文档视界 最新最全的文档下载
当前位置:文档视界 › 现今生物信息学的发展情况

现今生物信息学的发展情况

现今生物信息学的发展情况
现今生物信息学的发展情况

现今生物信息学的发展情况

仲银银

摘要:生物信息学(bioinformatics)是生物学与计算机科学以及应用数学等学科相互交叉而形成的一门新兴学科。生物信息学研究重点主要体现在基因组学(Genomics)和蛋白学(Proteomics)两方面,主要研究对象有序列比对、蛋白质结构比对和预测、基因识别,

非编码区分析研究、分子进化和比较基因组学、序列重叠群(Contigs)装配、遗传密码的起源、基于结构的药物设计、生物图像、生物信息学技术方法的研究、生物系统的建模和仿真等。在我国,生物信息学随着人类基因组研究的展开才刚刚起步,但已显露出蓬勃发展的势头。

关键词:生物信息学、计算机科学,基因组学,蛋白学,分子生物学,信息学,研究对象

生物信息学(bioinformatics)是生物学与计算机科学以及应用数学等学科相互交叉而形成的一门新兴学科。它通过对生物学实验数据的获取、加工、存储、检索与分析,进而达到揭示数据所蕴含的生物学意义的目的。由于当前生物信息学发展的主要推动力来自分子生物学,生物信息学的研究主要集中于核苷酸和氨基酸序列的存储、分类、检索和分析等方面,所以目前生物信息学可以狭义地定义为:将计算机科学和数学应用于生物大分子信息的获取、加工、存储、分类、检索与分析,以达到理解这些生物大分子信息的生物学意义的交叉学科。

生物信息学研究重点主要体现在基因组学(Genomics)和蛋白学(Proteomics)两方面,具体说就是从核酸和蛋白质序列出发,分析序列中表达的结构功能的生物信息。目前的生物信息学基本上只是分子生物学与信息技术(尤其是因特网技术)的结合体。生物信息学的研究材料和结果就是各种各样的生物学数据,其研究工具是计算机,研究方法包括对生物学数据的搜索(收集和筛选)、处理(编辑、整理、管理和显示)及利用(计算、模拟)。

现今的生物信息学的主要研究对象有:

1、序列比对(Sequence Alignment)

序列比对的基本问题是比较两个或两个以上符号序列的相似性或不相似性。从生物学的初衷来看,这一问题包含了以下几个意义:从相互重叠的序列片断中重构DNA的完整序列。

2、蛋白质结构比对和预测

基本问题是比较两个或两个以上蛋白质分子空间结构的相似性或不相似性。蛋白质的结构与功能是密切相关的,一般认为,具有相似功能的蛋白质结构一般相似。

3、基因识别,非编码区分析研究

基因识别的基本问题是给定基因组序列后,正确识别基因的范围和在基因组序列中的精确位置。

4、分子进化和比较基因组学

分子进化是利用不同物种中同一基因序列的异同来研究生物的进化,构建进化树。既可以用DNA序列也可以用其编码的氨基酸序列来做,甚至于可通过相关蛋白质的结构比对来研究分子进化,其前提假定是相似种族在基因上具有相似性。通过比较可以在基因组层面上发现哪些是不同种族中共同的,哪些是不同的。

5、序列重叠群(Contigs)装配

把大量的较短的序列全体构成了重叠群(Contigs),逐步把它们拼接起来形成序列更长的重叠群,直至得到完整序列的过程称为重叠群装配。从算法层次来看,序列的重叠群是一个NP-完全问题。

6、遗传密码的起源

通常对遗传密码的研究认为,密码子与氨基酸之间的关系是生物进化历史上一次偶然的事件而造成的,并被固定在现代生物的共同祖先里,一直延续至今。随着各种生物基因组测序任务的完成,为研究遗传密码的起源和检验上述理论的真伪提供了新的素材。

7、基于结构的药物设计

基于生物大分子结构及小分子结构的药物设计是生物信息学中的极为重要的研究领域。为了抑制某些酶或蛋白质的活性,在已知其蛋白质3级结构的基础上,可以利用分子对齐算法,在计算机上设计抑制剂分子,作为候选药物。这一领域目的是发现新的基因药物,有着巨大的经济效益。

8、生物系统的建模和仿真

随着大规模实验技术的发展和数据累积,从全局和系统水平研究和分析生物学系统,揭示其发展规律已经成为后基因组时代的另外一个研究热点-系统生物学。当然,建立生物系统的理论模型还需要很长时间的努力,现在实验观测数据虽然在海量增加,但是生物系统的模型辨识所需要的数据远远超过了目前数据的产出能力。

9、生物信息学技术方法的研究

生物信息学不仅仅是生物学知识的简单整理和、数学、物理学、信息科学等学科知识的简单应用。海量数据和复杂的背景导致机器学习、统计数据分析和系统描述等方法需要在生物信息学所面临的背景之中迅速发展。

10、生物图像

没有血缘关系的人,为什么长得那么像呢外貌是像点组成的,像点愈重合两人长得愈像,那两个没有血缘关系的人像点为什么重合有什么生物学基础基因是不是相似这些都需要在生物信息学的发展中才能找到答案。

11、其他

如基因表达谱分析,代谢网络分析;基因芯片设计和蛋白质组学数据分析等,逐渐成为生物信息学中新兴的重要研究领域;在学科方面,由生物信息学衍生的学科包括结构基因组学,功能基因组学,比较基因组学,蛋白质学,药物基因组学,中药基因组学,肿瘤基因组学,分子流行病学和环境基因组学。从现在的发展不难看出,基因工程已经进入了后基因组时代。我们也有应对与生物信息学密切相关的如机器学习,和数学中可能存在的误导有一个清楚的认识。

在我国,生物信息学随着人类基因组研究的展开才刚刚起步,但已显露出蓬勃发展的势头。许多科研单位已经开始或准备开始从事这方面的研究工作。生物信息学作为基因组研究的有力武器,被广泛地用来加快新基因的寻找过程,以达到将“有用”新基因抢先注册专利的目的。在这场世界范围内的竞争中,中国科学家以及科研资金投向的决策部门如何结合我国科研水平的现状、优势领域等客观情况将有限的投资投入以求获得最大可能的科学研究以及商业回报,是一个无法回避的新课题。

虽然生物信息学为我们带来和即将带来很多的便利,但是,这些也无法排除它的发展会带来的一些隐忧。生物信息学的目的是期望从基因序列上解开一切生物的基本奥秘,从结构上获得生命的生理机制,这从哲学上来看是期望从分子层次上解释人类的所有行为和功能和致病原因。从本质上说,是希望将生命的奥秘还原成孤立的基因

序列或单个蛋白质的功能,而很少强调基因序列或蛋白质组作为一个整体在生命体中的调控作用。我们因此也不得不思考,这种研究的最终结果是否能够支撑我们对生物信息学的乐观呢,现在说肯定的话也许为时尚早。

