文档视界 最新最全的文档下载
当前位置:文档视界 › 风力发电DIY之风速与风功率

风力发电DIY之风速与风功率

风力发电DIY之风速与风功率
风力发电DIY之风速与风功率

能与风功????风功率与风压

一团质量为m的空气以速度v运动,它所具有的动能

?????????????????? ???????????????? ??????????? (1)

设一个垂直于风向的平面,面积为S,见图1

图1? 风速与截风面积

单位时间通过该平面的空气质量m为

ρ是空气密度?? 标准状态下ρ=1.2928kg/m3 ?,考虑到气温等因素本处计算取ρ=1.2kg/m3,代入(1)式得到风功率P:

??????????????? ?? ??????????????? ?? (2)可见同样面积下风功率的增加是按风速增加的三次方倍增加,例如,对于1平方米风速为5米时的风功率为75W,当风速为10米时的风

功率为600W。 ???

空气在1秒时间里通过单位面积的动能也称为“风能密度”,在此风能密度

“风压”就是垂直于气流方向的平面所受到的风的压力,在计算风力机载荷时需要参考。风压以单位面积上的风的动压来表示:

???????????????????? ???????????????????????? (3)

可见风压的增加是按风速增加的二次方倍增加。

根据国家标准,把风力发电机组的分为5级,按年平均风速10 m/s、8.5 m/s、7.5 m/s、6 m/s四种风速和特殊设计风速一个(本处设为13 m/s),我们再增加停机风速20 m/s和起动风速3 m/s共七个风速来计算单位面积(每平方米)的风功率与风压,计算所得数据填于下表:

表1? 风速、风功率、风压对照表

????风力发电机的效率

上表的风功率是速度为v的空气经过平面S后速度减为0所产生的功率,这是理想的情况,事实上空气经过平面S后并没有消失还得流走,速

度不可能为0,所以说风只可能把一部分能量传给平面S。

在风力机中风通过风轮扫掠面积时把一部分动能传给风力机,把风轮接受的风的动能与通过风轮扫掠面积的全部风的动能的比值称为风能利用

系数,根据贝茨理论,风力机的最大风能利用系数是59%,风能利用系数是衡量风力机性能的主要指标。

而实际的风力机是达不到这个理想数据的,各种形式的风轮接受风力的风能利用系数是不同的,阻力型风力机的风能利用系数较低,升力型风

力机的风能利用系数较高。风力发电机组除了风轮的风能利用系数外,还

有机械传动系统效率、发电机效率等,这些效率的乘积就是风力发电机的

全效率。在表2中列出了各种形式的风力发电机的全效率:

表2? 风力发电机的全效率表

????风力发电机的扫风面积

风轮旋转扫过的面积在垂直于风向的投影面积是风力机截留风能的面积,称为风力机的扫掠面积,图2是一个三叶片水平轴风力机的扫掠面积示意图。

图2? 水平轴风力机的扫风面积

图3是一个四叶片的H型升力垂直轴风力发电机的扫掠面积示意图。

图3? 垂直轴风力机的扫风面积

?根据前面两表可由所需发电功率估算出风力机所需的扫风面积,例如200W的升力型垂直轴风力发电机工作风速为6m/s,全效率按25%计算所需扫风面积约为6.2m2,如果工作风速为10m/s则所需扫风面积约为1.4m2即可;例如10kW的升力型垂直轴风力发电机工作风速为10m/s,全效率按30%计算所需扫风面积约为56m2,如果工作风速为13m/s则所需扫风面积约为25m2即可。按高风速设计的风力机体积小成本相对低些,但必须用在高风速环境,例如把一台设计风速为10m/s的风力机放在风速为6m/s的环境工作,其功率会下降80%;按风速6m/s设计的风力机风轮会很大,虽在

6m/s时运行很好,但遇大风易超速损坏电机,为抗强风时需增加结构强度使成本大大增加。

风力机的工作风速范围选择要适当,既要在较宽的风速范围内高效安全的发电又要有足够的抗强风能力,首先要确定风力机的额定风速,在“风轮尺寸与额定风速”一节中将讨论如何确定额定风速。

风机风量的计算、风机的选择

风机风量的定义为:风速V与风道截面积F的乘积.大型风机由于能够用风速计准确测出风速,所以风量计算也很简单,直接用公式Q=VF,便可算出风量. 风机数量的确定根据所选房间的换气次数,计算厂房所需总风量,进而计算得风机数量。计算公式:N=V×n/Q 其中:N——风机数量(台); V——场地体积(m3); n——换气次数(次/时); Q——所选风机型号的单台风量(m3/h)。风机型号的选择应该根据厂房实际情况,尽量选取与原窗口尺寸相匹配的风机型号,风机与湿帘尽量保持一定的距离(尽可能分别装在厂房的山墙两侧),实现良好的通风换气效果。排风侧尽量不靠近附近建筑物,以防影响附近住户。如从室内带出的空气中含有污染环境,可以在风口安装喷水装置,吸附近污染物集中回收,不污染环境 引风机所需风量风压如何计算 1、引风机选型,首要的是确定风量; 2、风量的确定要看你做什么用途,不同的用途风量确定方法不一样,请参照专业书籍或者请教专业技术人员; 3、确定了风量之后,逐段计算沿程阻力和局部阻力,将它们相加,乘以裕量系数,得出需要的压力; 4、查阅风机性能数据表,或者请风机厂家查找对应的风机型号即可 风机风量和风压计算功率,工业方面用,设计中,通过风量和风压计算风机的大概功率 功率(KW)=风量(m3/h)*风压(Pa)/(3600*风机效率*机械传动效率*1000)。 风量=(功率*3600*风机效率*机械传动效率*1000)/风压。 风机效率可取至;机械传动效率对于三角带传动取,对于联轴器传动取。 风量如何计算要加入风机功率管道等因素,抽风空间的大小等 比如说:100平方的房间我需要每小时抽风500立方,要怎么求出它的风机的功率,管道等。还有风速和立方怎么算出来的,比如说或米每秒的风速多长时间可以抽100立方或500立方的风以上的两个问题要求有个计算公式,公式中的符号要注明。 一、 1、管道计算 首先确定管道的长度,假设管道直径。计算每米管道的沿程摩擦阻力: R=(λ/D)*(ν^2*γ/2)。 2、计算风机的压力:ρ=RL。 3、确定风量:500立方。 4、计算风机功率:P=500立方*ρ/(3600*风机效率*1000*传动效率)。 5、风量计算:Q=ν*r^2**3600。 6、风速计算:ν=Q/(r^2**3600) 7、管道直径计算:D=√(Q*4)/(3600**ν) 二、 1、风速为s时,计算每小500立方米风需要多长时间。假设管道直径为。 Q=ν*r^2**3600 =*2)^2**3600 =(立方) 500/=(小时)

