文档视界 最新最全的文档下载
当前位置:文档视界 › 海洋低空无人机监测系统

海洋低空无人机监测系统

海洋低空无人机监测系统
海洋低空无人机监测系统

UAV Low Altitude Marine Monitoring System

Jie-liang Huang, Wen-yu Cai

School of Electronics & Information

Hangzhou Dianzi University

Hangzhou, China

E-mail: jieliang_huang@https://www.docsj.com/doc/df7488740.html,, caiwy@https://www.docsj.com/doc/df7488740.html,

Abstract—As the human pays more and more attention to the exploration of marine resources, the marine activities show diversity. At the aspect of the exploration of some uncharted and potentially dangerous waters or islands, the marine low altitude surveillance UAV (unmanned aerial vehicle) is obviously very important. As a tool to obtain first-hand information, UAV can take off near the monitored area. Carrying with a high-definition camera, altimeter, GPS, barometric pressure and humidity sensors, the UAV can monitor the area for real-time, get the latitude and longitude of specific landmarks, measure altitude and barometric pressure and humidity and etc. Therefore we can have a general understanding of the whole area to eliminate risk factors. In addition, for different application environments, UAV can be equipped with different monitoring devices, which makes the application for more flexible and the areas for more diversity.

Keywords-low altitude; UAV; high-definition cameras;

altimeters; GPS; barometric pressure and humidity sensor

I.I NTRODUCTION

With the national marine economy being proposed, the low-altitude UAV remote sensing is applied to marine monitoring and monitors marine emergencies, marine disasters, marine environment dynamically with real-time tracking, to provide real-time field data for the marine forecasters for Rapid Alert and a scientific basis of decisions and solution for the marine management. Regardless of the protection of the marine disaster prevention and mitigation services and the need for the development of national high- tech, it is urgent to develop the real-time monitoring system of the marine environment with quick response and intensification and establish the report of efficient disaster warning service on the basis of new technology.

Low-altitude UAV remote sensing marine monitoring as an monitoring technology of important and in the initial stage, on one hand, can do emergency response, without waiting for satellite transit or the limit of flying height of traditional aviation Airborne remote sensing; On the other hand, can overcome the defects of the optical remote sensing technology of traditional satellite in South cloudy and rainy weather and will greatly enhance the ability of monitoring Marine dynamically and urgently monitoring of disaster prevention and maneuver reduction, which provides quality services to the marine disaster prevention and mitigation, then escorts for the economic development of regional marine.

This article will focus on UAV low altitude marine monitoring system with Art-tech Diamond 2500 Glider unmanned marine as the hardware platform, then describe the consist, the key technology and its applications of system.

II.T HE C OMPOSITION OF S YSTEM

UAV low-altitude Marine monitoring system consists of ground flight control system, aerial surveillance flight system, UAV driving flying platform, wireless HD video transmission system and so on.

A.Ground Flight Control System

Ground flight control systems is useful for the flight control of UAV and the processing and display of related data, including data transceiver module, debug interface, gesture controller(as shown in Fig.1). By the composition of wireless module, JTAG interface, the control handle, STM32 controller, PC terminal, it can be achieved on the UAV attitude, altitude, speed, heading, route control, with remote control and autonomous flight modes.

In order to improve the reliability of the flight control system, the system uses the wireless transceiver module with a high transmission rate and low error rate to ensure that the control signals can be transmitted in real -time and received correctly. Because digital connection being instead of analog, which improves the accuracy of signal transmission and increases the anti-jamming capability. The body has the ability to be extended and flexible configuration, and some typical system components may be changed according to the needs of the missions.

Figure 1. Ground flight control system.

B.Aerial Surveillance Flight System

Aerial surveillance flight system is response to the control signal of ground flight control system. It adjusts the flight of the UAV in real-time and collects relevant data information by a variety of sensors, which includes three parts of sensors, actuators and flight controller (as shown in Fig.2). By the composition of GPS module, battery voltage detection module, altimeter, barometer and humidity detection module, wireless module, attitude acquisition module, STM32 controllers, actuators, it can measure the location latitude and longitude, altitude, barometric pressure and humidity, life

2014 International Conference on Wireless Communication and Sensor Network

time equivalent, which are sent to the ground flight control system through the wireless module. UAV realizes remote mode through adjusting attitude, speed, course and heading by controlling brushless motors, various steering.

D. Wireless Video Transmission System

Wireless video transmission system is used for video acquisition, processing, transmission and display, including cameras, video wireless transmitter module, wireless video receiver module and a PC terminal (as shown in Fig.4). Wireless video transmitter module converts the analog image information into digital signals that is suitable for transmission in real-time. Wireless video receiver module receives the image signal that is processed and passed to a PC terminal for display through the network cable. Since the control signal and the image signal transmission systems are separate, so it is able to ensure the high-resolution images and the stability of UAV control.

Figure 2. Aerial surveillance flight system.

C. UAV Driving Flying Platform

The unmanned flying platform with reasonable layout of aerodynamic and stable performance is the basic guarantee of the system. UAV is mainly made with fiberglass and carbon fiber composite materials, which is light weight and high strength. Fuselage is the form of compartments, having a larger volume, which is easy for installation and maintenance. The payload of UAV and the size of equipment warehouse are based on remote sensing equipment and the weight and size settings of control systems.

Art-tech Diamond 2500 Glider advances laminar flow airfoil wing with the wingspan of 2.5 meters and excellent gliding performance (as shown in Fig.3). The whole machine adopts EPO material with good impact resistance. It can achieve vertical rise, flying fast, manipulate flexibly and stably with a brushless and powerful motor. The assembly of aircraft is simple and also the tail and peace wing are removable, which makes it easy to transport.

Figure 3. Art-tech Diamond 2500 Glider.

Figure 4. Wireless video transmission system.

III. T HE K EY T ECHNOLOGY

The key technology of UAV low altitude marine monitoring system is designing the remote control program and autonomous flight procedures. These two points will be introduced below.

A. Remote Control Program

Remote control program is used for remote sensing control mode. Remote control is the most basic control of UAV. Although the degree of autonomous flight of UAV has been significantly improved, the functions of basic remote control also reserved. The most important feature of remote control is the ability to give full play to the experience advantage and the initiative of senior human intelligent behavior of hand manipulation, which achieves the control effect that is difficult to automatic control.

The process flow chart of ground part is shown in Fig.5. After system initialization, the data of control handle is read continuously to determine whether the data is updated (determining whether an operation or not). Once data is updated, it is immediately sent out by wireless module in certain data frame format (control signal). After the successful transmission of data, it returns and continues reading control handle again and again. Data frame format:

@ + the number of bytes of the frame + throttle + pitch + yaw + roll + flap + cameraX + cameraY + 0x0d ;

The program defines a character array to store data frame. The "@" is used to identify the start bit of the data frame. "0x0d" is used to identify the stop bit of the data frame. "The

number of bytes of the frame" is used to identify the length of data frame, which is used to determine whether a data frame being sent or received correctly. "Throttle" shows the control volume of throttle to control of brushless motors. "Pitch" shows the control volume of pitch to control aileron servo. "Yaw" shows the control volume of yaw to control the yaw steering gear. "Roll" shows the control volume of elevator to control lift steering gear. "Flap" shows the control volume of flap to control flap steering gear. "CameraX" and "CameraY" shows the control volume of PTZ camera to control PTZ steering gear.