综上所述,不难看出,生物信息学并不是一个足以乐观的领域,究竟原因,是由于其是基于分子生物学与多种学科交叉而成的新学科,现有的形势仍表现为各种学科的简单堆砌,相互之间的联系并不是特别的紧密。在处理大规模数据方面,没有行之有效的一般性方法;而对于大规模数据内在的生成机制也没有完全明了,这使得生物信息学的研究短期内很难有突破性的结果。那么,要得到真正的解决,最终不能从计算机科学得到,真正地解决可能还是得从生物学自身,从数学上的新思路来获得本质性的动力。

参考文献:

1、网站生物谷-生物研究-基因组学—《生物信息学应用》,佚名

2、网站生命经纬-交叉研究-生物信息学—《生物信息学应用:序列分析,电子克隆等

初探》,佚名

3、期刊<<微型电脑应用>>2004年第20卷第07期《计算机科学在生物信息学中的

应用》,作者: 万卫兵, 施鹏飞

园艺0601 仲银银

生物信息学复习题 名词解释 1. Homology (同源):来源于共同祖先的序列相似的序列及同源序列。序列相似序列并不一定是同源序列。 (直系同源):指由于物种形成的特殊事件来自一个共同祖先的不同物种中的同源序列,它们具有相似的功能。 (旁系(并系)同源):指同一个物种中具有共同祖先,通过基因复制产生的一组基因,这些基因在功能上的可能发生了改变。基因复制事件是促进新基因进化的重要推动力。 (异同源):通过横向转移,来源于共生或病毒侵染而产生的相似的序列,为异同源。 Score:The sum of the number of identical matches and conservative (high scoring) substitutions in a sequence alignment divided by the total number of aligned sequence characters. Gap总是不计入总数中。 6.点矩阵(dot matrix):构建一个二维矩阵,其X轴是一条序列,Y轴是另一个序列,然后在2个序列相同碱基的对应位置(x,y)加点,如果两条序列完全相同则会形成一条主对角线,如果两条序列相似则会出现一条或者几条直线;如果完全没有相似性则不能连成直线。 7. E值:得分大于等于某个分值S的不同的比对的数目在随机的数据库搜索中发生的可能性。衡量序列之间相似性是否显著的期望值。E值大小说明了可以找到与查询序列(query)相匹配的随机或无关序列的概率,E值越小意味着序列的相似性偶然发生的机会越小,也即相似性越能反映真实的生物学意义,E值越接近零,越不可能找到其他匹配序列。 值:得分为所要求的分值比对或更好的比对随机发生的概率。它是将观测得到的比对得分S,与同样长度和组成的随机序列作为查询序列进行数据库搜索进行比较得到的HSP(高分片段对)得分的期望分布联系起来计算的。通常使用低于来定义统计的显著性。P=1-e-E 9.打分矩阵(scoring matrix):在相似性检索中对序列两两比对的质量评估方法。包括基于理论(如考虑核酸和氨基酸之间的类似性)和实际进化距离(如PAM)两类方法,是序列相似性分析的基础,其不同的选择将会出现不同的分析结果。 10.空位(gap):在序列比对时,由于序列长度不同,需要插入一个或几个位点以取得最佳比对结果,这样在其中一序列上产生中断现象,这些中断的位点称为空位。 :美国国家生物技术信息学中心,属于美国国立医学图书馆的一部分,具有BLAST, Entrez ,GenBank等工具,还具有PubMed文献数据库。另外还具有Genome, dbEST, dbGSS , dbSTS, MMDB, OMIM, UniGene, Taxonomy, RefSeq, etc. 序列格式:是将DNA或者蛋白质序列表示为一个带有大于号(>)开始的核苷酸或者氨基酸序列的新文件,其中大于号后可以跟上序列的相关信息,其他无特殊要求。 13genbank序列格式:是GenBank 数据库的基本信息单位,是最为广泛的生物信息学序列格式之一。该文件格式按域划分为4个部分:第一部分包含整个记录的信息(描述符);第二部分包含注释,主要包含生物功能或数据库信息;第三部分是feature,对序列的注释;第四部分是序列本身,以“统发生树(Phylogenetic tree )是研究生物进化和系统发育过程中的一种用树状分支图来概括各种生物之间亲缘关系,是一种亲缘分支分类方法。在树中,每个节点代表其各分支的最近共同祖先,而节点间的线段长度对应演化距离(如估计的演化时间)。是用来研究物种进化与多样性的基础,是相近物种相关生物学数据的来源。17.基因树与物种树:物种树反映一组物种进化历程的系统树,其中每一个内部节点就代表一个物种形成的过程,而基因树则是代表来源于不同物种的单个同源基因的差异构建的系统树,而其内部的一个节点则代表一个祖先基因分化为两个新的独特的基因序列的事件。基因

常用数据库 在DNA序列方面有GenBank、EMBL和等 在蛋白质一级结构方面有SWISS-PROT、PIR和MIPS等 在蛋白质和其它生物大分子的结构方面有PDB等 在蛋白质结构分类方面有SCOP和CATH等 生物信息学的主要研究内容 1、序列比对(Alignment) 基本问题是比较两个或两个以上符号序列的相似性或不相似性。序列比对是生物信息学的基础,非常重要。两个序列的比对有较成熟的动态规划算法,以及在此基础上编写的比对软件包BLAST和FASTA,可以免费下载使用。这些软件在数据库查询和搜索中有重要的应用。 2、结构比对 基本问题是比较两个或两个以上蛋白质分子空间结构的相似性或不相似性。已有一些算法。 3、蛋白质结构预测,包括2级和3级结构预测,是最重要的课题之一 从方法上来看有演绎法和归纳法两种途径。前者主要是从一些基本原理或假设出发来预测和研究蛋白质的结构和折叠过程。分子力学和分子动力学属这一范畴。后者主要是从观察和总结已知结构的蛋白质结构规律出发来预测未知蛋白质的结构。同源模建(Homology)和指认(Threading)方法属于这一范畴。虽然经过30余年的努力,蛋白结构预测研究现状远远不能满足实际需要。 4、计算机辅助基因识别(仅指蛋白质编码基因)。最重要的课题之一 基本问题是给定基因组序列后,正确识别基因的范围和在基因组序列中的精确位置.这是最重要的课题之一,而且越来越重要。经过20余年的努力,提出了数十种算法,有十种左右重要的算法和相应软件上网提供免费服务。原核生物计算机辅助基因识别相对容易些,结果好一些。从具有较多内含子的真核生物基因组序列中正确识别出起始密码子、剪切位点和终止密码子,是个相当困难的问题,研究现状不能令人满意,仍有大量的工作要做。 5、非编码区分析和DNA语言研究,是最重要的课题之一 在人类基因组中,编码部分进展总序列的3~5%,其它通常称为“垃圾”DNA,其实一点也不是垃圾,只是我们暂时还不知道其重要的功能。分析非编码区DNA 序列需要大胆的想象和崭新的研究思路和方法。DNA序列作为一种遗传语言,不仅体现在编码序列之中,而且隐含在非编码序列之中。 6、分子进化和比较基因组学,是最重要的课题之一 早期的工作主要是利用不同物种中同一种基因序列的异同来研究生物的进化,构建进化树。既可以用DNA序列也可以用其编码的氨基酸序列来做,甚至于可通过相关蛋白质的结构比对来研究分子进化。以上研究已经积累了大量的工作。近年来由于较多模式生物基因组测序任务的完成,为从整个基因组的角度来研究分子进化提供了条件。 7、序列重叠群(Contigs)装配 一般来说,根据现行的测序技术,每次反应只能测出500或更多一些碱基对的序列,这就有一个把大量的较短的序列全体构成了重叠群(Contigs)。逐步把它们拼接起来形成序列更长的重叠群,直至得到完整序列的过程称为重叠群装配。拼接EST数据以发现全长新基因也有类似的问题。已经证明,这是一个NP-完备

