标系可以保存到任何目录中。但是,如果要在屏幕上显示坐标系,则必须将标识保存到零件程序所在的目录中。

五、回调坐标系:

回调:用于回调先前在当前程序(内部坐标系)或其它零件程序(外部坐标系)中创建的坐标系。

在将坐标系回调到其它零件程序之前,必须使用保存坐标系菜单选项将其保存。

如果回调的坐标系用不同于当前零件程序的测量单位保存,坐标系单位将自动转换为当前零件程序的测量单位。

要回调坐标系,请执行以下步骤:

1. 访问回调菜单选项(或插入/坐标系/回调),选择坐标系选择框出现。

2. 键入已保存的15(或更少)个字符的坐标系标识,或使用下拉列表选择所需的坐

标系。

3. 单击确定。PC-DMIS 自动在“编辑”窗口中插入“回调/坐标系”命令。

六、拟和坐标系:

拟合坐标系:用于拟合两个坐标系。

通过此选项,可以实现以下功能:

1、更改零件的位置或方位,同时保留先前的尺寸信息。

2、如果零件在检测过程中出现意外的碰撞或移动,可重新找正零件并保存先前的测定数据

更改零件的位置与方位:

例如,如果要测量以零件两侧上的特征为参考的尺寸,但无法从单个零件方位来接触这两侧,则请执行以下步骤:

1. 测量零件第一侧上的坐标系特征。

2. 创建起始坐标系。

3. 测量所有可从零件的第一个方位接触的必需特征。

4. 将零件移至新位置。

5. 测量新的坐标系特征。原点必须相同,轴的方向必须与所拟合的坐标系的轴相同。

为了便于理解,可以想像在移动零件之前,起始原点和轴的箭头都粘在了零件上。

新坐标系相对于零件将原点和轴的箭头放置在相同的位置。

6. 选择拟合坐标系菜单选项。拟合建坐标系对话框出现。

7. 在拟合坐标系列表中,选择新坐标系。

8. 在与坐标系列表中,选择旧坐标系。

9. 单击确定按钮。

意外移动零件后的恢复:

如果零件出现了意外的移动,请执行以下步骤:

1. 选择拟合坐标系菜单选项。

2. 输入要重新测量的坐标系的标识,作为第一个和第二个坐标系标识。

3. 测量这些坐标系特征。完成测量后,所有的尺寸和特征信息都将转换为零件的新

位置。

如果使用此命令来拟合一个零件程序中的相同坐标系,PC-DMIS 将不会在“编辑”

窗口中显示命令行。

只有在选择两个不同的坐标系时,“编辑”窗口中才会显示命令行。如果外部坐标系不同于所拟合的坐标系,就可以使用它。外部坐标系必须先使用“回调/坐标系, 外部”命令回调后才能显示。

RTK测量中如何建立独立坐标系的

RTK测量中独立坐标系的建立 向垂规 (红河州水利水电勘察设计研究院) 摘要:介绍GPS-RTK测量中WGS-84大地坐标系与独立坐标系转换的方法及南方测绘工程之星数据处理中坐标转换的方法,同时结合工程实例予以验证。关键词:GPS-RTK测量;WGS-84大地坐标系;独立坐标系;坐标转换 1 引言 在水利工程测量中,多数情况下工程所处位置地形复杂,交通不便,通视条件较差,采用以经纬仪、全站仪测量为代表的常规测量常常效率低下。随着GPS-RTK测量系统的使用,由于它具有观测速度快,定位精度高,经济效益高等特点,现在我院多数水利工程测量都是采用RTK测量技术来完成。对于GPS-RTK系统来说,由于它采用的是WGS-84固心坐标系,而在实际工程应用中,由于顾及长度变形、高程异常等影响而采用独立坐标系,这就需要将RTK 测量采集的数据在两坐标系中进行转换。 2 国家坐标系及独立坐标系的建立 2.1 国家坐标系的建立 在我国,由于历史原因先后采用不同的参考椭球体和大地起算数据而形成多个国家坐标系,主要国家坐标系有1954北京坐标系、1980西安坐标系、2000国家坐标系和WGS-84坐标系。前两个是参心坐标系,后两个是固心坐标系。由于他们采用不同的椭球体参数,所以地面上同一个点在不同的坐标系中有不同的坐标值。 国家坐标系的主要作用是在全国建立一个统一的平面和高程基准,为发展国民经济、空间技术及国防建设提供技术支撑,也为防灾、减灾、环境监测及当代地球科学研究提供基础资料。 2.2 独立坐标系的建立

在工程应用中,由于起算数据收集困难、测区远离中央子午线及满足特殊要求等诸多原因,如在水利工程测量中,常要测定或放样水工建筑物的精确位置,要计算料场的土石方贮量和水库的库容。规范要求投影长度变形不大于一定的值(如《工程测量规范》为2.5cm/km,《水利水电工程测量规范(规范设计阶段)》为5.0cm/km)。如果采用国家坐标系统在许多情况下(如高海拔地区、离中央子午线较远地方等)不能满足这一要求,这就要求建立地方独立坐标系。 在常规测量中,这种独立坐标系只是一种高斯平面直角坐标系,而在采用GPS-RTK采集数据时,独立坐标系就是一种不同于国家坐标系的参心坐标系。 跟国家坐标系一样,建立独立坐标要确定的主要元素有:坐标系的起算数据、中央子午线、参考椭球体参数及投影面高程等。对于起算数据,可以采用国家坐标系的坐标和方位角或任意假设坐标和方位角。在RTK测量中,我们常采用基线的某一端点的单点定位解作为起点,然后以另一点定向,用测距仪测出基线边长,经改正后算出基线端点的坐标;中央子午线常采用测区中央的子午线;投影面常采用测区的平均高程面。参考椭球体一般是基于原来的参考椭球体做某种改动,使改变后的参考椭球面与投影面拟合最好,投影变形可以减到最小,也便于与国家坐标系统进行换算。 3 坐标系的转换 GPS-RTK接收机采集的坐标数据是基于WGS-84椭球下的大地坐标,而我们经常使用的独立坐标系是基于某种局部椭球体下的平面直角坐标,这两种坐标是不同坐标基准下的两种表现形式。利用WGS-84下的大地坐标来推求独立坐标系中的平面直角坐标,必然要求得两坐标系之间转换参数。求取转换参数的基本思路是利用两坐标系中必要个数的公共点,根据相应的椭球参数及中央子午线采用最小二乘法严密平差解算转换参数,具体操作是由转换模型把不同坐标基准下的坐标转换为同基准下的不同坐标形式,再进行同基准下不同坐标形式的转换,