The program flow chart of aerial part is shown in fig.6. After system initialization, the program reads the data frame that is received by the wireless module, according to the length of the data frame and the value of each control volume judging the received data whether it is correct or not. If the data is correct, it calls the servo driver to convert each control volume to a certain duty ratio of PWM wave and thus drive steering engine and brushless motor, or else give up and continues to read the next frame data. Then it sends data of each sensor to ground receivers through wireless module. Finally it returns to continue reading the data again and again.

Figure 5. Ground program flow chart.

Figure 6. Aerial program flow chart.

B. Autonomous Flight Program

According to the characteristics of small UAV, attitude control can be used with angular velocity gyro sensor and infrared sensor group. In order to reduce the cost, this system adopts the infrared posture sensor device to implement the attitude (pitch, roll) stability control. Flight attitude stability control system is mainly composed of infrared sensor group, GPS and signal processing and control equipment and etc. Since the intensity of infrared radiation of ground is stronger than the sky, using a pair of reverse installation of infrared sensor can determine a tilt axis relative to the ground plane. Installing two pairs of sensors all around for UAV can measure the difference of infrared radiation signal which is relate to ground for the basis of stability control between two axial of roll and pitch.

Four infrared sensors installed on the outside of the fuselage point respectively before and after, left, right four directions, measuring the infrared radiation signal of four directions and which is sent to the signal processing and control equipment through the data cable. The equipment makes the received signal for A/D conversion, and then sent to the control system. MCU processes the difference of intensity of infrared radiation signal and then obtains the flight information. On this basis, the system sends control instruction to aileron and elevator servo, so as to realize the level and smooth flight of the UAV.

IV. C ONCLUSION

As a result of the mature of the unmanned aerial vehicle (UAV) and aviation remote sensing technology, unmanned aerial vehicle (UAV) has been gradually applied in the field of civil remote sensing. This paper makes a summary of the research and development of the UAV marine monitoring system and the key technologies involved. The future work will focus on solving the key technologies, such as the information platform of UAV remote sensing, the compression and transmission of remote sensing data, the processing and application of remote sensing data. The mature of the key technology of UAV remote sensing system is the premise to realize the commercialization of UAV remote sensing system.

R EFERENCES

[1] Gu Yuexu, Yang Zhong, Gong Huajun. The design of Flight controller

based on DSP[J].Automation technology and application. 2005, 24 (2):28-32.

[2] Yan Xijuan, Gao Jinyuan, Tu Baning. The research of horizontal

navigation of small unmanned aircraft[J]. Flight mechanics, 2000, 17 (4):24-27.

[3] Zhang Gongbing, Ge Maorong. The determine principle and software

design of GPS attitude [J]. Bulletin of surveying and mapping, 1999, (12):27-29, 2000, 17 (4):24-27.

[4] Stacy N J S, Craig D W, Staromlynska J, Smith R B. The Global

Hawk UAV Australian deployment: imaging radar sensor modifications and employment for maritime surveillance[C], Proc. IGARSS ’ 2002, 2: 699-701.

[5] CHEN F J. Application of Least-Squares Adjustment Technique to

Geometric Camera Calibration and Photogrammetric Flow Visualization[A]. ISA 43rd International Instrumentation Symposium[C]. Florida: [s.n], 1997.

[6] Yasaman Saeedi,Robustness Analysis of a Simultaneously Stabilizing

Controller:A Flight Control Case Study.AIAA ,2011.

[7] Eric N.Johnson,Sumit Mishra,Flight Simulation For The Development

Of An Experimental UAV.AIAA Modeling and Simulation Technologies Conference and Exhibit,2002.8:4975-4981.

[8] H.Sun,Study on an algorithm of multi-sensor data fusion,IEEE

Proceedings of the National Aerospace and Electronics Conference,1994,1:239-245.

[9] S.Shankar Sastry,Alberto Isidori,Adaptive Control of Linearizable

System.IEEE Transactions On Automatic Control,1989.11(3):1123-1126.

[10] Bortz,J.E,A New Mathematical Formulation for Strap-down Inertial

Navigation,IEEETransaction on Aerospace and Electronics system,1971,8(5):61-67.

[11] Stacy N J S, Craig D W, Staromlynska J, Smith R B. The Global

Hawk UAV Australian deployment: imaging radar sensor modifications and employment for maritime surveil-lance[ C] , Proc.

IGARSS’2002,2: 699-701.

【CN209485436U】一种基于无人机的多传感器无线环境监测系统【专利】

(19)中华人民共和国国家知识产权局 (12)实用新型专利 (10)授权公告号 (45)授权公告日 (21)申请号 201920597521.8 (22)申请日 2019.04.28 (73)专利权人 四川中联云控科技有限公司 地址 610000 四川省成都市郫都区德源镇 (菁蓉镇)胜利北街189号3楼 (72)发明人 张帅  (74)专利代理机构 北京天奇智新知识产权代理 有限公司 11340 代理人 杨春 (51)Int.Cl. G01D 21/02(2006.01) (54)实用新型名称 一种基于无人机的多传感器无线环境监测 系统 (57)摘要 本实用新型公开了一种基于无人机的多传 感器无线环境监测系统,包括地面环境监测及指 挥中心、4G/5G基站、无人机空中监测子系统、无 人机地面控制终端、地面指挥车、数据库服务器、 监控服务器、地面监控终端、监测数据PC机和电 视墙,所述地面环境监测及指挥中心包括无人机 地面控制终端、地面指挥车、数据库服务器、监控 服务器、地面监控终端,所述地面环境监测及指 挥中心通过4G/5G基站与无人机空中监测子系统 无线通信,所述数据库服务器、监控服务器分别 与监测数据PC机和电视墙连接。本实用新型结合 无人机实现了对于监测点空中各类环境数据的 科学、全面、精确监测,并可以实时预警执法处 理, 对于治理大气污染具有重要价值。权利要求书1页 说明书3页 附图2页CN 209485436 U 2019.10.11 C N 209485436 U

