文档视界 最新最全的文档下载
当前位置:文档视界 › 衍生品的希腊字母

衍生品的希腊字母

物理学家介绍及名言

1.杨振宁 简介:杨振宁(1922-),出生于安徽省合肥市,著名美籍华裔科学家、诺贝尔物理学奖获得者。其于1954年提出的规范场理论,于70年代发展为统合与了解基本粒子强、弱、电磁等三种相互作用力的基础;1957年由于与李政道提出的“弱相互作用中宇称不守恒”观念被实验证明而共同获得诺贝尔物理学奖;此外曾在统计物理、凝聚态物理、量子场论、数学物理等领域做出多项贡献。 名言:成功的奥秘在于多动手 2、 李政道,(1926-)出生于中国上海,祖籍江苏苏州,美籍华裔物理学家。著名的物理学贡献有:李模型、高能重离子物理、量子场论的非拓扑性孤立子和孤立子星以及破解粒子物理中的θ-τ之谜。1957年,他31岁时与杨振宁一起,因发现弱作用中宇称不守恒而获得诺贝尔物理学奖。他们的这项发现,由吴健雄的实验证实。李政道和杨振宁是最早获诺贝尔奖的中国人 名言:如果没有一个所有的错误都犯了以后,最后的结果当然是对的。

3、 丁肇中(Samuel Chao Chung Ting )(1936年1月27日-),1936年出生,美国实验物理学家。汉族,祖籍山东省日照市涛雒,华裔美国人,现任美国麻省理工学院教授,曾获得1976年诺贝尔物理学奖。他曾发现一种新的基本粒子,并以物理文献中习惯用来表示电磁流的拉丁字母“J”将那种新粒子命名为“J粒子”。 名言:最浪费不起的是时间。 4、 邓稼先(1924—1986),安徽省怀宁县人,中国杰出的科学家、中国“两弹”元勋,先后毕业于西南联合大学和美国普渡大学,获物理学博士学位,1950年回到祖国;他参加组织和领导我国核武器的研究、设计工作,是我国核武器理论研究工作的奠基者之一;从原子弹、氢弹原理的突破和试验成功及其武器化,到新的核武器的重大原理突破和研制试验,均做出了重大贡献;作为主要参加者,其成果曾获国家自然科学奖一等奖和国家科技进步奖特等奖;邓稼先被被称为“中国原子弹之父”;此外有同名影视作品、散文、游戏等。 名言:一不为名,二不为利,但工作目标要奔世界先进水平。

新颖希腊字母地读音-常用数学符号大全、关系代数符号

希腊字母读音及科学方面应用

希腊字母中文读音及常用意义一览表

常用数学符号大全、关系代数符号 1、几何符号 ⊥∥∠⌒⊙≡≌△ 2、代数符号 ∝∧∨~∫≠≤≥≈∞∶ 3、运算符号 如加号(+),减号(-),乘号(×或·),除号(÷或/),两个集合的并集(∪),交集(∩),根号(√),对数(log,lg,ln),比(:),微分(dx),积分(∫),曲线积分(∮)等。 4、集合符号 ∪∩∈ 5、特殊符号 ∑π(圆周率) 6、推理符号 |a| ⊥∽△∠∩∪≠≡±≥≤∈← ↑→↓↖↗↘↙∥∧∨ &; § ①②③④⑤⑥⑦⑧⑨⑩ ΓΔΘΛΞΟΠΣΦΧΨΩ αβγδεζηθικλμν ξοπρστυφχψω ⅠⅡⅢⅣⅤⅥⅦⅧⅨⅩⅪⅫ ⅰⅱⅲⅳⅴⅵⅶⅷⅸⅹ ∈∏∑∕√∝∞∟∠∣∥∧∨∩∪∫∮ ∴∵∶∷∽≈≌≒≠≡≤≥≦≧≮≯⊕⊙ ⊥ ⊿⌒℃ 指数0123:o123 7、数量符号 如:i,2+i,a,x,自然对数底e,圆周率π。 8、关系符号 如“=”是等号,“≈”是近似符号,“≠”是不等号,“>”是大于符号,“<”是小于符号,“≥”是大于或等于符号(也可写作“≮”),“≤”是小于或等于符号(也可写作“≯”),。“→”表示变量变化的趋势,“∽”是相似符号,“≌”是全等号,“∥”是平行符号,“⊥”是垂直符号,“∝”是成正比符号,(没有成反比符号,但可以用成正比符号配倒数当作成反比)“∈”是属于符号,“??”是“包含”符号等。 9、结合符号 如小括号“()”中括号“[]”,大括号“{}”横线“—” 10、性质符号 如正号“+”,负号“-”,绝对值符号“| |”正负号“±” 11、省略符号 如三角形(△),直角三角形(Rt△),正弦(sin),余弦(cos),x的函数(f(x)),极限(lim),角(∠),

希腊字母表及标准手写

希腊字母 希腊字母在现代已经超越了希腊民族的局限而成为了国际性的符号(自然科学的、社会科学的),尤其在土木工程,材料学、土力学、水力学及相应设计课程里作为科学符号多而杂,初学者很难对其读音和书写准确掌握,所以本文编辑了希腊字母有关历史和读音、书写,以便初学和自学者在掌握这些符号的基本读写后尽快能熟悉其在专业中的意义! 一:希腊字母表 二:有关希腊语 希腊语是印欧语系独立的一支,作为古希腊文明的载体,作为文学、哲学、

