文档视界 最新最全的文档下载
当前位置:文档视界 › 换热器的强化传热

换热器的强化传热

换热器的强化传热
换热器的强化传热

换热器的强化传热

摘要:所谓换热器传热强化或增强传热是指通过对影响传热的各种因素的分析与计算,采取某些技术措施以提高换热设备的传热量或者在满足原有传热量条件下,使它的体积缩小。换热器传热强化通常使用的手段包括三类:扩展传热面积(F);加大传热温差;提高传热系数(K)提高工业生产经济效益,要求开发适用于不同工业过程要求的高技能换热设备[1]。这可利用热源的温度越来越低,换热允许温差将变得更小,当然,对换热技术的发展和换热器性能的要求也就更高[2]。换热器的开发与研究成为人关注的课题。大量的强化传热技术应用于工业装置,我国换热器产业在技术水平上获得了快速提升,板式换热器日渐崛起。与此同时,近几年,我国在大型管壳式换热器、大直径螺纹锁紧环高压换热器、高效节能板壳式换热器、大型板式空气预热器方面也获得了重大突破[3]。国外在换热器的强化传热研究、强化传热元件开发、新型壳程结构设计中也有了突破性的进展[4]

关键词: 换热器; 节能减排; 强化传热;结构;优化;优化设计

1 换热器强化传热的方式

1.1 扩展传热面积F

扩展传热面积是增加传热效果使用最多、最简单的一种方法。在扩展换热器传热面积的过程中,如果简单的通过单一地扩大设备体积来增加传热面积或增加设备台数来增强传热量,不光需要增加设备投资,设备占地面积大、同时,对传热效果的增强作用也不明显,这种方法现在已经淘汰。现在使用最多的是通过合理地提高设备单位体积的传热面积来达到增强传热效果的目的,如在换热器上大量使用单位体积传热面积比较大的翅片管、波纹管、板翅传热面等材料,通过这些材料的使用,单台设备的单位体积的传热面积会明显提高,充分达到换热设备高效、紧凑的目的。

1.2 加大传热温差Δt

加大换热器传热温差Δt是加强换热器换热效果常用的措施之一。在换热器使用过程中,提高辐射采暖板管内蒸汽的压力,提高热水采暖的热水温度,冷凝器冷却水用温度较低的深井水代替自来水,空气冷却器中降低冷却水的温度等,都可以直接增加换热器传热温差Δt。但是,增加换热器传热温差Δt是有一定限度的,我们不能把它作为增强换热器传热效果最主要的手段,使用过程中我们应该考虑到实际工艺或设备条件上是否允许。例如,我们在提高辐射采暖板的蒸汽温度过程中,不能超过辐射采暖允许的辐射强度,辐射采暖板蒸汽温度的增加实际上是一种受限制的增加,依靠增加换热器传热温差Δt只能有限度的提高换热器换热效果;同时,我们应该认识到,传热温差的增大将使整个热力系统的不可逆性增加,降低了热力系统的可用性。所以,不能一味追求传热温差的增加,而应兼顾整个热力系统的能量合理使用。

1.3 增强传热系数(K)

增强换热器传热效果最积极的措施就是设法提高设备的传热系数(K)。

换热器传热系数(K)的大小实际上是由传热过程总热阻的大小来决定,换热器传热过程中的总热阻越大,换热器传热系数(K)值也就越低;换热器传热系数(K)值越低,换热器传热效果也就越差。换热器在使用过程中,其总热阻是各项分热阻的叠加,所以要改变传热系数就必须分析传热过程的每一项分热阻。如何控制换热器传热过程的每一项分热阻是决定换热器传热系数的关键。上述三方面增强传热效果的方法在换热器都或多或少的获得了使用,但是由于扩展传热面积及加大传热温差常常受到场地、设备、资金、效果的限制,不可能无限制的增强,所以,当前换热器强化传热的研究主要方向就是:如何通过控制换热器传热系数(K)值来提高换热器强化传热的效果。我们现在使用最多的提高换热器传热系数(K)值的技术就是:在换热器换热管中加扰流子添加物,通过扰流子添加物的作用,使换热器传热过程的分热阻大大的降低,并且最终来达到提高换热器传热系数(K)值的目的。

总传热系数K的计算公式为:

(1/K)=d2/(α1d1) + R1(d2/d1) +(δ/λ) (d2/dm)+R2 +α2

式中:

d1 —管内径;

d2 —管外径;

dm —管平均直径;

α1—管内侧对流传热系数;

α2—管外侧对流传热系数;

R1—管内侧污垢热阻;

R2—管外侧污垢热阻;

λ—管壁材料的导热系数;

δ—管壁厚度。

从上式中可知: 要提高传热系数, 必须设法提高α1 和α2及λ, 降低δ和内外污垢热阻R1 和R2。当两个α值相差较大时, 要想K值提高, 应设法使α值小的增大; 当两个α值比较接近时, 则应同时予以提高。根据对流传热的分析, 对流传热的热阻主要集中在靠近管壁的层流内层里, 在层流内层里的传热以传导方式进行, 而流体导热系数又很小。针对这些情况, 可以相应采取一些措施:

(1) 增加湍流程度, 以减小层流内层的厚度, 具体的方法是:

○1增加流体的流速。例如, 在列管换热器内可以采用多管程; 在夹套式换热器内增加搅拌等, 都可以增加流体的速度。但是, 随着流体流速的增加, 流体阻力也跟着增加。因此, 流速的增加也是有一定局限性的。

○2改变流动条件。如果使流体在流动过程中不断改变流动方向, 可以使流体在较低的流速下就达到湍流. 例如, 在列管换热器的壳常可增设圆缺形或环形挡板, 以提高管外的对流传热系数; 板式换热器中, 流体在波形的板面间流动,

当Re= 200即进入湍流状态。

(2) 采用导热系数较大的载体

选用K较大的载热体可减少层流内层的热阻,增大流体的对流传热系数. 目

前原子能工业中采用液态金属作为载热体, 其导热系数比水的大十几倍,大大加快了传热速率。

(3) 采用有相变的载热体

用饱和水蒸汽作加热剂比用热水作加热剂的传热效果就要好的多。

(4) 采用导热系数大的传热壁面

(5) 减小污垢热阻

污垢的存在将会使传热系数大大降低。实践证明, 1mm 厚的水垢约相当于

40mm 厚钢板的热阻。当换热器使用时间一长, 垢层热阻将成为影响传热速率的重要因素, 因此, 防止结垢和及时除垢, 也成为强化传热的一个重要方法。例如, 增加流速可减弱垢层的形成和增厚; 易结垢的流体常安排在管方流动, 以便于

清洗, 采用机械或化学的方法或采用可拆卸换热器的结构, 以便于垢层的清除。显然, 强化传热的途径和和方法是多方面的, 凡是可以利用的因素都应当尽可

能的加以利用和发挥。但是, 任何事物都是一分为二的, 某些措施和结构虽然有强化传热的作用, 但也可能出现另一方面的问题, 例如, 采用高压蒸汽可提高

传热平均温度差, 但从经济角度和节能考虑, 则应尽量避免采用;一些新型换热器从强化传热角度来看是先进的, 但也会出现结构复杂、价格较贵、检查不便等的缺点。因此, 对于某些实际的传热过程, 应作具体分析, 即抓住影响强化传热矛盾的主要方面; 并结合设备结构、动力消耗、检修操作等予以全面考虑, 采取经济而合理的强化传热的方法。

2 强化传热技术的分类

强化传热技术分为被动式强化技术(亦称为无功技术或无源强化技术)和主

动式强化技术(亦称为有功技术或有源强化技术)。前者是指除了介质输送功率外不需要消耗额外动力的技术; 后者是指需要加入额外动力以达到强化传热目的

的技术。

2.1被动式强化传热技术

2.1.1 处理表面

包括对表面粗糙度的小尺度改变和对表面进行连续或不连续的涂层。可通过烧结、机械加工和电化学腐蚀等方法将传热表面处理成多孔表面或锯齿形表面, 如开槽、模压、碾压、轧制、滚花、疏水涂层和多孔涂层等。此种处理表面的粗糙度达不到影响单相流体传热的高度, 通常用于强化沸腾传热和冷凝传热。

