文档视界 最新最全的文档下载
当前位置:文档视界 › 工业机器人的机械结构

工业机器人的机械结构

工业机器人的机械结构
工业机器人的机械结构

第二章

工业机器人的机械结构

工业机器人操作机由机身(机座二立柱)二手臂二手腕和手部等部分组成,如图2-1所示三

图2-1工业机器人操作机

一般用运动自由度来表示工业机器人动作的灵活程度,也就是确定操作机位置时所需要的独立运动参数的数目三对于只进行二维平面作业的工业机器人只需要三个自由度,若要使操作具有随意的空间位置与姿态,工业机器人至少需要六个自由度三而对于回避障碍作业的工业机器人则需要有比六个自由度更多的冗余自由度三工业机器人常采用回转副或移动副来实现各个自由度三

第一节工业机器人的手臂与手腕

一、工业机器人的手臂

手臂是操作机中的主要运动部件,它用来支承手腕和手部,并用来调整手部在空间的

位置三手臂一般有三个自由度,即手臂的伸缩二回转和升降(或俯仰)运动三

手臂的直线运动可通过液压缸或汽缸驱动来实现,也可以通过齿轮齿条二滚珠丝杠二直线电动机等来实现三回转运动的实现方法很多,例如蜗轮蜗杆式二齿轮齿条式二链轮链条式,以及谐波齿轮传动装置等三

手臂不仅承受被抓取工件的重量,还承受末端执行器二手腕和手臂自身重量三

图2-2所示为P UMA 型工业机器人的手臂传动机构三其大二小臂是用高强度铝合金材料制成的薄臂框形结构,各运动都采用齿轮传动三驱动大臂的传动机构如图2-2(a )所示,大臂1的驱动电动机7安置在臂的后端,兼起配重平衡作用,运动经电动机轴上的小

锥齿轮6二大锥齿轮5和一对圆柱齿轮2二3驱动大臂轴转动三驱动小臂17的传动机构如图2-2(b )所示,驱动装置安装于大臂10的框形臂架,驱动电动机11也置于大臂后端,经驱动轴12,锥齿轮9二8,圆柱齿轮14二15,驱动小臂轴转动三回转机座的回转运动则由伺服电动机24经齿轮23二22二21和19驱动,如图2-2(c )所示三图中偏心套4二13二16及20用来调整齿轮传动间隙

图2-2 P UMA 机器人手臂传动机构

1

1第二章 工业机器人的机械结构

二二工业机器人的手腕

1.腕部的作用

工业机器人手腕是手臂和手部的连接部件,起支承手部和改变手部姿态的作用三机器人一般具有六个自由度才能使手部达到目标位置和处于期望的姿态,手腕上的自由度主要实现所期望的姿态三

2.手腕的自由度

为了使手部能处于空间任意方向,要求腕部能实现对空间三个坐标轴X 二Y 二Z 的转

动,即具有翻转二俯仰和偏转三个自由度,如图2-3所示三通常把手腕的翻转称为R o l l ,用R 表示;把手腕的俯仰称为P i t c h ,用P 表示;把手腕的偏转称为Y a w ,用Y 表示三

图2-3(d )所示手腕即可实现R P Y 运动

三图2-3 工业机器人手腕的自由度

手腕按自由度数目可分为单自由度手腕二二自由度手腕和三自由度手腕等三

(1)单自由度手腕单自由度手腕如图2-4所示三其中,图2-4(a )所示为一种回转(r o l l )关节,它使手臂纵轴线和手腕关节轴线构成共轴线形式,这种R 关节旋转角度大,可达360?以上;图2-4(b )二图2-4(c )所示为一种弯曲(b e n d )关节,也称B 关节,关节轴线与前二后两个连接件的轴线相垂直三这种B 关节因为受到结构上的干涉,旋转角度小,方向角大大受限三图2-4(d )所示为移动(t r a n s l a t e )关节,也称T 关节

三图2-4 单自由度手腕

(2)二自由度手腕二自由度手腕如图2-5所示三二自由度手腕可以是由一个R 关节和一个B 关节组成的21工业机器人应用与编程技术

B R 手腕[图2-5(a )],也可以是由两个B 关节组成的B B 手腕[图2-5(b )]三但是不能由两个R R 关节组成R R 手腕,因为两个R 关节共轴线,所以退化了一个自由度,实际只构成单自由度手腕[图2-5(c )]三二自由度手腕中最常用的是B R 手腕

图2-5 二自由度手腕

(3)三自由度手腕三自由度手腕可以是由B 关节和R 关节组成的多种形式的手腕,但在实际应用中,常用的有B B R 二R R R 二B R R 和R B R 四种,如图2-6所示三P UMA262机器人的手腕采用的是R R R 结构形式,安川H P 20机器人的手腕采用的是R B R 结构形式(图2-7)

三图2-6

三自由度手腕

图2-7 安川H P 20工业机器人腕部结构形式(R B R )

3

1第二章 工业机器人的机械结构

第二节工业机器人的手部

工业机器人的手部也称末端执行器,它是装在工业机器人手腕上直接抓握工件或执行作业的部件三对于整个工业机器人来说手部是完成作业好坏二作业柔性优劣的关键部件之一三工业机器人的手部可以像人手那样具有手指,也可以是不具备手指的手;可以是类人的手爪,也可以是进行专业作业的工具,例如装在机器人手腕上的喷漆枪二焊接工具等三

一二机械手爪

1.手爪的驱动

机械手爪的作用是抓住工件二握持工件和释放工件三通常采用气动二液动二电动和电

磁来驱动手指的开合,气动手爪目前得到广泛的应用,主要由于气动手爪具有结构简单

1 扇形齿轮;

2 齿条;

3 活塞;

4 汽缸;

5 爪钳图2-8气压驱动的手爪成本低二容易维修,而且开合迅速,质量轻,其缺点在于空气介质的可压缩性,使爪钳位置控制比较复杂三液压驱动手爪成本要高些三电动手爪的优点在于手指开合电机的控制与机器人控制共用一个系统,但是夹紧力比气动手爪二液压手爪小,相比而言开合时间要稍长三如图2-8所示为一种气动手爪,汽缸4中压缩空气推动活塞3使连杆齿条2做往复运动,经扇形齿轮1

带动平行四边形机构,使爪钳5平行地快速开合三

2.手爪的传动机构

驱动源的驱动力通过传动机构驱使爪钳开合并产生夹紧力三对于传动机构有运动要求和夹紧力要求三如图2-8及图2-9(a)

所示的平行连杆式手爪和齿轮齿条式手爪可保持爪钳平行运动,夹持宽度变化大三对夹紧力要求是爪钳开合度不同时夹紧力能保持不变三

3.爪钳

爪钳是与工件直接接触的部分三它们的形状和材料对夹紧力有很大影响三夹紧工件的接触点越多,所要求的夹紧力越小,对夹持工件来说更显得安全三图2-10所示是具有V 形爪钳表面的手爪,有四条折线与工件相接触,形成力封闭形式的夹持状态三

二二磁力吸盘

磁力吸盘有电磁吸盘和永磁吸盘两种三磁力吸盘是在手部装上电磁铁,通过磁场吸力把工件吸住三图2-11为电磁吸盘的结构示意图三线圈通电后产生磁性吸力将工件吸住, 4

1

工业机器人应用与编程技术

图2-9四种手爪传动机构

断电后磁吸力消失将工件松开三若采用永久磁铁作为吸盘,则必须是强迫性取下工件三电磁吸盘只能吸住铁磁材料制成的工件,吸不住有色金属和非金属材料的工件三磁力吸盘的缺点是被吸取工件有剩磁,吸盘上常会吸附一些铁屑,致使不能可靠地吸住工件三对于不准有剩磁的场合,不能选用磁力吸盘,可用真空吸盘,例如钟表及仪表零件三另外高温条

件下不宜使用磁力吸盘,主要在于钢二铁等磁性物质在723?以上时磁性会消失

图2-10 V形爪钳

1 磁盘;