三坐标如何建立零件坐标系

三坐标如何建立零件坐标系 1、在零件坐标系上编制的测量程序可以重复运行而不受零件摆放位置的影响,所以编制程序前首先要建立零件坐标系。而建立坐标系所使用的元素不一定是零件的基准元素。 2、在测量过程中要检测位置度误差,许多测量软件在计算位置度时直接使用坐标系为基准计算位置度误差,所以要直接使用零件的设计基准或加工基准等等建立零件坐标系。 3、为了进行数字化扫描或数字化点作为CAD/CAM软件的输入,需要以整体基准或实物基准建立坐标系。 4、当需要用CAD模型进行零件测量时,要按照CAD模型的要求建立零件坐标系,使零件的坐标系与CAD模型的坐标系一致,才能进行自动测量或编程测量。 5、需要进行精确的点测量时,根据情况建立零件坐标系(使测点的半径补偿更为准确)。

6、为了测量方便,和其它特殊需要。 建立零件坐标系是非常灵活的,在测量过程中我们可能根据具体情况和测量的需要多次建立和反复调用零件坐标系,而只有在评价零件的被测元素时要准确的识别和采用各种要求的基准进行计算和评价。对于不清楚或不确定的计算基准问题,一定要取得责任工艺员或工程师的认可和批准,方可给出检测结论。 至于使用哪种建立零件坐标系的方法,要根据零件的实际情况。一般大多数零件都可以采用3-2-1的方法建立零件坐标系。所谓3-2-1方法原本是用3点测平面取其法矢建立第一轴,用2点测线投影到平面建立第二轴(这样两个轴绝对垂直,而第三轴自动建立,三轴垂直保证符合直角坐标系的定义),用一点或点元素建立坐标系零点。现在已经发展为多种方式来建立坐标系,如:可以用轴线或线元素建立第一轴和其垂直的平面,用其它方式和方法建立第二轴等。 大家要注意的是:不一定非要3-2-1的固定步骤来建立坐标系,可以单步进行,也可以省略其中的步骤。比如:回转体的零件(圆柱形)就可以不用进行第二步,用圆柱轴线确定第一轴并定义圆心为零点就可以了。用点元素来设置坐标系零点,即平移坐标系,也就是建立新坐标系。 如何确定零件坐标系的建立是否正确,可以观察软件中的坐标值来判断。

工程测量中的坐标系选择原理与方法

摘要 摘要:近几年来,国家大力兴建高速铁路,由于高速铁路对边长投影变形的控制要求很高(2.5cm /km),因而导致长期以来一直使用的三度带高斯投影平面之间坐标系已难以满足高速铁路建设的的精度要求,本文就具有抵偿高程投影面的任意带坐标系原理作出了阐释,具有抵偿高程投影面的任意带坐标系,克服了三度带坐标系在大型工程中精度无法满足要求的局限性,能有效地实现两种长度变形的相互抵偿,从而达到控制变形的目的。 关键词:高速铁路、抵偿高程面、坐标转换、投影变形、高斯正形投影

Abstract Abstract:In recent years, countries build high-speed railway, due to high speed railway projective deformation control of revised demanding (2.5 cm/km), and therefore cause has long been used with three degrees of gaussian projection planes already difficult to satisfy between coordinate system of high-speed railway construction, this article the accuracy requirement of the planes with counter elevation arbitrary made interpretation with coordinate system, with the principle of any planes with anti-subsidy elevation, overcome three degrees coordinate with coordinate system in large engineering accuracy can't satisfy requirements limitation, can effectively achieve the two length deformation of mutual counter, achieve the purpose of controlling deformation. keywords:rapid transit railway Counter elevation surface Coordinate transformation Projective deformation Gaussian founder form projection

公路测量坐标计算公式

高速公路的一些线路计算 一、缓和曲线上的点坐标计算 已知:①缓和曲线上任一点离ZH 点的长度:l ②圆曲线的半径:R ③缓和曲线的长度:l 0 ④转向角系数:K(1或-1) ⑤过ZH 点的切线方位角:α ⑥点ZH 的坐标:x Z ,y Z 计算过程: y y ⑼y x x ⑻x αSsin y ⑺αScos x ⑹90 ααα⑸y x ⑷S 180n x y arctg α⑶l 3456R l l 40R l l y ⑵)K R 336l l 6Rl l (x ⑴Z 1Z 11111012 0200 040 49202503307 03 0+=+===-+=+=?+=+-=-= 说明:当曲线为左转向时,K=1,为右转向时,K=-1, 公式中n 的取值如下: ?? ? ??=<?? ? ??=>>1n 0y 0x 1n 0y 0x 2n 0y 0x 0n 0y 0x 00000000 当计算第二缓和曲线上的点坐标时,则: l 为到点HZ 的长度 α为过点HZ 的切线方位角再加上180° K 值与计算第一缓和曲线时相反 x Z ,y Z 为点HZ 的坐标 切线角计算公式:2Rl l β0 2 =