科学、宗教等众多领域使用的语言,它的灿烂光辉举世罕见。古希腊语是极少数至今仍然在世界范围内被学习和使用的古典语言之一。

“希腊”的中文名字不是来自英语Greece,而是来自Hellas这个诗歌语汇。此举与希腊这个艺术的国度是多么相称啊!讲希腊语的民族在大约4000年前从巴尔干半岛来到希腊半岛及附近地区。他们的语言分化为4种方言:伊奥里亚、爱奥尼亚、阿卡迪亚-塞浦路斯和多利安方言。著名的《荷马史诗》——《伊利亚特》和《奥德赛》是大约公元前9世纪的作品,使用的是爱奥尼亚方言。由爱奥尼亚方言发展为雅典语——古希腊语的主要形式和共同语Koine的基础。《圣经》的《旧约全书》在公元前3-公元前2世纪译为Koine;《新约全书》则是直接用Koine 写作的。信仰东正教的人们现在还在使用这种古典语言的《圣经》。 现在使用希腊语的国家包括希腊、塞浦路斯、意大利、阿尔巴尼亚、土耳其等,以希腊语为母语的人有1500多万。 我们对希腊字母并不陌生,数学、物理、生物、天文学等学科都广泛使用希腊字母。读过初中的人对“阿尔法”、“贝塔”、“伽玛”……早已耳熟能详。《新约》里,神说:“我是阿拉法,我是俄梅嘎。我是始,我是终。”在希腊字母表里,第一个字母是“阿尔法”(阿拉法),代表开始;最后一个字母是“欧美噶”(俄梅嘎),代表终了。这正是《新约》用希腊语写作的痕迹。罗马帝国时代,希腊语是继拉丁语之后的第二语言。它在教育领域的地位至今仍然在欧美国家的大学里延续。 希腊字母并不神秘,就像阿拉伯文、俄文字母一样,只是符号不同,标音的性质是一样的。阿拉伯文没有元音字母。希腊字母是世界上最早的有元音的字母。俄文、新蒙文等使用的基里尔字母和格鲁吉亚语字母都是由希腊字母发展而来,学过俄文的人使用希腊字母会觉得似曾相识。希腊字母进入了许多语言的词汇中,如delta(三角洲)这个国际语汇就来自希腊字母Δ,因为Δ是三角形。 希腊字母原来有26个,大约在荷马时代减少了2个,雅典人的字母本来没有Η和Ω,是公元前403年增加的。那时定型的字母表一直使用到现在。全世界这么稳定而且悠久的文字是极少的。希腊文最早是从右向左横写,与阿拉伯文一致。之后有过向左与向右并存的情形,从右写到左,下一行有时不是从右端开始,而是从左端开始。玛雅铭文中这种行款很常见,甲骨文里也有这样的行款。最后,希腊文只使用从左到右一种行款,这是西方文字的书写习惯。 三:希腊字母的读音(根据读音人的民族与母语)规定:

物理学发展史

我所认知的物理学发展史 经典物理学的发展古希腊时代的阿基米德已经在流体静力学和固体的平衡方面取得辉煌成就,但当时将这些归入应用数学,并没有将他的成果特别是他的精确实验和严格的数学论证方法汲入物理学中。从希腊、罗马到漫长的中世纪,自然哲学始终是亚里士多德的一统天下。到了文艺复兴时期,哥白尼、布鲁诺、开普勒和伽利略不顾宗教的迫害,向旧传统挑战,其中伽利略把物理理论和定律建立在严格的实验和科学的论证上,因此被尊称为物理学或科学之父。 研究物质世界最基本的结构、最普遍的相互作用、最一般的运动规律及所使用的实验手段和思维方法的一门学科。实验手段和思维方法是物理学中不可或缺和极其重要的内容,后者如相对性原理、隔离体(包括系统)法、理想模型法、微扰法、量纲分析法等,在古典和现代物理学中都有重要应用。物理学一词,源自希腊文physikos,很长时期内,它和自然哲学(naturalphilosophy)同义,探究物质世界最基本的变化规律。随着生产的发展。社会的进步和文化知识的扩展、深化,物理学以纯思辨的哲学演变到以实验为基础的科学。研究内容从较简单的机械运动扩及到较复杂的光、热、电磁等的变化,从宏观的现象剖析深入到微观的本质探讨,从低速的较稳定的物体运动进展到高速的迅变的粒子运动。新的研究领域不断开辟,而发展成熟的分支又往往分离出去,成为工程技术或应用物理学的一个分支,因此物理学的研究领域并非是一成不变的,研究方法不论是逻辑推理、数学分析和实验手段,也因不断精密化而有所创新,也难以用一个固定模式来概括。在19世纪发行的《不列颠百科全书》中,早已陆续地把力学、光学、热学理论和电学、磁学,列为专条,而物理学这一条却要到1971~1973年发行的第十四版上才首次出现。为了全面、系统地理解物理学整体,与其从定义来推敲,不如循历史源流,从物理学的发生和发展的过程来探索。 伽利略的成就是多方面的,仅就力学而言,他以物体从光滑斜面下滑将在另一斜面上升到同一高度,推论出如另一斜面的倾角极小,为达到同一高度,物体将以匀速运动趋于无限远,从而得出如无外力作用,物体将运动不息的结论。他精确地测定不同重量的物体以同一加速度沿光滑斜面下滑,并推论出物体自由下落时的加速度及其运动方程,驳倒了亚里士多德重物下落比轻物快的结论,并综合水平方向的匀速运动和垂直地面方向的匀加速运动得出抛物线轨迹和45°的最大射程角,伽利略还分析“地常动移而人不知”,提出著名的“伽利略相对性原理”(中国的成书于1800年前的《尚书考灵曜》有类似结论)。但他对力和运动变化关系的分析仍是错误的。全面、正确地概括力和运动关系的是牛顿的三条运动定律,牛顿还把地面上的重力外推到月球和整个太阳系,建立了万有引力定律。牛顿以上述的四条定律并运用他创造的“流数法”(即今微积分初步),解决了太阳系中的二体问题,推导出开普勒三定律,从理论上解决了地球上的潮汐问题。史称牛顿是第一个综合天上和地上的机械运动并取得伟大成就的物理学家。与此同时,几何光学也有很大发展,在16世纪末或17世纪初,先后发明了显微镜和望远镜,开普勒、伽利略和牛顿都对望远镜作很大的改进。 20世纪的物理学到19世纪末期,经典物理学已经发展到很完满的阶段,许多物理学家认为物理学已接近尽头,以后的工作只是增加有效数字的位数。开尔文在19世纪最后一个除夕夜的新年祝词中说:“物理大厦已经落成,……动力理论确定了热和光是运动的两种方式,现在它的美丽而晴朗的天空出现两朵乌云,一朵出现在光的波动理论,另一朵出现在麦克斯韦和玻耳兹曼的能量均分理论。”前者指的是以太漂移和迈克耳孙-莫雷测量地球对(绝对静止的)以太速度的实验,后者指用能量均分原理不能解释黑体辐射谱和低温下固体的比热。恰恰是这两个基本问题和开尔文所忽略的放射性,孕育了20世纪的物理学革命。 化工二班 许尚志 12071240073