2.1.2 粗糙表面

该方法已发展出很多构形, 包括从随机的沙粒型粗糙表面到带有离散的凸

起物(粗糙元)的粗糙表面。通常, 可通过机械加工、碾轧和电化学腐蚀等方法制作粗糙表面。粗糙表面主要是通过促进近壁区流体的湍流强度、阻隔边界层连续发展减小层流底层的厚度来降低热阻, 而不是靠增大传热面积来达到强化传热

的目的, 主要用于强化单相流体的传热, 对沸腾和冷凝过程有一定的强化作用。基于粗糙表面技术开发出的多种异形强化传热管在工业生产中的应用颇为广泛, 包括有: 螺旋槽管、旋流管、缩放管、波纹管、针翅管、横纹槽管、强化冷凝传热的锯齿形翅片管和花瓣形翅片管、强化沸腾传热的高效沸腾传热管以及螺旋扭曲管等。

2.1.3 扩展表面

该方法已在很多换热器中得到了常规应用。如翅片管等非传统的扩展表面的发展使传热系数有了很大的提高。其强化传热的机理主要是此类扩展表面重塑了原始的传热表面, 不仅增加了传热面积, 而且打断了其边界层的连续发展, 提

高了扰动程度, 增加了传热系数, 从而能够强化传热, 对层流换热和湍流换热

都有显著的效果。因此,扩展表面法得到越来越广泛的应用, 不仅用于传统的管壳式换热器管子结构的改进, 而且也越来越多的应用于紧凑式换热器。目前已开发出了各种不同形式的扩展表面, 如管外翅片和管内翅片(包括很多种结构形状, 如平直翅片、齿轮形翅片、椭圆形翅片和波纹形翅片等)、叉列短肋、波型翅多孔型、销钉型、低翅片管、太阳棒管、百叶窗翅及开孔百叶窗翅(多在紧凑式换热器中使用)等。

2.1.4 扰流装置

把扰流装置放置在流道内能改变近壁区的流体流动, 从而间接增强传热表

面处的能量传输, 主要用于强制对流。管内插入物中有很多都属于这种扰流装置, 如金属栅网、静态混合器及各式的环、盘或球等元件。

2.1.5 漩涡流装置

包括很多不同的几何布置或管内插入物, 如内置漩涡发生器、纽带插入物和带有螺旋形线圈的轴向芯体插入物。此类装置能增加流道长度并能产生旋转流动或(和)二次流, 从而能增强流体的径向混合, 促进流体速度分布和温度分布的

均匀性, 进而能够强化传热, 主要用于增强强制对流传热, 对层流换热的强化

效果尤其显著。

2.1.6 螺旋盘管

其应用可提高换热器的紧凑度。它所产生的二次流能提高单相流体传热的传热系数, 也能增强沸腾传热。

2.1.7 表面张力装置

包括利用相对较厚的芯吸材料或开槽表面来引导流体的流动, 主要用于沸

腾和冷凝传热。芯吸作用常用在没有芯吸材料冷却介质就不能到达受热表面的情形, 常见的如热管换热器; 还对水中表面的沸腾换热强化非常有效。

2.1.8 添加物

包括用于液体体系的添加剂和用于气体体系的添加剂。液体中的添加剂包括用于单相流的固体粒子与气泡和用于沸腾系统的微量液体; 气体中的添加剂包括液滴和固体粒子, 可用于稀相(气固悬浮液)或密相(流化床)。

2.1.9 壳程强化

壳程传热的强化包括两个方面:一是改变管子外形或在管外加翅片, 即通过管子形状或表面性质的改造来强化传热; 二是改变壳程挡板或管间支撑物的形式, 尽可能消除壳程流动与传热的滞留死区, 尽可能减少甚至消除横流成分, 增强或完全变为纵向流。传统的管壳式换热器, 通常采用单弓形折流板, 其阻力大、死角多、易诱发流体诱导振动等弊端已严重影响换热器传热效率, 对工业生产和应用造成相当大的影响。据此, 近年研究出了许多新的壳程支撑结构, 有效弥补了单弓形折流板支撑物的不足, 如双弓形折流板、三弓形折流板、螺旋形折流板、整圆形折流板(包括大管孔、小圆孔、矩形孔、梅花孔和网状整圆形折流板)、窗口不排管、波网支撑、折流杆式、空心环式、管子自支撑(包括刺孔膜片式、螺旋扁管式和变截面管式)、扭曲管和混合管束换热器式以及德国GRIMMA公司制造的纵流管束换热器等。

2. 2 主动式强化传热技术

2.2.1 机械搅动

包括用机械方法搅动流体、旋转传热表面和表面刮削。带有旋转的换热器管道的装置目前已用于商业应用。表面刮削广泛应用于化学过程工业中黏性流体的批量处理, 如高黏度的塑料和气体的流动, 其典型代表为刮面式换热器, 广泛用于食品工业。

2.2.2 表面振动

无论是高频率还是低频率振动,都主要用于增强单相流体传热。其机理是振动增强了流体的扰动, 从而使传热得以强化。虽然振动本身对强化传热有不小的贡献, 但激发振动所需从外界输入的能量可能会得不偿失。为此, 山东大学研究表明, 可利用流体诱导振动来强化传热, 依靠水流本身激发传热元件振动, 会消耗很少的能量。利用流体诱导振动强化传热既能提高对流传热系数, 同时又能降低污垢热阻, 即实现了所谓的复合式强化传热。

2.2.3 流体振动

由于换热设备一般质量很大, 表面振动这种方法难以应用, 然后就出现了流体振动,该方法是振动强化中最实用的一种类型。所使用的振荡发生器从扰流器到压电转换器, 振动范围大约从脉动的1H z到超声波的106 H z。主要用于单相流体的强化传热。

2.2.4 静电场

可以通过很多不同的方法将静电场作用于介电流体。总体来说, 静电场可以使传热表面附近的流体产生较大的主体混合, 从而使传热强化。静电场还可以和磁场联合使用来形成强制对流或电磁泵。静止流体中加足够强度静电场所形成的电晕风能在一定条件下强化单相流体的传热。如日本M izushina以空气为工质研究环形通道内电晕风对强制对流的影响, 分别得到了存在电晕风时的努塞尔准数及阻力系数与雷诺数的关系曲线及经验公式。

2.2.5 喷射

包括通过多孔的传热表面向流动液体中喷射气体, 或向上游传热部分喷注类似的流体。

2.2.6 抽吸

包括在核态沸腾或膜态沸腾中通过多孔的受热表面移走蒸汽和在单相流中通过受热表面排出液体。有研究预测, 抽吸能大大提高层流流动和湍流流动的换热系数, 其中能大大增强湍流对流换热已被Aggarw a l等[ 6] 人证实。

两个或两个以上这些传热强化技术可以复合使用, 从而达到比仅仅使用一种技术更好的强化传热效果, 这种复合使用被称为复合式强化传热技术。如在内翅管或粗糙管中插入纽带插入物, 带有声波振动的粗糙柱面, 在流化床中使用翅片管, 带有振动的外翅管, 加有电场的气固悬浮液以及有空气脉动的流化床等。

但须注意的是, 并不是每两个或多个单个强化技术任意复合都能产生比单个强化技术更好的传热强化效果, 比如有研究表明, 带有内翅的螺旋盘管的平均努塞尔准数要低于普通的螺旋盘管。必须经过实践检验才能确认其对传热强化的有效性, 获得最佳的强化传热效果。

参考文献:

【1】孙靖民.现代机械设计方法[M].哈尔滨:哈尔滨工业大学出版社,2011. 【2】王凤歧等.现代设计方法[M].天津:天津大学,2002.