2 防尘盖;

3 线圈;

4 外壳体

图2-11电磁吸盘结构

5

1

第二章工业机器人的机械结构

三二真空式吸盘

真空式吸盘主要用在搬运体积大二质量轻的如冰箱壳体二汽车壳体等零件;也广泛用在需要小心搬运的物件如显像管二平板玻璃等三真空式吸盘对工件表面要求平整光滑二干燥清洁二能气密三根据真空产生的原理,可分为三种三

1.真空吸盘

图2-12所示为产生负压的真空吸盘控制系统三采用真空泵能保证吸盘内持续产生负压三吸盘吸力取决于吸盘与工件表面的接触面积和吸盘内外压差,另外与工件表面状态也有十分密切的关系,它影响负压的泄漏三

2.气流负压吸盘

气流负压吸盘的工作原理如图2-13所示三压缩空气进入喷嘴后,利用伯努利效应使橡胶皮碗内产生负压三在工厂一般都有空压机或空压站,空压机气源比较容易解决,不用

专为机器人配置真空泵,因此气流负压吸盘在工厂使用方便

1 电机;

2 真空泵;3二4 电磁阀;5 吸盘;6 通大气

图2-12

真空吸盘控制系统

图2-13

气流负压吸盘

1 吸盘架;

2 压盖;

3 密封垫;

4 吸盘;

5 工件图2-14挤气负压吸盘

3.挤气负压吸盘

挤气负压吸盘结构如图2-14所示三当吸盘压向工件表面时,将吸盘内空气挤出;松开时,去除压力,吸盘恢复弹性变形使吸盘内腔形成负压,将工件牢牢吸住,机械手即可进行工件搬运;到达目标位置后,可用碰撞力或用电磁力使压盖2动作,使空气进入吸盘腔内,释放工件三这种挤气负压吸盘不需要真空泵也不需要压缩空气气源,比较经济方便,但是可靠性比真空吸盘和气流负压吸盘差三

6

1

工业机器人应用与编程技术

第三节 工业机器人的传动机构

工业机器人的驱动源通过传动部件来驱动关节的移动或转动,从而实现机身二手臂和手腕的运动三因此,传动部件是构成工业机器人的重要部件三根据传动类型的不同,传动部件可以分为两大类:直线传动机构和旋转传动机构三

一二直线传动机构

工业机器人常用的直线传动机构可以直接由汽缸或液压缸和活塞产生,也可以采用齿轮齿条二滚珠丝杠螺母等传动元件由旋转运动转换得到三

1.移动关节导轨

在运动过程中移动关节导轨可以起到保证位置精度和导向的作用三移动关节导轨有五种:普通滑动导轨二液压动压滑动导轨二液压静压滑动导轨二气浮导轨和滚动导轨三前两种导轨具有结构简单二成本低的优点,但是它必须留有间隙以便润滑,而机器人载荷的大小和方向变化很快,间隙的存在又将会引起坐标位置的变化和有效载荷的变化;另外,这种导轨的摩擦系数又随着速度的变化而变化,在低速时容易产生爬行现象等缺点三第三种静压导轨结构能产生预载荷,能完全消除间隙,具有高刚度二低摩擦二高阻尼等优点,但是它需要单独的液压系统和回收润滑油的机构三第四种气浮导轨的缺点是刚度和阻尼较低三目前第五种滚动导轨在工业机器人中应用最为广泛,如图2-15所示为包容式滚动导轨的结构,用支承座支承,可以方便地与任何平面相连,此时套筒必须是开式的,嵌入在滑枕中,既增强刚度也方便了与其他元件的连接三

2.齿轮齿条装置

齿轮齿条装置中(图2-16),如果齿条固定不动,当齿轮转动时,齿轮轴连同拖板沿齿条方向做直线运动三这样,齿轮的旋转运动就转换成拖板的直线运动三拖板是由导杆或

导轨支承的,该装置的回差较大

三图2-15 滚动导轨

1 拖板;

2 导向杆;

3 齿轮;

4 齿条

图2-16 齿轮齿条式增倍机构的手臂结构7

1第二章 工业机器人的机械结构

3.滚珠丝杠与螺母

在工业机器人中经常采用滚珠丝杠,这是因为滚珠丝杠的摩擦力很小且运动响应速度快三由于滚珠丝杠螺母的螺旋槽里放置了许多滚珠,丝杠在传动过程中所受的是滚动摩擦力,摩擦力较小,因此传动效率高,同时可消除低速运动时的爬行现象;在装配时施加一定的预紧力,可消除回差三

如图2-17所示滚珠丝杠螺母里的滚珠经过研磨的导槽循环往复传递运动与动力三滚

珠丝杠的传动效率可以达到90%

三图2-17 滚珠丝杠螺母副

4.液(

气)压缸液(气)压缸是将液压泵(空压机)输出的压力能转换为机械能二做直线往复运动的执行元件,使用液(气)压缸可以容易地实现直线运动三液(气)压缸主要由缸筒二缸盖二活塞二活塞杆和密封装置等部件构成,活塞和缸筒采用精密滑动配合,压力油(压缩空气)从液(气)压缸的一端进入,把活塞推向液(气)压缸的另一端,从而实现直线运动三通过调节进入液(气)压缸液压油(压缩空气)的流动方向和流量可以控制液(气)压缸的运动方向和速度三

二二旋转传动机构

一般电动机都能够直接产生旋转运动,但其输出力矩比所要求的力矩小,转速比要求的转速高,因此需要采用齿轮二皮带传送装置或其他运动传动机构,把较高的转速转换成较低的转速,并获得较大的力矩三运动的传递和转换必须高效率地完成三并且不能有损于机器人系统所需要的特性,包括定位精度二重复定位精度和可靠性等三通过下列传动机构可以实现运动的传递和转换三

8

1工业机器人应用与编程技术

1.齿轮副

齿轮副不但可以传递运动角位移和角速度,而且可以传递力和力矩,如图2-18所示,

一个齿轮装在输入轴上,另一个齿轮装在输出轴上,可以得到齿轮的齿数与其转速成反比[式(2-1)],输出力矩与输入力矩之比等于输出齿数与输入齿数之比[式(2-2)]三z i z o =n o n i (2-1

)T o T i =z o z i

(2-2)2.同步带传动装置

在工业机器人中同步带传动主要用来传递平行轴间的运动三同步传送带和带轮的接触面都制成相应的齿形,靠啮合传递功率,其传动原理如图2-19所示三齿的节距用包络带轮时的圆节距t 表示

图2-18 齿轮传动副

图2-19 同步带传动原理

同步带的计算公式为

i =

n 2n 1=z 1z 2(2-3

)式中:n 1为主动轮转速(r /m i n );n 2为被动轮转速(r /m i n );z 1为主动轮齿数;z 2为被

动轮齿数三

同步带传动的优点:传动时无滑动,传动比准确,传动平稳;速比范围大;初始拉力小;轴与轴承不易过载三但是,这种传动机构的制造及安装要求严格,对带的材料要求也较高,因而成本较高三同步带传动适合于电动机和高减速比减速器之间的传动三3.谐波齿轮

目前工业机器人的旋转关节有60%~70%都使用谐波齿轮传动三

谐波齿轮传动由刚性齿轮二谐波发生器和柔性齿轮三个主要零件组成,如图2-20所

示三工作时,刚性齿轮6固定安装,各齿均布于圆周上,具有外齿圈2的柔性齿轮5沿刚性齿轮的内齿圈3转动三柔性齿轮比刚性齿轮少两个齿,所以柔性齿轮沿刚性齿轮每转一圈就反向转过两个齿的相应转角三谐波发生器4具有椭圆形轮廓,装在其上的滚珠用于支承柔性齿轮,谐波发生器驱动柔性齿轮旋转并使之发生塑性变形三转动时,柔性齿轮的

91第二章 工业机器人的机械结构

椭圆形端部只有少数齿与刚性齿轮啮合,只有这样,柔性齿轮才能相对于刚性齿轮自由地转过一定的角度三通常刚性齿轮固定,谐波发生器作为输入端,柔性齿轮与输出轴相连

1 输入轴;

2 柔性外齿圈;

3 刚性内齿圈;

4 谐波发生器;

5 柔性齿轮;

6 刚性齿轮;

7 输出轴图2-20 谐波齿轮传动

谐波齿轮传动比计算公式为

i =

z 2-z 1z 2(2-4)式中:z 1为柔性齿轮的齿数;z 2为刚性齿轮的齿数三假设刚性齿轮有100个齿,柔性齿轮比它少两个齿,则当谐波发生器转50圈时,柔性齿轮转1圈,这样只占用很小的空间就可以得到1?50的减速比三通常将谐波发生器装在输入轴,把柔性齿轮装在输出轴,以获得较大的齿轮减速比三

4.