希腊字母表及其读音与意义

希腊字母表:

希腊字母的书写: 由于希腊字母在现代已经超越了希腊民族的局限而成为了国际性的符号(自然科学的、社会科学的),尤其在土木工程,材料学、土力学、水力学及相应设计课程里作为科学符号多而杂,初学者很难对其读音和书写准确掌握,所以本文编辑了希腊字母有关历史和读音、书写,以便初学和自学者在掌握这些符号的基本读写后尽快能熟悉其在专业中的意义! 一:有关希腊语 希腊语是印欧语系独立的一支,作为古希腊文明的载体,作为文学、哲学、科学、宗教等众多领域使用的语言,它的灿烂光辉举世罕见。古希腊语是极少数至今仍然在世界范围内被学习和使用的古典语言之一。 “希腊”的中文名字不是来自英语Greece,而是来自Hellas这个诗歌语汇。此举与希腊这个艺术的国度是多么相称啊!讲希腊语的民族在大约 4000年前从巴尔干半岛来到希腊半岛及附近地区。他们的语言分化为4种方言:伊奥里亚、爱奥尼亚、阿卡迪亚-塞浦路斯和多利安方言。著名的《荷马史诗》——《伊利亚特》和《奥德赛》是大约公元前9世纪的作品,使用的是爱奥尼亚方言。由爱奥尼亚方言发展为雅典语——古希腊语的主要形式和共同语Koine的基础。《圣经》的《旧约全书》在公元前3-公元前2世纪译为Koine;《新约全书》则是直接用Koine写作的。信仰东正教的人们现在还在使用这种古典语言的《圣经》。 现在使用希腊语的国家包括希腊、塞浦路斯、意大利、阿尔巴尼亚、土耳其等,以希腊语为母语的人有1500多万。

我们对希腊字母并不陌生,数学、物理、生物、天文学等学科都广泛使用希腊字母。读过初中的人对“阿尔法”、“贝塔”、“伽玛”……早已耳熟能详。《新约》里,神说:“我是阿拉法,我是俄梅嘎。我是始,我是终。”在希腊字母表里,第一个字母是“阿尔法”(阿拉法),代表开始;最后一个字母是“欧美噶”(俄梅嘎),代表终了。这正是《新约》用希腊语写作的痕迹。罗马帝国时代,希腊语是继拉丁语之后的第二语言。它在教育领域的地位至今仍然在欧美国家的大学里延续。 希腊字母并不神秘,就像阿拉伯文、俄文字母一样,只是符号不同,标音的性质是一样的。阿拉伯文没有元音字母。希腊字母是世界上最早的有元音的字母。俄文、新蒙文等使用的基里尔字母和格鲁吉亚语字母都是由希腊字母发展而来,学过俄文的人使用希腊字母会觉得似曾相识。希腊字母进入了许多语言的词汇中,如 delta(三角洲)这个国际语汇就来自希腊字母Γ,因为Γ是三角形。 希腊字母原来有26个,大约在荷马时代减少了2个,雅典人的字母本来没有Ζ和Χ,是公元前403年增加的。那时定型的字母表一直使用到现在。全世界这么稳定而且悠久的文字是极少的。希腊文最早是从右向左横写,与阿拉伯文一致。之后有过向左与向右并存的情形,从右写到左,下一行有时不是从右端开始,而是从左端开始。玛雅铭文中这种行款很常见,甲骨文里也有这样的行款。最后,希腊文只使用从左到右一种行款,这是西方文字的书写习惯。 二:希腊字母的读音(根据读音人的民族与母语)规定: 其读音要分为: 1.在语言学内部讨论古代语言发音时的为引用希腊语发音而采取的语言学式的发音; 2.作为纯粹的科学符号的发音。 对于上述“1.” 我们可以采用这样的标准。大家知道,希腊字母名称的拉丁转写法实际上就是最接近于古希腊占统治地位的方言的字母读音的。其对应为: αΑalpha /alpha/ h表示送气音,在古希腊语中尚没有音位/f/,所以/pha/的发音类似普通话的“趴”。 βΒbeta /be:ta/ /e:/表示长元音,/e/的发音不是英语D.J.音标里的[e],而类似K.K.音标里的/e/或者法语的/e/。/t/不送气,所以/ta/类似普通话“搭”而不是“他”。 γΓgamma /gam:a/ /m:/表示长辅音,即在发辅音时,其持阻阶段应该适当延长,然后再做除阻动作。 δΓdelta /de:lta/

c15111期权中希腊字母100分

一、单项选择题 1. ()度量了期权价格对期权存续期的敏感性。 A. Delta B. Theta C. Vega D. Rho 您的答案:B 题目分数:10 此题得分:10.0 2. 其他条件不变的情况下,存续期越长,利率的影响越明显,期 权的Rho的绝对值()。 A. 越大 B. 越小 C. 不变 D. 以上都不正确 您的答案:A 题目分数:10 此题得分:10.0 3. 当期权处于()状态时,时间价值最大。 A. 实值 B. 虚值 C. 平值 D. 极端实值 您的答案:C 题目分数:10 此题得分:10.0 4. 当认沽期权处于极端实值状态,股票价格变动1元,内在价值 ()变动趋向1元。 A. 横向 B. 正向 C. 纵向 D. 反向 您的答案:D