一、名词解释(31个) 1.生物信息学:广义:应用信息科学的方法和技术,研究生物体系和生物过程 息的存贮、信息的涵和信息的传递,研究和分析生物体细胞、组织、器官的生理、病理、药理过程中的各种生物信息,或者也可以说成是生命科学中的信息科学。狭义:应用信息科学的理论、方法和技术,管理、分析和利用生物分子数据。 2.二级数据库:对原始生物分子数据进行整理、分类的结果,是在一级数据库、 实验数据和理论分析的基础上针对特定的应用目标而建立的。 3.多序列比对:研究的是多个序列的共性。序列的多重比对可用来搜索基因组 序列的功能区域,也可用于研究一组蛋白质之间的进化关系。 4.系统发育分析:是研究物种进化和系统分类的一种方法,其常用一种类似树 状分支的图形来概括各种(类)生物之间的亲缘关系,这种树状分支的图形称为系统发育树。 5.直系同源:如果由于进化压力来维持特定模体的话,模体中的组成蛋白应该 是进化保守的并且在其他物种中具有直系同源性。 指的是不同物种之间的同源性,例如蛋白质的同源性,DNA序列的同源性。(来自百度) 6.旁系(并系)同源:是那些在一定物种中的来源于基因复制的蛋白,可能会 进化出新的与原来有关的功能。用来描述在同一物种由于基因复制而分离的同源基因。(来自百度) 7.FASTA序列格式:将一个DNA或者蛋白质序列表示为一个带有一些标记的 核苷酸或氨基酸字符串。 8.开放阅读框(ORF):是结构基因的正常核苷酸序列,从起始密码子到终止 密码子的阅读框可编码完整的多肽链,其间不存在使翻译中断的终止密码子。(来自百度) 9.结构域:大分子蛋白质的三级结构常可分割成一个或数个球状或纤维状的区 域,折叠得较为紧密,各行其功能,称为结构域。 10.空位罚分:序列比对分析时为了反映核酸或氨基酸的插入或缺失等而插入空 位并进行罚分,以控制空位插入的合理性。(来自百度) 11.表达序列标签:通过从cDNA文库中随机挑选的克隆进行测序所获得的部分 cDNA的3’或5’端序列。(来自文献) 12.Gene Ontology 协会: 13.HMM 隐马尔可夫模型:将核苷酸序列看成一个随机序列,DNA序列的编 码部分与非编码部分在核苷酸的选用频率上对应着不同的Markov模型。14.一级数据库:数据库中的数据直接来源于实验获得的原始数据,只经过简单 的归类整理和注释 15.序列一致性:指同源DNA顺序的同一碱基位置的相同的碱基成员, 或者蛋 白质的同一氨基酸位置的相同的氨基酸成员, 可用百分比表示。 16.序列相似性:指同源蛋白质的氨基酸序列中一致性氨基酸和可取代氨基酸所 占的比例。 17.Blastn:是核酸序列到核酸库中的一种查询。库中存在的每条已知序列都将 同所查序列作一对一地核酸序列比对。(来自百度) 18.Blastp:是蛋白序列到蛋白库中的一种查询。库中存在的每条已知序列将逐 一地同每条所查序列作一对一的序列比对。(来自百度)

生物信息学的发展历程 生命科学领域原始研究,尤其是序列数据的快速积累,为发现重大学规律提供了可能。然而,原始数据并不等同于信息和知识,如何通过对海量数据的存储、比较、注释和分析,挖掘出这些数据所蕴含的生物学意义,是生命科学领域中最为关键的问题之一。在这一背景下,早期的生物信息学应运而生。它主要定位为一种技术支撑,其研究内容则主要取决于算法所服务或适用的分析领域,包括基因测序与序列装配、识别与注释、序列相似性比对、结构比对和预测等。一些着名的生物信息学工具和库,如序列分析工具BLAST、基因预测工具GeneScan、序列数据库GenBank等,对生命科学研究产生了深远的影响。 自从20世纪80年代启动人类组测序计划以来,各种高通量技术引起生物的指数增长。2004年,被誉为生命“阿波罗计划”的人类基因组计划宣告完成,自此人们开始了对基因组功能的系统解读,标志着生命科学研究进入“后基因组学”时代。生物学数据的积累不仅表现在序列方面,与其同步的还有的一级结构和高级结构数据、高通量转录表达谱数据和蛋白表达谱数据、表观遗传学数据、相互作用数据、疾病易感性数据和高通量成像数据等。 此外,分子演化和比较基因组学、基于结构的药物设计、生物系统的建模和仿真、代谢网络分析等多个前沿交叉领域均产生了海量数据,分子生物学的研究进入到一个通量化的“组学”时代。Nucleic Acids Researc杂志连续21年在其每年的第一期中详细介绍最新版本的各类生物数据库。根据该杂志的统计,截止到2013年1月,在上述海量数据基础上派生、整理出来的数据库已有1512个。海量生物数据的积累,促成了生物信息学由起初单纯的技术支撑,逐步发展到对生物学问题的系统诠释;从简单地提供数据管理和算法支持,发展为从海量数据出发,通过计算技术对其进行分析、整合、模拟,并在必要时辅以实验验证,最终发现生命科学新规律的新型学科体系。 近年来,新一代测序技术(next generation sequencing,又名深度测序技术)的兴起进一步加速了人们探索未知生命现象的进程,而生物信息学在这一新的时代背景下焕发出新的活力。以HiSeq 2000新一代测序技术平台为例,该平台满负荷运转可实现在一周内完成对四个人类个体的全基因组重测序,而一个人全基因组测序仅需5000美元。在此平台基础上,经过对前期样本处理的适当调整,可实现在全基因组范围内对基因表达的精确定量、对基因结构和可变剪切事件的准确定义、对转录因子和microRNA结合位点的准确鉴定等。 通过巧妙的前期样本处理,这一核酸测序平台甚至可用于解决蛋白表达定量、DNA三级结构等难题,例如,通过巧妙地对核糖体保护的mRNA片断进行测序,核糖体图谱技术可实现在全基因组范围内对蛋白表达的定量,并对蛋白的翻译速度进行估计,很好地补充了现有的蛋白质组学技术。而通过对染色体相邻位置的交联和深度测序,Hi-C等新技术实现了对染色体三维结构的从头重构,对理解长程的表达调控提供了结构基础。这些改进极大地拓展了新一代测序技术在多层次组学调控研究中的应用,而生物信息学则紧随这一进程,逐渐渗透到生命科学的各个研究环节,利用学科交叉优势创新尖端的技术,提出崭新的假设并最终致力于探索生命的新规律。