摆线针轮传动减速器

1 针齿壳;

2 输出轴;

3 针齿;

4 摆线轮;

5 曲柄轴;

6 行星轮;

7 中心轮图2-21 摆线针轮传动

摆线针轮传动是在针摆传动基础上发展起来的一种

新型传动方式,20世纪80年代日本研制出了用于机器

人关节的摆线针轮传动减速器,图2-21所示为摆线针轮

传动简图,它由渐开线圆柱齿轮行星减速机构和摆线针

轮行星减速机构两部分组成三渐开线行星轮6与曲柄轴5连成一体,作为摆线针轮传动部分的输入三如果渐开

线中心轮7顺时针旋转,那么,渐开线行星齿轮在公转

的同时还逆时针自转,并通过曲柄轴带动摆线轮做平面

运动三此时,摆线轮因受与之啮合的针轮的约束,在其

轴线绕针轮轴线公转的同时,还将反方向自转,即顺时

针转动三同时,它通过曲柄轴推动行星架输出机构顺时

针转动三0

2工业机器人应用与编程技术

第二章工业机器人的机械结构

习题二

2.1简述工业机器人操作机的组成三

2.2简述工业机器人手臂与手腕的运动自由度三

2.3试说明气压驱动式手爪的结构与原理?

2.4试说明工业机器人四种手爪传动机构三

2.5试说明负压式真空吸盘的结构与工作原理三

2.6工业机器人常见的直线传动机构有哪些?

2.7工业机器人常见的旋转式传动机构有哪些?

1

2

机器人的组成与结构

3、简介机器人系统的组成与结构,包括三大部分、六个子系统 答:机器人由三大部分六个子系统组成。三大部分是机械部分、传感部分和控制部分。六个子系统是驱动系统、机械结构系统、感受系统、机器人一环境交换系统、人机交换系统和控制系统。 驱动系统,要使机器人运作起来,各需各个关节即每个运动自由度安置传动装置。这就是驱动系统。驱动系统可以是液压传动、气压传动、电动传动、或者把它们结合起来应用综合系统,可以是直接驱动或者通过同步带、链条、轮系、谐波齿轮等机械传动机构进行间接传动。 机械结构传动,工业机器人的机械结构系统由机座、手臂、末端操作器三大部分组成,每一个大件都有若干个自由度的机械系统。若基座不具备行走机构,则构成行走机器人;若基座不具备行走及弯腰机构,则构成单机器人臂。手臂一般由上臂、下臂和手腕组成。末端操作器是直接装在手腕上的一个重要部件,它可以是二手指或多手指的手抓,也可以是喷漆枪、焊具等作业工具。 感受系统由内部传感器模块和外部传感器模块组成,用以获得内部和外部环境状态中有意义的信息。智能传感器的使用提高了机器人的机动性、适应性和智能化的水准。人类的感受系统对感知外部世界信息是极其灵巧的,然而,对于一些特殊的信息,传感器比人类的感受系统更有效。 机器人一环境交换系统是现代工业机器人雨外部环境中的设备互换联系和协调的系统。工业机器人与外部设备集成为一个功能单元,如加工单元、焊接单元、装配单元等。当然,也可以是多台机器人、多台机床或设备、多个零件存储装置等集成为一个去执行复杂任务的功能单元。 人工交换系统是操作人员与机器人控制并与机器人联系的装置,例如,计算机的标准终端,指令控制台,信息显示板,危险信号报警器等。该系统归纳起来分为两大类:指令给定装置和信息显示装置。 控制系统的任务是根据机器人的作业指令程序以及传感器反馈回来的信号支配机器人的执行机构去完成规定的运动和功能。假如工业机器人不具备信息反馈特征,则为开环控制系统;若具备信息反馈特征,则为闭环控制系统。根据控制原理,控制系统可分为程序控制系统、适应性控制系统和人工智能控制系统。根据控制运行的形式,控制系统可分为点位控制和轨迹控制。

工业机器人控制系统组成及典型结构

工业机器人控制系统组成及典型结构 一、工业机器人控制系统所要达到的功能机器人控制系统是机器人的重要组成部分,用于对操作机的控制,以完成特定的工作任务,其基本功能如下: 1、记忆功能:存储作业顺序、运动路径、运动方式、运动速度和与生产工艺有关的信息。 2、示教功能:离线编程,在线示教,间接示教。在线示教包括示教盒和导引示教两种。 3、与外围设备联系功能:输入和输出接口、通信接口、网络接口、同步接口。 4、坐标设置功能:有关节、绝对、工具、用户自定义四种坐标系。 5、人机接口:示教盒、操作面板、显示屏。 6、传感器接口:位置检测、视觉、触觉、力觉等。 7、位置伺服功能:机器人多轴联动、运动控制、速度和加速度控制、动态补偿等。 8、故障诊断安全保护功能:运行时系统状态监视、故障状态下的安全保护和故障自诊断。 二、工业机器人控制系统的组成 1、控制计算机:控制系统的调度指挥机构。一般为微型机、微处理器有32 位、64 位等如奔腾系列CPU 以及其他类型CPU 。 2、示教盒:示教机器人的工作轨迹和参数设定,以及所有人机交互操作,拥有自己独立的 CPU 以及存储单元,与主计算机之间以串行通信方式实现信息交互。 3、操作面板:由各种操作按键、状态指示灯构成,只完成基本功能操作。 4、硬盘和软盘存储存:储机器人工作程序的外围存储器。 5、数字和模拟量输入输出:各种状态和控制命令的输入或输出。 6、打印机接口:记录需要输出的各种信息。 7、传感器接口:用于信息的自动检测,实现机器人柔顺控制,一般为力觉、触觉和视觉传感器。 8、轴控制器:完成机器人各关节位置、速度和加速度控制。 9、辅助设备控制:用于和机器人配合的辅助设备控制,如手爪变位器等。 10 、通信接口:实现机器人和其他设备的信息交换,一般有串行接口、并行接口等。 11 、网络接口 1) Ethernet 接口:可通过以太网实现数台或单台机器人的直接PC 通信,数据传输速率高达 10Mbit/s ,可直接在PC 上用windows 库函数进行应用程序编程之后,支持TCP/IP 通信协议,通过Ethernet 接口将数据及程序装入各个机器人控制器中。