风电功率预测系统功能要求规范

风电功率预测系统功能规范 (试行) 国家电网公司调度通信中心

目次 前言...................................................................... III 1范围. (1) 2术语和定义 (1) 3数据准备 (2) 4数据采集与处理 (3) 5风电功率预测 (5) 6统计分析 (6) 7界面要求 (7) 8安全防护要求 (8) 9系统输出接口 (8) 10性能要求 (9) 附录A 误差计算方法 (10)

前言 为了规范风电调度技术支持系统的研发、建设及应用,特制订风电功率预测系统功能规范。 本规范制订时参考了调度自动化系统相关国家标准、行业标准和国家电网公司企业标准。制订过程中多次召集国家电网公司科研和生产单位的专家共同讨论,广泛征求意见。 本规范规定了风电功率预测系统的功能,主要包括预测时间尺度、信息要求、功率预测、统计分析、界面要求、安全防护、接口要求及性能指标等。 本规范由国家电网公司国家电力调度通信中心提出并负责解释; 本规范主要起草单位:中国电力科学研究院、吉林省电力有限公司。 本规范主要起草人:刘纯、裴哲义、王勃、董存、石永刚、范国英、郭雷。

风电功率预测系统功能规范 1范围 1.1本规范规定了风电功率预测系统的功能,主要包括预测时间尺度、数据准备、数据采集与处理、功率预测、统计分析、界面要求、安全防护、接口要求及性能指标等。 1.2本规范用于指导电网调度机构和风电场的风电功率预测系统的研发、建设和应用管理。 本规定的适用于国家电网公司经营区域内的各级电网调度机构和风电场。 2术语和定义 2.1 风电场 Wind Farm 由一批风电机组或风电机组群组成的发电站。 2.2 数值天气预报 Numerical Weather Prediction 根据大气实际情况,在一定的初值和边值条件下,通过大型计算机作数值计算,求解描写天气演变过程的流体力学和热力学的方程组,预测未来一定时段的大气运动状态和天气现象的方法。 2.3 风电功率预测 Wind Power Forecasting 以风电场的历史功率、历史风速、地形地貌、数值天气预报、风电机组运行状态等数据建立风电场输出功率的预测模型,以风速、功率或数值天气预报数据作为模型的输入,结合风电场机组的设备状态及运行工况,得到风电场未来的输出功率;预测时间尺度包括短期预测和超短期预测。 2.4 短期风电功率预测 Short term Wind Power Forecasting 未来3天内的风电输出功率预测,时间分辨率不小于15min。 2.5 超短期风电功率预测 ultra-short term Wind Power Forecasting 0h~4h的风电输出功率预测,时间分辨率不小于15min。

风机风量计算方法

风机风量计算方法 风机风量的定义为:风速V与风道截面积F的乘积.大型风机由于能够用风速计准确测出风速,所以风量计算也很简单,直接用公式Q=VF,便可算出风量. 风机数量的确定根据所选房间的换气次数,计算厂房所需总风量,进而计算得 风机数量。计算公式:N=V×n/Q 其中:N——风机数量(台); V——场地体积(m3); n——换气次数(次/时); Q——所选风机型号的单台风量(m3/h)。 风机型号的选择应该根据厂房实际情况,尽量选取与原窗口尺寸相匹配的风机型号,风机与湿帘尽量保持一定的距离(尽可能分别装在厂房的山墙两侧),实现良好的通风换气效果。排风侧尽量不靠近附近建筑物,以防影响附近住户。如从室内带出的空气中含有污染环境,可以在风口安装喷水装置,吸附近污染物集中回收,不污染环境 引风机所需风量风压如何计算 1、引风机选型,首要的是确定风量; 2、风量的确定要看你做什么用途,不同的用途风量确定方法不一样,请参照专业书籍或者请教专业技术人员; 3、确定了风量之后,逐段计算沿程阻力和局部阻力,将它们相加,乘以裕量系数,得出需要的压力; 4、查阅风机性能数据表,或者请风机厂家查找对应的风机型号即可 风机风量和风压计算功率,工业方面用,设计中,通过风量和风压计算风机的大概功率 功率(KW)=风量(m3/h)*风压(Pa)/(3600*风机效率*机械传动效率*1000)。风量=(功率*3600*风机效率*机械传动效率*1000)/风压。 风机效率可取0.719至0.8;机械传动效率对于三角带传动取0.95,对于联轴器传动取0.98。