第一章 1.生物信息学:用数学的、统计的、计算的方法来解决生物问题,这基于用DNA、氨基酸及相关信息。即生物+信息学,其中生物是指从基因型到表型:DNA/基因组→RNA→蛋白质→分子网络→细胞→生理学/疾病。信息学是指从数据到发现:数据管理→数据计算→数据挖掘→模型/模拟 2.人类基因组计划:①前基因组时代(1990年前):通过序列之间的对比,寻找序列变化,确定序列功能。②基因组时代(1990年后~2001年)迅猛发展:标志性的工作包括基因寻找和识别,数据库系统的建立。③后基因组时代(2001年至今)功能基因组研究:研究内容发展到基因和基因组的功能分析,即功能基因组,学研究。从传统的还原论研究生命过程转到了整体论思想。 2001年,中美日德法英6国科学家耗费十年,联合公布人类基因组草图 3.基因芯片:又称DNA芯片,由大量DNA或寡聚核苷酸探针密集排列形成的探针阵列。原理:杂交测序方法,在一定条件下,载体上的核酸分子可以与来自样品的序列互补的核酸片段杂交,如果把样品中的核酸片段进行标记,在专用的芯片阅读仪上就可以检测到杂交信号。药物处理细胞总mRNA用Cy5标记,未处理的细胞总mRNA用Cy3标记,颜色?将两者杂交形成固相探针,包含cDNA和寡核苷酸,最后进行结果观察和信息分析。 、EMBL、DDBJ 5.数据挖掘:①理解数据和数据的来源②获取相关知识与技术③整合与检查数据④去除错误或不一致的数据⑤建立模型和假设⑥实际数据挖掘工作⑦测试和验证挖掘结果⑧解释和应用。数据挖掘中的常见算法思想:判断、聚类、关联。数据挖掘模型:①监督模型、预测模型②无监督模型:聚类分析和关联分析②数据降维:主成分分析和因子分析。 第二章: 1.Sanger法:①1977年,提出了“双脱氧核苷酸末端终止测序方法”②技术基础:PCR扩增;双脱氧核苷酸的扩增终止;电泳分离扩增片段③优点1.读取片段长 2.准确率高99.9% 缺点:1.测序通量低2.成本高、流程多④方法、原理:每个反应含有所以四种dNTP使之扩增,并混入限量的一种不同的ddNTP使之终止,由于ddNTP缺乏延伸所需要的3’-OH基团,使延长的寡聚核苷酸选择性地在G,A,T或 C 处终止,终止点由反应中相应的双脱氧而定,每一种dNTPs和ddNTPs的相对浓度可以调整,使反应得到一组长几百至几千碱基的链终止产物。它们具有共同的起始点,但终止在不同的核苷酸上,可通过高分辨率变性凝胶电泳分离大小不同的片段,凝胶处理后可以X-光胶片放射性自显影或非同位素标记进行检测 2. 第2代测序技术(2005)①特点:1.PCR反应空间限定在特定的微小载体中。降低成本,实现高通量2.边合成边测序以及平行测序②第一代测序就出现了自动化测序③Solexa步骤:(1)制备模板,单链片断固定到载片表面(2)DNA簇群生成(3)循环合成反应+荧光成像④技术基础:基于芯片或其他载体、3’受保护的荧光标记碱基、PCR ⑤优点:高通量、没有电泳的步骤,成本降低缺点:读取片段长度短、准确率下降 3.Read contig Scaffold ①Read:测序读到的碱基序列片段,测序的最小单位②contig:由reads通过对overlap区域拼接组装成的没有gap的序列段③Scaffold:通过pair ends信息确定出的contig排列,中间有gap 4.测序的应用:①遗传多样性分析②甲基化分析③研究与蛋白质结合的DNA序列特征④转录组测序 5. 转录组测序(RNA Seq):①定义:把mRNA, non-codingRNA(ncRNA) 和smallRNA全部或者其中一些用高通量测序技术进行测序分析的技术②ncRNA主要包括有:tRNA、rRNA、snRNA、核仁小分子RNA(snoRNA)、细胞质小分子RNA(scRNA)、不均一核RNA(hnRNA)、小RNA(microRNA, miRNA) ③方法:获得cell总RNA,然后根据实验需要,对RNA样品进行处理,处理好的RNA再进行片段化,然后反转录形成cRNA,获得cDNA文库,然后在cDNA片段接上接头,最后用新一代高通量测序进行测序④作用:(1)通过RNA-seq来分析基因表达量(2)通过RNA-seq分析基因表达网

生物信息学中的机器学习方法 摘要:生物信息学是一门交叉学科,包含了生物信息的获取、管理、分析、解释和应用等方面,兴起于人类基因组计划。随着人类基因组计划的完成与深入,生物信息的研究工作由原来的计算生物学时代进入后基因组时代,后基因组时代中一个最重要的分支就是系统生物学。本文从信息科学的视角出发,详细论述了机器学习方法在计算生物学和系统生物学中的若干应用。 关键词:生物信息学;机器学习;序列比对;人类基因组;生物芯片 1.相关知识 1.1 生物信息学 生物信息学时生物学与计算机科学以及应用数学等学科相互交叉而形成的一门新兴学科。它综合运用生物学、计算机科学和数学等多方面知识与方法,来阐明和理解大量生物数据所包含的生物学意义,并应用于解决生命科学研究和生物技术相关产业中的各种问题。 生物信息学主要有三个组成部分:建立可以存放和管理大量生物信息学数据的数据库;研究开发可用于有效分析与挖掘生物学数据的方法、算法和软件工具;使用这些工具去分析和解释不同类型的生物学数据,包括DNA、RNA和蛋白质序列、蛋白质结构、基因表达以及生化途径等。 生物信息学这个术语从20世纪90年代开始使用,最初主要指的是DNA、RNA及蛋白质序列的数据管理和分析。自从20世纪60年代就有了序列分析的计算机工具,但是那时并未引起人们很大的关注,直到测序技术的发展使GenBank之类的数据库中存放的序列数量出现了迅猛的增长。现在该术语已扩展到几乎覆盖各种类型的生物学数据,如蛋白质结构、基因表达和蛋白质互作等。 目前的生物信息学研究,已从早期以数据库的建立和DNA序列分析为主的阶段,转移到后基因组学时代以比较基因组学(comparative genomics)、功能基因组学(functional genomics)和整合基因组学(integrative genomics)为中心的新阶段。生物信息学的研究领域也迅速扩大。生物信息学涉及生物学、计算机学、数学、统计学等多门学科,从事生物信息学研究的工作者或生物信息学家可以来自以上任何一个领域而侧重于生物信息学的不同方面。事实上,我们今天正需要具备各种背景知识、才能和研究思路的研究人员,集思广益