权 利 要 求 书1/1页CN 209485436 U 1.一种基于无人机的多传感器无线环境监测系统,其特征在于,包括地面环境监测及指挥中心(1)、4G/5G基站(2)、无人机空中监测子系统(3)、无人机地面控制终端(4)、地面指挥车(5)、数据库服务器(6)、监控服务器(7)、地面监控终端(8)、监测数据PC机(9)和电视墙(10),所述地面环境监测及指挥中心(1)包括无人机地面控制终端(4)、地面指挥车(5)、数据库服务器(6)、监控服务器(7)、地面监控终端(8),所述地面环境监测及指挥中心(1)通过4G/5G基站(2)与无人机空中监测子系统(3)无线通信,所述数据库服务器(6)、监控服务器(7)分别与监测数据PC机(9)和电视墙(10)连接;所述无人机空中监测子系统(3)包括飞控计算机单元(31)和与飞控计算机单元(31)连接的污染气体传感器(32)、粉尘传感器(33)、摄像头(34)、气象传感器(35)、电源模块(37)、存储模块(38)、4G/5G无人机图传模块(39)、4G/5G无线通讯模块(310)、GPS模块(311),所述电源模块(37)还连接太阳能电池板(36)。 2.根据权利要求1所述的一种基于无人机的多传感器无线环境监测系统,其特征在于,所述污染气体传感器(32)包括但不限于二氧化碳传感器、一氧化碳传感器、二氧化硫传感器、氮氧化物传感器。 3.根据权利要求1所述的一种基于无人机的多传感器无线环境监测系统,其特征在于,所述粉尘传感器(33)型号为DSM501。 4.根据权利要求1所述的一种基于无人机的多传感器无线环境监测系统,其特征在于,所述气象传感器(35)包括但不限于风速传感器、温湿度传感器、大气压力传感器、雨雪传感器、光照度传感器。 5.根据权利要求1所述的一种基于无人机的多传感器无线环境监测系统,其特征在于,所述电源模块(37)为锂电池。 6.根据权利要求1所述的一种基于无人机的多传感器无线环境监测系统,其特征在于,所述地面监控终端(8)为手机或者PDA。 2

无人机环境航测

无人机环境航测 近年来,从空中收集自然灾害和事故现场等信息的需求日益增加。特别是无人机,因其可以进入人难以到达的地域中去,作为安全、高效获取信息的手段而备受关注。无人机核辐射监测技术的最新发展及其发展趋势对我国监测体系建设的完善可以起到指导、借鉴的作用。 中文名:无人机核辐射监测 外文名:uav environmental monitoring 目录 简介 无人机遥感技术 无人机遥感技术 ·无人机遥感传感器 ·影像拼接技术 ·数据实时传输存储技术 无人机在环境监测领域的应用 ·无人机在水环境监测中的应用 ·无人机在大气环境环境监测中的应用 ·无人机在生态环境监测中的应用 前景展望与发展方向 ·加强小型化、轻型化且性能优异的机载环境监测设备研发 ·加强数据处理技术研究与软件开发,提高数据分析的精度和效率 ·提高数据链路传输能力 简介 环境监测是环境保护工作的“哨兵”和“耳目”,是环境管理的重要组成部分,是环境保护工作最为重要的基础性和前沿性工作,尤其是伴随着近些年来一系列环境灾害与环境事故的频发,环境监测技术的研究越来越引起国内外政府学者的重视。如何方便、快速、低成本的获取精确、可靠、及时的环境基础数据资料成为技术研究的重点和难点。 无人机遥感技术作为继传统航空、航天遥感之后的第三代遥感技术,可快速获取地理、资源、环境等空间遥感信息,完成遥感数据采集、处理和应用分析,同时具有机动、经济、安全等优点。 无人机遥感技术 无人机遥感技术是一个综合、系统的技术领域,其中的核心关键技术主要包括遥感传感器、影像拼接技术与数据实时传输存储技术3部分。

无人机遥感传感器 传感器是无人机遥感技术发展的重要基础设备之一。20世纪8O年代以来,随着计算机技术的发展以及无人机遥感技术在环保领域应用的不断深入,面向环境监测领域的传感器在数字化、轻型化、探测精度以及种类等方面都取得了巨大进展,极大的推动了无人机遥感技术在环境监测领域的应用,其主要表现在以下几个方面。 1. 航拍图像传感器:随着CCD和CMOS图像传感器的日渐成熟,数码相机的性能也不断提高,普通的数码相机的分辨率也已达到了1000万像素以上,高分辨率的数码相机成为无人机低空遥感系统主流的传感器件。在技术上,传感器不断向大面阵、多光谱、数字化方向发展,并取得了较多进展,进一步提高了航拍精度。 2. 机载环境监测传感器:随着环境监测仪器设备的不断发展,面向水环境和大气环境监测小型化、轻型化的各类机载专用监测仪器设备的研制成为一个新兴的领域。这方面的设备从工作模式上,主要包括基于二维面状航拍作业模式的光谱类设备(如热红外成像仪、轻型红外航扫仪、红外扫描仪、微波辐射计等)和基于泵吸式点状采样监测模式的机载气体监测设备(如粒子探测仪、差分吸收光谱探测系统、电化学类气体监测设备等)。 影像拼接技术 采用低空无人机遥感平台来快速获取研究区域的影像,影像分辨率提高的同时,单张影像的视野范围较小,难以形成大区域环境的整体认知。因此,为得到整个区域的全景影像,必须实现若干影像的匹配拼接。受飞行姿态稳定性、飞行区域特殊地形、数码相机等因素影响,无人机遥感图像往往具有旋转变形大、幅宽小、数量多、重叠图不规则、地面控制点难获取等特点,运用传统的航空摄影流程进行图像拼接相对难度较大,而且速度较慢,虽然有少数学者进行初步探索,但是在精度与效率方面仍有待于进一步探索。由于现阶段无人机主要应用于地质灾害、突发性环境污染事件等应急业务中,因此面向环境应急的无人机遥感图像的快速拼接处理技术研究相对较多,其采用流程主要是对已有影像进行配准后再几何纠正处理。 在环境应急监测领域,例如海上溢油污染事件发生时,大数据量图像的快速拼接技术在污染评估过程中有着重要的应用价值。尤其是无控制点或者粗略POS数据支持下的海量数据全自动快速拼接,如何有效提升拼接效率的同时,并保障一定的数据精度仍是当前的研究热点之一。 数据实时传输存储技术 无人机监测数据的实时传输是无人机遥感系统的重要组成部分,决定着系统的规模与水平。地面控制站与无人机之间数据传输是通过数据链实现的。除具有遥感监测数据传输的重要功能之外,数据链还肩负着遥控、遥测和跟踪定位的功能作用。早期无人机数据链大都采用分立体制,遥感监测数据传输与遥控、遥测和跟踪定位用各自独立的信道,设备复杂。20世纪80年代后,为了简化设备或节省频谱,开始采用多功能合一的综合信道体制,目前常用的信道综合体制是“三合一”和“四合一”综合信道体制。所谓“三合一”综合信道体制是跟踪定位、遥测、遥控的统一载波体制,而遥感监测信息使用单独的下行通道,“四合一”综合信道体制则是指遥感监测信息传输与跟踪定位、遥测、遥控采用统一的载波体制。 除信道综合技术之外,数据的压缩、解压缩技术也是遥感监测信息传输的关键技术之一。在无人机传感器视频信息传输方面,从20世纪90年代起已开始应用图像数字传输技术,目前已在大部分无人机测控系统中使用。无人机动态图像压缩编码后,图像/遥测复合数据速率已减到最小为1~2Mb/s(例如美国的11544Mb/s,以色列的212Mb/s),对应的图像分辨率可达720×576。