工业机器人技术及应用(教案)-工业机器人机械结构和运动控制.doc

第二章工业机器人的机械结构和运动控制 章节目录 2.1 工业机器人的系统组成 2.1.1 操作机 2.1.2 控制器 2.1.3 示教器 2.2 工业机器人的技术指标 学习目标导入案例课堂认知扩展与提高本章小结思考练习 2.3 工业机器人的运动控制 2.3.1 机器人运动学问题 2.3.2 机器人的点位运动… 2.3.3 机器人的位置控制 课前回顾 何为工业机器人? 工业机器人具有几个显著特点,分别是什么? 工业机器人的常见分类有哪些,简述其行业应用。 学习目标 认知目标 *熟悉工业机器人的常见技术指标 *掌握工业机器人的机构组成及各部分的功能 *了解工业机器人的运动控制 能力目标 *能够正确识别工业机器人的基本组成 *能够正确判别工业机器人的点位运动和连续路径运动 导入案例 国产机器人竞争力缺失关键技术是瓶颈 众所周知,中国机器人产业由于先天因素,在单体与核心零部件仍然落后于日、美、韩等发达国家。虽然中国机器人产业经过30 年的发展,形成了较为完善的产业基础,但与发达国家相比,仍存在较大差距,产业基础依然薄弱,关键零部件严重依赖进口。整个机器人产业链主要分为上游核心零部件(主要是机器人三大核心零部件——伺服电机、减速器和控制系统,相当于机器人的“大脑”)、中游机器人本体(机器人的“身体”)和下游系统集成商(国内95% 的企业都集中在这个环节上)三个层面。 课堂认知 2.1 工业机器人的系统组成 第一代工业机器人主要由以下几部分组成:操作机、控制器和示教器。对于第二代及第三代工业机器人还包括感知系统和分析决策系统,它们分别由传感器及软件实现。

工业机器人系统组成 2.1.1 操作机 操作机(或称机器人本体)是工业机器人的机械主体,是用来完成各种作业的执行机构。它主要由机械臂、驱动装置、传动单元及内部传感器等部分组成。 关节型机器人操作机基本构造 机器人操作机最后一个轴的机械接口通常为一连接法兰,可接装不同的机械操作装置,如夹紧爪、吸盘、焊枪等。

机器人的结构形式及各类结构的特点

机器人的结构形式及各类结构的特点 摘要:如今机器人已被广泛应用于机械、印刷机械、汽车工业、食品生产工业、药品生产工业、电子工业、机器制造业和化妆品生产等行业,不同领域因其需要的多样性和特殊性,也导致机器人在结构形式上存在多样性和特殊性。 关键字:结构形式,结构坐标系 2011302590173 刘亚辉 遥感信息工程学院

一、引言 机器人按ISO 8373定义为:位置可以固定或移动,能够实现自动控制、可重复编程、多功能多用处、末端操作器的位置要在3个或3个以上自由度内可编程的工业自动化设备。这里自由度就是指可运动或转动的轴。工业机器人按其结构形式及编程坐标系主要分类为关节型机器人、移动机器人、水下机器人和直角坐标机器人等。按主要功能特征及应用分为移动机器人、水下机器人、洁净机器人、直角坐标机器人、焊接机器人、手术机器人和军用机器人等。机器人学涉及到机器人结构,机器人视觉,机器人运动规划,机器人传感器,机器人通讯和人工智能等许多方面,不同用处的机器人涉及到不同的学科,下面仅对这些机器人的结构和应用进行简单介绍。 机器人按照结构坐标系特点方式分类可分为:直角坐标机器人,圆柱坐标型机器人,极坐标机器人,多关节机器人等。 机器人按照机身结构特点可分为:升降回转型机身结构,俯仰型机身结构,直移型机身结构,类人机器人机身结构等。 二、各种结构坐标系 1、直角坐标系机器人 直角坐标型机器人结构如图所示,它主要是以直线运动轴为主,各个运动轴通常对应直角坐标系中的X轴,Y轴和Z轴,一般X轴和Y轴是水平面内运动轴,Z轴是上下运动轴。在一些应用中Z轴上带有一个旋转轴,或带有一个摆动轴和一个旋转轴。在绝大多数情况下直角坐标机器人的各个直线运动轴间的夹角为直角。 直角坐标型机械手可以在三个互相垂直的方向上作直线伸缩运动,这类机械手各个方向的运动是独立的,计算和控制比较方便,但占地面积大,限于特定的应用场合,有较多的局限性。 2、圆柱坐标机器人 圆柱坐标型机器人的结构如下图所示,R、θ和x为坐标系的三个坐标,其中R、是手臂的径向长度,θ是手臂的角位置,x是垂直方向上手臂的位置。如果机器人手臂的径向坐标R保持不变,机器人手臂的运动将形成一个圆柱表面。

工业机器人分类本体结构及技术指标

工业机器人分类、本体结构和技术指标 “工业机器人”专项技能培训——杜宇 英属哥伦比亚大学(UBC)博士 大连大华中天科技有限公司CEO 主要内容 一、常用运动学构型 二、机器人的主要技术参数 三、机器人常用材料 四、机器人主要结构 五、机器人的控制系统 一、常用运动学构形 1、笛卡尔操作臂 优点:很容易通过计算机控制实现,容易达到高精度。 缺点:妨碍工作, 且占地面积大, 运动速度低, 密封性不好。 ①焊接、搬运、上下料、包装、码垛、拆垛、检测、探伤、 分类、装配、贴标、喷码、打码、(软仿型)喷涂、目标跟 随、排爆等一系列工作。 ②特别适用于多品种,便批量的柔性化作业,对于稳定,提 高产品质量,提高劳动生产率,改善劳动条件和产品的快速 更新换代有着十分重要的作用。 2、铰链型操作臂(关节型) 关节机器人的关节全都是旋转的, 类似于人的手臂,工业机器人中最 常见的结构。它的工作范围较为复杂。 ①汽车零配件、模具、钣金件、塑料制品、运动器材、玻璃制品、陶 瓷、航空等的快速检测及产品开发。 ②车身装配、通用机械装配等制造质量控制等的三坐标测量及误差检 测。 ③古董、艺术品、雕塑、卡通人物造型、人像制品等的快速原型制作。 ④汽车整车现场测量和检测。 ⑤人体形状测量、骨骼等医疗器材制作、人体外形制作、医学整容等。 3、SCARA操作臂 SCARA机器人常用于装配作业, 最显著的特点是它们 在x-y平面上的运动具有较大的柔性, 而沿z轴具有 很强的刚性, 所以, 它具有选择性的柔性。这种机器 人在装配作业中获得了较好的应用。 ①大量用于装配印刷电路板和电子零部件 ②搬动和取放物件,如集成电路板等 ③广泛应用于塑料工业、汽车工业、电子产品工业、 药品工业和食品工业等领域. ④搬取零件和装配工作。

工业机器人内部结构及基本组成原理详解

工业机器人内部结构及基本组成原理详解 工业机器人详解 你对工业机器人有着什么样的了解?关于工业机器人,我们过去也反反复复推送了很多的文章,在这一次,我们将尝试解决有关---在工业环境中使用的最常见的机器人和作业时经常会遇到的问题。关于工业机器人定义什么可以被 认为是一个工业机器人?什么不能被称为工业机器人?工业机器人直到最近才能避开这种混乱。不是在工业环境中使 用的每个机电设备都可以被认为是机器人。根据国际标准组织的定义,工业机器人是一种可编程的三自由度或多轴自动控制的可编程多用途机械手。这几乎是在谈论工业机器人时被接受的定义。工业机器人自中年以来发生了什么变化?越来越多的工程师和企业家正在寻找越来越多的机器人技术,帮助在工业环境中优化工作流程的方式。随着时代的发展和机器人技术的进步,机器人手臂必须为诸如仓储中使用的群组AGV等新手铺路。我们经常说典型的工业机器人 由工具,工业机器人手臂,控制柜,控制面板,示教器以及其他外围设备组成。那么这些是什么?这些部分通常都在一起,控制柜类似于机器人的大脑。控制面板和示教器构成用户环境。工具(也称为末端执行器)是为特定任务设计的设备(例如焊接或喷涂)。机器人手臂基本上是移动工具的