国内外生物信息学发展状况 1.国外生物信息发展状况 国外非常重视生物信息学的发展各种专业研究机构和公司如雨后春笋般涌现出来,生物科技公司和制药工业内部的生物 信息学部门的数量也与日俱增。美国早在1988年在国会的支持 下就成立了国家生物技术信息中心(NCBI),其目的是进行计 算分子生物学的基础研究,构建和散布分子生物学数据库;欧 洲于1993年3月就着手建立欧洲生物信息学研究所(EBI), 日本也于1995年4月组建了信息生物学中心(CIB)。目前, 绝大部分的核酸和蛋白质数据库由美国、欧洲和日本的3家数 据库系统产生,他们共同组成了 DDBJ/EMBL/Gen Bank国际核 酸序列数据库,每天交换数据,同步更新。以西欧各国为主的 欧洲分子生物学网络组织(EuropeanMolecular Biology Network, EMB Net)是目前国际最大的分子生物信息研究、开 发和服务机构,通过计算机网络使英、德法、瑞士等国生物信 息资源实现共享。在共享网络资源的同时,他们又分别建有自 己的生物信息学机构、二级或更高级的具有各自特色的专业数 据库以及自己的分析技术,服务于本国生物(医学)研究和开 发,有些服务也开放于全世界。 从专业出版业来看,1970年,出现了《Computer Methods and Programs in Biomedicine》这本期刊;到1985年4月, 就有了第一种生物信息学专业期刊《Computer Application

in the Biosciences》。现在,我们可以看到的专业期刊已经很多了。 2 国内生物信息学发展状况 我国生物信息学研究近年来发展较快,相继成立了北京大学生物信息学中心、华大基因组信息学研究中心、中国科学院上海生命科学院生物信息中心,部分高校已经或准备开设生物信息学专业。2002年国家自然科学基金委在生物化学、生物物理学与生物医学工程学学科设立了生物信息学项目,并列入生命科学部优先资助的研究项目。国家 863计划特别设立了生物信息技术主题,从国家需求的层面上推动我国生物信息技术的大力发展[3]。 但是由于起步较晚及诸多原因,我国的生物信息学发展水平远远落后于国外。在PubMed收录的以关键词“Bioinformatics”检索到的历年发表的文章数,可以看出大量的研究文献出现在21世纪以后。其中我国共有138篇占全部5548篇的2.5%,而美国则发表2160篇占全部的39%之多(统计数据截至2004年2月15日)。我国学者在生物信息学领域发表的有高影响力的论文只有不到美国学者发表数量的6%,差距相当大[4]。在生物信息学领域,一些著名院士和教授在各自领域取得了一定成绩,显露出蓬勃发展的势头,有的在国际上还占有一席之地。如北京大学的罗静初和顾孝诚教授在生物信息学网站建设方面、中科院生物物理所的陈润生研究员在EST

浅谈生物信息学在生物方面的应用 生物信息学(bioinformaLics)是以核酸和蛋白质等生物大分子数据库及其相关的图书、文献、资料为主要对象,以数学、信息学、计算机科学为主要手段,对浩如烟海的原始数据和原始资料进行存储、管理、注释、加工,使之成为具有明确生物意义的生物信息。并通过对生物信息的查询、搜索、比较、分析,从中获得基因的编码、凋控、遗传、突变等知识;研究核酸和蛋白质等生物大分子的结构、功能及其相互关系;研究它们在生物体内的物质代谢、能量转移、信息传导等生命活动中的作用机制。 从生物信息学研究的具体内容上看,生物信息学可以用于序列分类、相似性搜索、DNA 序列编码区识别、分子结构与功能预测、进化过程的构建等方面的计算工具已成为变态反应研究工作的重要组成部分。针对核酸序列的分析就是在核酸序列中寻找过敏原基因,找出基因的位置和功能位点的位置,以及标记已知的序列模式等过程。针对蛋白质序列的分析,可以预测出蛋白质的许多物理特性,包括等电点分子量、酶切特性、疏水性、电荷分布等以及蛋白质二级结构预测,三维结构预测等。 生物信息学中的主要方法有:序列比对,结构比对,蛋白质结构的预测,构造分子进化树,聚类等。基因芯片是基因表达谱数据的重要来源。目前生物信息学在基因芯片中的应用主要体现在三个方面。 1、确定芯片检测目标。利用生物信息学方法,查询生物分子信息数据库,取得相应的序列数据,通过序列比对,找出特征序列,作为芯片设计的参照序列。 2、芯片设计。主要包括两个方面,即探针的设计和探针在芯片上的布局,必须根据具体的芯片功能、芯片制备技术采用不同的设计方法。 3、实验数据管理与分析。对基因芯片杂交图像处理,给出实验结果,并运用生物信息学方法对实验进行可靠性分析,得到基因序列变异结果或基因表达分析结果。尽可能将实验结果及分析结果存放在数据库中,将基因芯片数据与公共数据库进行链接,利用数据挖掘方法,揭示各种数据之间的关系。 生物信息学在人类基因组计划中也具有重要的作用。 大规模测序是基因组研究的最基本任务,它的每一个环节都与信息分析紧密相关。目前,从测序仪的光密度采样与分析、碱基读出、载体标识与去除、拼接与组装、填补序列间隙,到重复序列标识、读框预测和基因标注的每一步都是紧密依赖基因组信息学的软件和数据库的。特别是拼接和填补序列间隙更需要把实验设计和信息分析时刻联系在一起.拼接与组装中的难点是处理重复序列,这在含有约30%重复序列的人类基因组中显得尤其突出。 人类基因组的工作草图即将完成,因此发现新基因就成了当务之急。使用基因组信息学的方法通过超大规模计算是发现新基因的重要手段,可以说大部分新基因是靠理论方法预测出来的。比如啤酒酵母完整基因组(约1300万bp)所包含6千多个基因,大约60%是通过信息分析得到的。 当人类基因找到之后,自然要解决的问题是:不同人种间基因有什么差别;正常人和病人基因又有什么差别。”这就是通常所说的SNPs(单核苷酸多态性)。构建SNPs及其相关数据库是基因组研究走向应用的重要步骤。1998年国际已开展了以EST为主发现新Spps 的研究。在我国开展中华民族SNPs研究也是至重要的。总之,生物信息学不仅将赋予人们各种基础研究的重要成果,也会带来巨大的经济效益和社会效益。在未来的几年中DNA 序列数据将以意想不到的速度增长,这更离不开利用生物信息学进行各类数据的分析和解释,研制有效利用和管理数据新工具。生物信息学在功能基因组学同样具有重要的应用目前应用最多的是同源序列比较、模式识别以及蛋白结构预测。所谓同源序列,是指从某一共同祖先经趋异进化而形成的不同序列。利用数据库搜索找出未知核酸或蛋白的同源序列,是序列分析的基础[lol。如利用BLASTn和BLASTx两种软件分别进行核苷酸和氨基