无人机反制项目立项报告

XX市信息化建设项目可行性研究报告第一章项目概述 1.项目名称 无人机监管与执法平台 2.项目建设单位及负责人,项目责任人 项目建设单位:xx科技有限公司 项目负责人:xxxx科技有限公司经理 项目责任人:xxxxxx警务队 3.可行性研究报告编制单位 可行性研究报告编制单位:xx科技有限公司 4.项目总投资及资金来源 总投资:xxx万人民币 明细: 无人机管理平台:xx万 内外网后台硬件设备与服务器建设:xx万 无人机侦听器设备:xx万 无人机无线信号干扰器:xxx套=xx万 雷达+光电识别系统:xx万

资金来源: 客户补充 5.主要结论与建议 随着无人机产业的发展,民用无人机设备数量井喷式增长。引导民众安全合法地使用无人机,并对无人机违法行为监管、取证和执法,对于保护人民群众生命财产安全,维护社会正常生活和生产秩序,具有重大意义。 该方案采用信息化技术和手段,解决了非法使用无人机的取证难,执法定位难的问题。并通过设立禁飞区的方式,有效预防了无人机在敏感区域作业带来的各类安全隐患。该方案技术成熟,考虑周详,使用简单方便,具有较强的可操作性,建议实施并推广。第二章项目建设单位概况 1.项目建设单位与职能 项目建设单位:xxxx警务队 职能:(1)项目经费筹集 (2)项目相关组织机构资源与设备协调 (3)为项目实施部署提供部署环境 2.项目实施机构与职责 实施机构:xxx科技有限公司 职责:(1)开发符合建设单位要求的无人机监管与执法平台 (2)提供平台使用技能培训 (3)平台使用的运维与保养服务 第三章必要性

1.项目建设依据 (1)2013年11月,国家民航局发布《民用无人驾驶航空器系统驾驶员管理暂时规定》。将无人机驾驶员的管理分为三个部分:一是无需证照的管理;二是由行业协会实施管理;三是由局方实施管理。(根据第二个部分,中国AOPA向国家民航局递交了管理备案申请。经过民航局审定,中国AOPA最终获得了此项管理资质。) 一、重量小于等于7公斤的微型无人机,飞行范围在视距内半径500米、相对高度低于120米范围内的,无须证照管理; 二、在视距内运行的空机重量大于7公斤的无人机、在隔离空域内超视距运行的所有无人机,以及在融合空域内运行的重量小于等于116公斤的无人机都须纳入行业管理; 三、在融合空域运行的大于116公斤的无人机则必须全部纳入民航局管理。在融合空域运行的大于116公斤的无人机则必须全部纳入民航局管理。 (2)2017年5月16日,国家民航局发布《民用无人驾驶航空器实名制登记管理规定》,要求最大起飞重量为250克以上的民用无人机拥有者须进行实名登记。 (3)2017年5月17日,国家民航局针对多起无人机干扰航班正常运行的事件,发布了《关于公布民用机场障碍物限制面保护范围的公告》。该公告整理并公布了大陆地区多个机场的限制面保护范围,规定“各类飞行活动应当遵守国家相关法律法规和民航规章,未经特殊批准不得进入限制面保护范围”。 (4)各地区也陆续开始发布通告,设立禁飞区域,限制危害公共安全的无人机操控行为。如:《关于将昆明机场净空保护区域确定为无人驾驶航空器禁飞区域的通告》,《江西省公安厅关于加强民用无人驾驶航空器飞行管理的通告》等 2.现状、存在问题和差距

无人机及其反制技术在爆破现场安全监管中的应用

Mine Engineering 矿山工程, 2020, 8(3), 355-360 Published Online July 2020 in Hans. https://www.docsj.com/doc/df7488740.html,/journal/me https://https://www.docsj.com/doc/df7488740.html,/10.12677/me.2020.83045 The Application of UAV and Countering Technology on Safety Supervision of the Explosion Site Gaowen Cai1, Xuming Wang1, Hao Shan1, Fei Li2, Yun Gu2, Yuanzheng Sun3 1Suzhou Public Security Bureau, Suzhou Jiangsu 2Nuclear Industry Nanjing Construction Group Co., Ltd., Nanjing Jiangsu 3Shanghai Second Military Representative Office, Nanjing Military Representative Office of the Ministry of Army Equipment, Shanghai Received: Jun. 24th, 2020; accepted: Jul. 9th, 2020; published: Jul. 16th, 2020 Abstract In recent years, UVA has the characteristics of fast field of high-altitude field of vision, wide moni-toring range, wide and flexible perspective, widely used in civilian areas. By using electronic im-aging, face recognition, automatic tracking, data link transmission and other technologies, the ef-ficiency of blasting construction and blasting warning safety management has been improved to avoid the occurrence of safety accidents. The new idea is extended for the application of UAV on blasting construction. In order to deal with the unpredictable risks brought by various “black fly-ing” events, the application of UAV detection and counter measure technology are used success-fully on sensitive and high-risk areas. It promotes the innovation and progress of safety supervi-sion concept and method. Keywords UAV, Detection Technology, Countering Technology, Explosion Site, Safety Supervision 无人机及其反制技术在爆破现场安全监管中的应用 蔡高文1,王旭鸣1,单浩1,李飞2,顾云2,孙远征3 1苏州市公安局,江苏苏州 2核工业南京建设集团有限公司,江苏南京 3陆装南京军代局驻上海地区第二军代室,上海

无人机河流环境监测解决方案

无人机河流环境监测解决方案 由于内陆水体环境复杂、水域面积相对小且污染类型多样,对数据精度要求较高,因此目前无人机遥感技术在内陆水环境监测中的应用研究相对较少,主要是利用无人机环境遥感技术从宏观上观测水质状况,航拍制作分辨率为0.1m的实景图像数据进行监测,并实时追踪和监测突发环境污染事件的发展,而在海洋中应用技术相对较为成熟,监测指标主要涵盖了水温、赤潮、海上溢油、水深、藻华等,传感器包括照相机、多光谱成像仪、CCD摄影机、轻型红外航扫仪、激光测深仪、成像光谱仪、化学传感器等。 在环境调查中,对地理信息的需求通常有如下困难:大面积观测、多时相观测、复杂区域观测、所需数据成果的多样性。而无人机低空摄影测量技术的兴起,为环境调查尤其是长度较长、区域复杂的河流环境调查提供了极大的便利。 无人机航空摄影测量系统是由无人机技术、遥感与测量技术、计算机技术等共同发展而融合的新技术,通常由硬件(包括无人机、相机、计算机等)、软件(地面站控制软件、相片处理软件、影像应用软件等)和售后服务团队组成。无人机航空摄影测量相对于常规测量具有如下的优势: 1)机动性、灵活性、安全性。无人机复杂条件起降、飞行、危险恶劣环境下(森林火灾、火山爆发等)直接获取影像。 2)低成本获取数据。无人机遥感系统的购置、运行成本都大大低于卫星和载人飞机,其对场地和人员的技术要求也比载人飞机低,且日常维护简单,使遥感数据的获取成本大大降低。 3)大面积观测。无人机观测的面积和多个因素相关,例如相机、需求的分辨率、飞行高度、飞行时间。以下是在250px的分辨率下,不同传感器的飞行高度以及单张照片的覆盖面积。