风量如何计算?要加入风机功率管道等因素,抽风空间的大小等? 比如说:100平方的房间我需要每小时抽风500立方,要怎么求出它的风机的功率,管道等。还有风速和立方怎么算出来的,比如说0.1或0.5米每秒的风速多长时间可以抽100立方或500立方的风?以上的两个问题要求有个计算公 式,公式中的符号要注明。 一、 1、管道计算 首先确定管道的长度,假设管道直径。计算每米管道的沿程摩擦阻力: R=(λ/D)*(ν^2*γ/2)。 2、计算风机的压力:ρ=RL。 3、确定风量:500立方。 4、计算风机功率:P=500立方*ρ/(3600*风机效率*1000*传动效率)。 5、风量计算:Q=ν*r^2*3.14*3600。 6、风速计算:ν=Q/(r^2*3.14*3600) 7、管道直径计算:D=√(Q*4)/(3600*3.14*ν) 二、 1、风速为0.5m/s时,计算每小500立方米风需要多长时间。假设管道直径为0.3m。 Q=ν*r^2*3.14*3600 =0.5*(0.3/2)^2*3.14*3600 =127.2(立方) 500/127.2=3.9(小时) 建议:风速最好确定在12m/s比较合适,提高风速后可以缩小管道的直径。

风力发电机组出质保验收技术规范

CGC 北京鉴衡认证中心认证技术规范 CGC/GF 030:2013 CNCA/CTS XXXX-2013 风力发电机组出质保验收技术规范 2013-××-××发布2013-××-××实施 北京鉴衡认证中心发布

目次 前言....................................................................................................................................... I I 引言...................................................................................................................................... I II 1 目的和范围 (1) 2 规范性引用文件 (1) 3 术语及定义 (1) 4 验收依据 (2) 5 验收过程 (3) 6 验收内容和方法 (3) 6.1文档资料验收 (3) 6.2单台机组验收 (4) 6.2.1一致性检查 (4) 6.2.2机组运行数据分析 (5) 6.2.3机组及主要部件检查 (6) 6.2.4附属设备 (6) 6.3其他验收项目 (7) 6.3.1应用软件 (7) 6.3.2专用工具、备品备件及消耗品 (7) 7 验收结论与整改要求 (7) 7.1验收结论 (7) 7.2整改要求 (8) 7.3遗留问题 (8) 8 验收报告 (8) 附录A质保期满验收所需资料清单 (9) 附录B功率曲线和发电量考核方法 (10) 附录C可利用率考核方法 (14) 附录D机组部件检查方法 (17) D.1整体情况检查 (17) D.2主要系统检查 (17) D.3主要部件检查 (20)

关于短期及超短期风电功率预测的分析

关于短期及超短期风电功率预测的分析 发表时间:2020-03-14T14:01:00.437Z 来源:《福光技术》2019年32期作者:张俊林徐元中[导读] 风电的不确定性对电力系统与电力市场的稳定性、充裕性及经济性的影响日益彰显,及时、精确地预测风电功率(WP)动态的意义大。 湖北工业大学太阳能高效利用及储能运行控制湖北省重点实验室湖北省武汉市 430068 摘要:风电的不确定性对电力系统与电力市场的稳定性、充裕性及经济性的影响日益彰显,及时、精确地预测风电功率(WP)动态的意义大。风电功率预测(WPP)根据风速及相关因素的历史数据和当前状态,定性或定量地推测其此后的演化过程。本文就对短期及超短期风电功率预测相关内容展开分析。 关键词:短期;超短期;风电功率;预测 引言 WP 的整体不确定性由其随机性及模糊性构成。有效的 WPP 虽然不会减少 WP 的随机性,但是可以降低其模糊性,从而使 WP 的整体不确定范围降低到WPP 的最大误差区间,减小了WP 对电力系统及电力市场的扰动。 分析影响 WPP 精度的因素第一,气象的历史数据与实时数据的缺失,风电场数据采集、传输与处理设施的缺陷,都会影响WPP 的精度。数据预处理技术包括数据同步、异常数据的识别与处理、缺失数据的替代等。第二,预测策略。例如,直接预测 WP 或通过风速预测;直接预测整个风电场的WP 或根据部分风机的预测值及空间相关性推算;采用逐一累加方式或统计升尺度方式推算区域风电场群功率。一般来说,能反映更多具体数据的预测策略可以得到更高的精度,但需要更多的数据与计算量。第三,数值天气预报(NWP)在大气实际的初值和边值条件下,数值求解天气演变过程的流体力学和热力学模型,根据空间网格中的平均值推算实际风电场地表风速的非均匀分布,并预测其动态变化。由于计及了等高线与等地形信息,以及地表粗糙度等地貌信息,通过微观气象学方法可以得到各风机轮毂高度的风速、风向等信息。然后将风速的推算值转换为风能,其精度与 NWP 的精度、网格大小、刷新周期等密切相关。第四,预测方法。物理计算法、时序外推法、人工智能(AI)法分别从空间、时间与样本分类的观点推算。它们依据的数据源、预测模型、误差特性都有所不同。若能巧妙地互补不同方法的优点,可更好地反映风速的时空演变特性。 分析 WPP 方法的研究现状基于 NWP 的物理模型计算 NWP 将天气的物理过程概括成一组物理定律,并表达成数学方程组。然后在已知的初始值及边界条件下,逐个时间段地往前联立求解描述天气演变过程的热力学和流体力学方程组,预测未来的气象数据,再结合风电场周围的地形地貌,计算风电机组轮毂高度处的风速与风向等,最后通过该机的功率 TC 得到 WPP。其技术要点包括:采用高性能计算机求解偏微分方程组的数值解;采用网格嵌套的方法减少计算量;为目标区域定制预报模型;通过观测数据的同化提高预报质量。基于 NWP 的物理模型预测方法除了能够充分考虑风电场的物理和环境因素以外,其最大的优势在于不需要积累大量的历史数据,因此特别适合新建风电场的 WPP。但由于 NWP 的更新频率较低,难以满足超短期预测的要求,仅适合短期及中长期预测。 基于统计观点的外推模型时序外推法通过归纳风速(或 WP)历史数据的时间序列之间的统计规律,建立WPP 值与最近期WP 时间序列之间的线性或非线性映射。由于历史数据序列反映了流体、热力、地形地貌等因素的影响,故基于统计观点的外推模型可以回避对物理机理掌握不够的困难。但是外推法隐含下述假设:第一,连续性,即影响事物未来轨迹的那些因素及规律,与该时刻之前一段时间基本保持不变;第二,渐进性,即事物以缓慢而渐进的方式演化,短期内不会突变。这些假设不但会使外推法在系统结构或边界条件于预测时效内发生突变时失效,即使在系统缓慢变化期间,其预测误差也会随着预测时效的增加而迅速增加,影响外推法的适用性及强壮性。 时间序列预测法经典的时间序列预测法。时间序列预测法根据目标变量本身随时间变化的趋势外推,较适用于气象信息有限的风电场进行超短期预测。由于无需考虑更多的气象信息,故具有建模简单且计算量少的优点。但输入数据单一的特点也使其难以考虑其他信息的影响,无法按不同的边界条件来修正预测模型,故除了建模时需要大量历史数据外,其强壮性更差,难以应对突变状况;且预测精度也随着预测时效的增加而迅速降低。经典的时间序列预测法,包括持续法、移动平均法和自回归移动平均(ARMA)法。持续法将最近一点的实测值作为下一时刻的预测值,简单并常被用做新算法的比较基准。移动平均法随着时间序列移动一个宽度不变的窗口,将其中各项的动态平均值作为下一时刻的预测值,仅适用于系统平稳或小幅波动时。ARMA 法利用滞后的自身数值和随机误差项来解释当前值,并以此预测未来。对于非平稳的 WP 时间序列,通过差分来消除部分不平稳分量。自回归求和移动平均(ARIMA)模型扩展了 ARMA 模型,将时间序列视为随机过程,并被广泛应用于超短期WPP 和短期WPP。 与其他数学分析法的结合。一些学者引入了其他数学分析法来弥补时间序列预测法的不足。例如,分数—自回归求和移动平均(ARIMA)模型通过降低时间序列高阶模型参数估计的难度来提高模型精度。马尔可夫预测法将时间序列看做一个随机过程,通过系统在不同状态下的初始概率以及状态之间的转移概率建立随机型的时序模型。 AI 预测法 AI 算法借助自然界规律或生物智能的启发,设计求解问题的计算机程序。包括模仿人类思维中模糊性概念的模糊算法,主要用于图像处理及模式识别;模仿生物进化和群体智能的进化算法,主要用于决策支持及优化问题;模仿大脑结构及其对信息的处理过程的 ANN 算法,可实现仿真、图像识别等任务。由于 AI 算法不需要按机理建立预测对象的数学模型,而是通过大量实测数据或仿真算例来训练 AI 模型,在其输出与输入变量之间直接建立非线性映射关系,故可用于机理不清楚的场合。 2.2.3ANN