东西。但并不是每个工业机器人都像一个手臂。不同机器人有不同类型的结构。控制面板--- 操作员使用控制面板来执行一些常规任务。(例如:改变程序或控制外围设备)。应用“机器人工人” --------- 什么时候应该使用工业机器人而不是人工?相信这个问题大家思考的次数并不少了。理想情况下,这应该是双赢的。想快速看到效果,你需要知道什么是别人最不喜欢的工作。想得最多的是那些重复的,乏味的工作,需要从工作人员那边进行大量单调的行动,这个思考是正确的,因为正是如此,例如从一个输送机到另一个输送机。如果总是相同的任务,您可以使用专门针对您的需求量身定制的自动化解决方案。工厂的工作处理需要越来越灵活,在这些情况下,正确的解决方案是:可以试用用于不同任务的可重新编程的机器人进行任务操作。此外,就是那些对人类工作有害的任务。(例如:用危险化学品进行表面处理,这是在有害环境中工作。在许多情况下,长期使用机器人比聘用工人更聪明和便宜。)当然,还有的是人类难以操作的工作。(例如:举或搬运重物或在不适合人类生活的条件下工作。)同样,在许多这些情况下,可以应用特定的自动化解决方案。然而,如果任务需要灵活性处理,还需要考虑要用到的机器人。以下是最常见的机器人应用程序列表:电弧焊、部件、涂层、去毛刺、压铸、造型、物料搬运、选择、码垛、打包、绘画、点焊、运输,仓储关于工业机器人的

工业机器人球坐标型机械臂结构设计毕业设计

工业机器人球坐标型机械臂结构设计毕业论文1 绪论 1.1 课题背景 工业机器人在现代生产中应用日益广泛,作用越来越重要,工业机械臂尤为如此,因此设计实用、高效的机械臂对于机械设计者来说是义不容辞的责任,对于毕业的大学生也是一个实时、富有意义和挑战的课题。 工业机器人自20世纪60年代问世以来,其研究和开发在工业发达国家中一直备受青睐。尽管各国对机器人的定义不尽相同,但都有可编程、拟人化、通用性等特点,是一种融机械工程、电子工程、计算机技术、自动控制技术等多学科为一体的高新技术产品。随着相关支撑学科的长足发展,工业机器人的研究和开发正在突飞猛进,其应用领域进一步扩大。我国机器人技术的研究工作起步较晚,虽已取得较大发展,但较之发达国家的水平仍有较大距离,应积极探索适合我国国情的工业机器人应用思路,开发低成本、高性价比的实用型工业机器人。 机器人自诞生之日起,便显示出其强大的生命力,机器人首先在工业生产中得到了广泛应用,并给传统工业带来了质的飞跃。它不仅提高了传统产业的自动化程度,提高了劳动生产率而且还推动了以资源消耗低环境污染少为特征的新型工业的诞生随着人类在机械工程、电气工程、微电子技术、计算机技术、控制论、传感技术、信息学、声学、仿生学、及人工智能等学科领域的飞速发展,机器人技术的应用也正在向农业、林业、畜牧、养殖、海洋开发、宇宙探索、国防建设、安全救济、生物医学、服务娱乐等新领域拓展开来,并已取得显著进展,机器人技术已成为高科技应用领域中的重要组成部分。 机器人主要有两大类:用于制造环境下的工业机器人和用于非制造环境下的服务机器人。工业机器人是一种对生产环境和生产条件具有较强的适应性和灵活性的柔性自动化装备,它主要用于现代制造业中代替人们从事繁重、重复单调、环境恶劣危险、人做不了或做不好的工作,从而减轻了人们的劳动强度,改善了劳动环境,并有效地

工业机器人的结构与组成

. ..工业机器人由主体、驱动系统和控制系统三个基本部分组成。主体即机座和执行机构, 包括臂部、腕部和手部,有的机器人还有行走机构。大多数工业机器人有3~6个运动自由度,其中腕部通常有1~3个运动自由度;驱动系统包括动力装置和传动机构,用以使执行机构产生相应的动作;控制系统是按照输入的程序对驱动系统和执行机构发出指令信号,并进行控制。 工业机器人按臂部的运动形式分为四种。直角坐标型的臂部可沿三个直角坐标移动;圆柱坐标型的臂部可作升降、回转和伸缩动作;球坐标型的臂部能回转、俯仰和伸缩;关节型的臂部有多个转动关节。 工业机器人按执行机构运动的控制机能,又可分点位型和连续轨迹型。点位型只控制执行 机构由一点到另一点的准确定位,适用于机床上下料、点焊和一般搬运、装卸等作业;连续轨迹型可控制执行机构按给定轨迹运动,适用于连续焊接和涂装等作业。 工业机器人按程序输入方式区分有编程输入型和示教输入型两类。编程输入型是将计算机上已编好的作业程序文件,通过RS232串口或者以太网等通信方式传送到机器人控制柜。 示教输入型的示教方法有两种:一种是由操作者用手动控制器(示教操纵盒),将指令信号传给驱动系统,使执行机构按要求的动作顺序和运动轨迹操演一遍;另一种是由操作者直接领动执行机构,按要求的动作顺序和运动轨迹操演一遍。在示教过程的同时,工作程序的信息即自动存入程序存储器中在机器人自动工作时,控制系统从程序存储器中检出相应信息,将指令信号传给驱动机构,使执行机构再现示教的各种动作。示教输入程序的工业机器人称为示教再现型工业机器人。 具有触觉、力觉或简单的视觉的工业机器人,能在较为复杂的环境下工作;如具有识别功能或更进一步增加自适应、自学习功能,即成为智能型工业机器人。它能按照人给的“宏指令”自选或自编程序去适应环境,并自动完成更为复杂的工作。

机器人基本构成

机器人基本构成 机器人系统通常分为三大部分:机械部分、传感部分和控制部分;六个子系统:驱动系统、机械系统、感知系统、人机交互系统、机器人环境交互系统、控制系统等组成(如图1所示)。 图1 机器人系统的基本构成 1.机械系统 机械系统又称操作机或执行机构系统,由一系列连杆、关节或其他形式的运动部件组成,通常包括机座、立柱、腰关节、臂关节、腕关节和手爪等,构成多自由度机械系统。 工业机器人机械系统由机身、手臂和末端执行器组成,机身可具有行走机构,手臂一般有上臂、下臂和手腕组成,末端执行器直接装在手腕上,可以是两手指或多手指手爪,可以是喷漆枪、焊枪等作业工具。 2.驱动系统 驱动系统主要指驱动机械系统的机械装置,根据驱动源不同可分为电动、液压、气动三种或三者结合一起的综合系统;驱动系统可以直接与机械系统相连,或通过皮带、链条、齿轮等机械传动机构间接相连。 3.感知系统 感知系统由内部传感器模块和外部传感器模块组成,获取内部和外部环境状态信息,确定机械部件各部分的运行轨迹、状态、位置和速度等信息,使机械部件各部分按预定程序和

工作需要进行动作。智能传感器的使用提高了机器人的机动性、适应性和智能化水平。人类感知系统对外部信息获取比较灵巧,但一些特殊信息传感器感知更有效。 4.控制系统 控制系统的任务是根据机器人的作业指令程序以及从传感器反馈回来的信号支配机器人的执行机构完成规定的运动和功能。若不具备信息反馈特种,则为开环控制系统;具备信息反馈特征则为闭环控制系统。根据控制原理可分为程序控制系统,适应性控制系统,人工智能控制系统;根据控制运动形式分为点位控制和轨迹控制。 5.交互系统 机器人-环境交互系统是实现机器人与外部环境中的设备相互联系和协调的系统。机器人可以与外部设备集成为一个功能单元,如加工制造单元、焊接单元、装配单元等;也可以是多台机器人、多台机床、设备、零件存储装置等集成为一个可执行复杂任务的功能单元。 人机交互系统是操作人员参与机器人控制并与机器人进行联系的装置,如计算机终端、指令控制台、信息显示板及危险信号报警器等。主要有两类:指令给定装置和信息显示装置。

机器人的基本结构原理

教案首页 课程名称农业机器人任课教师李玉柱第2章机器人的基本结构原理计划学时 3 教学目的和要求: 1.弄清机器人的基本构成; 2.了解机器人的主要技术参数; 3.了解机器人的手部、腕部和臂部结构; 4.了解机器人的机身结构; 5.了解机器人的行走机构 重点: 1.掌握机器人的基本构成 2.弄清机器人都有哪些主要技术参数 3.机器人的手部、腕部和臂部结构 难点: 机器人的手部、腕部和臂部结构 思考题: 1.机器人由哪些部分组成? 2.机器人的主要技术参数有哪些? 3.机器人的行走机构共分几类,请想象未来的机器人能 否有其它类型的行走机构?