二、圆曲线上的点坐标计算 已知:①圆曲线上任一点离ZH 点的长度:l ②圆曲线的半径:R ③缓和曲线的长度:l 0 ④转向角系数:K(1或-1) ⑤过ZH 点的切线方位角:α ⑥点ZH 的坐标:x Z ,y Z 计算过程: y y ⑿y x x ⑾x αSsin y ⑽αScos x ⑼90α αα⑻y x ⑺S 180n x y arctg α⑹m Rsinα'y ⑸p]K )cosα'[R(1x ⑷34560R l 240R l 2l ⑶m 2688R l 24R l ⑵p Rπ)l -90(2l ⑴α'Z 1Z 11111012 0200 0004 5 23003 40 200+=+===-+=+=?+=+=+-=+ -=- == 说明:当曲线为左转向时,K=1,为右转向时,K=-1, 公式中n 的取值如下: ?? ? ??=<?? ? ??=>>1n 0y 0x 1n 0y 0x 2n 0y 0x 0n 0y 0x 00000000 当只知道HZ 点的坐标时,则: l 为到点HZ 的长度 α为过点HZ 的切线方位角再加上180° K 值与知道ZH 点坐标时相反 x Z ,y Z 为点HZ 的坐标

测量相关的坐标体系

测量相关的坐标体系 地固坐标系又称大地坐标系/地球坐标系,是一种固定在地球上,随地球一起转动的非惯性坐标系。根据其原点的位置不同,分为地心坐标系和参心坐标系。 地心坐标系的原点与地球质心重合.GPS卫星定位测量常用的WGS-84坐标 系就是一种地心坐标系,坐标原点为地球质心,其地心空间直角坐标系的Z轴指向BIH (国际时间服务机构)1984.O定义的协议地球极(CTP)方向,X轴指向BIH 1984.0的零子午面和CTP赤道的交点,Y轴与Z轴、X轴垂直构成右手坐标系,称为1984年世界大地坐标系统。 参心坐标系的原点与某一地区或国家所采用的参考椭球中心重合,通常与地球质心不重合。我国先后建立的1954年北京坐标系、1980西安坐标系都是参心坐标系。但是随着GNSS技术的发展,很多国家都逐渐开使用地心坐标系. AutoCAD中采用的数学坐标系:世界坐标系(WCS)即参照坐标系。其它所有的坐标系都是相对WCS定义的,WCS是永远不改变的。用户坐标系统(UCS)即 工作中的坐标系,使我们绘图使用最多的坐标系。 (Cass7.0绘图软件采用的坐标系为测量坐标系,正好和数学上的笛卡尔坐标系相反,X轴为南北方向,Y轴为东西方向。 这就是在CAD中查询出的坐标和在Cass中查询出的坐标纵横坐标刚好相反的原因。) 1 、地理坐标 地理坐标是用纬度、经度表示地面点位置的球面坐标。在大地测量学中,对于地理坐标系统中的经纬度有三种提法:天文经纬度、大地经纬度和地心经纬度。 (1)天文坐标系 天文坐标系是以铅垂线为基准、以大地水准面为基准面建立的坐标系,它以天文经纬度(λ,ψ)表示地面点在大地水准面上的位置,其中天文经度λ是观测点天顶子午面与格林尼治天顶子午面间的二面角,地球上定义为本初子午面与观测点之间的二面角;天文纬度ψ定义为铅垂线与赤道平面间的夹角。 (2)大地坐标系 大地坐标系是以椭球面法线为基准线,以参考椭球面为基准面建立的坐标系,它以大地坐标(L,B,h)表示地面点在参考椭球面上的位置,其中大地经度L为参考椭球面上某点的大地子午面与本初子午面间的二面角,大地纬度B为参考椭球面上某点的法线与赤道平面的夹角,北纬为正,南纬为负;为h为大地高,即从观测点沿椭球法线方向到椭球面的距离。我国目前常用坐标系为1954北京坐标系、1980国家大地坐标系以及2000国家大地坐标系(CGCS2000)。 (3)地心坐标系 地心坐标系是地固坐标系的一种,是指以总地球椭球为基准、原点与质心重合的坐标系,它与地球体固连在一起,与地球同步运动。它以(L,B)来表示点的位置,其中L为地心经度,与大地经度一致;B为地心纬度,指参考椭球面上观测点与椭球质心或中心连线与赤道面之间的夹角。心坐标系是在大地体内建立的O-XYZ坐标系。原点O设在大地体的质量中心,用相互垂直的X,Y,Z三个

建立适当的平面直角坐标系解决实际问题

建立适当的平面直角坐标系解决实际问题 例1、如图,一石拱桥呈抛物线状,已知石拱跨度AB为40 m,拱高CM为16m,把桥拱看作一个二次函数的图象,建立适当的平面直角坐标系. (1)写出这个二次函数的表达式. (2)已知点N在距离中心M5 m处,求点N正上方桥高DN的 长. 例2、如图所示,公园要建造圆形的喷水池,水池中央垂直于水面处安装一个柱子OA,O恰在水面中心,OA=1.25m,由柱子顶端A处喷头向外喷水,水流在各个方向沿形状相同的抛物线落下,为使水流形状较为漂亮,要求设计成水流在OA距离为1m处达到距水面最大高度2.25m. (1)若不计其他因素,那么水池的半径至少要多少m,才能 使喷出的水流不能落到池外? (2)若水流喷出的抛物线形状与(1)相同,水池的半径为 3.5m,要使水流不落到池外,此时水流最大高度可达多少 米?

例3、某工厂大门是一抛物线型水泥建筑物,如图所示,大门地面宽AB=4m,顶部C 离地面高度为4.4m.现有一辆满载货物的汽车欲通过大 门,货物顶部距地面2.8m,装货宽度为2.4m.请判断 这辆汽车能否顺利通过大门. 练习 1、如图的一座拱桥,当水面宽AB为12m时,桥面顶部离水面4m,已知桥洞的拱形是抛物线,以水平方向为x轴,建立平面直角坐标系,若选取点A为坐标原点时的抛物线解析式是y=-(x-6)2+4,则选取点B为坐标原点时 的抛物线解析式是____________. 2、(2016·唐山二模)设计师以y=2x2-4x+8的图形为灵感设计 杯子如图所示,若AB=4,DE=3,则杯子的高CE=( ) A.17 B.11 C.8 D.7 3、一个横断面是抛物线的渡槽如图所示,根据图中 所给的数据求出水面的宽度是______.