题目分数:10 此题得分:10.0 二、多项选择题 5. 下列关于期权的Vega值的说法正确的是()。 A. 随着到期日的临近,Vega值逐渐减小 B. 波动率越大,实值和虚值期权的Vega值越大,平值期 权的Vega值相对较平稳 C. 当期权处于平值时,Vega值最大 D. 当期权处于平值时,Vega值最小 您的答案:B,A,C 题目分数:10 此题得分:10.0 6. 下列关于期权的Theta值说法正确的是()。 A. 当期权处于平值时,Theta值最小 B. 平值期权Theta逐渐减小,时间价值加速流失 C. 波动率越高,Theta值越小 D. 一般情况下期权的Theta值均为负 您的答案:A,C,D,B 题目分数:10 此题得分:10.0 三、判断题 7. 期权为平值时Gamma最大,Delta变化最快。() 您的答案:正确 题目分数:10 此题得分:10.0 8. 当认购期权处于极端实值时,时间价值将变小,Delta趋向0。 () 您的答案:错误 题目分数:10 此题得分:10.0 9. 波动率越高,时间价值越大,期权的Theta值越小,相同存续 期内时间价值流失越快。()

趣谈期权有关的希腊字母

趣谈期权有关的希腊字母!Delta, Gamma, Vega和Theta 当我们理解期权价值与其影响因素的敏感性时,可以作这样比喻。股票期权作为股票的“孩子”,其脾气秉性自然受三方面的影响:一是自身“基因”的制约,比如:权利属性(认购还是认沽)、行权价(K)、到期时间(T);二是“父母亲”的言传身教:股价(S)、股价的波动率(Sigma);三是社会大环境的熏陶:无风险收益率(r)。 那么一份股票期权的价格(V)究竟是如何被这些因素所影响的呢?换而言之,股票价格上涨1%,或者股价波动率上升1%,作为孩子的期权的“脾气”变化多少呢?为了回答这个问题,我们就必须认识五个“希腊字母”了。毫不夸张地说,这五个希腊字母就是期权价格变化的生命源泉,也是“孩子”与“父母”的纽带。这五个希腊字母就叫做Delta,Gamma,Vega,Theta和Rho。 先让我们来认识第一个希腊字母—— Delta。 1. Delta是什么? 期权是标的资产的衍生产品。两者之间就像是“父子”一样,父亲的一举一动无时无刻不在影响着孩子的行为。父亲的这种影响力就是Delta。 以50ETF为例,当ETF价格发生变化时,期权价格也会随之改变。ETF与期权之间的价格关系可以用Delta来刻画:当ETF价格变化0.001元时,对期权价格的影响就是0.001*Delta元。 认购期权是“乖孩子”,当“父亲”ETF价格上涨的时候,认购期权价格也会上涨,认购期权的Delta大于零;而“坏孩子”认沽期权则恰恰相反,当ETF 价格上涨时,认沽期权的价格反而是下跌的,它的Delta小于零。 2. Delta在投资中的两个简单应用 一个是对冲作用。如果我们有着如下对冲组合:由Delta份ETF空头和1份期权多头组成。当ETF价格变化0.001元时,Delta份ETF空头价格会变化-0.001*Delta元,1份期权合约价格会变化0.001*Delta元。两者相互抵消,对冲组合的整体价格几乎不变。因此,我们可以用Delta份ETF空头去对冲1份期权。 另一个是计算杠杆。我们知道期权具有一定的杠杆性。比如ETF上涨1%,期权上涨10%,那么期权的杠杆就是10倍。那么通过Delta,我们可以计算期权的杠杆倍数。假设目前50ETF的价格是3.00元,有一份1个月后到期行权价为3.20的认购期权,现在的价格是0.10元,Delta为0.33。如果ETF上涨1%,也就是0.030元,期权价格就会上涨0.030*Delta,等于0.1元。从涨幅来看,期权合约上涨了10%。因此,这个期权合约的杠杆大概是10倍。 (1)Delta与标的价格的变动关系 无巧不巧,不论是认购还是认沽期权,Delta的绝对值都介于0与1之间,而且越实值的期权Delta越接近于1,越虚值的期权Delta越趋近于0,平值期权的Delta恰好是0.5。因此我们也可以把Delta想象成期权到期实值的概率。

物理学发展简史

物理学发展简史 摘要:物理学的发展大致经历了三个时期:古代物理学时期、近代物理学时期(又称经典物理学时期)和现代物理学时期。物理学实质性的大发展,绝大部分是在欧洲完成,因此物理学的发展史,也可以看作是欧洲物理学的发展史。 关键词:物理学;发展简史;经典力学;电磁学;相对论;量子力学;人类未来发展 0 引言 物理学的发展经历了漫长的历史时期,本文将其划分为三个阶段:古代、近代和现代,并逐一进行简要介绍其主要成就及特点,使物理学的发展历程显得清晰而明了。 1 古代物理学时期 古代物理学时期大约是从公元前8世纪至公元15世纪,是物理学的萌芽时期。 物理学的发展是人类发展的必然结果,也是任何文明从低级走向高级的必经之路。人类自从具有意识与思维以来,便从未停止过对于外部世界的思考,即这个世界为什么这样存在,它的本质是什么,这大概是古代物理学启蒙的根本原因。因此,最初的物理学是融合在哲学之中的,人们所思考的,更多的是关于哲学方面的问题,而并非具体物质的定量研究。这一时期的物理学有如下特征:在研究方法上主要是表面的观察、直觉的猜测和形式逻辑的演绎;在知识水平上基本上是现象的描述、经验的肤浅的总结和思辨性的猜测;在内容上主要有物质本原的探索、天体的运动、静力学和光学等有关知识,其中静力学发展较为完善;在发展速度上比较缓慢。在长达近八个世纪的时间里,物理学没有什么大的进展。 古代物理学发展缓慢的另一个原因,是欧洲黑暗的教皇统治,教会控制着人们的行为,禁锢人们的思想,不允许极端思想的出现,从而威胁其统治权。因此,在欧洲最黑暗的教皇统治时期,物理学几乎处于停滞不前的状态。 直到文艺复兴时期,这种状态才得以改变。文艺复兴时期人文主义思想广泛传播,与当时的科学革命一起冲破了经院哲学的束缚。使唯物主义和辩证法思想重新活跃起来。科学复兴导致科学逐渐从哲学中分裂出来,这一时期,力学、数学、天文学、化学得到了迅速发展。 2 近代物理学时期 近代物理学时期又称经典物理学时期,这一时期是从16世纪至19世纪,是经典物理学的诞生、发展和完善时期。 近代物理学是从天文学的突破开始的。早在公元前4世纪,古希腊哲学家亚里士多德就已提出了“地心说”,即认为地球位于宇宙的中心。公元140年,古希腊天文学家托勒密发表了他的13卷巨著《天文学大成》,在总结前人工作的基础上系统地确立了地心说。根据这一学说,地为球形,且居于宇宙中心,静止不动,其他天体都绕着地球转动。这一学说从表观上解释了日月星辰每天东升西落、周而复始的现象,又符合上帝创造人类、地球必然在宇宙中居有至高无上地位的宗教教义,因而流传时间长达1300余年。