风机风量如何计算

风机风量如何计算 风机风量的定义为:风速V与风道截面积F的乘积.大型风机由于能够用风速计准确测出风速,所以风量计算也很简单,直接用公式Q=VF,便可算出风量. 风机数量的确定根据所选房间的换气次数,计算厂房所需总风量,进而计算得风机数量。计算公式:N=V×n/Q 其中:N——风机数量(台); V——场地体积(m3); n——换气次数(次/时); Q——所选风机型号的单台风量(m3/h)。风机型号的选择应该根据厂房实际情况,尽量选取与原窗口尺寸相匹配的风机型号,风机与湿帘尽量保持一定的距离(尽可能分别装在厂房的山墙两侧),实现良好的通风换气效果。排风侧尽量不靠近附近建筑物,以防影响附近住户。如从室内带出的空气中含有污染环境,可以在风口安装喷水装置,吸附近污染物集中回收,不污染环境 引风机所需风量风压如何计算 1、引风机选型,首要的是确定风量; 2、风量的确定要看你做什么用途,不同的用途风量确定方法不一样,请参照专业书籍或者请教专业技术人员; 3、确定了风量之后,逐段计算沿程阻力和局部阻力,将它们相加,乘以裕量系数,得出需要的压力; 4、查阅风机性能数据表,或者请风机厂家查找对应的风机型号即可 风机风量和风压计算功率,工业方面用,设计中,通过风量和风压计算风机的大概功率 功率(KW)=风量(m3/h)*风压(Pa)/(3600*风机效率*机械传动效率*1000)。 风量=(功率*3600*风机效率*机械传动效率*1000)/风压。 风机效率可取0.719至0.8;机械传动效率对于三角带传动取0.95,对于联轴器传动取0.98。 风量如何计算?要加入风机功率管道等因素,抽风空间的大小等? 比如说:100平方的房间我需要每小时抽风500立方,要怎么求出它的风机的功率,管道等。还有风速和立方怎么算出来的,比如说0.1或0.5米每秒的风速多长时间可以抽100立方或500立方的风?以上的两个问题要求有个计算公式,公式中的符号要注明。 一、 1、管道计算 首先确定管道的长度,假设管道直径。计算每米管道的沿程摩擦阻力: R=(λ/D)*(ν^2*γ/2)。 2、计算风机的压力:ρ=RL。 3、确定风量:500立方。 4、计算风机功率:P=500立方*ρ/(3600*风机效率*1000*传动效率)。 5、风量计算:Q=ν*r^2*3.14*3600。 6、风速计算:ν=Q/(r^2*3.14*3600) 7、管道直径计算:D=√(Q*4)/(3600*3.14*ν) 二、 1、风速为0.5m/s时,计算每小500立方米风需要多长时间。假设管道直径为0.3m。 Q=ν*r^2*3.14*3600

风电并网技术标准(word版)

ICS 备案号: DL 中华人民共和国电力行业标准 P DL/Txxxx-200x 风电并网技术标准 Regulations for Wind Power Connecting to the System (征求意见稿) 200x-xx-xx发布200x-xx-xx实施中华人民共和国国家发展和改革委员会发布

DL/T —20 中华人民共和国电力行业标准 P DL/Txxxx-2QQx 风电并网技术标准 Regulations for Wind Power Connecting to the System 主编单位:中国电力工程顾问集团公司 批准部门:中华人民共和国国家能源局 批准文号:

前言 根据国家能源局文件国能电力「2009]167号《国家能源局关于委托开展风电并网技术标准编制工作的函》,编制风电并网技术标准。《风电场接入电力系统技术规定》GB/Z 19963- 2005于2005年发布实施,对接入我国电力系统的风电场提出了技术要求。该规定主要考虑了我国风电尚处于发展初期,风电机组制造产业处于起步阶段,风电在电力系统中所占的比例较小,接入比较分散的实际情况,对风电场的技术要求较低。根据我国风电发展的实际情况,各地区风电装机规模和建设进度不断加快,风电在电网中的比重不断提高,原有规定已不能适应需要。为解决大规模风电的并网问题,在风电大规模发展的情况下实现风电与电网的协调发展,特编制本标准。 本标准土要针对大规模风电场接入电网提出技术要求,由风电场技术规定、风电机组技术规定组成。 本标准由国家能源局提出并归口。 本标准主编单位:中国电力工程顾问集团公司 参编单位:中国电力科学研究院 本标准主要起草人:徐小东宋漩坤张琳郭佳李炜李冰寒韩晓琪饶建业佘晓平

风电场风速及风电功率预测方法研究综述

—————————————————— —基金项目:福建省教育厅科技项目(JA08024);福建省自然科学基金计划资助项目(2008J0018)。 第27卷第1期2011年1月 电网与清洁能源 Power System and Clean Energy Vol.27No.1 Jan.2011文章编号:1674-3814(2011)01-0060-07 中图分类号:TM614 文献标志码:A 风电场风速及风电功率预测方法研究综述 洪翠,林维明,温步瀛 (福州大学电气工程与自动化学院,福建福州350108) Overview on Prediction Methods of Wind Speed and Wind Power HONG Cui,LIN Wei-ming,WEN Bu-ying (College of Electrical Engineering and Automation ,Fuzhou University ,Fuzhou 350108,Fujian Province,China ) ABSTRACT :Due to the intermittency of wind energy and the non -linearity of power system,there exist many uncertain variables which should be considered in the wind power prediction.The current prediction methods include the physical method, statistical method, learning method and the comprehensive one combining all the other methods.Based on accurate numerical weather prediction (NWP ),the physical method is seldom used in the short term prediction,as its model is complicated and deals with large quantities of calculations.The model of the statistical method is simple and requires a small amount of data.It can be applied in those situations where data acquisition is difficult.The AI method is suitable in the random or non —linear system as it does not rely on the accurate mode of the objective.The comprehensive method maximizes favorable factors and minimizes unfavorable ones as contained in above-mentioned methods.This paper presents a brief overview on prediction methods of wind speed and wind power,and raises further issues worth further research on the basis of summarizing the previous studies.KEY WORDS:wind power prediction;statistical methods; learning methods;combinatorial prediction 摘要:由于风能的随机性以及电力系统的非线性等原因,预测风电功率时需要考虑众多的不确定因素影响。 现有预测方法主要包括物理预测方法、统计预测方法以及学习预测方法、综合预测法等。基于数字天气预报(NWP-numerical weather prediction ) 的物理预测方法模型复杂、计算量大,较少用于短期预测;统计预测方法模型简单,数据需求量少, 较适合于数据获取有一定困难的情况;人工智能预测方法不依赖于对象的精确模型,适合于随机非线性系统;综合预测方法可一定程度地扬长避短。本文主要就风电场风速及风电功率预测方法研究进行了综合阐述,并在总结前人研究的基础上提出了一些可进一步研究的问题。 关键词:风电预测;统计方法;学习方法;综合预测 随着全球石化资源储量的日渐匮乏以及低碳、 环保概念的逐步深化,风能等可再生能源的开发与利用日益受到国际社会的重视。2007年初欧盟曾提出,2020年其可再生能源消费将占到全部能源消费的20%,可再生能源发电量将占到全部发电量的30%[1]。风力发电是风能的主要利用方式之一。2009年,全球风电装机总量已达157.9GW ,较上年增加了37.5GW [2]。中国风能资源仅次于美国和俄罗斯,可利用风能资源共计约10亿kW 。近些年来风电在中国获得了飞速发展,2000年至2009年十年时间,中国风电装机容量从0.34GW 增至25.8GW [3];2020年,预计全国风电总装机容量将达到30GW [1]。除部分采用离网运行方式外[4],大容量风电机组多数采用并入电网的运行方式。随着规模越来越 大、数量越来越多的风力发电功率注入电网, 风能具有的随机性对电力系统的影响越来越不可忽视。 1风电预测的意义 准确有效地预测出风电场的输出功率不但可 帮助电力系统调度运行人员做出最有效决策, 还

照明功率密度表

照明功率密度表 Prepared on 22 November 2020

居住建筑每户照明功率密度 房间或场所照明功率密度(W/m2) 对应照度值(lx)现行值目标值 起居室 7 6 100 卧室75 餐厅150 厨房100 卫生间100 办公室照明功率密度 房间或场所照明功率密度(W/m2) 对应照度值(lx)现行值目标值 普通办公室11 9 300 高档办公事、设计室18 15 500 会议室11 9 300 营业厅13 11 300 文件整理、复印、发行室11 9 300 档案室8 7 200 商业建筑照明功率密度值 房间或场所照明功率密度(W/m2) 对应照度值(lx)现行值目标值 一般商店营业厅12 10 300 高档商店营业厅19 16 500 一般超市营业厅13 11 300 高档超市营业厅20 17 500 旅馆建筑照明功率密度值 房间或场所照明功率密度(W/m2) 对应照度值(lx)现行值目标值 客厅15 13 -------- 中餐厅13 11 200 多功能厅18 15 300 客厅层走廊 5 4 50 门厅15 13 300