我国四大常用坐标系及高程坐标系

我国四大常用坐标系及高程坐标系 1、北京54坐标系(BJZ54) 北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位, 它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。 新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大 地测量和测图工作,迫切需要建立一个参心大地坐标系。由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我 国大地坐标系,定名为1954年北京坐标系。因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。它的原点不在北京而是在前苏联的普尔科沃。 北京54坐标系,属三心坐标系,长轴6378245m短轴6356863,扁率1/298.3 ; 2、西安80坐标系 1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。 为此有了1980年国家大地坐标系。1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据,即IAG75地球椭球体。该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里,故称1980年西安坐 标系,又简称西安大地原点。基准面采用青岛大港验潮站1952- 1979年确定的黄海平均海水面(即1985国家高程基准)。 西安80坐标系,属三心坐标系,长轴6378140m短轴6356755,扁率1/298.25722101 3、W G-84坐标系 WG—84坐标系(WorldGeodeticSystem )是一种国际上采用的地心坐标系。坐标原点为地球质心,其地心空间直角坐标系的Z轴指向国际时间局(BIH)1984.0定义的协议地极(CTP方向,X轴指向BIH1984.0的协议子午面和CTP赤道的交点,丫轴与Z轴、X轴垂直构成右手坐标系,称为1984年世界大地坐标系。这是一个国际协议地球参考系统(ITRS),是目前国际上统一采用的大地坐标系。GPS^播星历是以WGS-84坐标系为根据的。 WGS8坐标系,长轴6378137.000m,短轴6356752.314,扁率1/298.257223563。 由于采用的椭球基准不一样,并且由于投影的局限性,使的全国各地并不存在一至的转换参数。对于这种转换由于量较大,有条件的话,一般都采用GPS联测已知点,应用GPS软件自动完成坐标的转换。当然若条件不许可,且有足够的重合点,也可以进行人工解算。 4、2000国家大地坐标系 英文缩写为CGCS200O 2000国家大地坐标系是全球地心坐标系在我国的具体体现,其原点为包括海洋和大气的整个地球的质量中心。2000国家大地坐标系采用的地球椭球参数如下:长半轴a=6378137m 扁率f=1/298.257222101, 地心引力常数GM=3.986004418< 1014m3s2 自转角速度3 =7.292115 < 10-5rads-1 我国常用高程系 “ 1956年黄海高程系”,是在1956年确定的。它是根据青岛验潮站1950年到1956年的黄海验潮资料,求出该站验潮井里横按铜丝的高度为 3.61米,所以就确定这个钢丝以下3.61米处为黄海平均海水面。从这个平均海水面起,于1956年推算出青岛水准原点的高程为72.289米。 国家85高程基准其实也是黄海高程基准,只不过老的叫“1956年黄海高程系统”,新的叫“ 1985国家高程基准”,新的比旧的低0.029m 我国于1956年规定以黄海(青岛)的多年平均海平面作为统一基面,为中国第一个国家高程系

公路测量坐标系的建立

摘要】本文以公路测量为例,较详细地论述了在线路测量中应考虑的变形因素,以及解决变形的办法,详细地叙述了建立独立坐标系的作用及建立这种坐标系的六种方法,并介绍了因提高归化高程面而产生新椭球后的一些椭球常数的计算方法和步骤。此外,本文还对当路线跨越相邻投影带时,需要进行相邻带的坐标换算这一问题进行了阐述。 【关键字】独立坐标系高斯投影带抵偿高程面新椭球常数坐标转换归化高程面 线路控制测量中坐标系统的建立与统一方法 第一章概述 铁路、公路、架空送电线路以及输油管道等均属于线型工程,它们的中线统称线路。一条线路的勘测和设计工作,主要是根据国家的计划与自然地理条件,确定线路经济合理的位置。为达此目的,必须进行反复地实践和比较,才能凑效。 线路在勘测设计阶段进行的控制测量工作,称线路控制测量,在线路控制测量过程中,由于每条线路不可能距离较短,有的可能跨越一个带,二个带甚至更多,所以,在线路控制测量中,长度变形是一个不可避免的问题,但我们可以采取一些措施来使长度变形减弱,将长度变形根据施测的精度要求和测区所处的精度范围

控制在允许的范围之内。最有效的措施就是建立与测区相适应的坐标系统.

坐标系统是所有测量工作的基础.所有测量成果都是建立在其之上的,一个工程建设应尽可能地采用一个统一的坐标系统.这样既便于成果通用又不易出错.对于一条线路,如果长度变形超出允许的精度范围,我们将建立新的坐标系统加以控制.这就涉及到一个非常关键的问题,既,坐标系统的建立与统一.对于不同的情况,我们可以采用适应的方法尽可能建立统一的坐标系统,且使其长度变形在允许范围之内. 本文以公路控制测量为例,详细论述了线路控制测量中坐标系统的建立与统一方法. 第二章坐标系统的建立 当对一条线路进行控制测量时,首先应根据已有资料判断该测区是否属同一投影带和长度变形是否在允许范围之内.这样我们就可以判断是否需要建立新的坐标系统和怎样建立,下面对此进行详细讨论. §2.1 相对误差对变形的影响 与国家点联测的情况:

三坐标测量坐标系的建立

零件坐标系 在精确的测量中,正确地建坐标系,与具有精确的测量机,校验好的测头一样重要。由于我们的工件图纸都是有设计基准的,所有尺寸都是与设计基准相关的,要得到一个正确的检测报告,就必须建立零件坐标系,同时,在批量工件的检测过程中,只需建立好零件坐标系即可运行程序,从而更快捷有效。 机器坐标系MCS与零件坐标系PCS: 在未建立零件坐标系前,所采集的每一个特征元素的坐标值都是在机器坐标系下。通过一系列计算,将机器坐标系下的数值转化为相对于工件检测基准的过程称为建立零件坐标系。 PCDMIS建立零件坐标系提供了两种方法:“3-2-1”法、迭代法。 一、坐标系的分类: 1、第一种分类:机器坐标系:表示符号STARTIUP(启动) 零件坐标系:表示符号A0、A1… 2、第二种分类:直角坐标系:应用坐标符号X、Y、Z 极坐标系:应用坐标符号 A(极角) R(极径) H(深度值即Z值) 二、建立坐标系的原则: 1、遵循原则:右手螺旋法则 右手螺旋法则:拇指指向绕着的轴的正方向,顺着四指旋转的方向角度为正,反之为负。