4)复杂区域观测。对于一些复杂区域例如河流、滩涂等常规测绘工具难以进入的区域,无人机测绘具有巨大优势。 5)分辨率高、多角度。低空多角度拍摄,直接获取地面纹理信息,有效避免卫星遥感和普通航空摄影测量建筑物遮挡问题。空间分辨率能达到分米甚至厘米级,可用于构建精确的数字模型和三维立体景观图。 6)成果丰富。无人机航空摄影测量系统能够提供丰富的测量成果,如点云、DEM、DSM、DOM,甚至三维模型。 河流沿岸的排污企业 排污口将正射影像导入到谷歌地球,可以清晰地看出,无人机获取的正射影像跟原谷歌影像完美“拟合”,这样能查看排污口在地球上的绝对位置,方便工作人员实地查找。

反无人机系统技术盘点及应用举例

反无人机系统技术盘点及应用举例 无人机的普及让很多行业受益,但同时也带来了不小的麻烦。自去年以来,无人机不仅数次在机场附近干扰飞机,更曾在高度戒备地区如白宫和日本首相官邸附近出现,甚至一度影响到加利福尼亚的火灾救援工作。 无人机带来的种种困扰导致反无人机系统日益兴起。各国科研人员根据不同的技术原理研发了复杂多样的反无人机系统,比如电磁技术、激光技术和声波技术等。下面宇辰网就为大家介绍几种已经投入使用或者正在研发中的反无人机系统。 听觉技术 位于华盛顿的无人机防护公司(DroneShield)利用听觉技术研发了一种防护罩。该防护罩内置Raspberry Pi、信号处理器、分析软件、无人机声音特性的数据库,可以通过监听周围环境和声音对比侦察到137m远的无人机。一旦无人机接近禁飞区,防护罩就会通过邮件或者短信向监控人员发出警报。 今年的波士顿马拉松就使用了该防护罩。事实证明,即使在这样的嘈杂环境中,防护罩依然可以发挥作用。

恶意后门程序 然而并不是所有的反无人机系统都会像防护罩那么有礼貌,印度安全工程师Rahul Sasi就发明了AR drone ARM Linux系统的后门程序——Maldrone。在测试中,Maldrone就成功地控制了Parrot公司生产的四轴无人机AR Drone。 据宇辰网了解,无人机受到Maldrone感染后,会发起反向的TCP连接。连接一旦建立,Maldrone即可直接与无人机上的传感器或驱动交互,最终会关闭无人机的自动驾驶系统,致使其坠落。

电磁技术 俄罗斯卫星网报道称,俄罗斯国有防务公司研发的超高频微波炮,能够摧毁10公里远的无人机,且能360度发射。 据了解,这种巨型微波炮配有高功率相对论性发生器、镜像天线、监控系统,以及安装在BUK地对空导弹系统底盘的传输系统。它在有利的地理位置中能够360度维护周边安全。 这种反无人机微波炮可以摧毁无人机的无线电电子设备,令其无法定位,也能破坏无人机精密制导系统,甚至还可以干扰低空飞行器的电子设备,甚至攻击地面交通工具。

无人机定位追踪与反制系统V1.2 (1)

无人机追踪定位与反制系统西安汉科通信科技有限责任公司

1概述 近年来,无人机迎来爆炸式发展,消费级无人机在给人们日常生活带来方便和乐趣之时,不规范的无人机飞行造成的威胁也与日俱增——据统计,自2015年8月至2016年9月,仅在美国就发生了726起无人机事故。在中国,无人机坠落伤人、逼停航班和列车的事情也屡屡发生,2017年4月,短短17天之内,双流机场附近就出现了至少9起无人机在机场禁飞区“黑飞”事件,导致100多趟航班受影响。 自无人机诞生之日起,识别和拦截无人机的反无人机系统就一直在研发与尝试中。反无人机,首先要识别和探测无人机。“飞行高度低、飞行速度慢、飞机体积小、重量轻”,这是一般军用和民用无人机共同具备的特点,这种“低慢小”的特点给无人机的探测带来一定的难度。 2无人机探测技术 目前常用的无人机探测技术包括雷达、光电探测、音频探测、无线电信号探测等。 2.1雷达探测技术 通过雷达发射电磁波对目标进行照射并接收其回波,由此获得目标至电磁波发射点的距离、距离变化率(径向速度)、方位、高度等信息。 由于无人机体积小,材质多为塑料,本身透波性好,雷达波反射少,RCS (雷达散射截面积)天生低,大约为0.01平米量级,比起先进隐身飞机来也毫不逊色;速度慢,多普勒效应不太明显,容易被雷达当成地杂波忽略;飞行高度低,受地面和树木房屋等强杂波影响大,微弱信号容易被强杂波淹没。 2.2光电探测 光电探测是利用可见光摄像机和红外热像仪传感器组合,对需要进行监控的区域进行全天时视频探测与监视。采用红外热像点目标跟踪、目标图像识别算法技术、伺服驱动光电转台技术等技术对低空、低速飞行的小型无人机进行探测、分类和跟踪。缺点首先是摄像头只能对准一个方位,如果单位面积很大,则需要安装多套系统,同时,视线盲区无法避免;其次,黑夜和浓雾情况下,摄像头基

无人机在环境保护领域的应用

无人机在环境保护领域的应用 应用背景 目前我省正处在工业化和城镇化高速发展的新时期,随之而来的环境压力越来越大,环境保护任务也日趋繁重。环境基础数据资料的获取是做好当前环境保护工作的前提,随着环境保护工作要求的不断提高,环境基础数据资料的精确性、可靠性和时效性也迫切需要提高。以建设项目环境保护管理为例,在环保验收工作中,我们发现部分建设项目特别是生态类建设项目的地理位置、建设范围、规模与环评审批时的变化较大;部分建设单位未按照环评审批要求开展项目建设,非法侵占了自然保护区、饮用水源保护区等需要特殊保护的区域,对生态环境造成了较大的破坏;部分建设单位未按照环评要求进行生态恢复与建设,或者生态恢复面积与环评批复要求差距较大。此类项目建设变更对生态环境破坏大、影响长期,但因无准确的基础数据底图,难以准确甄别,环评审批、环境监理、环保验收多无据可查,给防范和后续处理工作增加很大难度,环境管理依据存在缺失。类似的问题也普遍存在于环境监测、环境监察、环境应急和生态保护等环境保护领域的其他多个方面。 无人机应用的优势 以无人机作为空中作业平台,与传统航空、航天遥感平台相比具有以下优势:(1)数据获取成本低。无人机的运行成本都大大低于卫星和载人飞机,其对场购置、地和人员的技术要求也比载人飞机低,且日常维护简单,使数据的获取成本大大降低。 (2)安全作业保障能力强。无人机采用自主和地面遥控作业方式,可进入高危地区开展工作,回避了飞行人员和地面人员的安全风险。 (3)数据精度高。无人机由于飞行高度低,可获取的影像拥有较高的图像分辨率。高分辨率航片影像可使得在较小空间尺度上观察地表的细节变化、进行大比例尺制图以及监测人为活动对环境的影响成为现实。 (4)具备快速的应急响应能力。无人机体积小、质量轻、操作方便、易于转场,其起飞降落公路或其他较开阔的地面受场地限制较小,在操场、均可起降;其可以在短时间内迅速升空,实现数据的快速获取。 (5)能够云下获取数据。无人机可在云下飞行,弥补了卫星光学遥感受云层遮