一、名词解释 1. 生物信息学: 1)生物信息学包含了生物信息的获取、处理、分析、和解释等在内的一门交叉学科; 2)它综合运用了数学、计算机学和生物学的各种工具来进行研究; 3)目的在于阐明大量生物学数据所包含的生物学意义。 2. BLAST(Basic Local Alignment Search Tool) 直译:基本局部排比搜索工具 意译:基于局部序列排比的常用数据库搜索工具 含义:蛋白质和核酸序列数据库搜索软件系统及相关数据库 3. PSI-BLAST:是一种迭代的搜索方法,可以提高BLAST和FASTA的相似序列发现率。 4. 一致序列:这些序列是指把多序列联配的信息压缩至单条序列,主要的缺点是除了在特 定位置最常见的残基之外,它们不能表示任何概率信息。 5. HMM 隐马尔可夫模型:一种统计模型,它考虑有关匹配、错配和间隔的所有可能的组合 来生成一组序列排列。(课件定义)是蛋白质结构域家族序列的一种严格的统计模型,包括序列的匹配,插入和缺失状态,并根据每种状态的概率分布和状态间的相互转换来生成蛋白质序列。 6. 信息位点:由位点产生的突变数目把其中的一课树与其他树区分开的位点。 7. 非信息位点:对于最大简约法来说没有意义的点。 8. 标度树:分支长度与相邻节点对的差异程度成正比的树。 9. 非标度树:只表示亲缘关系无差异程度信息。 10. 有根树:单一的节点能指派为共同的祖先,从祖先节点只有唯一的路径历经进化到达其 他任何节点。 11. 无根树:只表明节点间的关系,无进化发生方向的信息,通过引入外群或外部参考物种, 可以在无根树中指派根节点。 12. 注释:指从原始序列数据中获得有用的生物学信息。这主要是指在基因组DNA中寻找基 因和其他功能元件(结构注释),并给出这些序列的功能(功能注释)。 13. 聚类分析:一种通过将相似的数据划分到特定的组中以简化大规模数据集的方法。 14. 无监督分析法:这种方法没有内建的分类标准,组的数目和类型只决定于所使用的算法 和数据本身的分析方法。 15. 有监督分析法:这种方法引入某些形式的分类系统,从而将表达模式分配到一个或多个 预定义的类目中。 16. 微阵列芯片:将探针有规律地排列固定于载体上,与标记荧光分子的样品进行杂交,通 过扫描仪扫描对荧光信号的强度进行检测,从而迅速得出所要的信息。 17. 虚拟消化:是基于已知蛋白序列和切断酶的特异性的情况下进行的理论酶切(课件定 义)。是在已知蛋白质序列和蛋白外切酶之类切断试剂的已知特异性的基础上,由计算机进行的一种理论上的蛋白裂解反应。 18. 质谱(MS)是一种准确测定真空中离子的分子质量/电荷比(m/z)的方法,从而使分子质量 的准确确定成为可能。 19. 分子途径是指一组连续起作用以达到共同目标的蛋白质。 20. 虚拟细胞:一种建模手段,把细胞定义为许多结构,分子,反应和物质流的集合体。 21. 先导化合物:是指具有一定药理活性的、可通过结构改造来优化其药理特性而可能导致 药物发现的特殊化合物。就是利用计算机在含有大量化合物三维结构的数据库中,搜索能与生物大分子靶点匹配的化合物,或者搜索能与结合药效团相符的化合物,又称原型物,简称先导物,是通过各种途径或方法得到的具有生物活性的化学结构

核酸和蛋白质序列分析 蛋白质, 核酸, 序列 关键词:核酸序列蛋白质序列分析软 件 在获得一个基因序列后,需要对其进行生物信息学分析,从中尽量发掘信息,从而指导进一步的实验研究。通过染色体定位分析、内含子/外显子分析、ORF分析、表达谱分析等,能够阐明基因的基本信息。通过启动子预测、CpG岛分析和转录因子分析等,识别调控区的顺式作用元件,可以为基因的调控研究提供基础。通过蛋白质基本性质分析,疏水性分析,跨膜区预测,信号肽预测,亚细胞定位预测,抗原性位点预测,可以对基因编码蛋白的性质作出初步判断和预测。尤其通过疏水性分析和跨膜区预测可以预测基因是否为膜蛋白,这对确定实验研究方向有重要的参考意义。此外,通过相似性搜索、功能位点分析、结构分析、查询基因表达谱聚簇数据库、基因敲除数据库、基因组上下游邻居等,尽量挖掘网络数据库中的信息,可以对基因功能作出推论。上述技术路线可为其它类似分子的生物信息学分析提供借鉴。本路线图及推荐网址已建立超级链接,放在北京大学人类疾病基因研究中心网站(https://www.docsj.com/doc/e117764134.html,/science/bioinfomatics.htm),可以直接点击进入检索网站。 下面介绍其中一些基本分析。值得注意的是,在对序列进行分析时,首先应当明确序列的性质,是mRNA序列还是基因组序列?是计算机拼接得到还是经过PCR扩增测序得到?是原核生物还是真核生物?这些决定了分析方法的选择和分析结果的解释。 (一)核酸序列分析 1、双序列比对(pairwise alignment) 双序列比对是指比较两条序列的相似性和寻找相似碱基及氨基酸的对应位置,它是用计算机进行序列分析的强大工具,分为全局比对和局部比对两类,各以Needleman-Wunsch 算法和Smith-Waterman算法为代表。由于这些算法都是启发式(heuristic)的算法,因此并没有最优值。根据比对的需要,选用适当的比对工具,在比对时适当调整空格罚分(gap penalty)和空格延伸罚分(gap extension penalty),以获得更优的比对。 除了利用BLAST、FASTA等局部比对工具进行序列对数据库的搜索外,我们还推荐使用EMBOSS软件包中的Needle软件(http://bioinfo.pbi.nrc.ca:8090/EMBOSS/),和Pairwise BLAST (https://www.docsj.com/doc/e117764134.html,/BLAST/)。以上介绍的这些双序列比对工具的使用都比较简单,一般输入所比较的序列即可。 (1)BLAST和FASTA FASTA(https://www.docsj.com/doc/e117764134.html,/fasta33/)和BLAST (https://www.docsj.com/doc/e117764134.html,/BLAST/)是目前运用较为广泛的相似性搜索工具。这两