2、采集特征元素时,要注意保证最大范围包容所测元素并均匀分布; 三、建立坐标系的方法: (一)、常规建立坐标系(3-2-1法) 应用场合:主要应用于PCS的原点在工件本身、机器的行程范围内能找到的工件,是一种通用方法。又称之为“面、线、点”法。 建立坐标系有三步: 1、找正,确定第一轴向,使用平面的法相矢量方向 2、旋转到轴线,确定第二轴向 3、平移,确定三个轴向的零点。 适用范围: ①没有CAD模型,根据图纸设计基准建立零件坐标系 ②有CAD模型,建立和CAD模型完全相同的坐标系,需点击CAD=PART,使模型和零件实际摆放位置重合 第一步:在零件上建立和CAD模型完全相同的坐标系 第二步:点击CAD=PART,使模型和 零件实际摆放位置重合 建立步骤: ●首先应用手动方式测量建立坐 标系所需的元素 ●选择“插入”主菜单---选择“坐 标系”---进入“新建坐标系”对 话框

平面直角坐标系构建知识结构图

平直角坐标系构建知识结构图教学设计 教学目标 知识与技能 1、会建立平面直角坐标系解决问题 2、建立平面直角坐标系的知识结构图过程与方法 通过问题串的设计,层层引导学生积极构建知识结构图,渗透对学生数学知识的严谨性、逻辑性的培养。 情感态度价值观 进一步培养学生严谨的数学态度和思维。 教学重难点 教学重点:构建平面直角坐标系结构图 教学难点:构建平面直角坐标系结构图 教学过程 (一)设计情境,导入新课 小明、小丽、小华三人周末相约到生态园游玩 活动一:某一时刻他们停留在竖琴广场,三人对着景区示意图发现, 如下描述竖琴广场的位置(图中小正方形2,2)竖琴广场的坐标是(长)

葡萄竖琴广望亭九和植物动物园 7654葡萄园32竖琴广场望湖亭1654 — 1 - 2123 — 3 - 5 - 7 - 6 - 4X0 九和塔一1植物园一2 - 3动物园—4 活动二:随后小明提议,接下来到植物园,你能帮助他们读岀植物园的坐标吗? 2问题:能读 岀其余各个景点的坐标吗? :在3问题y 轴上的景点有哪些?在 x 轴上的景点有哪些? 4问题: 在第一、三象限角平分线上的景点有哪些? :连接竖琴广场和动物园的直线与坐标轴有何位置 1000m 的边长代表. 问题1:能建立平面直角坐

关系?他们之间的距离是多少?5问题.

- 4 1 y ................... 葡萄竖琴广望亭一一一一一一一九和一植物一—动物园一4 葡萄园竖琴广场望亭湖xO 九和塔植物园动物园

葡萄竖琴广望亭九和植物动物园 76543葡萄园2竖琴广场望亭湖1651 —2 - 1234 —

如何建立三坐标的坐标系

如何建立三坐标的坐标系 如何建立三座标的坐标系常见的一面2孔但这只局限于正规机加工的工厂 对于其他的嘛就五花八门了主要是根据图纸找基准不要把自己认为的东西看做建坐标的基准,但选择基准的话又有2个问题,1是加工基准,1是安装基准如果可以的话先确定这2个问题 找好基准又分为很多种啊有需要连接构造的有三阶平面的等等 归根结底就是一句话多练多长见识要在零件上找相互垂直的元素来建立坐标系是不可能的。但是坐标系系三个轴互相不垂直又不符合直角坐标系的原则。所以测量机软件建立零件坐标系要采用3-2-1的方法。 为了在零件上建立三轴垂直的坐标系,测量机软件首先利用面元素确定第一轴,因为面元素的方向矢量始终是垂直于该平面的,当我们利用投影到该平面上的一条线来建立第二轴时,第一轴和第二轴就保证绝对是垂直的,至于第三轴就不用你再建了,由软件自动生成垂直于前两轴的第三轴。这样测量机软件就建立了互相垂直的、符合直角坐标系原理的零件坐标系。 那么在软件内部是如何进行操作的呢? 1.软件内部已经准备好了各种建立零件坐标系的数据结构,它们的初始值是与“机器坐标系”一致的。当我们要利用3-2-1方法建立零件坐标系时,首先测量面元素(假如是X、Y平面),这时面的法向矢量(我们要作Z轴)与机器坐标系有两个空间夹角(零件肯定不会与机器坐标系完全一致),即与X轴有a角,与Y轴有b角。 2.当我们指定该面元素建立零件坐标系第一轴后(建立Z轴),软件就会让1号坐标系的数据结构首先绕X轴旋转b角度,然后再绕Y轴旋转a角度,使两者重合。1号坐标系Z零点坐标平移到该平面特征点的Z值。 3.当我们采用线元素,确定第二轴时,1号坐标系绕Z轴旋转,使指定轴(假如是X轴)与该线重合。1号坐标系的Y零点平移到这条线特征点的Y值。 4.这时只有X轴的零点没有着落,最后一点就是为X轴而设的。 5.零件坐标系的零点如果没有特殊指定,就是按照以上设置的,往往我们还要根据图纸要求,将零件坐标系的零点平移到指定点元素上。 要说明的是,建立零件坐标系第一轴可以是任意轴,确定了平面就指定了轴,如:-X、+Y、-Z等。 建立第一轴的元素不一定非是平面,也可以是圆柱轴线、圆锥轴线或构造线(软件不同可能有差别)。只要你指定了第一轴,实际就指定了相应的工作平面。指定了X轴,实际也就确定了与其垂直的YZ平面。 指定轴或工作平面的原则,一般是根据零件图纸要求,或使零件坐标系与机器坐标系接近,避免误会。 建立坐标系不一定必须是3-2-1。比如徊转体零件, 只要用平面找正第一轴,再确定中心点为零点,就完全可以了。 建立零件坐标系的各轴的顺序是不能颠倒的,第一轴一定是图纸上的第一基准,第二轴是第二基