常见的反无人机技术大盘点

常见的反无人机技术大盘点 里约奥运会开幕式举行时,至少有三架无人飞机在马拉卡纳球场上空盘旋,这让人再度看到了里约安保的漏洞,值得一提的是,大约在同一时间,参加奥运开幕式的法国总统奥朗德,在安保人员的保护下提前离开了马拉卡纳球场,不过目前外界并不知道具体是什么原因。 要想应对无人机,有哪些最新的技术不得不提呢? 国产电磁干扰射线枪 一款创意新颖的国产电磁干扰射线枪,能够轻松化解小型无人机带来的潜在威胁。 这款反无人机枪采用电磁波定向干扰的原理,使用时,只需瞄准无人机,扣下扳机,就能将无人机瞬间击落。不过,这把反无人机枪发射的不是子弹,而是多频干扰信号,因此该枪前部伸出的不是枪管,而是发射天线,枪身并没有设计机匣和供弹机构,而是由电池和信号部件组成。 别看它外形奇特,却是名副其实的无人机杀手。该枪的最大作用距离为500米,每次只需照射3秒钟,就能成功俘获一架无人机,堪称无人机的克星。 反无人机激光武器系统 欧洲导弹集团德国公司研制的反无人机激光武器系统,具备360度防御功能,可以短时间摧毁目标。该激光武器具备360度防御功能,通过标准接口,可以在陆地和水上部署。虽然是反无人机解决方案,它也能够用来对付火箭弹和迫击炮弹。 反无人机防御系统 由英国布莱特监视系统公司、切斯动力公司和企业控制系统公司联合研发的反无人机防御系统(AUDS),外形好似一门多管激光炮,能够发现相距6英里(9.66公里)以内的无人机,通过红外摄像机对无人机进行跟踪,然后切断其无线电信号,锁住无人机,使其就像武侠小说里人被点了穴那样,悬停在空中,不知道该往哪儿飞;紧接着,AUDS接管无人机,操纵其降落。整个过程只需8到15秒。 无人机警卫

无人机在环境保护领域的应用

无人机在环境保护领域 的应用 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

无人机在环境保护领域的应用 应用背景 目前我省正处在工业化和城镇化高速发展的新时期,随之而来的环境压力越来越大,环境保护任务也日趋繁重。环境基础数据资料的获取是做好当前环境保护工作的前提,随着环境保护工作要求的不断提高,环境基础数据资料的精确性、可靠性和时效性也迫切需要提高。以建设项目环境保护管理为例,在环保验收工作中,我们发现部分建设项目特别是生态类建设项目的地理位置、建设范围、规模与环评审批时的变化较大;部分建设单位未按照环评审批要求开展项目建设,非法侵占了自然保护区、饮用水源保护区等需要特殊保护的区域,对生态环境造成了较大的破坏;部分建设单位未按照环评要求进行生态恢复与建设,或者生态恢复面积与环评批复要求差距较大。此类项目建设变更对生态环境破坏大、影响长期,但因无准确的基础数据底图,难以准确甄别,环评审批、环境监理、环保验收多无据可查,给防范和后续处理工作增加很大难度,环境管理依据存在缺失。类似的问题也普遍存在于环境监测、环境监察、环境应急和生态保护等环境保护领域的其他多个方面。 无人机应用的优势 以无人机作为空中作业平台,与传统航空、航天遥感平台相比具有以下优势:(1)数据获取成本低。无人机的运行成本都大大低于卫星和载人飞机,其对场购置、地和人员的技术要求也比载人飞机低,且日常维护简单,使数据的获取成本大大降低。 (2)安全作业保障能力强。无人机采用自主和地面遥控作业方式,可进入高危地区开展工作,回避了飞行人员和地面人员的安全风险。 (3)数据精度高。无人机由于飞行高度低,可获取的影像拥有较高的图像分辨率。高分辨率航片影像可使得在较小空间尺度上观察地表的细节变化、进行大比例尺制图以及监测人为活动对环境的影响成为现实。 (4)具备快速的应急响应能力。无人机体积小、质量轻、操作方便、易于转场,其起飞降落公路或其他较开阔的地面受场地限制较小,在操场、均可起降;其可以在短时间内迅速升空,实现数据的快速获取。

盾牌式低空无人机拦截设备

盾牌式低空无人机拦截设备 DZ01- PRO低空无人机拦截设备通过结合国内外先进技术结合,精心研制成专门针对国内外无人机管控产品。产品是绿色环保型反制仪;制定在现场低空飞行无人机遥控信号进行反制,对周围的信号如:手机通讯、运营商基站、汽车遥控、警用雷达等使用没有任何影响。反制采用3~4路信号输出(遥控2.4G/5.8G定位GPS)进行信号截断无人机失控状态;本产品经过多次实际距离测试1000-2500米秒速反制,实现远距离切断无人机与遥控飞手之间通讯和导航,有效对无人机进行驱离或迫降。 DZ01- PRO低空无人机拦截设备工作原理

DZ01- PRO系列盾牌式低空无人机拦截设备为步枪形状,操作简单、可以快速部署、单人即可操作,设备内置大容量蓄电池。作用距离可达到1-2.5公里。 DZ01- PRO系列盾牌式低空无人机拦截设备主要作用于2.4千兆赫和5.8千兆赫干扰频带,以及GNSS全球卫星定位系统干扰,对无人机飞控系统、GNSS系统及数据传输系统实施干扰反制,阻断无人机与操控者之间的联络,迫使无人机平稳降落至地面或自动返航,DZ01- PRO能够有效管控市面上所有的低空多旋翼无人机,设备一旦开启,便可使无人机的遥控失灵,拍摄的图像和视频无法回传,GNSS导航系统失去信号,彻底切断无人机与遥控器甚至地面端的联系,从而保证一些重要信息不被泄漏、避免重要设施发生无人机入侵事故。 打击模式开关(对应的打击 模式开启,则蓝色显示灯亮)手握柄

启动装置 三、产品技术特点 1.采用进口芯片噪声发生应用超高速扫频技术产生多种带宽信号 2.超宽带高增益一体化天线、电池内置设计,简轻方便携带和操作 3.采用铝制外壳,智能温控散热,表面采用国际技术二次氧化耐磨 4.有效反制距离1000-2500米,取决于遥控与无人机20米以上距离 5.繁殖方式常规信号、调频、扩频管控等全频覆盖极速风险秒控 6.机体可视部位有电源开关含电源指示灯,单手直接操控 7.控制开关独立设计,针对无人机控制阻视、驱离和迫降