【3】钟志华周彦伟.现代设计方法[M].武汉:武汉理工大学出版社,2001. 【4】秦东晨,陈江义,胡滨生,王丽霞.机械结构优化设计的综述与展望[J].中国科技信息,2005(9)

【5】张翔.优化设计方法及编程[M].北京:中国农业大学出版社,2001.【6】吴立峰.优化设计模型及方法的综述[J].石油规划设计,1992.

【7】范垂本,陈立周,吴清一.机械优化设计方法[J].机械制造,1981.

【8】席少霖, 赵风冶编著最优化计算方法上海上海科学出版社,1983

【9】贾瑞芬,张翔.优化设计方法的发展与应用情况[J].机电技术,2003

【10】张济川.机械最优化设计及应用实例[M].北京:新时代出版社,

【11】孙桓陈作模.《机械原理》,2006,5(7):1 - 4

换热器的研究发展现状

CHEMICAL INDUSTRY AND ENGINEERING PROGRESS 2009年第28卷增刊·338· 化工进展 换热器的研究发展现状 支浩,汤慧萍,朱纪磊 (西北有色金属研究院,陕西西安 710055) 摘要:随着现代工业的迅速发展,以能源为中心的环境、生态等问题日益加剧。世界各国在寻找新能源的同时,也更加注重了节能新途径的研发。强化传热技术的应用不但能节约能源、保护环境,而且能大大节约投资成本。 换热器由于其在化工、石油、动力和原子能等工业部门的广泛应用,使得换热器的强化传热技术一直以来受到研究人员的重视,各种研究成果不断涌现。随着经济的发展,各种不同结构和种类的换热器发展很快,新结构、新材料的换热器不断涌现。换热器又称热交换器,是一种将热流体的部分热量传递给冷流体的设备,也是实现化工生产过程中热量交换和传递不可缺少的设备。换热器既可是一种单独的设备,如加热器、冷却器和凝汽器等;也可是某一工艺设备的组成部分,如石化、煤炭工业中的余热回收装置等。本文主要介绍了现有换热器的分类,各种换热器的特点工作原理及应用情况,对目前换热器的存在问题和发展趋势进行分析。 关键词:换热器;强化换热;研究现状 随着现代工业的迅速发展,以能源为中心的环境、生态等问题日益加剧。世界各国在寻找新能源的同时,也更加注重了节能新途径的研发。强化传热技术的应用不但能节约能源、保护环境,而且能大大节约投资成本。换热器由于其在化工、石油、动力和原子能等工业部门的广泛应用,使得换热器的强化传热技术一直以来受到研究人员的重视,各种研究成果不断涌现[1-4]。 1 换热器的分类方式 随着科学和生产技术的发展,各种换热器层出不穷,难以对其进行具体、统一的划分。虽然如此,所有的换热器仍可按照它们的一些共同特征来加以区分[5-6],具体如下。 按照用途来分:预热器(或加热器)、冷却器、冷凝器、蒸发器等。 按照制造热交换器的材料来分:金属的、陶瓷的、塑料的、石墨的、玻璃的等。 按照温度状况来分:温度工况稳定的热交换器,热流大小以及在指定热交换区域内的温度不随时间而变;温度工况不稳定的热交换器,传热面上的热流和温度都随时间改变。 按照热流体与冷流体的流动方向来分:顺流式、逆流式、错流式、混流式。 按照传送热量的方法来分:间壁式、混合式、蓄热式等三大类。其中间壁式换热器的冷、热流体被固体间壁隔开,并通过间壁进行热量交换的换热器,因此又称表面式换热器,这类换热器应用最广。 间壁式换热器根据传热面的结构不同可分为管式和板面式。管式换热器以管子表面作为传热面,包括套管式换热器和管壳式换热器等;板面式换热器以板面作为传热面,包括板式换热器、螺旋板换热器、板翅式换热器、板壳式换热器和伞板换热器等。 2 管式换热器 管式换热器主要有套管式换热器和管壳式换热器两种。 2.1套管式换热器 套管式换热器是将不同直径的两根管子套成的同心套管作为元件、然后把多个元件加以连接而成的一种换热器,工作时两种流体以纯顺流或纯逆流方式流动。套管式换热器的优点是:结构简单,适用于高温、高压流体,特别是小容量流体的传热。另外,只要做成内管可以抽出的套管,就可清除污垢,所以它也使用于易生污垢的流体。他的主要缺点是流动阻力大;金属消耗量多;管间接头较多,易发生泄露;而且体积大,占地面积大,故多用于传热面积不大的换热器[5,7]。 2.2管壳式换热器 管壳式换热器又称为列管式换热器,是以封闭在壳体中管束的壁面作为传热面的间壁式换热器,结构一般由壳体、传热管束、管板、折流板(挡板)和管箱等部件组成。目前,国内外工业生产中所用的换热设备中,管壳式换热器仍占主导地位,虽然它在换热效率、结构紧凑性和金属材料消耗等方面,

换热器文献综述

相变换热器文献综述 学院:材料与化学工程学院 专业:过程装备与控制工程 班级:2011-01 姓名:*** 学号:***

相变储热换热器文献综述 ***(郑州***化工学院) 摘要:本文通过对换热器发展历史的回顾,总结相变储热换热器的理论技术和结构设计,对其物性数据,相变储热材料等做了简要评述。1引言 在工业生产中,为了实现物料之间热量传递过程的一种设备,统称为换热器。它是化工、炼油、动力、原子能和其他许多工业部门广泛应用的一种通用工艺设备。对于迅速发展的化工、炼油等工业生产来说,换热器尤为重要。通常在化工厂的建设中,换热器约占总投资的10~20%。在石油炼厂中,换热器约占全部工艺设备投资的85~40%。在化工生产中,为了工艺流程的需要,往往进行着各种不同的换热过程:如加热、冷却、蒸发和冷凝等。换热器就是用来进行这些热传递过程的设备,通过这种设备,以便使热量从温度较高的流体传递给温度较低的流体,以满足工艺上的需要。由于使用的条件不同,换热设备又有各种各样的形式和结构。另外,在化工生产中,有时换热器作为一个单独的化工设备,有时则把它作为某一个工艺设备中的组成部分。其他如回收排放出去的高温气体中的废热所用的废热锅炉,有时在生产中也是不可缺少的。总之,换热器在化工生产中的应用是十分广泛的,任何化工生产工艺几乎都离不开它。 2换热器发展历史简要回顾 二十世纪20年代出现板式换热器,并应用于食品工业。以板代管

制成的换热器,结构紧凑,传热效果好,因此陆续发展为多种形式。30年代初,瑞典首次制成螺旋板换热器。接着英国用钎焊法制造出一种由铜及其合金材料制成的板翅式换热器,用于飞机发动机的散热。30年代末,瑞典又制造出第一台板壳式换热器,用于纸浆工厂。在此期间,为了解决强腐蚀性介质的换热问题,人们对新材料料制成的换热器开始注意。60年代左右,由于空间技术和尖端科学的迅速发展,迫切需要各种高效能紧凑型的换热器,再加上冲压、钎焊和密封等技术的发展,换热器制造工艺得到进一步完善,从而推动了紧凑型板面式换热器的蓬勃发展和广泛应用。此外,自60年代开始,为了适应高温和高压条件下的换热和节能的需要,典型的管壳式换热器也得到了进一步的发展。70年代中期,为了强化传热,在研究和发展热管的基础上又创制出热管式换热器。换热器按传热方式的不同可分为混合式、蓄热式和间壁式三类。 节能和环保已经成为当今世界的两大主题,经济高速发展、人口不断增长、过度开采和能源的利用率过低导致能源供需矛盾越来越大.能源紧缺受到人们越来越多的关注,能量存储随之引入了人们的生活。近年来,相变储换热器在太阳能利用、工业废热利用及暖通空调蓄冷和蓄热等领域获得了广泛的应用。相变储换热器有多种形式如管簇式、球形堆积床式和平板式,一些研究者对其热性能进行了模拟和实验研究。 3实验研究的主要成果 3.1相变储能材料的导热强化