医院建筑照明功率密度值 房间或场所照明功率密度(W/m2) 对应照度值(lx)现行值目标值 治疗室11 9 300 化验室18 15 500 手术室30 25 750 候诊室、挂号室8 7 200 病房 6 5 100 护士站11 9 300 药房20 17 500 重症监护室11 9 300 学校照明功率密度值 房间或场所照明功率密度(W/m2) 对应照度值(lx)现行值目标值 教室、阅览室11 9 300 实验室11 9 300 美术教室18 15 500 多媒体教室11 9 300 工业建筑照明密度值 房间或场所 照明功率密度 (W/m2) 对应照度值 (lx) 现行值目标值 1通用房间或场所 实验室一般11 9 300 精细18 15 500 检验 11 9 300 27 23 750 计量室、测量室18 15 500 变、配电 站 配电装置室8 7 200 变压器室 5 4 100 电源设备室、发电机室8 7 200 控制室 11 9 300 18 15 500 电话站、网络中心、计算机站18 15 500

风电功率预测系统功能规范

风电功率预测系统功能规范(试行) 前言 为了规范风电调度技术支持系统的研发、建设及应用,特制订风电功率预测系统功能规范。本规范制订时参考了调度自动化系统相关国家标准、行业标准和国家电网公司企业标准。制订过程中多次召集国家电网公司科研和生产单位的专家共同讨论,广泛征求意见。本规范规定了风电功率预测系统的功能,主要包括预测时间尺度、信息要求、功率预测、统计分析、界面要求、安全防护、接口要求及性能指标等。本规范由国家电网公司国家电力调度通信中心提出并负责解释;本规范主要起草单位:中国电力科学研究院、吉林省电力有限公司。本规范主要起草人:刘纯、裴哲义、王勃、董存、石永刚、范国英、郭雷。 1范围 1.1本规范规定了风电功率预测系统的功能,主要包括预测时间尺度、数据准备、数据采集与处理、功率预测、统计分析、界面要求、安全防护、接口要求及性能指标等。 1.2本规范用于指导电网调度机构和风电场的风电功率预测系统的研发、建设和应用管理。本规定的适用于国家电网公司经营区域内的各级电网调度机构和风电场。 2术语和定义 2.1风电场Wind Farm由一批风电机组或风电机组群组成的发电站。 2.2数值天气预报Numerical Weather Prediction根据大气实际情况,

在一定的初值和边值条件下,通过大型计算机作数值计算,求解描写天气演变过程的流体力学和热力学的方程组,预测未来一定时段的大气运动状态和天气现象的方法。 2.3风电功率预测Wind Power Forecasting以风电场的历史功率、历史风速、地形地貌、数值天气预报、风电机组运行状态等数据建立风电场输出功率的预测模型,以风速、功率或数值天气预报数据作为模型的输入,结合风电场机组的设备状态及运行工况,得到风电场未来的输出功率;预测时间尺度包括短期预测和超短期预测。 2.4短期风电功率预测Short term Wind Power Forecasting未来3天内的风电输出功率预测,时间分辨率不小于15min。 2.5超短期风电功率预测ultra-short term Wind Power Forecasting 0h~4h的风电输出功率预测,时间分辨率不小于15min。 3数据准备 风电功率预测系统建模使用的数据应包括风电场历史功率数据、历史测风塔数据、历史数值天气预报、风电机组信息、风电机组及风电场运行状态、地形地貌等数据。 3.1风电场历史功率数据风电场的历史功率数据应不少于1a,时间分辨率应不小于5min。 3.2历史测风塔数据a)测风塔位置应在风电场5km范围内;b)应至少包括10m、70m及以上高程的风速和风向以及气温、气压等信息;c)数据的时间分辨率应不小于10min。 3.3历史数值天气预报历史数值天气预报数据应与历史功率数据相

全国风能资源评价技术规定

全国风能资源评价技术规定 (国家发展改革委2004年4月14日发布发改能源[2004]865号) 第一章总则 第一条风能资源评价主要是以现有气象台站的测风数据为基础,通过整理、分析,对全国风能资源的大小和分布进行评价。 第二条为了统一全国风能资源评价的原则、内容、深度和技术要求,在总结风能资源研究成果的基础上,参考国内、外有关标准和规范,制定《风能资源评价技术规定》(以下简称本规定)。 第三条本规定用于指导开展风能资源评价工作。 第二章基础资料收集 第四条气象台站资料 一、收集国家基准气象站、国家基本气象站和一般气象站基本信息,包括气象台站所属省名、站名、区站号、经度、纬度、海拔高度、建站时间、台站周围环境变化情况(包括台站变迁情况)、观测仪器(包括仪器变更)情况。 二、收集各气象台站1971~2000年历年年最大风速、年极大风速、年极端最高温度、年极端最低温度、年沙尘暴日数、年雷暴日数。 三、收集各气象台站1971~2000年历年逐月平均风速、平均气温、平均气压、平均水汽压。 四、收集各气象台站1991~1995年逐日日平均风速、气温、气压、水汽压。 五、收集各气象台站“代表年”逐时风速、风向观测记录。 六、“代表年”确定方法:根据全国地面气象资料1971~2000年整编成果,选择年平均风速等于或接近30年年平均风速的年份,定义为平均风速年;选择年平均风速等于或接近30年年平均风速最大值的年份,定义为最大值年;选择年平均风速等于或接近30年年平均风速最小值的年份,定义为最小值年。若存在多个年平均风速等于或接近(或、)的年份,则选择最靠近2000年的年份,下同。上述三个年份统称为“代表年”,即年平均风速分别等于或接近、、 的3个年份,下同。 第五条其它观测资料 一、收集已建自动气象站资料,内容参照本规定第四条。 二、收集已建、待建风电场基本信息及前期工作中的测风资料。 三、收集海洋站、船舶、浮标等的测风资料。 四、收集相关科学(考察)试验的测风资料。