第2章概论 教学主要内容: 2.1机器人的基本构成 2.2机器人的主要技术参数 2.3人的手臂作用机能初步分析 2.4机器人的机械结构构成 2.5机器人的手部 2.6机器人的手臂 2.7机器人的机身 2.8机器人的行走机构 本章介绍了机器人的基本构成、主要技术参数,人手臂作用机能,在此基础上对机器人的手部、手腕、手部、。机身、行走机构等原理及相关的结构设计进行讨论,使学生对机器人的机构和原理有较为清楚的了解。 2.1机器人的基本构成 简单地说:机器人的原理就是模仿人的各种肢体动作、思维方式和控制决策能力。 不同类型的机器人其机械、电气和控制结构也不相同,通常情况下,一个机器人系统由三部分、六个子系统组成。这三部分是机械部分、传感部分、控制部分;六个子系统是驱动系统、机械系统、感知系统、人机交互系统、机器人-环境交互系统、控制系统等。如图2-1所示。

●是由关节连在一起的许多机械连杆的集合体, 关节通常分为转动关节和移动关节,移动关节允许连杆做直线移动,转动关节仅允许连杆之间发生旋转运动。 个主要部●常规的驱 接地与臂、腕或手上的机械连杆或关节连接在一起,也可以使用齿轮、带、链条等机械传动机构间接传动。 ●感知系统 ....由一个或多个传感器组成,用来获取内部和外部环境中的有用信息,通过这些信息确定机械部件各部分的运行轨迹、速度、位置和外部环境状态,使机械部件的各部分按预定程序或者工作需要进行动作。传感器的使用提高了机器人的机动性、适应性和智能化水平。 ●控制系统 ....其任务是根据机器人的作业指令程序以及从传感器反馈回来的信号支配机器人的执行机构去完成规定的运动和功能。若机器人不具备信息反馈特征,则为开环控制系统;若具备信息反馈特征,则为闭环控制系统。根据控制原理,控制系统又可分为程序控制系统、

机器人结构组成

机器人系统的结构: 机器人的机构部分、 传感器组、 控制部分、 信息处理部分组成。 机器通常由动力部分、工作部分和传动装置三部分组成。除此之外,还有自动控制部分。 动力部分是机器动力的来源,常用的发动机有电动机、内燃机和空气压缩机等。 工作部分是直接完成机器工作任务的部分,处于整个传动装配的终端,起结构形式取决于机器的用途。例如金属切削机床的主轴、拖板、工作台等。 传动装置是将动力部分的运动和动力传递给工作部分的中间环节。例如:金属切削机床中常用的带传动、螺旋传动、齿轮传动、连杆机构、凸轮机构等。机器应用的传动方式主要有机械传动、液压传动、气动传动及电气传动等。

机器人的执行机构由哪些部件构成 即机器人本体,其臂部一般采用空间开链连杆机构,其中的运动副(转动副或移动副)常称为关节,关节个数通常即为机器人的自由度数。根据关节配置型式和运动坐标形式的不同,机器人执行机构可分为直角坐标式、圆柱坐标式、极坐标式和关节坐标式等类型。出于拟人化的考虑,常将机器人本体的有关部位分别称为基座、腰部、臂部、腕部、手部(夹持器或末端执行器)和行走部(对于移动机器人)等 机器的驱动装置有哪些 是驱使执行机构运动的机构,按照控制系统发出的指令信号,借助于动力元件使机器人进行动作。它输入的是电信号,输出的是线、角位移量。机器人使用的驱动装置主要是电力驱动装置,如步进电机、伺服电机等,此

外也有采用液压、气动等驱动装置。 机器人的控制系统方式有哪些?一种是集中式控制,即机器人的全部控制由一台微型计算机完成。另一种是分散(级)式控制,即采用多台微机来分担机器人的控制,如当采用上、下两级微机共同完成机器人的控制时,主机常用于负责系统的管理、通讯、运动学和动力学计算,并向下级微机发送指令信息;作为下级从机,各关节分别对应一个CPU,进行插补运算和伺服控制处理,实现给定的运动,并向主机反馈信息。根据作业任务要求的不同,机器人的控制方

六轴关节机器人机械结构

六轴关节机器人机械结构 上图为常见的六轴关节机器人的机械结构,六个伺服电机直接通过谐波减速器、同步带轮等驱动六个关节轴的旋转,注意观察一、二、三、四轴的结构,关节一至关节四的驱动电机为空心结构,关节机器人的驱动电机采用空心轴结构应该不常见,空心轴结构的电机一般较大。采用空心轴电机的优点是:机器人各种控制管线可以从电机中心直接穿过,无论关节轴怎么旋转,管线不会随着旋转,即使旋转,管线由于布置在旋转轴线上,所以具有最小的旋转半径。此种结构较好的解决了工业机器人的管线布局问题。对于工业机器人的机械结构设计来说,管线布局是难点之一,怎样合理的在狭小的机械臂空间中布置各种管线(六个电机的驱动线、编码器线、刹车线、气管、电磁阀控制线、传感器线等),使其不受关节轴旋转的影响,是一个值得深入考虑的问题。 机器人的腕部结构常见有如下几种结构:

在这三种手腕部的结构中,以第一种(RBR型)结构应用最为广泛,它适应于各种工作场合,后两种结构应用范围相对较窄,比如说3R型的手腕结构主要应用在喷涂行业等. 关节设计: 对于国外的工业机器人主要制造国家来说,六轴关节机器人的研发设计及制造已经有好几十年的历史了,整个工业机器人的研发制造体系较为完善,他们的技术相对来说比较成熟,他们在相互竞争中可以相互模仿、改善、不断推陈出新,他们的技术对于国内来说,近乎完美.而国内目前这个行业还处在黎明前的黑暗阶段,虽然有不少公司有这个研发意图,或者正在研发途中,不管怎么说,浮出水面公布自己正在研发或者研发成功的公司应该说是极少数,即使宣布自己研发成功,也只是初步试验成功,真正产业化、商品化还有一段相当漫长的路要走.而更多的公司还停留在项目立项、技术评估、投入风险分析的阶段.由于国内做这个行业的很少,相关的结构也没有什么可参考的,技术储备不足,少数的单位或个人有机会能够拆拆别人的机器,拆个一知半解,更多的人只能在旁边看看了(比如说我,想拆都没机会^_^),还好了,网络资源丰富,今搜集到不少机械结构方面的图片,分享给大家参考,希望咱们做机械设计的(我应该也算是个机械工程师啊^_^毕竟我也是做机械的)少走点弯路,做出更好的机器. 六轴关节机器人的腕部关节设计较为复杂,因为在腕部同时集成了三种运动.小型的六轴关节机器人的腕部关节主要采用谐波减速器.下面的图片较为详细的描述了常见的六轴关节机器人的腕部结构.