(完整word版)强化传热技术

1、强化传热的目的是什么? (1)减小初设计的传热面积,以减小换热器的体积和重量;(2)提高现有换热器的能力;(3)使换热器能在较低温差下工作;(4)减少换热器的阻力,以减少换热器的动力消耗。 2、采用什么方法解决传热技术的选用问题? (1)在给定工质温度、热负荷以及总流动阻力的条件下,先用简明方法对拟采用的强化传热技术从使换热器尺寸大小、质轻的角度进行比较。这一方法虽不全面,但分析表明,按此法进行比较得出的最佳强化传热技术一般在改变固定换热器三个主要性能参数(换热器尺寸、总阻力和热负荷)中的其他两个,再从第三个性能参数最佳角度进行比较时也是最好的。(2)分析需要强化传热处的工质流动结构、热负荷分布特点以及温度场分布工况,以定出有效的强化传热技术,使流动阻力最小而传热系数最大。(3)比较采用强化传热技术后的换热器制造工艺、安全运行工况以及经济性问题。 3、表面式换热器的强化传热途径有哪些? (1)增大平均传热温差以强化传热;(2)增加换热面积以强化传热;(3)提高传热系数以强化传热。 4、何为有功和无功强化传热技术?包括哪些方法? 从提高传热系数的各种强化传热技术分,则可分为有功强化传热技术和无功强化传热技术两类。前者也称主动强化传热技术、有源强化技术、后者也称为被动强化技术、无源强化技术。有功强化传热技术需要应用外部能量来达到强化传热的目的;无功传热强化技术则无需应用外部能量即能达到强化传热的目的。有功强化传热技术包括机械强化法、震动强化、静电场法和抽压法等;无功强化传热技术包括表面特殊处理法、粗糙表面法、扩展表面法、装设强化元件法、加入扰动流体法等。 5、单项流体管内强制对流换热时,层流和紊流的强化有何不同? 当流体做层流运动时,流体沿相互平行的流线分层流动,各层流体间互不掺混,垂直于流动方向上的热量传递只能依靠流体内部的导热进行,因而换热强度较低。因此,对于强化层流流动的换热,应以改变流体的流动状态为主要手段。当流体做湍流运动时,流体的传热方式有两种:在层流底层区的热量传递主要依靠导热;而在底层以外的湍流区,除热传导以外,主要依靠流体微团的混合运动。除液态金属以外,一般流体导热率都很小,湍流换热时的主要热阻在层流地层区。因此对于强化湍流流动的换热,主要原则应是减薄层流底层的厚度。 6、管式换热器一般采用圆管还是矩形通道?为什么? 在管子数目、工质流量及管道横截面周界均给定的情况下,圆形管道的流通截面积最大,矩形的最小,而流速恰好相反。在个管道中温度条件相同时,矩形管道能增加换热系数,但同时阻力也剧增,这就是管式换热器一般采用圆管而不用换热效果横好的矩形管道的原因。 7、采用扩张-收缩管式如何强化传热的? 流体在扩张段中产生的强烈漩涡被流体带入收缩段时得到了有效利用,从而增强了传热。此外,在收缩段中由于流体流过收缩截面时流速增高,使流体边界层中流速也相应增高,从而也增进了传热效应。

板式换热器的换热计算方法

板式换热器的计算方法 板式换热器的计算是一个比较复杂的过程,目前比较流行的方法是对数平均温差法和NTU法。在计算机没有普及的时候,各个厂家大多采用计算参数近似估算和流速-总传热系数曲线估算方法。目前,越来越多的厂家采用计算机计算,这样,板式换热器的工艺计算变得快捷、方便、准确。以下简要说明无相变时板式换热器的一般计算方法,该方法是以传热和压降准则关联式为基础的设计计算方法。 以下五个参数在板式换热器的选型计算中是必须的: 总传热量(单位:kW). 一次侧、二次侧的进出口温度 一次侧、二次侧的允许压力降 最高工作温度 最大工作压力 如果已知传热介质的流量,比热容以及进出口的温度差,总传热量即可计算得出。 温度 T1 = 热侧进口温度 T2 = 热侧出口温度 t1 = 冷侧进口温度 t2= 冷侧出口温度 热负荷

热流量衡算式反映两流体在换热过程中温度变化的相互关系,在换热器保温良好,无热损失的情况下,对于稳态传热过程,其热流量衡算关系为: (热流体放出的热流量)=(冷流体吸收的热流量) 在进行热衡算时,对有、无相变化的传热过程其表达式又有所区别。 (1)无相变化传热过程 式中 Q----冷流体吸收或热流体放出的热流量,W; m h,m c-----热、冷流体的质量流量,kg/s; C ph,C pc------热、冷流体的比定压热容,kJ/(kg·K); T1,t1 ------热、冷流体的进口温度,K; T2,t2------热、冷流体的出口温度,K。 (2)有相变化传热过程 两物流在换热过程中,其中一侧物流发生相变化,如蒸汽冷凝或液体沸腾,其热流量衡算式为:

换热器的传热系数K

介质不同,传热系数各不相同我们公司的经验是: 1、汽水换热:过热部分为800~1000W/m2.℃ 饱和部分是按照公式K=2093+786V(V是管流速)含污垢系数0.0003。水水换热为:K=767(1+V1+V2)(V1是管流速,V2水壳程流速)含污垢系数0.0003 实际运行还少有保守。有余量约10% 冷流体热流体总传热系数K,W/(m2.℃) 水水 850~1700 水气体 17~280 水有机溶剂 280~850 水轻油 340~910 水重油60~280 有机溶剂有机溶剂115~340 水水蒸气冷凝1420~4250 气体水蒸气冷凝30~300 水低沸点烃类冷凝 455~1140 水沸腾水蒸气冷凝2000~4250 轻油沸腾水蒸气冷凝455~1020 不同的流速、粘度和成垢物质会有不同的传热系数。K值通常在800~2200W/m2·℃围。

列管换热器的传热系数不宜选太高,一般在800-1000 W/m2·℃。 螺旋板式换热器的总传热系数(水—水)通常在1000~2000W/m2·℃围。 板式换热器的总传热系数(水(汽)—水)通常在3000~5000W/m2·℃围。 1.流体流径的选择 哪一种流体流经换热器的管程,哪一种流体流经壳程,下列各点可供选择时参考(以固定管板式换热器为例) (1) 不洁净和易结垢的流体宜走管,以便于清洗管子。 (2) 腐蚀性的流体宜走管,以免壳体和管子同时受腐蚀,而且管子也便于清洗和检修。 (3) 压强高的流体宜走管,以免壳体受压。 (4) 饱和蒸气宜走管间,以便于及时排除冷凝液,且蒸气较洁净,冷凝传热系数与流速关系不大。 (5) 被冷却的流体宜走管间,可利用外壳向外的散热作用,以增强冷却效果。 (6) 需要提高流速以增大其对流传热系数的流体宜走管,因管程流通面积常小于壳程,且可采用多管程以增大流速。 (7) 粘度大的液体或流量较小的流体,宜走管间,因流体在有折流挡板的壳程流动时,由于流速和流向的不断改变,在低Re(Re>100)下即可达到湍流,以提高对流传热系数。