无人机环境监测解决方案

1 行业现状 目前我国正处在工业化和城镇化高速发展的新时期,随之带来的环境问题也日益凸显。近年来,雾霾不断“袭击”着我国大部分城市,使得城市居民深受其害,所以对于日益严重的环境问题的监测和治理已刻不容缓。环境基础数据资料的获取是做好当前环境保护工作的前提,环境基础数据资料的精确性、可靠性和时效性也迫切需要提高。 传统环境监测面临问题 ?人工去实地勘察、采样方式, 工作量大、工作效率低,获取 信息周期长 ?采用环保、规划、测绘等部门 已有的资料作为环境监测基 础资料,数据时效性差 ?利用卫星遥感数据进行环境 污染监测,数据重访周期长, 分辨率低 ?利用载人飞机获取环境监测 基础资料,使用成本高,维修 费用高,操作复杂,空域申请 复杂

2 解决方案 2.1 建设项目环境保护管理 建设项目所在区域的现势地形图,是建设项目环评阶段环评单位编制的环境影响评价文件之一。无人机航测系统能够为环评单位在短时间内快速时效性强、精度高的图件作为底图使用,并且可有效减少在偏远、危险区域现场踏勘的工作量,提高环境影响评价工作的效率和技术水平,为环保部门提供精确、可靠的审批依据。 建设项目区域地形图测绘 ●首先,对测区地形进行踏勘,并规划无人机飞行航线; ●其次,利用固定翼无人机iFly U3搭载高分辨率航拍相机Sony A7r进行区域航拍,获 取高分辨率航片及POS数据; ●然后,利用Pix4Dmapper软件,对航拍数据进行空三加密; ●接着,利用摄影测量工作站,导入空三加密成果,进行立体测图,得到测区大比例尺地 形图; ●最后,结合高分辨率正射影像和大比例尺地形图数据,为环评部门进行环境影响评价提 供依据。 无人机制作区域地形图的优势:

国外反无人机技术装备应用发展概况

国外反无人机技术装备应用发展概况 摘要:本文介绍了国外反无人机装备技术体系,详细阐述了干扰屏蔽类、捕捉击毁类和监测反制类等当前国外反无人机装备的三种类型、并对反无人机装备的发展趋势进行了展望。 关键字:反无人机干扰激光监测 1 引言 近年来,随着科技的进步和人民生活水平的提高,无人机市场逐渐兴起壮大、销售数量增加、应用普及、不断满足人们丰富多样的需求,为工作和生活提供便利。但是,针无双头利,蔗无两头甜,无人机安全问题也日益突出。 2013年的9月15日,德国总理默克尔在一次街头竞选演讲时遭微型无人机在头顶上方约30米处盘旋骚扰,安保人员面对飞行器束手无策,场面尴尬。幸好无人机并未携带任何爆炸装置,否则后果不堪设想。2015年,美国特勤局报告了至少两起五人飞行器在白宫附近的空中禁区飞行的事件。日本一个反核活动分子被指控使用无人机向首相安倍晋三的办公室投放少量含放射性的沙子。恐怖分子很有可能会用无人飞行器来运输炸药。不法分子可能是用无人机搭载或者投放网络设备实施网络攻击,截取数据信号或者入侵控制工控系统。 美国联邦航空管理局平均每天会收到2000个无人机注册申请,每月会收到100多份无人机在机场或者其他禁飞区附近飞行的报告。这一数字在未来可能还会增加。截止2015年底,我国无人机驾驶员合格证总数仅为2142个,而无人机数量却有数万台。没有培训、没有申报的“黑飞”和不按指定空域飞行,不仅影响人们的生命财产安全,也会威胁公共安全、空防安全。 因此,反无人机技术装备和市场也在同步快速扩展。根据2016年2月美国知名市场预测公司Markets &Markets发布的最新研究报告:2017年到2022年,全球反无人机市场发展将达到23.89%的年复合增长率,2023年将达到11.4亿美元规模。反无人机装备产品需求增长最快的地区将是亚太地区(占全球市场的30%)。反无人机市场的产品将会供不应求。 2国外反无人机技术体系 随着安保意识的不断增强,反无人机安保工作措施和任务也不断增多。在市场需求刺激和技术发展的双重推动作用影响下,反无人机装备技术体系在理论和技术层面都日趋完善。反无人机装备技术体系主要包括探测跟踪和预警、击毁、干扰、伪装欺骗等内容。实施反无人机工作的原理是,首先对入侵无人机进行探测跟踪和预警,然后再根据实际情况,选择对无人机实施捕捉、击毁或者干扰、控制;另外可通过一些伪装防护方法,降低无人机的袭扰成功率。只有将主动与被动方式的反无人机措施相结合,才能使得反无人机效果最优化。 目前国外警用与民用反无人机的探测跟踪和预警主要是地面目视侦察、雷达探测跟踪等技术,针对的是微型消费级或者小型工业级无人机。 捕捉和毁伤技术主要采取布网捕捉和攻击毁伤技术等,运用这些技术的反无人机装备依据侦察获得的情报信息,采用适当措施和合理的战术战法,对无人机实时实施物理阻止和破坏,使其丧失动力。 干扰技术主要包括控制信息干扰、反制和数据链干扰等技术,运用这些技术的反无人机装备旨在使目标无人机的控制系统、通信系统、动力系统、图传系统等失效,从而降低甚至使其丧失主要功能。 伪装欺骗技术主要包括电子伪装欺骗、光学和热红等技术,通过对己方目标适当伪装,降低对方无人机的侦察监视效果,从而实现反无人机的目的。 3 当前国外反无人机装备主要类型

环保无人机解决方案

环保无人机解决方案 篇一:无人机环境航测 无人机环境航测 近年来,从空中收集自然灾害和事故现场等信息的需求日益增加。特别是无人机,因其可以进入人难以到达的地域中去,作为安全、高效获取信息的手段而备受关注。无人机核辐射监测技术的最新发展及其发展趋势对我国监测体系建设的完善可以起到指导、借鉴的作用。 中文名:无人机核辐射监测 外文名:uav environmental monitoring 目录 简介 无人机遥感技术 无人机遥感技术 ·无人机遥感传感器 ·影像拼接技术 ·数据实时传输存储技术 无人机在环境监测领域的应用 ·无人机在水环境监测中的应用

·无人机在大气环境环境监测中的应用 ·无人机在生态环境监测中的应用 前景展望与发展方向 ·加强小型化、轻型化且性能优异的机载环境监测设备研发·加强数据处理技术研究与软件开发,提高数据分析的精度和效率 ·提高数据链路传输能力 简介 环境监测是环境保护工作的“哨兵”和“耳目”,是环境管理的重要组成部分,是环境保护工作最为重要的基础性和前沿性工作,尤其是伴随着近些年来一系列环境灾害与环境事故的频发,环境监测技术的研究越来越引起国内外政府学者的重视。如何方便、快速、低成本的获取精确、可靠、及时的环境基础数据资料成为技术研究的重点和难点。 无人机遥感技术作为继传统航空、航天遥感之后的第三代遥感技术,可快速获取地理、资源、环境等空间遥感信息,完成遥感数据采集、处理和应用分析,同时具有机动、经济、安全等优点。 无人机遥感技术 无人机遥感技术是一个综合、系统的技术领域,其中的核心关键技术主要包括遥感传感器、影像拼接技术与数据实时传输存储技术3部分。