期权价值敏感性——希腊字母汇总

第三章 期权敏感性(希腊字母) 顾名思义,期权敏感性是指期权价格受某些定价参数的变动而变动的敏感 程度,本章主要介绍期权价格对其四个参数(标的资产市场价格、到期时间、 波动率和无风险利率)的敏感性指标,这些敏感性指标也称作希腊值(Greeks )。 每一个希腊值刻画了某个特定风险,如果期权价格对某一参数的敏感性为 零,可以想见,该参数变化时给期权带来的价格风险就为零。实际上,当我们 运用期权给其标的资产或其它期权进行套期保值时,一种较常用的方法就是分 别算出保值工具与保值对象两者的价值对一些共同的变量(如标的资产价格、 时间、标的资产价格的波动率、无风险利率等)的敏感性,然后建立适当数量 的证券头寸,组成套期保值组合,使组合中的保值工具与保值对象的价格变动 能相互抵消,也就是说让套期保值组合对该参数变化的敏感性变为零,这样就 能起到消除相应风险的套期保值的目的。 本章将主要介绍 Delta 、Gamma 、Vega 、Theta 、Rho 五个常用希腊字母。 符号 风险因素 量化公式 Gamma Γ 标的证券价格变化 Delta 变化/标的证券价格变化 Vega ν 波动率变化 权利金变化/波动率变化 Theta Θ 到期时间变化 权利金变化/到期时间变化 本章符号释义: T 为期权到期时间 S 为标的证券价格, S 0 为标的证券现价, S T 为标的证券行权时价格 K 为期权行权价格 σ 为标的证券波动率 r 为无风险利率 π t 为资产组合在 t 时刻的价值 N () 为标准正态分布的累积密度函数,可以查表或用计算机(如 Excel)求得 1

物理学前沿简介

放射物理与防护绪论 物理学是自然科学中基本的学科,是研究物质运动最一般规律和物质基本结构的学科。在尺寸标度上涉及从基本粒子到整个宇宙,在时间标度上从飞秒级的短寿命到宇宙纪元。物理学确立的新概念和理论,已经成为人类对周围世界认识的不可分割的部分,直接影响到社会生产和生活,对社会发展起着推动作用。一、物理学的发展 纵观物理学的发展史,根据它不同阶段的特点,大致可以分为物理学萌芽时期、经典物理学时期和现代物理学时期三个发展阶段。 (一)物理学萌芽时期 在古代,由于生产水平的低下,人们对自然界的认识主要依靠不充分的观察,和在此基础上进行的直觉的、思辨性猜测,来把握自然现象的一般性质,因而自然科学的知识基本上是属于现象的描述、经验的总结和思辨的猜测。那时,物理学知识是包括在统一的自然哲学之中的。 在这个时期,首先得到较大发展的是与生产实践密切相关的力学,如静力学中的简单机械、杠杆原理、浮力定律等。在《墨经》中,有力的概念(“力,形之所以奋也”)的记述;光学方面,积累了关于光的直进、折射、反射、小孔成像、凹凸面镜等的知识。《墨经》上关于光学知识的记载就有八条。在古希腊的欧几里德(公元前450-380)等的著作中也有光的直线传播和反射定律的论述,并且对光的折射现象也作了一定的研究。电磁学方面,发现了摩擦起电、磁石吸铁等现象,并在此基础上发明了指南针。声学方面,由于音乐的发展和乐器的创造,积累了不少乐律、共鸣方面的知识。物质结构和相互作用方面,提出了原子论、元气论、阴阳五行说、以太等假设。 在这个时期,观察和思辨虽然是人们认识自然的主要手段和方法,但也出现了一些类似于用实验来研究物理现象的方法。例如,我国宋代沈括在《梦溪笔谈》中的声共振实验和利用天然磁石进行人工磁化的实验,以及赵友钦在《革象新书》中的大型光学实验等就是典型的事例。 总之,从远古直到中世纪(欧洲通常把五世纪到十五世纪叫做中世纪)末,由于生产的发展,虽然积累了不少物理知识,也为实验科学的产生准备了一些条件

希腊字母大小写、读音

希腊字母表及其读音与意义 希腊字母在现代已经超越了希腊民族的局限而成为了国际性的符号(自然科学的、社会科学的),尤其在土木工程,材料学、土力学、水力学及相应设计课程里作 为科学符号多而杂,初学者很难对其读音和书写准确掌握,所以本文编辑了希腊字母有关历史和读音、书写,以便初学和自学者在掌握这些符号的基本读写后尽快能熟悉其在专业中的意义! 一:希腊字母表 序号大写小写英文注音国际音标注音中文读音意义 1 Α α alpha a:lf 阿尔法角度;系数 2 Β β beta bet 贝塔磁通系数;角度;系数 3 Γ γ gamma ga:m 伽马电导系数(小写) 4 Δ δ delta delt 德尔塔变动;密度;屈光度 5 Ε ε epsilon ep`silon 伊普西龙对数之基数 6 Ζ ζ zeta zat 截塔系数;方位角;阻抗;相对粘度;原子序数 7 Η η eta eit 艾塔磁滞系数;效率(小写) 8 Θ θ thet θit 西塔温度;相位角 9 Ι ι iot aiot 约塔微小,一点儿 10 Κ κ kappa kap 卡帕介质常数 11 ∧λ lambda lambd 兰布达波长(小写);体积 12 Μ μ mu mju 缪磁导系数;微(千分之一);放大因数(小写) 13 Ν ν nu nju 纽磁阻系数 14 Ξ ξ xi ksi 克西 15 Ο ο omicron omik`ron 奥密克戎 16 ∏ π pi pai派圆周率=圆周÷直径=3.14159 26535 89793 17 Ρ ρ rho rou 肉电阻系数(小写)