工业机器人结构设计

1绪论 1.1工业机器人概述 工业机器人由操作机(机械本体)、控制器、伺服驱动系统和检测传感装置构成,是一种仿人操作,自动控制、可重复编程、能在三维空间完成各种作业的机电一体化自动化生产设备。特别适合于多品种、变批量的柔性生产。它对稳定、提高产品质量,提高生产效率,改善劳动条件和产品的快速更新换代起着十分重要的作用。机器人技术是综合了计算机、控制论、机构学、信息和传感技术、人工智能、仿生学等多学科而形成的高新技术,是当代研究十分活跃,应用日益广泛的领域。机器人应用情况,是一个国家工业自动化水平的重要标志。机器人并不是在简单意义上代替人工的劳动,而是综合了人的特长和机器特长的一种拟人的电子机械装置,既有人对环境状态的快速反应和分析判断能力,又有机器可长时间持续工作、精确度高、抗恶劣环境的能力。从某种意义上说它也是机器进化过程的产物,它是工业以及非工业领域的重要生产和服务性设备,也是先进制造技术领域不可缺少的自动化设备。机械手是模仿人手的部分动作,按给定程序、轨迹和要求实现自动抓取、搬运或操作的自动机械装置。在工业生产中应用的机械手被称为“工业机械手”。工业机械手可以提高生产的自动化水平和劳动生产率;可以减轻劳动强度、保证产品质量、实现安全

生产,尤其在高温、高压、低温、低压、粉尘、易爆、有毒气体和放射性等恶劣的环境中,由它代替人进行正常的工作,意义更为重大。因此,工业机械手在机械加工、冲压、铸、锻、焊接、热处理、电镀、喷漆、装配以及轻工业、交通运输业等方面得到越来越广泛的应用。工业机械手的结构形式开始比较简单专用性较强,仅为某台机床的上下料装置,是附属于该机床的专用机械手。随着工业技术的发展,制成了能够独立的按程序控制实现重复操作,适用范围比较广的“程序控制通用机械手”,简称通用机械手。由于通用机械手能很快的改变工作程序,适应性较强,所以它在不断变换生产品种的中小批量生产中获得广泛的应用。 1.2工业机器人的组成和分类 1.2.1工业机器人的组成 机械手主要由执行机构、驱动系统、控制系统以及位置检测装置等组成。各系统相互之间的关系如方框图1.1所示。 图1.1机器人组成系统

工业机器人的基本组成结构

工业机器人的基本组成结构 工业机器人是面向工业领域的多关节机械手或者多自由度机器人,它的出现是为了解放人工劳动力、提高企业生产效率。工业机器人的基本组成结构则是实现机器人功能的基础,下面一起来看一下工业机器人的结构组成。工业机器人,现代工业机器人大部分都是由三大部分和六大系统组成。 1.机械部分 机械部分是机器人的血肉组成部分,也就是我们常说的机器人本体部分。这部分主要可以分为两个系统: (1)驱动系统 要使机器人运行起来,需要各个关节安装传感装置和传动专治,这就是驱动系统。它的作用是提供机器人各部分、各关节动作的原动力。驱动系统传动部分可以是液压传动系统、电动传动系统、气动传动系统,或者是几种系统结合起来的综合传动系统。 (2)机械结构系统 工业机器人机械结构主要由四大部分构成:机身、臂部、腕部和手部,每一个部分具有若干的自由度,构成一个多自由的机械系统。末端操作器是直接安装在手腕上的一个重要部件,它可以是多手指的手爪,也可以是喷漆枪或者焊具等作业工具。 2.感受部分 感受部分就好比人类的五官,为机器人工作提供感觉,帮助机器人工作过程更加精确。这部分主要可以分为两个系统: (1)感受系统 感受系统由内部传感器模块和外部传感器模块组成,用于获取内部和外部环境状态中有意义的信息。智能传感器可以提高机器人的机动性、适应性和智能化的水准。对于一些特殊的信息,传感器的灵敏度甚至可以超越人类的感觉系统。 (2)机器人-环境交互系统 机器人-环境交互系统是实现工业机器人与外部环境中的设备相互联系和协调的系统。工业机器人与外部设备集成为一个功能单元,如加工制造单元、焊接单元、装配单元等。也可以是多台机器人、多台机床设备或者多个零件存储装置集成为一个能执行复杂任务的功能单元。 3.控制部分 控制部分相当于机器人的大脑部分,可以直接或者通过人工对机器人的动作进行控制,控制部分也可以分为两个系统: (1)人机交互系统 人机交互系统是使操作人员参与机器人控制并与机器人进行联系的装置,例如,计算机的标准终端、指令控制台、信息显示板、危险信号警报器、示教盒等。简单来说该系统可以分为两大部分:指令给定系统和信息显示装置。 (2)控制系统 控制系统主要是根据机器人的作业指令程序以及从传感器反馈回来的信号支配的执行机构去完成规定的运动和功能。根据控制原理,控制系统可以分为程序控制

工业机器人的基本组成结构

工业机器人的基本组成 结构 TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】

工业机器人的基本组成结构 工业机器人是面向工业领域的多关节机械手或者多自由度机器人,它的出现是为了解放人工劳动力、提高企业生产效率。工业机器人的基本组成结构则是实现机器人功能的基础,下面一起来看一下工业机器人的结构组成。工业机器人,现代工业机器人大部分都是由三大部分和六大系统组成。 1.机械部分 机械部分是机器人的血肉组成部分,也就是我们常说的机器人本体部分。这部分主要可以分为两个系统: (1)驱动系统 要使机器人运行起来,需要各个关节安装传感装置和传动专治,这就是驱动系统。它的作用是提供机器人各部分、各关节动作的原动力。驱动系统传动部分可以是液压传动系统、电动传动系统、气动传动系统,或者是几种系统结合起来的综合传动系统。 (2)机械结构系统 工业机器人机械结构主要由四大部分构成:机身、臂部、腕部和手部,每一个部分具有若干的自由度,构成一个多自由的机械系统。末端操作器是直接安装在手腕上的一个重要部件,它可以是多手指的手爪,也可以是喷漆枪或者焊具等作业工具。 2.感受部分 感受部分就好比人类的五官,为机器人工作提供感觉,帮助机器人工作过程更加精确。这部分主要可以分为两个系统: (1)感受系统 感受系统由内部传感器模块和外部传感器模块组成,用于获取内部和外部环境状态中有意义的信息。智能传感器可以提高机器人的机动性、适应性和智能化的水准。对于一些特殊的信息,传感器的灵敏度甚至可以超越人类的感觉系统。 (2)机器人-环境交互系统 机器人-环境交互系统是实现工业机器人与外部环境中的设备相互联系和协调的系统。工业机器人与外部设备集成为一个功能单元,如加工制造单元、焊接单元、装配单元等。也可以是多台机器人、多台机床设备或者多个零件存储装置集成为一个能执行复杂任务的功能单元。 3.控制部分 控制部分相当于机器人的大脑部分,可以直接或者通过人工对机器人的动作进行控制,控制部分也可以分为两个系统: (1)人机交互系统 人机交互系统是使操作人员参与机器人控制并与机器人进行联系的装置,例如,计算机的标准终端、指令控制台、信息显示板、危险信号警报器、示教盒等。简单来说该系统可以分为两大部分:指令给定系统和信息显示装置。 (2)控制系统 控制系统主要是根据机器人的作业指令程序以及从传感器反馈回来的信号支配的执行机构去完成规定的运动和功能。根据控制原理,控制系统可以分为程序控制

第十三章 工业机器人机构学

第十三章工业机器人机构学 提要 介绍了工业机器人的组成原理、分类与工作性能特点。 研究了坐标变换与空间物体的位姿与位移的齐次坐标表达;研究了已知各个关节的相对运动时,如何确定工业机器人末端操作器的位姿;研究了已知目标对象的位姿时,如何确定工业机器人各个关节的相对运动量。 13.1 概述 工业机器人是用来搬运材料、零件与工具,进行焊接与喷涂的可再编程的多功能机械手,通过调用不同的程序来完成预设的多种工作任务。

13.2 工业机器人的组成 工业机器人由三大部分六个子系统组成。三大部分是机械部分、传感部分和控制部分。六个系统是驱动系统、机构与结构系统、感觉系统、机器人与环境交互系统、人机交互系统和控制系统。 1.机器人的机构与结构系统 工业机器人的机械部分由三部分组成,即机身、手臂和末端操作器。机身可以是固定的,也可以是移动的。手臂进一步划分为上臂和下臂,上臂与机身形成肩关节,上臂与下臂形成肘关节,下臂与末端操作器形成碗关节,如图13.3所示。