宇辰网-五种新型反无人机设备

宇辰网-五种新型反无人机设备 尽管无人机为各行各业带来很多效率和利益,但无人机有时也会造成一些威胁,因此也促进了反无人机产业的发展。最近的一项研究表明,六年之内,反无人机市场将增长到十亿美元,2017年-2022年的复合年增长率为 23.89%。 为了应对天空中出现的那些不友好的无人机,许多反无人机产品已经应时而生,其中包括以下五种最新型的产品。 无人机穹(Drone Dome) 以色列科技公司拉法尔先进防御系统公司创建了一种防御无人机的虚拟圆顶,这种新的系统被设计为新的端到端防御解决方案,旨在探测、识别、跟

踪、中和无人机。Drone Dome本质上是一种雷达/无线电干扰系统,提供半径3公里范围内的战略目标防御。该系统可以干扰微/纳米无人机的信号,对抗恐怖分子的无人机。该系统安装有RPS-42空中战术监视雷达,MEOS光电传感器及一个C-Guard宽频信号干扰器。其可将收集到的数据进行综合分析,对敌无人机发出警告,防止其进行空中袭击、情报收集及其他恐怖行动。 DroneShield DroneShield使用的是声学技术监测150码范围内出现的无人机,并向监控服务中心发送电子邮件或文本消息。目前,已经有一些监狱开始使用这款产品,防止无人机向囚犯提供手机、药物等违禁品。DroneShield已经证明其可以运行在嘈杂的、不稳定的环境中,该系统曾应用在2015和2016年的波士顿马拉松比赛中,整个马拉松路线被列为无人机禁飞区。 AUDS/探索者 联邦航空局(FAA)近期与反无人机防御系统(AUDS)建立合作伙伴关系,AUDS是由一组英国反无人机公司组成,其中包括 Blighter Surveillance Systems、Chess Dynamics 、 Enterprise Control Systems。AUDS将与美国公司Liteye系统结合,成为世界上第一个完全集监测、追踪、干扰、打击于一体的无人机防御系统。此次的合作是FAA的Pathfinder Initiative项目中的一部分,旨在解决国家无人机集成三个方面的问题:1.在城市地区进行视线范围内的操作、2.扩展农村地区的视觉范围内操作、3.在农村偏远地区进行超越视觉范围的操作。

反无人机主动防御系统介绍

反无人机主动防御系统介绍 (无人机导航诱骗防御基站) 一、产品简介: 无人机导航诱骗防御基站专为应对“黑飞”无人机带来的各种安全威胁而开发,通过辐射低功率再生导航卫星信号(功率不大于10dBm),侵入“黑飞”无人机导航系统,从而实现对需要使用导航系统进行飞行控制的无人机的截获控制,使其无法飞入受保护区域,保障该区域的低空安全。 二、产品主要功能描述 通过再生不少于两个频率的卫星导航欺骗信号,对采用卫星导航定位的无人机接收的卫星导航坐标信息进行欺骗式干扰,实现禁飞区投射或者区域拒止功能。 禁飞区投射:通过辐射虚假禁飞区(如附近机场),对“黑飞”无人机实现位置欺骗,让其误认为进入禁飞区而迫降或返航。 区域拒止:通过辐射特点策略轨迹欺骗信号,使黑飞无人机无法飞入受保护区域。 三、技术指标 产品主要的技术指标如下: 1、有效作用距离:不小于900m; 2、信号发射功率:不大于10dBm; 3、支持诱骗的导航模式(频率范围):不少于两种; 4、连续工作时间:24小时全天候; 5、重量:不大于10kg; 6、功耗:不大于30w; 7、电源:220V交流电; 8、启动时间:不大于10分钟; 9、高低温:-20 - 65 °C; 10、可选配GPS同步授时功能,保证防护区域范围内的需要时统的设备和系统能够保持正常工作。 四、主要优势: 1、适用范围广:对所有需要导航信号(民用频段)辅助控制的无人机均有效

2、辐射功率小:10dBm(10mw),符合无委会功率辐射标准,对人体无伤害 3、防护范围可调节:功率可调,无盲区防护,可轻松应对集群饱和攻击 4、无附带伤害:属于软杀伤手段,不会造成二次伤害 五、应用场景 1、大型会议安保 2、核电站 3、油气田(符合石油石化系统治安反恐防范要求) 4、部队营区 5、军工保密单位 6、政府大楼 7、弹药库 8、水利大坝 9、桥梁码头 10、高端私人住宅 六、产品实物图片 图1雷擎星盾I型实物拍摄

反无人机系统技术规格书

ADS2000系列诱骗式民用无人机主动防御系统 1、ADS2100C基站式无人机诱骗防御系统 ADS2100基站式无人机诱骗防御系统通过发射诱骗干扰信号,对黑飞无人机的卫星导航部件进行诱骗阻断,达到管制黑飞无人机的目的。该系统布设于特定防护区域,用户可根据需要防御区域的大小和环境,合理布设单个或多个防御基站,构建全天候的无人机禁飞防护区。不同的无人机入侵到防护区域会产生返航、降落或坠落的管制效果。 标准配置: 基站单元1个(内置控制软件),监控软件1套 功能特点: 实现布设区域24小时全天候防护 能够对黑飞无人机导航组件进行诱骗 防护区域范围可控 可与多个防御基站组网联合布控 可与已有安保系统联网集成 系统采用三防设计,防浪涌。 系统发射功率符合国家电磁辐射防护标准

产品规格: 干扰频段:1.2GHz~1.6GHz 作用距离:≤1000m(无遮挡情况下) 启动时间:<5min 尺寸:φ536mm,H:300mm 重量:5kg 信号发射功率:1mW 功耗:50W 电源:110v~220v,50Hz~60Hz 对外接口:以太网;RJ45 工作环境温度:-40℃~+55℃ 相对湿度:95% 应用方向: 重要军事区域、体育场、科研试验厂等长期布设 党政机关所在地长期布设 监狱等重要场所长期布设 油库、核电、军工生产企业长期布设

2、ADS2200C 动态区域无人机诱骗防御系统 ADS2200C 动态区域无人机诱骗防御系统通过发射诱骗干扰信号,对黑飞无人机的卫星导航部件进行诱骗阻断,达到管制黑飞无人机的目的。该系统可快速简易的布设于临时保护区域或特殊车辆上,可根据任务需要快速启动系统,构建临时动态的无人机禁飞区,形成临时场所或特定行使线路上针对黑飞无人机的有效屏障。

相关文档