换热器1文献综述

换热器又称热交换器,是一种将热流体的部分热量传递给冷流体的设备,也是实现化工生产过程中热量交换和传递不可缺少的设备。 换热器既可是一种单独的设备,如加热器、冷却器和凝汽器等;也可是某一工艺设备的组成部分,如石化、煤炭工业中的余热回收装置等。 换热器的发展已经有近百年的历史,被广泛应用在石油、化、冶金、电力、船舶、集中供热、制冷空调、机械、食品、制药等领域。 进入80 年代以来,由于制造技术、材料科学技术的不断进步和传热理论研究的不断完善,有关换热器的节能设计和应用越来越引起关注。按照用途来分:预热器(或加热器)、冷却器、冷凝器、蒸发器等。按照制造热交换器的材料来分:金属的、陶瓷的、塑料的、石墨的、玻璃的等。按照温度状况来分:温度工况稳定的热交换器,热流大小以及在指定热交换区域内的温度不随时间而变;温度工况不稳定的热交换器,传热面上的热流和温度都随时间改变。按照热流体与冷流体的流动方向来分:顺流式、逆流式、错流式、混流式。按照传送热量的方法来分:间壁式、混合式、蓄热式等三大类。其中间壁式换热器的冷、热流体被固体间壁隔开,并通过间壁进行热量交换的换热器,因此又称表面式换热器,这类换热器应用最广。 目前在发达的工业国家热回收率已达96 % ,换热设备在石油炼厂中约占全部工艺设备投资的35 %~40 %。其中管壳式换热器仍然占绝对的优势, 约70 %。其余30 %为各类高效紧凑式换热器、新型热管和蓄热器等设备, 其中板式、板翅式、热管及各类高效传热元件的发展十分迅速。随着工业装置的大型化和高效率化, 换热器也趋于大型化, 并向低温差设计和低压力损失设计的方向发展。当今换热器的发展以CFD (Computational Fluid Dynamics) 、模型化技术、强化传热技 术及新型换热器开发等形成了一个高技术体系。 管壳式换热器: 管壳式换热器又称为列管式换热器,是以封闭在壳体中管束的壁面作为传热面的间壁式换热器,结构一般由壳体、传热管束、管板、折流板(挡板)和管箱等部件组成。目前,国内外工业生产中所用的换热设备中,管壳式换热器仍占主导地位,虽然它在换热效率、结构紧凑性和金属材料消耗等方面不如其它新型换热设备,但它具有结构坚固,操作弹性大,适应性强,可靠程度高,选材范围广,处理能力大,能承受高温高压等特点,所以在工程中仍得到广泛应用。以下是几种常见的管壳式强化换热器。 螺旋槽管换热器,横纹管换热器,螺旋扁管换热器,螺旋扭曲管换热器,波纹管换热器,内翅片管换热器,缩放管换热器,波节管管

如何提高板式换热器传热效率

如何提高板式换热器传热效率 很多人对智能换热设备不是很了解,其实智能换热设备的功能是非常大的,传热效率也非常高,尤其是在冬季,它的作用就越发的明显。下面艾瑞德板式换热器有限公司就来说一下如何进一步提高智能换热设备的传热效率。 第一,选用热导率高的板片。板片的材质可选择不锈钢、钛合金、铜合金等等; 第二,提高板片的表面传热系数。由于智能换热设备的波纹能使流体在较小的流速下产生瑞流,因此能获得较高的表面传热系数,表面传热系数与板片波纹的几何结构以及介质的流动状态有关; 艾瑞德板式换热器(江阴)有限公司作为专业的可拆式板式换热器生产商和制造商,专注于可拆式板式换热器的研发与生产。ARD艾瑞德专业生产可拆式板式换热器(PHE)、换热器密封垫(PHE GASKET)、换热器板片(PHE PLATE)并提供板式换热器维护服务(PHE MAINTENANCE)的专业换热器厂家。 ARD艾瑞德拥有卓越的设计和生产技术以及全面的换热器专业知识,一直以来ARD致力于为全球50多个国家和地区的石油、化工、工业、食品饮料、电力、冶金、造船业、暖通空调等行业的客户提供高品质的板式换热器,良好地运行于各行业,ARD已发展成为可拆式板式换热器领域卓越的厂家。 ARD艾瑞德同时也是板式换热器配件(换热器板片和换热器密封垫)领域专业的供应商和维护商。能够提供世界知名品牌(包括:阿法拉伐/AlfaLaval、斯必克/SPX、安培威/APV、基伊埃/GEA、传特/TRANTER、舒瑞普/SWEP、桑德斯/SONDEX、艾普尔.斯密特/API.Schmidt、风凯/FUNKE、萨莫威孚/Thermowave、维卡勃Vicarb、东和恩泰/DONGHWA、艾克森ACCESSEN、MULLER、FISCHER、REHEAT等)的所有型号将近2000种的板式换热器板片和垫片,ARD艾瑞德实现了与各品牌板式换热器配件的完全替代。全球几十个国家的板式换热器客户正在使用ARD提供的换热器配件或接受ARD的维护服务(包括定期清洗、维修及更换配件等维护服务)。

管壳式换热器强化传热综述

管壳式换热器强化传热综述 摘要根据国内外强化侍热技术的研究现状,着重介绍了管壳式换热嚣在壳程强化待热方面开展的工作及取得的成果。 关键词管壳式换热器壳程强化传热 Abstract In the light of the present statns of study of the technology for intensification of heat transfer both at home and abroad.The work on the intensification of heat transfer in the shell side of the shell and tube heat exchanger is mainly presented as well as the result obtained.Keywords shell and tube heat exchanger shell side intensification of heat transfer 中图分类号:TE965文献标识码:A 随着现代工业的快速发展,对能源的需求越来越大.而利用高效换热器可以吸收化工、石油生产过程中存在的大量余热,既节约了能源,又减少了污染。与板式、板翅式换热器相比,管壳式换热器由于其适用性广、坚固耐用、密封性较好以及其结构简单、清洗方便是石油、化工等领域应用最普遍的一种换热器(占整个换热器设备的70%以上)[1]。因此.如何最大限度地利用热能和回收热能,强化管壳式换热器成为人们所研究的重点之一。 (一)强化传热的途径 单位时间内的换热量Q与冷热流体的温差△t及传热面积F成正比,即:Q=k·F·△t.可见强化传热可以通过增加传热面积F、加大传热温差△t,提高传热系数K3个途径来实现。 1.1增加传热面积F 增加传热面积不应理解为单一扩大设备体积或台数,而应是采用改变传热表面结构或材料性能合理提高设备单位体积的传热面积.使设备高效、紧凑、轻巧。如采用螺旋螺纹管、翅片管、波纹管、粗糙表面管、异形管等方法都能使传热面积增加。 1.2加大传热温差△t 在考虑到实际工艺或设备是否允许的情况下,改变冷热流体温度或改变换热流体同的流动方式如逆流、错流等,就可改变传热温差血,但这种方法受生产工艺、设备条件、环境条件及经济性等方面限制,实际操作时有一定局限性。 1.3提高传热系数k 提高传热系数小的一侧传热面之传热系数.就可使设备总传热系数大幅度提高。当今世界上强化传热研究的重点就是提高传热系数,有一种趋势是改善流体自身流动状态,加强湍