18 ∑ σ sigma `sigma 西格马总和(大写),表面密度;跨导(小写) 19 Τ τ tau tau 套时间常数 20 Υ υ upsilon jup`silon 宇普西龙位移 21 Φ φ phi fai 佛爱磁通;角 22 Χ χ chi phai 西 23 Ψ ψ ps i psai 普西角速;介质电通量(静电力线);角 24 Ω ω omega o`miga 欧米伽欧姆(大写);角速(小写);角 二:有关希腊语 希腊语是印欧语系独立的一支,作为古希腊文明的载体,作为文学、哲学、科学、宗教等众多领域使用的语言,它的灿烂光辉举世罕见。古希腊语是极少数至今仍然在世界范围内被学习和使用的古典语言之一。 “希腊”的中文名字不是来自英语Greece,而是来自Hellas这个诗歌语汇。此举与希腊这个艺术的国度是多么相称啊!讲希腊语的民族在大约4000年前从巴尔干半岛来到希腊半岛及附近地区。他们的语言分化为4种方言:伊奥里亚、爱奥尼亚、阿卡迪亚-塞浦路斯和多利安方言。著名的《荷马史诗》——《伊利亚特》和《奥德赛》是大约公元前9世纪的作品,使用的是爱奥尼亚方言。由爱奥尼亚方言发展为雅典语——古希腊语的主要形式和共同语Koine的基础。《圣经》的《旧约全书》在公元前3-公元前2世纪译为Koine;《新约全书》则是直接用K oine写作的。信仰东正教的人们现在还在使用这种古典语言的《圣经》。 现在使用希腊语的国家包括希腊、塞浦路斯、意大利、阿尔巴尼亚、土耳其等,以希腊语为母语的人有1500多万。 我们对希腊字母并不陌生,数学、物理、生物、天文学等学科都广泛使用希腊字母。读过初中的人对“阿尔法”、“贝塔”、“伽玛”……早已耳熟能详。《新约》里,神说:“我是阿拉法,我是俄梅嘎。我是始,我是终。”在希腊字母表里,第一个字母是“阿尔法”(阿拉法),代表开始;最后一个字母是“欧美噶”(俄

物理学发展简史

物理学发展简史 专业:物流工程111 学生:吴建平 学号:2011216031 老师:代群

摘要:物理学的发展大致经历了三个时期:古代物理学时期、近代物理学时期(又称经典物理学时期)和现代物理学时期。物理学实质性的大发展,绝大部分是在欧洲完成,因此物理学的发展史,也可以看作是欧洲物理学的发展史。 关键词:物理学;发展简史;经典力学;电磁学;相对论;量子力学;人类未来发展

引言 物理学的发展经历了漫长的历史时期,本文将其划分为三个阶段:古代、近代和现代,并逐一进行简要介绍其主要成就及特点,使物理学的发展历程显得清晰而明了。 一古代物理学时期 古代物理学时期大约是从公元前8世纪至公元15世纪,是物理学的萌芽时期。 物理学的发展是人类发展的必然结果,也是任何文明从低级走向高级的必经之路。人类自从具有意识与思维以来,便从未停止过对于外部世界的思考,即这个世界为什么这样存在,它的本质是什么,这大概是古代物理学启蒙的根本原因。因此,最初的物理学是融合在哲学之中的,人们所思考的,更多的是关于哲学方面的问题,而并非具体物质的定量研究。这一时期的物理学有如下特征:在研究方法上主要是表面的观察、直觉的猜测和形式逻辑的演绎;在知识水平上基本上是现象的描述、经验的肤浅的总结和思辨性的猜测;在内容上主要有物质本原的探索、天体的运动、静力学和光学等有关知识,其中静力学发展较为完善;在发展速度上比较缓慢。在长达近八个世纪的时间里,物理学没有什么大的进展。 古代物理学发展缓慢的另一个原因,是欧洲黑暗的教皇统治,教会控制着人们的行为,禁锢人们的思想,不允许极端思想的出现,从而威胁其统治权。因此,在欧洲最黑暗的教皇统治时期,物理学几乎处于停滞不前的状态。 直到文艺复兴时期,这种状态才得以改变。文艺复兴时期人文主义思想广泛传播,与当时的科学革命一起冲破了经院哲学的束缚。使唯物主义和辩证法思想重新活跃起来。科学复兴导致来,这一时期,力学、数学、天文学、化学得到了迅速发展。 二近代物理学时期 近代物理学时期又称经典物理学时期,这一时期是从16世纪至19世纪,是经典物理学的诞生、发展和完善时期。 近代物理学是从天文学的突破开始的。早在公元前4世纪,古希腊哲学家亚里士多德就已提出了“地心说”,即认为地球位于宇宙的中心。公元140年,古希腊天文学家托勒密发表了他的13卷巨著《天文学大成》,在总结前人工作的基础上系统地确立了地心说。根据这一学说,地为球形,且居于宇宙中心,静止不动,其他天体都绕着地球转动。这一学说从表观上解释了日月星辰每天东升西落、周而复始的现象,又符合上帝创造人类、地球必然在宇宙中居有至高无上地位的宗教教义,因而流传时间长达1300余年。 公元15世纪,哥白尼经过多年关于天文学的研究,创立了科学的日心说,写出“自然科学的独立宣言”——《天体运行论》,对地心说发出了强有力的挑战。16世纪初,开普勒通过从第谷处获得的大量精确的天文学数据进行分析,先后提出了行星运动三定律。开普勒的理论为牛顿经典力学的建立提供了重要基础。从开普勒起,天文学真正成为一门精确科学,成为近代科学的开路先锋。 近代物理学之父伽利略,用自制的望远镜观测天文现象,使日心说的观念深入人心。他提出落体定律和惯性运动概念,并用理想实验和斜面实验驳斥了亚里士多德的“重物下落快”的错误观点,发现自由落体定律。他提出惯性原理,驳斥了亚里士多德外力是维持物体运动的说法,为惯性定律的科学逐渐从哲学中分裂出建立奠定了基础。伽利略的发现以及他所用的科学推理方法是人类思想史上