四大常用坐标系及高程坐标系

四大常用坐标系及高程 坐标系 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

我国四大常用坐标系及高程坐标系 1、北京54坐标系(BJZ54) 北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。 新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。它的原点不在北京而是在前苏联的普尔科沃。 北京54坐标系,属三心坐标系,长轴6378245m,短轴6356863,扁率1/; 2、西安80坐标系 1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。为此有了1980年国家大地坐标系。1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据,即IAG75地球椭球体。该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里,故称1980年西安坐标系,又简称西安大地原点。基准面采用青岛大港验潮站1952-1979年确定的黄海平均海水面(即1985国家高程基准)。 西安80坐标系,属三心坐标系,长轴6378140m,短轴6356755,扁率1/298.

道路施工测量公路边线桩点的坐标计算及放样方法

公路边线桩点的坐标计算及放样方法 中建四局一公司 (贵阳市云岩区松柏巷1号550003) 【摘要】本文主要讨论了在高等级公路施工放样过程中,公路边桩的坐标计算和放样方法。一、引言 公路施工放样测量是按照设计和施工要求将图纸上的路线设计方案放样到实地上去的一项工作,对新建的高等级公路而言,各方面的质量要求都很高,为确保路基在施工过程中路基宽度、坡比符合设计要求,笔者在此主要探讨了利用全站仪对公路边桩放样时的坐标计算方法 二、曲线上任一点的中桩坐标的计算 以直缓(TS)或缓直(ST)点为原点,以直缓点(或缓直点)的缓和曲线的切线为X轴,过直缓点(或缓直点)且垂直于X轴为Y轴,建立切线直角坐标系如图1,用切线支距法计算出曲线上每一点切线坐标。 1、曲线上任一点的中桩坐标的计算: 1.1、缓和曲线上任一点i的切线坐标计算: xi=l i - l5i/(40R2l02) 参考文献(1) yi=l3i/(6Rl0) 式中:x i、y i:缓和曲线上任一点的切线坐标。 l i :缓和曲线上任一点到直缓点(或缓直点)的距离。 l0:缓和曲线长度。 R:圆曲线半径。

1.2、带有缓和曲线的圆曲线上任一点的坐标计算 x i=Rsin αi +m y i =R(1-cos αi )+P 式中:xi、y i : 带有缓和曲的圆曲线上任一点的坐标。 m :增加缓和曲线后,切线增值长度。 m= l 0/2 - l 02/(240R2) p :增加缓和曲线后,圆曲线相对切线的内移量 p=l02/(24R) αi: i 点至缓和曲线起点弧长所对应的圆心角 αi =l i/R?180°/π+β0 式中:li :圆曲线上任一点到圆曲线起点的长度。 β0:缓和曲线角度。 β0= l 0/(2R)? 180°/π l o : 缓和曲线长度 1.3、利用坐标系变换,将切线直角坐标系变换为测量坐标系: 图1 1)、第一段缓和曲线上的点,即从TS 点SC 点之间: 参考文献(1)

常用坐标系

一、常用坐标系 1、北京坐标系 北京54坐标系为参心大地坐标系,大地上的一点可用经度L54、纬度M54和大地高H54定位,它是以克拉索夫斯基椭球为基础,经局部平差后产生的坐标系。 1954年北京坐标系的历史: 新中国成立以后,我国大地测量进入了全面发展时期,再全国范围内开展了正规的,全面的大地测量和测图工作,迫切需要建立一个参心大地坐标系。由于当时的“一边倒”政治趋向,故我国采用了前苏联的克拉索夫斯基椭球参数,并与前苏联1942年坐标系进行联测,通过计算建立了我国大地坐标系,定名为1954年北京坐标系。因此,1954年北京坐标系可以认为是前苏联1942年坐标系的延伸。它的原点不在北京而是在前苏联的普尔科沃。 北京54坐标系,属三心坐标系,长轴6378245m,短轴6356863,扁率1/298.3; 2、西安80坐标系 1978年4月在西安召开全国天文大地网平差会议,确定重新定位,建立我国新的坐标系。为此有了1980年国家大地坐标系。1980年国家大地坐标系采用地球椭球基本参数为1975年国际大地测量与地球物理联合会第十六届大会推荐的数据,即IAG75地球椭球体。该坐标系的大地原点设在我国中部的陕西省泾阳县永乐镇,位于西安市西北方向约60公里,故称1980年西安坐标系,又简称西安大地原点。基准面采用青岛大港验潮站1952-1979年确定的黄海平均海水面(即1985国家高程基准)。 西安80坐标系,属三心坐标系,长轴6378140m,短轴6356755,扁率1/298.25722101 3、2000国家大地坐标系的定义 国家大地坐标系的定义包括坐标系的原点、三个坐标轴的指向、尺度以及地球椭球的4个基本参数的定义。2000国家大地坐标系的原点为包括海洋和大气的整个地球的质量中心;2000国家大地坐标系的Z轴由原点指向历元2000.0的地球参考极的方向,该历元的指向由国际时间局给定的历元为1984.0的初始指向推算,定向的时间演化保证相对于地壳不产生残余的全球旋转,X轴由原点指向格林尼治参考子午线与地球赤道面(历元2000.0)的交点,Y轴与Z轴、X轴构成右手正交坐标系。采用广义相对论意义下的尺度。 2000国家大地坐标系,长半轴6378137m,扁率f=1/298.257222101,地心引力常数GM =3.986004418×1014m3s-2,自转角速度ω=7.292l15×10-5rads-1。 4、1984世界大地坐标系(WGS84坐标系WorldGeodeticSystem) wgs-84坐标系是美国国防部研制确定的大地坐标系,是一种协议地球坐标系。wgs-84坐标系的定义是:原点是地球的质心,空间直角坐标系的z轴指向bih(1984.0)定义的地极(ctp)方向,即国际协议原点cio,它由iau和iugg共同推荐。x轴指向bih定义的零度子午面和ctp 赤道的交点,y轴和z,x轴构成右手坐标系。wgs-84椭球采用国际大地测量与地球物理联合会第17届大会测量常数推荐值,采用的两个常用基本几何参数: 长半轴a=6378137m;扁率f=1:298.257223563。 GPS广播星历是以WGS-84坐标系为根据的。