强化传热 文献综述

华北电力大学研究生结课作业 学年学期:2014—2015第二学期 课程名称:强化传热 学生姓名: 学号: 提交时间:2015.3.26

强化传热文献综述 摘要:研究各种传热过程的强化问题来设计新颖的紧凑式换热器,不仅是现代工业发展过程中必须解决的课题,同时也是开发新能源和开展节能工作的紧迫任务,因而研究和开发强化传热技术对于发展国民经济的意义是十分重要的。本文主要总结了管内强制对流换热和强制对流沸腾换热、管束中强制对流换热、大容器沸腾换热和凝结换热的强化方法。以及管壳式换热器和管内置扰流元件的强化传热的研究进展。 关键词:强化传热;粗糙表面法;扩展表面法;扰流元件;机械强化法;静电场法 引言 工质的流动和传热在动力、核能、制冷、化工、石油乃至航空、火箭和航空等工业中是常见的。这些工业的换热设备中广泛存在着各种传热问题。以动力工业中的火力发电厂为例,蒸汽锅炉本身就是一个大型复杂换热面。燃料在炉膛中燃烧生产的热量,需要应用多种传热方式,通过炉膛散热面、对流蒸发受热面、过热器及省煤器加热工质,是工质汽化、过热成为能输往蒸汽轮机的符合要求的过热蒸汽。此外,在锅炉尾部还装有利用排出烟气加热燃烧所需空气的空气预热器。在电厂的热力系统中还装有各式给水加热器、蒸汽凝结器、燃油加热器等。在这些设备中也都存在各种各样的传热问题。换热器的合理设计、运转和改进对于节省资金、能源、金属和空间而言是十分重要的。 1 强化传热的目的和意义 1.1目的 减小初设计的传热面积,以减小换热器的体积和重量;提高现有换热器的换热能力;使换热器能在较低温差下工作;减少换热器的阻力,以减少换热器的动力消耗。 1.2意义 研究各种传热过程的强化问题来设计新颖的紧凑式换热器,不仅是现代工业发展过程中必须解决的课题,同时也是开发新能源和开展节能工作的紧迫任务,因而研究和开发强化传热技术对于发展国民经济的意义是十分重要的。 2换热器中强化传热的途径及分类 2.1途径: 增加平均传热温差;扩大换热面积;提高传热系数。 2.2分类 从被强化的传热过程来分,可分为导热过程的强化、单相对流换热过程的强化、沸腾传热过程的强化、凝结传热过程的强化和辐射传热过程的强化。 从提高传热系数的各种强化传热技术来分,可分为有功技术和无功技术两类。有功强化传热技术包括:机械强化法、振动强化法、静电场法和抽压法等。无功强化传热技术包括:表面特殊处理法、粗糙表面法、扩展表面法、装置强化元件法和加入扰动流体法等。 3提高传热系数来强化传热的技术 3.1单相流管内强制对流换热的有效强化方法 使管内流体发生旋转运动。流体发生旋转可是贴近壁面的流体速度增加,同时还改变了整个流体的流动结构。在采用各种有效的使流体旋转的措施后,增加了旋转流体的流动路

新型换热技术

换热器最新换热技术 换热器在工、农业的各领域应用十分广泛,在日常生活中传热设备也随处可见,是不可缺少的工艺设备之一。因此换热设备的研究备受世界各国政府及研究机构的高度重视,在全世界第一次能源危机爆发以来,各国都在下大力量寻找新的能源及在节约能源上研究新途径。在研究投入大、人力资源配备足的情况下,一批具有代表性的高效换热器和强化传热元件诞生。随着研究的深入,工业应用取得了令人瞩目的成果,得到了大量的回报,如板翅式换热器、大型板壳式换热器和强化沸腾的表面多孔管、T形翅片管、强化冷凝的螺纹管、锯齿管等都得到了国际传热界专家的首肯,社会效益非常显著,大大缓解了能源的紧张状况。 换热器的种类繁多,有多种分类方法。 一、按原理分类: 1、直接接触式换热器 这类换热器的主要工作原理是两种介质经接触而相互传递热量,实现传热,接触面积直接影响到传热量,这类换热器的介质通常一种是气体,另一种为液体,主要是以塔设备为主体的传热设备,但通常又涉及传质,故很难区分与塔器的关系,通常归口为塔式设备,电厂用凉水塔为最典型的直接接触式换热器。 2、蓄能式换热器(简称蓄能器),这类换热器用量极少,原理是热介质先通过加热固体物质达到一定温度后,冷介质再通过固体物质被加热,使之到达传热量的目的。 3、间壁式换热器 这类换热器用量非常大,占总量的99%以上,原理是热介质通过金属或非金属将热量传递给冷介质,这类换热器我们通常称为管壳式、板式、板翅式或板壳式换热器。 二、按传热种类分类 1、无相变传热 一般分为加热器和冷却器。 2、有相变传热 一般分为冷凝器和重沸器。重沸器又分为釜式重沸器、虹吸式重沸器、再沸器、蒸发器、蒸汽发生器、废热锅炉。 三、按传热元件分类 1、管式传热元件: (1)浮头式换热器 (2)固定管板式换热器 (3)填料函式换热器 (4)U型管式换热器 (5)蛇管式换热器 (6)双壳程换热器 (7)单套管换热器 (8)多套管换热器 (9)外导流筒换热器 (10)折流杆式换热器

板式换热器换热系数或传热系数

板式换热器是一种高效、紧凑的换热设备。尽管其发展已有近百年历史,且在国民经济的少数部门(如食品、制药)有着比较广泛的应用,但是由于耐温、耐压、耐腐蚀能力而制约其在各个部门的全面推广和应用。进入80年代以来,由于制造技术、垫片材料的不断进步以及传热理论的不断完善,板式换热器的应用越来越受到工业生产部门的重视。 要确定一项强化传热新技术是否先进,必须对其进行评价。但在实际的使用中,出现了多种评价强化传热的方法与评价指标。有人主张采用换热量Q与消耗的泵(或风机)的功率N的比值,即能量系数作为评价指标,类似的也广泛采用K/ΔP以及无因次化的Nu/ζ来进行评价,为了更准确地反映强化传热的性能,进一步也可以使用K/ΔP1/3及Nu/ζ1/3作为指标。随着传热技术的发展,换热器日益向体积小、重量轻的方向发展,同时在提高效率的前提下,要求操作费用降低。在综合分析的基础上,提出了一套较为完整的性能评价数据,即维持输送功率、传热面积、传热负荷3因素中的两因素不变,比较第3因素的大小以评定传热性能的好坏。 这些评价都只是分析换热器的能量在数量上转换、传递、利用和损失的情况,即以热力学第一定律为基础。为了更准确地反映热量交换过程能量在质量上的损失,在理论研究中也提出了许多基于热力学第二定律的评价方法,即分析换热器中火用的转换、传递、利用和损失的情况。而进行技术推广应用时,还应考虑采用强化换热技术后管子等价格的增加和运行费用的变化,运用经济核算的方法进行评价,即热经济学的评价方法。 而在实际的使用过程中,进行强化传热新技术、新方法的研究更多采用简单易用的单一参数K,ΔP以及单一参数组合而成的K/ΔP,K/ΔP1/3来进行评价[9~11]。而基于热力学第二定律的方法在设计过程中可用来判断换热器的性能,作为进一步改善的依据,但在工程上缺乏实用性。 a.提高板片的表面传热系数 由于板式换热器的波纹能使流体在较小的流速下产生湍流( 雷诺数一1 5 0时 ),因此能获得较高的表面传热系数,表面传热系数与板片波纹的几何结构以及介质的流动状态有关。板片的波形包括人字形、平直形、球形等。经过多年的研究和实验发现,波纹断面形状为三角形 ( 正弦形表面传热系数最大,压力降较小,受压时应力分布均匀,但加工困难…) 的人字形板片具有较高的表面传热系数,且波纹的夹角越大,板间流道内介质流速越高,表面传热系数越大。 b.减小污垢层热阻 减小换热器的污垢层热阻的关键是防止板片结垢。板片结垢厚度为1mm时,传热系数降低约10%。因此,必须注意监测换热器冷热两侧的水质,防止板片结垢,并防止水中杂物附着在板片上。有些供热单位为防止盗水及钢件腐蚀,在供热介质中添加药剂,因此必须注意水质和黏性药剂引起杂物沾污换热器板片。如果水中有黏性杂物,应采用专用过滤器进行处理。选用药剂时,宜选择无黏性的药剂。 c.选用热导率高的板片 板片材质可选择奥氏体不锈钢、钛合金、铜合金等。不锈钢的导热性能好,热导率约14.4W/( m·K),强度高,冲压性能好,不易被氧化,价格比钛合金和铜合金低,供热工程中使用最多,但其耐氯离子腐蚀的能力差。 d.减小板片厚度 换热器板片的设计厚度与其耐腐蚀性能无关,与换热器的承压能力有关。板片加厚,能提高换热器的承压能力。采用人字形板片组合时,相邻板片互相倒置,波纹相互接触,形成了密度大、分布均匀的支点,板片角孑L及边缘密封结构已逐步完善,使换热器具有很好的承压能力。国产可拆式板式换热器最大承压能力已达到了2.5M P a 。板片厚度对传热系数影响很大,厚度减小 0.1mm,对称型板式换热器的总传热系数约增加 6 0 0W/( m ·K),