DL_T_5383-2007风力发电场设计技术规范

风力发电场设计技术规范DL/T5383-2007 Technical specification of wind power plant design 1.范围本标准 规定了风力发电场设计的基本技术要求。本标准适用于 装机容量5MW及以上风力发电场设计。 2.规范性引用文件 GB5005935~110KV变电所设计规范 GB5006166KV及以下架空电力线路设计规范 DL/T5092110KV~500KV架空送电线路设计技术规程 DL/T5218220KV~500KV变电所设计技术规程 3.总则 3.0.1风力发电场的设计应执行国家的有关政策,符合安全可靠、技术先进和经济合理 的要求。 3.0.2风力发电场的设计应结合工程的中长期发展规划进行,正确处理近期建设与远期 发展的关系,考虑后期发展扩建的可能。 3.0.3风力发电场的设计,必须坚持节约用地的原则。 3.0.4风力发电场的设计应本着对场区环境保护的,减少对地面植被的破坏。 3.0.5风力发电场的设计应考虑充分利用声区已有的设施,避免重复建设。 3.0.6风力发电场的设计应本着“节能降耗"的原则,采用先进技术、先进方法,减少 损耗。 3.0.7风力发电场的设计除应执行本规范外,还应符合现行的国家有关标准和规范的规 定。 4.风力发电场总体布局 4.0.1风力发电场总体布局依据:可行性研究报告、接入系统方案、土地征占用批准 文件、地质勘测报告、环境影响评价报告、水土保持评价报告及国家、地方、 行业有关的法律、法规等技术资料、 4.0.2风力发电场总体布局设计应由以下部分组成: 1.风力发电机组的布置 2.中央监控室及场区建筑物布置 3.升压站布置。 4.场区集电线路布置 5.风力发电机组变电单元布置 6.中央监控通信系统布置 7.场区道路 8.其他防护功能设施(防洪、防雷、防火) 4.0.3风力发电场总体布局,应以下因素: 1.应避开基本农田、林地、民居、电力线路、天然气管道等限制用地的区域。 2.风力发电机组的布置应根据机组参数、场区地形与范围、风能分布方向确定,并与本声规划容量、接入系统方案相适应。 3.升压站、中央监控室及场区建筑物的选址应根据风力发电机组的布置、接入系统的方案、地形、地质、交通、生产、生活和安全要素确定,不宜布置在主导风能分布的下风各或不安全区域内。 4.场区集电线路的布置应根据风力发电机组的布置,升压站的位置及单回集电线路的输送距离、输送容量、安全距离确定。

负压风机型号与风量对照表

普通负压风机有哪些参数 1. 1.46M负压风扇 型号:SJ-MY1460Z03 发动机功率(kw):0.75 铲刀速度(R / M):450 排风量(m3 / h):46000 图片由注册用户“hem hum”提供,版权声明反馈2. 1.26 m负压风扇 型号:sj-my1260603 发动机功率(kw):0.75 铲刀速度(R / M):550 排风量(m3 / h):42000 3. 1.06 m负压风扇

型号:sj-my1060z03 发动机功率(kw):0.55铲刀速度(R / M):650排风量(m3 / h):38000 4. 0.85 m负压风扇 型号:sj-my850z03 发动机功率(kw):0.37铲刀速度(R / M):820排风量(m3 / h):32000负压风机参数的定义1.电机功率

负压风扇上指示的电动机功率通常以千瓦时(kw)单位表示。如果为1.1 kW,则意味着电动机每小时消耗1.1度。当消费者看到负压风扇电动机的电源时,他们可以计算线路负载,功耗和电费。 2.电机电压 负压风扇电机的标签上有一个电压参数。如果该值指示为380 V,则表示电源为380 V工业电源。如果值为220 V,则表示连接的电源为220 V照明电源。请勿错误地连接电源,否则将烧毁电动机,甚至烧毁整个电线电路。 3.电机转速 负压风扇的电动机速度代表电动机的空载,即每小时的轴转数。该参数与风扇叶片的数量有关。与消费者的最大关系是负压风扇电动机的转速越高,负压风扇电动机的噪声越大。对于低速负压风扇电机,负压风扇在使用时间内产生的噪音较小。为了减少噪音,许多负压风扇可以减少噪音,会改变皮带轮的尺寸,以降低电动机的转速。 4.电机品牌

照明功率密度值快速查询表

6.1 照明功率密度值 6.1.1 居住建筑每户照明功率密度值不宜大于表6.1.1的规定。当房间或场所的照度值高于或低于本表规定的对应照度值时,其照明功率密度值应按比例提高或折减。 表6.1.1 居住建筑每户照明功率密度值 6.1.2 办公建筑照明功率密度值不应大于表6.1.2的规定。当房间或场所的照度值高于或低于本表规定的对应照度值时,其照明功率密度值应按比例提高或折减。 表6.1.2 办公建筑照明功率密度值 6.1.3 商业建筑照明功率密度值不应大于表6.1.3的规定。当房间或场所的照度值高于或低于本表规定的对应照度值时,其照明功率密度值应按比例提高或折减。 表6.1.3 商业建筑照明功率密度值 6.1.4 旅馆建筑照明功率密度值不应大于表6.1.4的规定。当房间或场所的照度值高于或低

于本表规定的对应照度值时,其照明功率密度值应按比例提高或折减。 表6.1.4 旅馆建筑照明功率密度值 6.1.5 医院建筑照明功率密度值不应大于表6.1.5的规定。当房间或场所的照度值高于或低子本表规定的对应照度值时,其照明劝塞密度值应按比例提高或折减。 6.1.6 学校建筑照明功率密度值不应大于表6.1.6的规定。当房间或场所的照度值高于或低于本表规定的对应照度值时,其照明功率密度值应按比例提高或折减。 表6.1.5 医院建筑照明功率密度值 表6.1.6 学校建筑照明功率密度值 6.1.7 工业建筑照明功率密度值不应大于表6.1.7的规定。当房间或场所的照度值高于或低于本表规定的对应照度值时,其照明功率密度值应按比例提高或折减。 表6.1.7 工业建筑照明功率密度值