平面直角坐标系教学设计(省一等奖)

课题:7.1.2平面直角坐标系 教学内容:新人教版七年级下册第六章第二节平面直角坐标系 一、设计理念 以教材中提供的素材和实际生活中的一些问题为载体,通过一系列探究互动过程,将静态的教学内容,设计成动态的过程,将传统的教学方法演变成更加生动有趣的数学课堂。引导学生在丰富、有趣的数学活动中,积极思考、充分探究、获取知识、发展能力、培养学生的数学自信和良好思维品质。 二、材的地位和作用分析 1.内容的地位和作用 《平面直角坐标系(一)》是新人教版教科书七年级下册第七章第二节内容。本节课是学生刚刚学习的用有序实数对来表示位置的内容基础上学习的,它不仅强化了平面直角坐标系的意义,而且还用平面直角坐标系来应用于现实生活中,对现实生活很有用的知识,与此同时也是为今后的解析几何做好铺垫,平面直角坐标系是用途很广泛的知识点之一,在学习时要多加注意平面直角坐标系的特点和应用时的方便性。 2.课标要求 通过对平面直角坐标系的学习,加深对坐标系的理解,也是学习空间直角坐标系做前提。作为很有用的平面直角坐标系,它在现实生活中

应用非常广泛,所以要求我们的学生在学习平面直角坐标系时要抓住它的特性去学习,以便在今后的学习中有所应用。 三、教学内容的分析 “平面直角坐标系”是“数轴”的发展,使点与坐标的对应关系顺利实现了从一维到二维的过渡.“平面直角坐标系”的建立使有序数对与平面内的点产生了一一对应,提供了用代数方法来研究几何问题的重要数学工具。 学生已在具体情境中学习了有序数对表示物体的位置.本节课先介绍数轴上点与坐标的一一对应,在此基础上说明建立平面直角坐标系的必要性以及合理性,同时引入相关的概念以及平面内点与坐标一一对应的结论。并进一步学习平面直角坐标系中象限、坐横轴、纵轴、原点、坐标的概念;如何书写坐标、描点;探究总结坐标轴上、象限中点的符号特征。 一般地,在平面内互相垂直且原点重合,分别位于水平位置与铅直位置的两条数轴组成平面直角坐标系,习惯取向右、向上为正方向.建立了平面直角坐标系后,对于坐标系平面内的任何一点,我们可以确定它的坐标.反过来,对于任何一个坐标,可以在坐标平面内确定它所表示的一个点,从而建立坐标平面内点与有序数对的一一对应,体现数形结合的思想。 四、目标及其解析

建立测量坐标系的过程和方法总结

建立测量坐标系的过程和方法总结 三次元操作培训|建立测量坐标系的过程和方法总结 三次元操作培训之坐标系的建立。要想把测量工作做好,首先要熟悉软件的操作,需要了解坐标系如何合理建立,坐标系建立的合理与否直接影响测量的准确性和方便性。为了在零件上建立三轴垂直的坐标系,测量机软件首先利用面元素确定第一轴,因为面元素的方向矢量始终是垂直于该平面的,当我们利用投影到该平面上的一条线来建立第二轴时,第一轴和第二轴就保证绝对是垂直的,至于第三轴就不用你再建了,由软件自动生成垂直于前两轴的第三轴。这样测量机软件就建立了互相垂直的、符合直角坐标系原理的零件坐标系。 我们在用三坐标测量机测量产品时建立坐标系最常见的有一面一线一点。一面两孔。但这只局限于正规机加工的工厂。对于其他的就五花八门了,我们主要是根据图纸找基准,不要把自己认为的标准的元素看做建坐标的基准,但选择基准的话又有2个问题,1是加工基准,2是安装基准。一

般没特殊要求我们都以加工基准建立坐标系。 找基准元素又分为很多种:有需要连接构造的,有三阶平面的等等归根结底就是一句话,多练多长见识,要在零件上找相互垂直的元素来建立坐标系是不可能的。 那么在软件内部是如何进行操作的呢? 1.软件内部已经准备好了各种建立零件坐标系的数据结构,它们的初始值是与“机器坐标系”一致的。当我们要利用3-2-1方法建立零件坐标系时,首先测量面元素(假如是X、Y平面),这时面的法向矢量(我们要作Z轴)与机器坐标系有两个空间夹角(零件肯定不会与机器坐标系完全一致),即与X轴有a角,与Y轴有b角。 2.当我们指定该面元素建立零件坐标系第一轴后(建立Z轴),软件就会让1号坐标系的数据结构首先绕X轴旋转b角度,然后再绕Y轴旋转a角度,使两者重合。1号坐标系Z零点坐标平移到该平面特征点的Z值。 3.当我们采用线元素,确定第二轴时,1号坐标系绕Z轴旋转,使指定轴(假如是X轴)与该线重合。1号坐标系的Y零点平移到这条线特征点的Y值。 4.这时只有X轴的零点没有着落,最后一点就是为X轴而设的。 5.零件坐标系的零点如果没有特殊指定,就是按照以上设置的,往往我们还要根据图纸要求,将零件坐标系的零点平移到指定点元素上。 要说明的是,建立零件坐标系第一轴可以是任意轴,确定了平面就指定了轴,如:-X、+Y、-Z等。 建立第一轴的元素不一定非是平面,也可以是圆柱轴线、圆锥轴线或构造