一、名词 Bioinformatics:生物信息学——是一门综合运用生物学、数学、物理学、信息科学以及计算机科学等诸多学科的理论方法,以互联网为媒介、数据库为载体、利用数学和计算机科学对生物学数据进行储存、检索和处理分析,并进一步挖掘和解读生物学数据。 Consensus sequence:共有序列——决定启动序列的转录活性大小。各种原核启动序列特定区域内(通常在转录起始点上游-10及-35区域)存在共有序列,是在两个或多个同源序列的每一个位置上多数出现的核苷酸或氨基酸组成的序列。 Data mining:数据挖掘——数据挖掘一般是指从大量的数据中自动搜索隐藏于其中的有着特殊关系性的信息的过程。数据挖掘通常是利用计算方法分析生物数据,即根据核酸序列预测蛋白质序列、结构、功能的算法等,实现对现有数据库中的数据进行发掘。 EST:(Expressed Sequence Tag)表达序列标签——是某个基因cDNA克隆测序所得的部分序列片段,长度大约为200~600bp。 Similarity:相似性——是直接的连续的数量关系,是指序列比对过程中用来描述检测序列和目标序列之间相同DNA碱基或氨基酸残基顺序所占比例的高低。 Homology:同源性——是两个对象间的肯定或者否定的关系。如两个基因在进化上是否曾具有共同祖先。从足够的相似性能够判定二者之间的同源性。 Alignment:比对——从核酸以及氨基酸的层次去分析序列的相同点和不同点,以期能够推测它们的结构、功能以及进化上的联系。或是指为确定两个或多个序列之间的相似性以至于同源性,而将它们按照一定的规律排列。 BLOSUM:模块替换矩阵——是指在对蛋白质数据库搜索时,采用不同的相似性分数矩阵进行检索的相似性矩阵。以序列片段为基础,从蛋白质模块数据库BLOCKS中找出一组替换矩阵,用于解决序列的远距离相关。在构建矩阵过程中,通过设置最小相同残基数百分比将序列片段整合在一起,以避免由于同一个残基对被重复计数而引入的任何潜在的偏差。在每一片段中,计算出每个残基位置的平均贡献,使得整个片段可以有效地被看作为单一序列。通过设置不同的百分比,产生了不同矩阵。 PAM(Point Accepted Mutation):突变数据矩阵PAM即可接受点突变——指1个PAM表示100个残基中发生一个残基突变概率的进化距离。在序列比对中,能够反映一个氨基酸发生改变的概率与两个氨基酸随机出现的概率的比值的矩阵。 Contig:叠连群——是指一组相互两两头尾拼接的可装配成长片段的DNA序列克隆群,也指彼此间可通过重叠序列而连接成连续的、扩展的、不间断的DNA序列的交叠片段产物。通过比对不同的序列,我们能够发现片段的顺序,并且contigs能被添加、删除、重排列来形成新的序列。 Phylogenetic tree:系统发生树又称为演化树(evolutionary tree)——是表明被认为具有共同祖先的各物种间演化关系的树,是一种亲缘分支分类方法。在树中,每个节点代表其各分支的最近共同祖先,而节点间的线段长度对应演化距离(如估计的演化时间)。它用来表示系统发生研究的结果,用它描述物种之间的进化关系。 In Silico Cloning:电子克隆——是近年来发展起来的一门基于表达序列标签(ESTs)的快速克隆基因的新技术,其利用种子序列从EST及UniGene数据库中搜索相似性序列,进行拼装、检索、分析等,以此获得目标基因的全长cDNA,在此基础上也能够实现基因作图定位。 二、问题思考 1、生物信息学这门学科是如何发展起来的? 答:生物学数据爆炸式增长 生物大分子数据库相继建立 生物技术与计算机技术并行飞速发展

浅谈结构生物信息学成果及其展望 摘要:我们已经步入分子生物医学的时代,当我们用分子水平去研究生命时,我们发现我们并未得到真实生命的立体结构的信息。 而结构生物信息学是分析生命真实的分子结构的科学,是以生 物信息学手段来研究生物大分子空间结构及其运动进而阐明 其生物学功能的科学。了解其成果,我们能更好地知晓它在实 际应用中的前景。 关键词:结构生物信息学成果展望 1、近年结构生物信息学成果 ①研究生物大分子结构的新技术:DNA重组技术,酶逐步降解技术,X射线晶体学分析技术,波谱技术,计算机技术 “工欲善其事,必先利其器”,使用新的技术。方法与仪器,使获得清晰的结构图像,以了解蛋白质的构象动态变化及对结构的贮存比较和结构-功能的预测。 若将研究技术分类,大致可分为四种,分别对应多种成果。 X射线晶体学透射显微技术 晶体学技术中子衍射技术显微学技术 电子晶体学扫描显微学

多维核磁共振技术 谱学方法电子自旋共振新发展方法:双向电泳激光拉曼等光谱技术 得到的技术成果 ⑴人源组蛋白分子伴侣DAXX与组蛋白H3.3-H4复合晶体结构的发现。这项发现解开了DAXX能精确识别H3.3与H3.1并特异性结合H3.3的迷,并对于勾画H3.3的储存途径及了解H3.3的生物学和病理学功能提供了结构基础。 ⑵揭示糖皮质激素关闭免疫系统关键基因的分子机制。在研究中,实验者使用X射线技术来进行GR结合在DNA上的晶体形态,当GR结合至DNA上久可以表现出关闭免疫系统基因转录的功能。这项研究揭示了通过抑制GR与其它GR分子作用的药物或许可以达到抗炎的效果,而且产生极小的副作用,一种基于植物的化合物-化合物A 目前正在实验室进行实验,来检测其抗炎的作用。 ⑶阴离子选择性的工作机制的发现。为了理解这类通道的离子选择机制,某研究组克隆并检测了60多个物种的MscS的离子选择性,最终成功鉴定到了一个具有强阴离子选择性的通道蛋白。经过多年的不懈努力,该研究组解析了其晶体结构并对其离子选择机制进行了研究。通过进一步的突变体实验,该研究组成功找到了该结构域介导离子选择性的关键氨基酸残基,进而提出了该通道的阴离子选择机制模型。该研究组在该工作中所取得的成果为理解阴离子如何被通道蛋白