GBT 19963 风电场接入电力系统技术规定--报批稿

ICS 中华人民共和国国家标准 风电场接入电力系统技术规定 Technical rule for connecting wind farm to power system 中华人民共和国国家质量监督检验检疫总局 发 布

GB/T 19963—200 目次 前言...................................................................................................................................................................... I I 1 范围 (1) 2 规范性引用文件 (1) 3 术语和定义 (1) 4 风电场送出线路 (2) 5 风电场有功功率 (2) 6 风电场功率预测 (3) 7 风电场无功容量 (3) 8 风电场电压控制 (3) 9 风电场低电压穿越 (4) 10 风电场运行适应性 (5) 11 风电场电能质量 (6) 12 风电场仿真模型和参数 (6) 13 风电场二次系统 (6) 14 风电场接入系统测试 (7) 参考文献 (9) I

GB/T 19963—200 II 前言 本标准根据国家标准化管理委员会下达的国标委综合【2009】93号《2009年第二批国家标准计划 项目》标准计划修订。 本标准与能源行业标准《大型风电场并网设计技术规范》共同规定了风电场并网的相关技术要求,能源行业标准规定了大型风电场并网的设计技术要求,本标准规定了风电场并网的通用技术要求。 本标准规定了对通过110(66)kV及以上电压等级线路与电力系统连接的新建或扩建风电场的技术要求。 本标准由全国电力监管标准化技术委员会提出并归口。 本标准主要起草单位:中国电力科学研究院。 本标准参加编写单位:龙源电力集团股份有限公司、南方电网科学研究院有限责任公司、中国电力工程顾问集团公司。 本标准主要起草人:王伟胜、迟永宁、戴慧珠、赵海翔、石文辉、李琰、李庆、张博、范子超、陆志刚、胡玉峰、陈建斌、张琳、韩小琪。

基于等效平均风速的风力发电功率预测

基于等效平均风速的风力发电功率预测 井天军,阮 睿,杨明皓 (中国农业大学信息与电气工程学院,北京市100083) 摘要:目前应用风速气象数据预测风力发电功率的方法存在较大误差,难以满足工程应用的精度要求。文中基于能量守恒原理提出了风力发电机组等效平均风速的概念,并通过为期1年的现场实验分析得到等效平均风速与最大风速和平均风速的函数关系,由此提出了基于等效平均风速的风力发电功率预测方法,并与以往基于平均风速的风力发电功率预测方法进行了工程应用效果对比,表明基于等效平均风速的预测方法较基于平均风速的预测方法在预测精度方面有明显提高。关键词:等效平均风速;风速预测;风力发电功率中图分类号:TM614 收稿日期:2009204215;修回日期:2009209207。 /十一五0国家科技支撑计划重点项目(2006BAJ04B03)。 0 引言 随着能源与环保问题日益突出,近年来风力发电在全球迅速发展。由于风能是一种间歇性、随机性和波动性很大的一次能源,大规模风力发电的接入对电力系统的规划与运行、调度与控制都带来了新问题。通常解决此问题所采用的方法是在原电力系统基本方法中加入风速或风力发电功率预测环节,因此对随机的、波动很大的、不可调度的风速或风力发电功率的预测方法成为研究的热点。 根据研究目的的不同,风速或风力发电功率预测可以分为3类:1以功率平衡控制为目的的风速、风向预测方法或模拟方法[125],主要用于风力发电控制系统、风力发电机组保护系统和控制器或风轮机机械部件设计等方面,预测所产生风速序列的时间间隔为秒级或分钟级;o以电力系统能量调度为目 的的风速或风力发电功率预测方法[6218] ,预测所产生风速序列的时间间隔为几分钟到数十分钟,预测各时段的平均风速和相应的平均风力发电功率;?用于中长期发电规划和备用发电容量计划的风速或风力发电功率预测方法[19223],此类方法通常预测全年12个月代表日的小时平均风速或月平均风速,利用风速的概率分布函数和统计特征产生相应的模拟风速序列。本文研究主要涉及第2类。 以电力系统能量调度为目的的风速或风力发电功率预测方法可归为2类:1采用时间序列法或时间序列法与人工神经网络等智能方法相结合来预测平均风速,然后根据风力发电机组的功率特性计算 得到相应的输出功率预测值[6210];o采用人工神经网络法、模糊逻辑法、支持向量机法等人工智能算法,以平均风速、风向等气象数据作为输入量,直接预测风力发电机组输出功率[11218]。前者把研究重点放在对风速的预测上,但是尽管风速预测精度非常 高,但风力发电功率预测误差仍然很大[9,17] 。后者用黑匣子原理直接将风速、风向等气象学预测的物理量与风力发电机组输出功率相关联,采用人工智能方法建立输入与输出间的映射关系,使功率预测精度能够满足能量调度的要求,但是这类方法不能给出输入与输出间关系的解析表达式,每次应用都需要大量的样本进行学习。 事实上,即使风速预测数据准确,基于现有风力发电机功率特性也不可能得到符合工程应用精度要求的风力发电功率预测值,其根本原因是电力系统能量调度所预测的风力发电功率是某时段的平均功率,而风力发电机功率特性描述的是发电机输出功率关于任意风速的变化关系。为此,本文提出基于等效平均风速的风力发电功率预测方法,主要用于10min 级超短期风力发电功率预测,统计给出了等效平均风速与平均风速及最大风速的解析表达式。 1 等效平均风速 1.1 等效平均风速的概念与测量 风力发电机组的风速功率曲线表明,当实际风速小于切入风速或大于切出风速时,输出功率为0;当实际风速在切入风速与额定风速之间时,输出功 率与风速间成三次函数曲线关系[24] ;当实际风速超过额定风速而小于切出风速时,输出功率近似为恒功率输出。 称电力系统能量调度最小时间间隔为统计时 ) 83 ) 第33卷 第24期2009年12月25 日Vol.33 No.24Dec.25,2009

相关文档
相关文档 最新文档