2. 机器人手部的机构与结构系统 1) 具有一个相对自由度的末端操作器 2) 具有多个自由度的末端操作器

13.3工业机器人的分类与性能 1)直角坐标型 直角坐标型操作机如图13.6所示,它有三个移动关节(PPP),可使末端操作器作三个方向的独立位移。 该种型式的工业机器人,定位精度较高,空间轨迹规划与求解相对较容易,计算机控制相对较简单。它的不足是空间尺寸较大,运动的灵活性相对较差,运动的速度相对较低。

2)圆柱坐标型 圆柱坐标型操作机如图13.7所示,它有两个移动关节和一个转动关节(PPR),末端操作器的安装轴线之位姿由(z,r,θ)坐标予以表示。该种型式的工业机器人,空间尺寸较小,工作范围较大,末端操作器可获得较高的运动速度。它的缺点是末端操作器离z轴愈远,其切向线位移的分辨精度就愈低。 3) 球坐标型 球坐标型操作机如图13.8所示,它有两个转动关节和一个移动关节(RRP),末端操作器的安装轴线之位姿由(θ,φ, r)坐标予以表示。该种型式的工业机器人,空间尺寸较小,工作范围较大。

机器人的组成系统

机器人的组成系统

一.工业机器人组成系统 工业机器人由主体、驱动系统和控制系统三个基本部分组成。主体即机座和执行机构,包括腰部、肩部、肘部和手腕部,其中手腕部有3个运动自由度。驱动系统包括动力装置和传动机构,用以使执行机构产生相应的动作。控制系统是按照输入的程序对驱动系统和执行机构发出指令信号,并进行控制。 工业机器人按执行机构运动的控制机能,又可分点位型和连续轨迹型。点位型只控制执行机构由一点到另一点的准确定位,适用于机床上下料、点焊和一般搬运、装卸等作业;连续轨迹型可控制执行机构按给定轨迹运动,适用于连续焊接和涂装等作业。 工业机器人按程序输入方式区分有编程输入型和示教输入型两类。编程输入型是将计算机上

已编好的作业程序文件,通过RS232串口或者以太网等通信方式传送到机器人控制柜。 示教输入型的示教方法有两种:一种是由操作者用手动控制器(示教操纵盒),将指令信号传给驱动系统,使执行机构按要求的动作顺序和运动轨迹操演一遍;另一种是由操作者直接领动执行机构,按要求的动作顺序和运动轨迹操演一遍。在示教过程的同时,工作程序的信息即自动存入程序存储器中在机器人自动工作时,控制系统从程序存储器中检出相应信息,将指令信号传给驱动机构,使执行机构再现示教的各种动作。示教输入程序的工业机器人称为示教再现型工业机器人。 几个问题: (1)巨轮机器人JLRB20KG机器人是点位型还是连续轨迹型? (2)能不能编写一个简单程序,使机器人能够的末端能够走一个圆? (3)能不能控制机器人中每一个电机的输出功率或扭矩? (4)机器人每一个关节从驱动电机到执行机构的传递效率有没有?

7自由度工业机器人机械结构毕业设计

摘要 7 自由度工业机器人以工作范围大、动作灵活、结构紧凑、能抓取靠近机座的物体等特点备受设计者和使用者的青睐。由于有一个冗余自由度,很容易在确保最佳焊接姿势的同时,避免工件以及夹具对机器人工作臂的干扰。 本论文首先根据机器人持重3kg、工作范围1434mm、本体重量150kg,确立机器人为S腰部回转、L小臂摆动、E大臂回转、U臂部俯仰、R腕部扭转、B 腕部俯仰、T腕部回转的7自由度关节型弧焊机器人的总体结构;分析机器人的各个关节在转动惯量、角速度、加速度等技术指标下的工作状况,确定7个关节都采用交流电机驱动、机器人手臂专用减速器传动,同时B、T腕部关节还用到同步带传动。通过计算各关节所需电机的功率和转矩、减速器的减速比、同步带的要求并选型;用UG NX6.0画出机器人的各关节三维仿真模型,并装配成型。 本课题研究具有广泛的实际意义和应用前景。设计的7自由度工业机器人为后续的机器人动力学分析和运动控制提供了参考依据,并可以做进一步的研发。 关键词:7自由度,工业机器人,机械结构

Abstract 7 dof industrial robots with large scope of work, flexible, compact structure, can grab the object near the base are famous among so much designers and users. Because there is a redundant freedom, it is easy to ensure the best welding position at the same time, avoid workpiece and fixture work on the robot arm interference. In this thesis, according to the robot puts up 3kg, the scope of work is 1434mm, body weight is 150kg,establish 7 dof joint structure of arc-welding robot including S waist, L arm swing, E arm rotation, U pitching arm, R wrist turn, B wrist pitch, T wrist rotation. Analysis of the various robot joints in moment of inertia, angular velocity, acceleration and other technical indicators of the work under the conditions identified seven joints driven by AC motor, the robot arm dedicated reducer drive, while B, T wrist joint is also used in synchronous belt drive. Required by calculating the joint motor power and torque, reduction ratio reducer, belt requirements and selection; robot with UG NX6.0 draw three-dimensional simulation model of each joint, and assembly molding. This research has extensive practical significance and application prospect. 7 dof industrial robots designed for the follow-up dynamics analysis and motion control and provide a reference, and can do further research and development. Key words: 7 dof, industrial robot, mechanical structure

码垛机器人的主要结构介绍

码垛机器人的主要结构介绍 积成包装码垛机器人主要由机械主体、伺服驱动系统、手臂机构、末端执行器(抓手)、末端执行器调节机构以及检测机构组成,按不同的物料包装、堆垛顺序、层数等要求进行参数设置,实现不同类型包装物料的码垛作业。按功能划分为进袋、转向、排袋、编组、抓袋码垛、托盘库、托盘输送以及相应的控制系统等机构。 (1)进袋机构。采用皮带输送机完成码垛机供袋任务。 (2)转向机构。按设定程序对包装袋作转向编排。 (3)排袋机构。采用皮带输送机将编排好的包装袋送至积袋机构。

(4)积袋机构。采用皮带输送机集中编排好的包装袋。 (5)抓袋码垛机构。采用码垛机器人构完成码垛作业。 (6)托盘库。成叠的托盘由叉车送人,按程序逐个排放至托盘辊道输送机,有规律地向码垛工序供应空托盘,达到8层后的成垛托盘,由辊道输送机输送至成垛托盘库,最后由叉车取出送至仓库贮存,系统采用可编程序控制器(PLC)控制。 码垛机的适用范围 1、条件与形状 (1)搬运物条件。为了适应码垛机的工作,要求搬运物品必须是箱装和袋装。这样码垛机才能把物品搬运到输送机上。此外,要求手工装载的物品停放后货态不能变化。 (2)搬运物的形状。码垛机工作条件之一是要求搬运物的形状要规则,以便装箱。玻璃、铁、铝等材料的缸和罐之类,以及棒状、筒状物和环状物等,因形状不规则,不便装箱。适合码垛机工作的物品有纸箱、木箱、纸袋、麻袋和布袋等。 2码垛机的效率 (1)直角坐标码垛机机器人,其效率较低,每小时搬运200一600个包装物品。 (2)关节型码垛机机器人,其效率为4小时搬运300一1000个包装物品。 (3)圆柱坐标码垛机,属于中等效率的码垛机,每小时装载600一1200个包装物品。 (4)低脚式码垛机,效率较高,每小时装载1000一1800个包装物品。 (5)高脚式码垛机,属于高效率码垛机,每小时可装载1200-3000个包装物品。 积成包装机械有限公司是一家从事后道组合集成包装自动化的设计、研发制造与包装材料生产配套为一体的科研制造高新企业。我们专注于研究各行业的后道包装现状,结合行业工控技术,融合机电一体化,应用于包装作业中。为客户提供设计定制从自动开箱—自动

相关文档