希腊字母

希腊字母 希腊字母是希腊语所使用的字母,也广泛使用于数学、物理、生物、天文等学科。希腊字母跟英文字母、俄文字母类似,只是符号不同,标音的性质是一样的。希腊字母是世界上最早的有元音的字母。俄文、新蒙文等使用的西里尔字母和格鲁吉亚语字母都是由希腊字母发展而来,学过俄文的人使用希腊字母会觉得似曾相识。希腊字母进入了许多语言的词汇中,如Delta(三角洲)这个国际语汇就来自希腊字母Γ,因为Γ是三角形。 希腊字母源于腓尼基字母,腓尼基字母只有辅音,从右向左写,希腊语言元音发达,希腊人增添了元音字母。因为希腊人的书写工具是蜡板,有时前一行从右向左写完后顺势就从左向右写,变成所谓“耕地”式书写,后来逐渐演变成全部从左向右写。字母的方向也颠倒了。罗马人引进希腊字母,略微改变变为拉丁字母,在世界广为流行。希腊字母广泛应用到学术领域,如数学等。 西里尔字母也是由希腊字母演变而成。英语单词alphabet(字母),源自通俗拉丁语alphabetum,alphabetum 又源自希腊语αιθαβεηνλ (音译:alphabeton) ,即为前两个希腊字母α(Alpha)及β(Beta)所合成。 希腊字母对希腊文明乃至西方文化影响深远。《新约》里,神说:“我是阿尔法,我是欧米伽,我是首先的,我是最后的,我是初,我是终。”(圣经启示录22:13)。在希腊字母表里,第一个字母是“Α,α”(Alpha),代表开始,最后一个字母是“Χ,σ”欧米伽(Omega),代表终了。这正是《新约》用希腊语写作的痕迹。 读音与介绍 Αα,音名?ιθα,希腊语字母名称叫做/?alfa/,美国英语叫做alpha(国际音标/'?lf?/),alpha常用作形容词,以显示某件事物中最重要或最初的。 Ββ,音名β?ηα,希腊语字母名称叫做/vita/,美国英语叫做beta(国际音标/'bet?/),beta也能表示电脑软件的测试版,通常指的是公开测试版,提供一般使用者协助测试并回报问题。 Γγ,音名γ?κκα,希腊语字母名称叫做/??ama/,美国英语叫做gamma(国际音标/'g?m?/),它是辅音字母,表示/?/这个音。 Γδ,音名δ?ιηα,希腊语字母名称叫做/?eelta/,美国英语叫做delta(国际音标/‘dεlt?/)。

经典物理学发展史

经典物理学发展史 古希腊时代的阿基米德已经在流体静力学和固体的平衡方面取得辉煌成就,但当时将这些归入应用数学,并没有将他的成果特别是他的精确实验和严格的数学论证方法汲入物理学中。从希腊、罗马到漫长的中世纪,自然哲学始终是亚里士多德的一统天下。到了文艺复兴时期,哥白尼、布鲁诺、开普勒和伽利略不顾宗教的迫害,向旧传统挑战,其中伽利略把物理理论和定律建立在严格的实验和科学的论证上,因此被尊称为物理学或科学之父。 伽利略的成就是多方面的,仅就力学而言,他以物体从光滑斜面下滑将在另一斜面上升到同一高度,推论出如另一斜面的倾角极小,为达到同一高度,物体将以匀速运动趋于无限远,从而得出如无外力作用,物体将运动不息的结论。他精确地测定不同重量的物体以同一加速度沿光滑斜面下滑,并推论出物体自由下落时的加速度及其运动方程,驳倒了亚里士多德重物下落比轻物快的结论,并综合水平方向的匀速运动和垂直地面方向的匀加速运动得出抛物线轨迹和45°的最大射程角,伽利略还分析“地常动移而人不知”,提出著名的“伽利略相对性原理”(中国的成书于1800年前的《尚书考灵曜》有类似结论)。但他对力和运动变化关系的分析仍是错误的。全面、正确地概括力和运动关系的是牛顿的三条运动定律,牛顿还把地面上的重力外推到月球和整个太阳系,建立了万有引力定律。牛顿以上述的四条定律并运用他创造的“流数法”(即今微积分初步),解决了太阳系中的二体问题,推导出开普勒三定律,从理论上解决了地球上的潮汐问题。史称牛顿是第一个综合天上和地上的机械运动并取得伟大成就的物理学家。与此同时,几何光学也有很大发展,在16世纪末或17世纪初,先后发明了显微镜和望远镜,开普勒、伽利略和牛顿都对望远镜作很大的改进。 法国在大革命的前后,人才辈出,以P.S.M.拉普拉斯为首的法国科学家(史称拉普拉斯学派)将牛顿的力学理论发扬光大,把偏微分方程运用于天体力学,求出了太阳系内三体和多体问题的近似解,初步探讨并解决了太阳系的起源和稳定性问题,使天体力学达到相当完善的境界。在牛顿和拉普拉斯的太阳系内,主宰天体运动的已经不是造物主,而是万有引力,难怪拿破仑在听完拉普拉斯的太阳系介绍后就问:你把上帝放在什么地位?无神论者拉普拉斯则直率地回答:我不需要这个假设。 拉普拉斯学派还将力学规律广泛用于刚体、流体和固体,加上W.R.哈密顿、G.G.斯托克斯等的共同努力,完善了分析力学,把经典力学推进到更高阶段。该学派还将各种物理现象如热、光、电、磁甚至化学作用都归于粒子间的吸引和排斥,例如用光子受物质的排斥解释反射,光微粒受物质的吸引解释折射和衍射,用光子具有不同的外形以解释偏振,以及用热质粒子相互排斥来解释热膨胀、蒸发等等,都一度取得成功,从而使机械的唯物世界观统治了数十年。正当这学派声势煊赫、如日中天时,受到英国物理学家T.杨和这个学派的后院法兰西科学院及科学界的挑战,J.B.V.傅里叶从热传导方面,T.杨、D.F.J.阿拉戈、A.-J.菲涅耳从光学方面,特别是光的波动说和粒子说(见光的二象性)的论争在物理史上是一个重大的事件。为了驳倒微粒说,年轻的土木工程师菲涅耳在阿拉戈的支持下,制成了多种后以他的姓命名的干涉和衍射设备,并将光波的干涉性引入惠更斯的波阵面在介质中传播的理论,形成惠更斯-菲涅耳原理,还大胆地提出光是横波的假设,并用以研究各种光的偏振及偏振光的干涉,他创造了“菲涅耳波带”法,完满地说明了球面波的衍射,并假设光是以太的机械横波解决了光在不同介质界面上反射、折射的强度和偏振问题,从而完成了经典的波动光学理论。菲涅耳还提出地球自转使表面上的部分以太漂移的假设并给出曳引系数。也在阿拉戈的支持下,J.B.L.傅科和A.H.L.菲佐测定光速在水中确比空气中为小,从而确定了波动说的胜利,史称这个实验为光的判决性实验。此后,光的波动说及以太论统治了19世纪的后半世