板式换热器换热面积与传热系数的关系

传热效率高: 板片波纹的设计以高度的薄膜导热系数为目标,板片波纹所形成的特殊流道,使流体在极低的流速下即可发生强烈的扰动流(湍流),扰动流又有自净效应以防止污垢生成因而传热效率很高。 一般地说,板式换热器的传热系数K值在3000~6000W/m2.oC范围内。这就表明,板式换热器只需要管壳式换热器面积的1/2~1/4 即可达到同样的换热效果。 随机应变: 由于换热板容易拆卸,通过调节换热板的数目或者变更流程就可以得到最合适的传热效果和容量。只要利用换热器中间架,换热板部件就可有多种独特的机能。这样就为用户提供了随时可变更处理量和改变传热系数K值或者增加新机能的可能。 热损失小: 因结构紧凑和体积小,换热器的外表面积也很小,因而热损失也很小,通常设备不再需要保温。 使用安全可靠: 在板片之间的密封装置上设计了2道密封,同时又设有信号孔,一旦发生泄漏,可将其排出热换器外部,即防止了二种介质相混,又起到了安全报警的作用。 有利于低温热源的利用: 由于两种介质几乎是全逆 流流动,以及高的传热效果,板式 换热器两种介质的最小温差可达到 1oC。用它来回收低温余热或利用低 温热源都是最理想的设备。

冷却水量小: 板式换热器由于其流道的几何形状所致,以及二种液体都又很高的热效率,故可使冷却水用量大为降低。反过来又降低了管道,阀门和泵的安装费用。 占地少,易维护: 板式换热器的结构极为紧凑,在传热量相等的条件下,所占空间仅为管壳式换热器的1/2~1/3。并且不象管壳式那样需要预留出很大得空间用来拉出管束检修。而板式换热器只需要松开夹紧螺杆,即可在原空间范围内100%地接触倒换热板的表面,且拆装很方便。 阻力损失少: 在相同传热系数的条件下,板式换热器通过合理的选择流速,阻力损失可控制在管壳式换热器的1/3范围内。 投资效率高: 在相同传热量的前提下,板式换热器与管壳式换热器相比较,由于换热面积,占地面积,流体阻力,冷却水用量等项目数值的减少,使得设备投资、基建投资、动力消耗等费用大大降低,特别是当需要采用昂贵的材料时,由于效率高和板材薄,设备更显经济。

浅谈管壳式换热器强化传热

浅谈管壳式换热器强化传热 热能1303梁皓天20132586 随着现代工业的迅速发展,以能源为中心的环境、生态等问题日益加剧。世界各国在寻找新能源的同时,也更加注重了节能新途径的研发。强化传热技术的应用不但能节约能源、保护环境,而且能大大节约投资成本。换热器由于其在化工、石油、动力和原子能等工业部门的广泛应用,使得换热器的强化传热技术一直以来受到研究人员的重视,各种研究成果不断涌现。 管壳式换热器又称谓列管式换热器,是以封闭在壳体中管束的壁面作为传热面的间壁式换热器,结构一般由管箱、壳体、管束、管板、折流板等部件组成。目前,国内外工业生产中所用的换热设备中,管壳式换热器仍占主导地位,虽然它在换热效率、结构紧凑性和金属材料消耗等方面,不如其他新型换热设备,但它具有结构坚固,操作弹性大,适应性强,可靠程度高,选材范围广,处理能力大,能承受高温高压等特点,所以在工程中仍得到广泛应用。管壳式热器固然有其优点,并为产业节能方面做出了巨大的贡献,但在新的节能减排形势下,其缺点(压降大、流动死区、易结垢、震动、传热效果差)严重的限制了其发展和生存的空间,为了节能降耗,提高换热器的传热效率,需要研发能够满足多种工业生产过程要求的高效节能换热器。因此,近年来,高效节能换热器的研发一直受到人们的普遍关注,国内外先后推出了一系列新型高效换热器。 目前传统强化换热的方法大体上可以分为三类,管程强化传热,壳程强化传热,整体强化传热。 管程强化换热主要有两种方式,一是改变管子形状或者提高换热面积,如:螺旋槽管、旋流管、波纹管、缩放管、螺纹管等;二是增强管内的湍流程度,例如,管内设置各种形状的插入物。其中,改变换热管设计的方式,如改变换热管形状,或加大管程流体的湍流程度、传热面积,具体的设计对象包括波纹管、伸缩管、翅片管等。而另一种类型包括管内插物的设计,及通过管内绕丝花环、纽带等,实现管程的湍流程度;相比较来说,在管内插物的形式执行简单、效果较好、投资较少,是目前主要应用的管程强化传热形式。 下面详细介绍一下主要管程强化传热的换热器特点。 (1)螺旋槽管是通过专用轧管设备将圆管在其表面滚压出螺旋线形的凹槽,管子内部形成螺旋线形凸起,如图1所示,管内介质流动时受螺旋线型槽纹的导向使靠近管壁的部分介质沿槽纹方向螺旋流动,这就使得边界层的厚度较大程度的减薄,提高换热的效果;部分介质沿着壁面纵向运动,经过槽纹凸起处产生纵向漩涡,促使边界层分层,加速边界层中介质质点的运动,进而加快了管壁处介质与主体介质的热量传递。 (2)波纹管是将管子加工成内外均呈连续波纹曲线的一种强化管,如图2所示,使管子的纵向截面呈波形,由相切的大小圆弧构成,管内流体的流动状态不断变化,使流体的湍流程度增加从而强化传热。主要适用于管内外介质有加热、冷却热交换的场合,其特点为传热效率高,这一特点是依靠独特的传热元件—波纹管来实现的。波纹管特殊的波峰与波谷设计,使流体在关内外形成强烈扰动,大大提高了换热管的传热系数,其传热系数比传统管式换热器高2~3倍。波纹管在工作过程中,一方面管内外介质始终处于高

换热器文献综述(综述报告)(经典版)

板式换热器综述报告 院系:机械工程学院 姓名:xxxxxx 学号:xxxxxxxxxx 班级:过控10-3班 日期:2012年12月28日

前言 用来使热量从热流体传递到冷流体,以满足规定工艺要求的装置统称为换热器。随着生产和科学技术的发展,化工、动力机械、原子能工业,特别是汽车、火车、航空等工业部门迫切要求高效、轻巧而又紧凑的换热设备,这就促使新结构形式的热交换设备的出现和不断发展。板式换热器就是在这种形式下发展起来的新产品。 国内外板式换热器的发展是欧美发达国家于20世纪80年代起开始竞相开发、研制各种型式的板式换热器。其中具有代表性的为法国Packinox公司,该公司于20世纪80年代首次在催化重整装置中用一台大型板式换热器替代传统的管壳式换热器组。20世纪90年代末期,Packinox公司又将大型板式换热器用于加氢装置。该公司的产品得到UOP(美国联合油)的认证,其产品主要用于的催化重整、芳烃及加氢装置。而板式换热器在中国的起步比较晚。1999年兰州石油机械研究所研制成功大型板式换热器,该产品(专利号:ZL98249056.9)具有国际先进水平、首创独特结构的全焊式板式换热器,并已在炼油厂重整装置,化肥厂水解解吸装置及集中供热换热站等场合得到应用。 近年来,随着我国石化、钢铁等行业的快速发展,换热器的需求水平大幅上涨,但国内企业的供给能力有限,导致换热器行业呈现供不应求的市场状态,巨大的供给缺口需要进口来弥补。 同时,我国出口的换热器均价平均不到进口均价的一半。可以想见,我国出口的产品多是附加值低的中、低端产品,而进口的产品多是附加值高的高端产品。这充分说明我国对高端换热器产品需求旺盛但供给不足的市场现状。 作为一个高效紧凑式换热器,在加热、冷却、冷凝、蒸发和热回收过程中,