常用坐标系与高程系简介

常用坐标系与高程系简介 2009-09-27 10:06:45| 分类:GIS技术| 标签:|字号大中小订阅 坐标系的概念 1.坐标系的定义: 如果空间上任意一点P的位置,可以用一组基于某一时间系统时刻t的空间结构的数学描述来确定,则这个空间结构可以称为坐标系,数学描述称为P点在该坐标系中的坐标。牛顿运动学原理要求坐标系是惯性的,惯性是每个物体所固有的当没有外力作用时保持静止或匀速直线运动的属性,基于这个特性,惯性坐标系的定义需与时间无关,通常这样的坐标系需要三个属性来描述(这应该是三维空间的本性吧),首先一个是原点(O),就是坐标系的中心点,第二个是过原点的任意直线(这里称为Z轴),第三个是过原点且与Z轴不重合的任意直线(这里称为X轴),如果X轴与Z轴垂直,会带来较优美的数学描述,我们称这样的坐标系是笛卡尔坐标系。P点的位置可以用P到原点的距离r,OP与Z轴的夹角,OP与X 轴的夹角来描述(当然也可以有其它等价描述),可以证明这个描述确定的P点是唯一的。 2.GPS领域常用坐标系模型: 在GPS测量中,最常用的坐标系模型是协议地球坐标系,该坐标系随同地球一起旋转,讨论随地球一起自转的目标位置,用这类坐标系方便;另外一类是协议天球坐标系,这个坐标系随同太阳系一同旋转,与地球自转无关,讨论卫星轨道运动时,用这类坐标系方便。 天球坐标系的定义是这样的,原点是地球质心(O),Z轴指向地球自转轴(天极,向北为正),X轴指向春分点,根据春分点的定义可以证明X轴与Z轴互相垂直,且X轴在赤道面上,同时为数学描述方便,引入与XOZ成右手旋转关系的Y轴。因为地球自转轴受其它天体影响(日、月)在空间产生进动,使得春分点变化(章动和岁差),导致用“瞬时天极”定义的坐标系不断旋转,而旋转的坐标系表现出非惯性的特性,不能直接应用牛顿定律。我们可以用某一历元时刻的天极和春分点(协议天极和协议春分点)定义一个三轴指向不变的天球 坐标系,称为固定极天球坐标系。 地球坐标系的定义是这样的,原点为地球质心(O),Z轴为地球自转轴,X轴指向地球上赤道的某一固定“刚性”点,所谓“刚性”是指其自转速度与地球一致,同时也为数学描述方便,引入与XOZ成右手旋转关系的Y轴。地球不是一个严格刚性的球体,Z轴在地球上随时间而变,称为极移,同天球坐标系一样,需要指定一个固定极为Z轴,这样的地球坐标系称为固定极地球坐标系。可以证明当观察地球上的物体时,该坐标系是惯性的。如果一个坐标系OXYZ,O不是地球质心,Z轴与地球自转轴平行,则这个坐标系具有与地球相同的自转角速度,我们也把此类坐标系称为地球坐标系。 3.协议坐标系统: 那么,什么是“协议”坐标系呢?通常,理论上坐标系由定义的坐标原点和坐标轴指向来确定。坐标系一经定义,任意几何点都具有唯一一组在该坐标系内的坐标值,反之,一组该坐标系内的坐标值就唯一定义了一个几何点。实际应用中,在已知若干参考点的坐标值后,通过观测又可反过来定义该坐标系。可以将前一种方式称为坐标系的理论定义。而由一系列已知点所定义的坐标系称为协议坐标系,这些已知参考点构成所谓的坐标框架。在点位坐标值不存在误差的情况下,这两种方式对坐标系的定义是一致的。事实上点位的坐标值通常是通过一定的测量手段得到,它们总是有误差的,由它们定义的协议坐标系与原来的理论定义的坐标系会有所不同,凡依据这些点测定的其它点位坐标值均属于这一协议坐标系而不属于理论定义的坐标系。由坐标框架定义的固定极天球坐标系和固定极地球坐标系,称为协议天 球坐标系和协议地球坐标系。

三坐标建立坐标系意义和方法

三坐标测量机上建立零件坐标系的意义和建立方法简述 建立零件坐标系在三坐标测量的直接体现是提高测量效率和测量的准确性,这也是三坐标测量区别与传统测量的主要特点之一。有了零件坐标系,测量是由软件进行坐标转换,实现自动找正。建立零件坐标系的主要意义: 1、在零件坐标系上编制的测量程序可以重复运行而不受零件摆放位置的影响,所以编制程序前首先要建立零件坐标系。而建立坐标系所使用的元素不一定是零件的基准元素。 2、在测量过程中要检测位置度误差,许多测量软件在计算位置度时直接使用坐标系为基准计算位置度误差,所以要直接使用零件的设计基准或加工基准等等建立零件坐标系。 3、为了进行数字化扫描或数字化点作为CAD/CAM软件的输入,需要以整体基准或实物基准建立坐标系。 4、当需要用CAD数模进行零件测量时,要按照CAD数模的要求建立零件坐标系,使零件的坐标系与CAD数模的坐标系一致,才能进行自动测量或编程测量。 5、需要进行精确的点测量时,根据情况建立零件坐标系(使测点的半径补偿更为准确)。 6、为了测量方便,和其它特殊需要。 在测量过程中我们可能根据具体情况和测量的需要多次建立和反复调用零件坐标系,而只有在评价零件的被测元素时要准确的识别和采用各种要求的基准进行计算和评价。需要说明的是,对于不清楚或不确定的计算基准问题,一定要取得责任工艺员或工程师的认可和批准,方可给出检测结论。 建立零件坐标系最常用的方法是3-2-1法。3-2-1法是用3点测平面取其法矢建立第一轴,用2点测线投影到平面建立第二轴(这样两个轴绝对垂直,而第三轴自动建立,三轴垂直保证符合直角坐标系的定义),用一点或点元素建立坐标系零点。由于3-2-1法建立的零件坐标系,是符合笛卡尔直角坐标原理,因此在三坐标测量机的运用是及其普遍的。需要注意的是,并非要用完整的3-2-1 法来建立坐标系,可以单步进行或省略其中的步骤建立零件坐标系。如:回转体的零件(圆柱形)就可以不用进行第二步,用圆柱轴线确定第一轴并定义圆心为

相关文档
相关文档 最新文档