【免费下载】 希腊字母表读音参考

希腊字母表读音参考 研究数学的过程中,常常会用到一些希腊字母。有时会写不会读,有时会读不会写,并且常常会和英文字母搞混了。用了几分钟时间,用百度从网上搜索了一下,以期和我们的数学老师共享。 Αα alpha ['AlfE]Ββ beta ['bi:tE,'beitE]Γγ gamma ['gAmE] Δδ delta ['deltE] Εε epsilon [ep'sailEn,'epsilEn] Ζζ zeta ['zi:tE] Ηη eta ['i:tE,'eitE] Θθ theta ['Wi:tE] Ιι iota [ai'outE] Κκ kappa ['kApE] Λλ lambda ['lAmdE] Μμ mu [mju:] Νν nu [nju:] Ξξ xi [gzai,ksai,zai] Οο omicron [ou'maikrEn] Ππ pi [pai]

Ρρ rho [rou] Σσ sigma ['sigmE] Ττ tau [tR:] Υυ upsilon [ju:p'sailEn,'ju:psilEn]Φφ phi [fai] Χχ chi [kai] Ψψ psi [psai] Ωω omega ['oumigE]

16PiπΠ 17RhoρΡ 18SigmaσΣ 19TauτΤ 20UpsilonυΥ 21PhiφΦ 22ChiχΧ 23PsiψΨ 24OmegaωΩ 希腊文字简介 在文字的使用上,希腊人受东方文化的影响。 迈锡尼的线形文字B消失之后,希腊人便没有了自己的文字。在荷马所描述的社会里,还没有使用文字的迹象。希腊字母文字的出现,正好是在东方化时期。最早的字母文字出现在公元前750到前700年之间的陶器上,这种字母文字源于腓尼基的音节文字。希腊人自己已经十分清楚地认识到这点,因此在希腊文中有一个表示“字母”的古词phojnikeia,其直接的 含义是“腓尼基的东西”。希罗多德对此也有所记载,他说腓尼基人随卡德莫斯(Kadmos)来到希腊的底比斯,并在这里定居下来,“他们带来了一些东西,包括文字,而我认为在这之前,希腊人还没有文字”。腓尼基的文字同其他的闪米特文字相似,是一种音节

24个希腊字母表

24个希腊字母表: 希腊字母源于腓尼基字母,腓尼基字母只有辅音,从右向左写,希腊语言元音发达,希腊人增添了元音字母。因为希腊人的书写工具是腊板,有时前一行从右向左写完后顺势就从左向右写,变成所谓“耕地”式书写,后来逐渐演变成全部从左向右写。字母的方向也颠倒了。 罗马人引进希腊字母,略微改变就变为拉丁字母,在世界广为流行。 希腊字母广泛应用到学术领域,如数学等。希腊语是西方文明第一种伟大的语言;许多人认为它是所有语言中最有效、最值得敬佩的交际工具。 (埃及象形文字→腓尼基字母→希腊字母→古罗马人的拉丁字母:英文字母就属于拉丁字母) 序号 大写 小写 英文注音 国际音标注音 中文读音 在科学中的常用意义 1 Α α alpha a:lf阿尔法 角度;系数 2 Β β beta bet贝塔 磁通系数;角度;系数 3 Γ γ gamma ga:m伽马 电导系数(小写) 4 Δ δ delta delt德尔塔 变动;密度;屈光度 5 Ε ε epsilon ep`silon 伊普西龙 对数之基数 6 Ζ ζ zeta zat截塔 系数;方位角;阻抗;相对粘度;原子序数 7 Η η eta eit艾塔 磁滞系数;效率(小写) 8 Θ θ thetθit西塔 温度;相位角 9 Ι ι iot aiot约塔 微小,一点儿 10 Κ κ kappa kap卡帕 介质常数 11 Λ λ lambda lambd兰布达 波长(小写);体积 12 Μ μ mu mju 缪 磁导系数;微(千分之一);放大因数(小写) 13 Ν ν nu nju 纽 磁阻系数 14 Ξ ξ xi ksi 克西 15 Ο ο omicron omik`ron 奥密克戎 16 Π π pi pai 派 圆周率=圆周÷直径=3.14159 26535 89793 17 Ρ ρ rho rou 肉 电阻系数(小写) 18 Σ σ sigma `sigma 西格马 总和(大写),表面密度;跨导(小写) 19 Τ τ tau tau 套 时间常数 20 Υ υ upsilon jup`silon 宇普西龙 位移 21 Φ φ phi fai 佛爱 磁通;角 22 Χ χ chi phai 西 23 Ψ ψ psi psai 普西 角速;介质电通量(静电力线);角 24 Ω ω omega o`miga 欧米伽 欧姆(大写);角速(小写);角

相关文档