生物信息学发展概况及研究进展 韩龙生物化学与分子生物学2010200531 1 概述 生物信息学是在生命科学、计算机科学和数学的基础上逐步发展而形成的一门新兴的边缘学科,它以核酸和蛋白质为主要研究对象,以数学、计算机科学为主要研究手段,对生物学实验数据进行获取、加工、存储、检索与分析,从而达到揭示数据所蕴含的生物学意义的目的[1]。 生物信息学的发展大致经历了前基因组时代、基因组时代和后基因组时代。目前,它的主要研究内容已经从对DNA和蛋白质序列比较、编码区分析、分子进化转移到大规模的数据整合、可视化,转移到比较基因组学、代谢网络分析、基因表达谱网络分析、蛋白质技术数据分析处理、蛋白质结构与功能分析以及药物靶点筛选等[1]。在后基因组时代的今天,生物信息学已经成为目前极其热门的系统生物学研究的重要手段。 利用各种功能的软件系统平台,目前生物信息学方法主要通过序列比对与分析、功能基因组与基因表达数据的分析、蛋白质结构预测以及基于结构的药物设计等方面应用于各个生命科学研究领域。 1.1序列比对与分析 序列比对是生物信息学的基础,是比较两个或两个以上符号序列的相似性或不相似性。两个序列的比对现在已有较成熟的动态规划算法,以及在此基础上编写的比对软件包——BLAST和FASTA;两个以上序列的多重序列是生物信息学中尚未解决的一个NP完全的组合优化问题,是目前研究的热点[2]。比较经典的算法有SAGA算法[3]、CLUSTAL算法以及隐马尔可夫模型(Hidden Markov Models,HMM)多重序列比对算法,另外,如Notredame等[4]开发的T-Coffee算法、Timo等[5]设计的Kalign算法、张琎等[6]设计的基于GC-GM多序列比对穷举遗传算法,是通过穷举某个特定范围内的所有序列的长度取值,来确定最终最佳比对长度的一种多序列比对算法。这些算法已应用于各种多序列比对软件,并在应用中不断得到优化。 1.2 功能基因组学 在后基因时代的今天,基因组学的研究已从结构基因组学(Structural genomics)转向功能基因组学(Functional genomics)[1] 。功能基因组的任务是进行基因组功能注释(Genome annotation),了解基因功能、认识基因与疾病的关系、掌握基因的产物及其在生命活动中的作用。基因的时空差异表达是功能基因组学研究的理论基础。

1.生物信息学:研究大量生物数据复杂关系的学科,其特征是多学科交叉,以互联网为媒介,数据库为载体。利用数学知识建立各种数学模型; 利用计算机为工具对实验所得大量生物学数据进行储存、检索、处理及分析,并以生物学知识对结果进行解释。 2.二级数据库:在一级数据库、实验数 据和理论分析的基础上针对特定目标衍生而来,是对生物学知识和信息的进一步的整理。 序列格式:是将DNA或者蛋白质序列表示为一个带有一些标记的核苷酸或者氨基酸字符串,大于号(>)表示一个新文件的开始,其他无特殊要求。 序列格式:是GenBank 数据库的基本信 息单位,是最为广泛的生物信息学序列格式之一。该文件格式按域划分为4个部分:第一部分包含整个记录的信息(描述符);第二部分包含注释;第三部分是引文区,提供了这个记录的科学依据;第四部分是核苷酸序列本身,以“询序列(query sequence):也称被检索序列,用来在数据库中检索并进行相似性比较的序列。P98 8.打分矩阵(scoring matrix):在相似性检索中对序列两两比对的质量评估方法。包括基于理论(如考虑核酸和氨基酸之间的类似性)和实际进化距离(如PAM)两类方法。P29 9.空位(gap):在序列比对时,由于序列长度不同,需要插入一个或几个位点以取得最佳比对结果,这样在其中一序列上产生中断现象,这些中断的位点称为空位。P29 10.空位罚分:空位罚分是为了补偿插入和缺失对序列相似性的影响,序列中的空位的引入不代表真正的进化事件,所以要对其进行罚分,空位罚分的多少直接影响 对比的结果。P37 值:衡量序列之间相似性是否显着的期望 值。E值大小说明了可以找到与查询序列 (query)相匹配的随机或无关序列的概 率,E值越接近零,越不可能找到其他匹 配序列,E值越小意味着序列的相似性偶 然发生的机会越小,也即相似性越能反映 真实的生物学意义。P95 12.低复杂度区域:BLAST搜索的过滤选 项。指序列中包含的重复度高的区域,如 poly(A)。 13.点矩阵(dot matrix):构建一个二 维矩阵,其X轴是一条序列,Y轴是另一 个序列,然后在2个序列相同碱基的对应 位置(x,y)加点,如果两条序列完全相 同则会形成一条主对角线,如果两条序列 相似则会出现一条或者几条直线;如果完 全没有相似性则不能连成直线。 14.多序列比对:通过序列的相似性检索 得到许多相似性序列,将这些序列做一个 总体的比对,以观察它们在结构上的异 同,来回答大量的生物学问题。 15.分子钟:认为分子进化速率是恒定的 或者几乎恒定的假说,从而可以通过分子 进化推断出物种起源的时间。 16.系统发育分析:通过一组相关的基因 或者蛋白质的多序列比对或其他性状,可 以研究推断不同物种或基因之间的进化关 系。 17.进化树的二歧分叉结构:指在进化树 上任何一个分支节点,一个父分支都只能 被分成两个子分支。 系统发育图:用枝长表示进化时间的 系统树称为系统发育图,是引入时间概念 的支序图。 18.直系同源:指由于物种形成事件来自 一个共同祖先的不同物种中的同源序列, 具有相似或不同的功能。(书:在缺乏任 何基因复制证据的情况下,具有共同祖先 和相同功能的同源基因。) 19.旁系(并系)同源:指同一个物种中 具有共同祖先,通过基因重复产生的一组 基因,这些基因在功能上可能发生了改 变。(书:由于基因重复事件产生的相似 序列。) 20.外类群:是进化树中处于一组被分析 物种之外的,具有相近亲缘关系的物种。 21.有根树:能够确定所有分析物种的共 同祖先的进化树。 22.除权配对算法(UPGMA):最初,每个 序列归为一类,然后找到距离最近的两类 将其归为一类,定义为一个节点,重复这 个过程,直到所有的聚类被加入,最终产 生树根。 23.邻接法(neighbor-joining method): 是一种不仅仅计算两两比对距离,还对整 个树的长度进行最小化,从而对树的拓扑 结构进行限制,能够克服UPGMA算法要求 进化速率保持恒定的缺陷。 24.最大简约法(MP):在一系列能够解 释序列差异的的进化树中找到具有最少核 酸或氨基酸替换的进化树。 25.最大似然法(ML):它对每个可能的 进化位点分配一个概率,然后综合所有位 点,找到概率最大的进化树。最大似然法 允许采用不同的进化模型对变异进行分析 评估,并在此基础上构建系统发育树。 26.一致树(consensus tree):在同一 算法中产生多个最优树,合并这些最优树 得到的树即一致树。 27.自举法检验(Bootstrap):放回式抽 样统计法。通过对数据集多次重复取样, 构建多个进化树,用来检查给定树的分枝 可信度。 28.开放阅读框(ORF):开放阅读框是基 因序列的一部分,包含一段可以编码蛋白 的碱基序列。 29.密码子偏好性(codon bias):氨基 酸的同义密码子的使用频率与相应的同功 tRNA的水平相一致,大多数高效表达的 基因仅使用那些含量高的同功tRNA所对 应的密码子,这种效应称为密码子偏好 性。 30.基因预测的从头分析:依据综合利用 基因的特征,如剪接位点,内含子与外显 子边界,调控区,预测基因组序列中包含 的基因。 31.结构域(domain):保守的结构单 元,包含独特的二级结构组合和疏水 内核,可能单独存在,也可能与其他

相关文档
相关文档 最新文档