换热器节能设计分析

换热器节能设计分析 【摘要】换热器中采用节能技术不仅能提高能源利用率,减少金属材料的消耗,而且对推进石油、化工、制药等行业的节能减排工作有着积极意义。介绍了常用管壳式换热器换热管强化传热技术和壳程强化传热方法,分析了各自的原理、优缺点及推荐使用场合。 【关键词】换热器节能强化传热 1 管壳式换热器的传热原理 根据传热学基本公式:Q=KF△tm,由上式可知,提高传热效率的途径有三条:提高传热系数K;增大换热面积F;加大对数平均温差△tm。增大换热面积和加大对数平均温差都不是理想的途径,一味地增加换热面积势必会造成设备体积庞大和投资费用的大幅度增加,而加大对数平均温差又要受到公用工程条件和分离物系性质的限制。只有提高传热系数,才是强化换热最有效的途径。传热系数K是换热器的主要性能参数,众所周知其计算公式为: 传热系数K值的大小与管内换热系数ai、管外换热系数ao、管内和管外的污垢系数ri和ro、换热管的外径与内径之比do/di、换热管材料的热导率λw以及管厚度δw有关。而换热管的材料、规格一旦选定,则管外径与内径之比、壁厚及导热系数等参数也随之确定下来。所以,提高管内、外换热系数ai和ao、降低污垢系数ri和ro,才能够提高换热器的总传热系数K。 2 管壳式换热器强化传热方法 由传热机理可以看出,提高换热器的传热效率就要想办法提高管内、外换热系数、降低管内、外污垢系数。管壳式换热器的强化传热研究经过多年发展,目前已经取得了许多广泛使用的成果。以下从管程强化与壳程强化两个方面分析管壳式换热器强化传热方法。 2.1 管程强化 2.1.1 传热管的改进 采用了低肋管、螺纹管、波纹管等代替常用换热器的普通光滑管,不仅增加换热面积,而且利用粗糙传热面强化边界层湍流度提高传热系数,从而使管程强化传热有了较大的突破。低肋管是开发较早的换热管之一,主要应用于强化沸腾传热,不仅其换热系数较高,而且能有效地扩大传热面积,光滑管的传热面积只是低肋管的38%。但是低肋管也有其自身的弱点:在低热流率下,换热管的传热性能在上、下两部分相差比较大,上部优于下部,不过随着热流率增加差距会逐渐减少,此外该管型带来的流动阻力会比较大。螺纹管是一种由钢管经环向滚压轧制而成的整体低翅片管,适用于强化对流、冷凝传热。从内、外螺纹管与光滑

换热器传热系数测定汇总

化 工 实 验 报 告 姓名: 学号: 报告成绩: 课程名称 化工原理实验 实验名称 换热器传热系数的测定实验 班级名称 组 长 同组者 指导教师 实验日期 教师对报告的校正意见 一、 实验目的 1、了解传气—汽对流热的基本理论,掌握套管换热器的操作方法。 2、掌握对流传热系数 α i 测定方法,加深对其概念和影响因素的理解。 3、应用线性回归分析方法,确定关联式 4 .0Pr Re i m A Nu = 中常数 A 、m 的值。 4、了解强化换热的基本方式,确定传热强化比 0/Nu Nu 。 二、 实验内容与要求 1、测定不同空气流速下普通套管换热器的对流传热系数 α i 。 2、不同空气流速下强化套管换热器的对流传热系数 α i 。 3、分别求普通管、强化管换热器准数关联式4 .0Pr Re i m A Nu =中常数 A 、m 的值。 4、根据准数关联式4 .0Pr Re i m A Nu =,计算同一流量下的传热强化比 0/Nu Nu 。 5、分别求取普通套管换热器、强化套管换热器的总传热系数 0K 。 三、 实验原理 1 、对流传热系数i α的测定: i m i i S t Q ?= α (5-1) 式中:i α—管内流体对流传热系数,w/(m 2·℃); Q i —管内传热速率,w ; 3600 t C V Q m p m i ????= ρ (5-2) 式中:V —空气流过测量段上平均体积,m 3/h ; m P —测量段上空气的平均密度,kg/m ; i S —管内传热面积, m ; 1 页

Re Pr 4 .0-Nu m Cp —测量段上空气的平均比热,J/(kg.g ); m t ?—管内流体空气与管内壁面的平均温度差,℃。 ()() 2 121m ln t t T t T t T t T S S w w -----= ? (5-3) 当 2>1t ? / 2t ? >0.5 时,可简化为 2 2 1t t T t W m +- =? (5-4) 式中:1t ,2t —冷流体(空气)的入口、出口温度,℃; Tw — 壁面平均温度,℃。 2、对流传热系数准数关联式的实验确定: 流体在管内作强制对流时,处于被加热状态,准数关联式的形式为: n i m i A Nu Pr Re = (5-5) 其中,传热准数:i i i i d Nu λ α= (5-6) 雷诺准数: i i i i i u d μ ρ= Re (5-7) 其中:u-测量段上空气的平均流速:3600?= F V u (5-8) 普朗特准数: i i pi i c λ μ= Pr (5-9) 对于管内被加热的空气,普朗特准数i Pr 变化不大,可认为是常数,关联式简化为: 4.0Pr Re i m i A Nu i = (5-10) 通过实验确定不同流量下的i Re 与i Nu 。 3、关联式4 .0Pr Re i m i A Nu i =中的常数A ,m 的确定: 以 4 .0Pr Nu 纵坐标,Re 为横坐标,在对数坐标上绘 关系,作图、回归得到准数关联式4 .0Pr Re i m i A Nu i =中的常数A ,m 。 同理得到强化管准数关联式4 .0Pr Re i m i A Nu i =中的常数A ,m 。 4、强化比的确定 2 页

换热器的强化传热三因素

换热器的强化传热 所谓换热器传热强化或增强传热是指通过对影响传热的各种因素的分析与计算,采取某些技术措施以提高换热设备的传热量或者在满足原有传热量条件下,使它的体积缩小。换热器传热强化通常使用的手段包括三类:扩展传热面积(F );加大传热温差;提高传热系数(K )。 1 换热器强化传热的方式 1.1 扩展传热面积F 扩展传热面积是增加传热效果使用最多、最简单的一种方法。在扩展换热器传热面积的过程中,如果简单的通过单一地扩大设备体积来增加传热面积或增加设备台数来增强传热量,不光需要增加设备投资,设备占地面积大、同时,对传热效果的增强作用也不明显,这种方法现在已经淘汰。现在使用最多的是通过合理地提高设备单位体积的传热面积来达到增强传热效果的目的,如在换热器上大量使用单位体积传热面积比较大的翅片管、波纹管、板翅传热面等材料,通过这些材料的使用,单台设备的单位体积的传热面积会明显提高,充分达到换热设备高效、紧凑的目的。 1.2 加大传热温差Δt 加大换热器传热温差Δt是加强换热器换热效果常用的措施之一。 在换热器使用过程中,提高辐射采暖板管内蒸汽的压力,提高热水采暖的热水温度,冷凝器冷却水用温度较低的深井水代替自来水,空气冷却器中降低冷却水的温度等,都可以直接增加换热器传热温差Δt。 但是,增加换热器传热温差Δt是有一定限度的,我们不能把它作为增强换热器传热效果最主要的手段,使用过程中我们应该考虑到实际工艺或设备条件上是否允许。例如,我们在提高辐射采暖板的蒸汽温度过程中,不能超过辐射采暖允许的辐射强度,辐射采暖板蒸汽温度的增加实际上是一种受限制的增加,依靠增加换热器传热温差Δt只能有限度的提高换热器换热效果;同时,我们应该认识到,传热温差的增大将使整个热力系统的不可逆性增加,降低了热力系统的可用性。所以,不能一味追求传热温差的增加,而应兼顾整个热力系统的能量合理使用。 1.3 增强传热系数(K)

相关文档