文档视界 最新最全的文档下载
当前位置:文档视界 › 采访录音技巧与后期音频处理

采访录音技巧与后期音频处理

采访录音技巧与后期音频处理
采访录音技巧与后期音频处理

采访录音技巧与后期音频处理

谢倍伟

现在,广播记者在使用录音机进行录音采访过程中,经常出现录音失真,或者声音不集中等情况,使播出的录音报道不理想,整篇报道也就大打折扣。本文主要针对广东电台新闻中心记者在采制录音报道过程中普遍存在的问题进行技术指导,旨在提高广播记者的录音报道水平和质量。

一、常用采访机

1、PAW120数字采访机

关于这种采访机的基本功能使用,有说明书可以参考,网上也可以下载,这里就不在赘述了。只提醒大家几个使用中比较关键的问题。

1)、输入设备的选择

按蓝色的MENU键后,出现的第一个菜单就是输入设备选择菜单。DYN、IECM-1、COND、这几个设备输入接口是PAW120预置好的一些话筒型号匹配型,在使用外接话筒时都可以选择,只是录出来的效果有些不同。

其中DYN用于接动圈话筒,数字放大倍数较大,低频略有提升,要注意容易喷话筒;IECM-1为其选配电容话筒,有低频切除功能;COND为电容话筒,有低频切除功能;INT为内置话筒;LINEH为高电平线路输入,可作为从调音台或其他放音设备导出音频时使用;LINEL为低电平输入,可作为从调音台或其他放音设备导出音频时使用。

经过实际使用中的比较,发现当用我们记者常用的SONY电容话筒时,如果选择该机型推荐的COND选项的话,录音电平会偏小一些,反倒是用DYN选项电平比较适中。

SONY 907电容话筒

2)、压缩方式的选择

关于压缩方式的选择,对我们最终的录制质量有很大的影响。

HI QUALITY是没有压缩的PCM音频格式,音质最好,但文件量大;MUSIC 是MPEG的压缩格式,默认数据流量是256kbps,音质相当于CD,可文件量相当于上一种的1/5,立体声,尽管扩展名是.WAV,但实际上就相当于我台目前使用的S48文件,平时使用时,推荐使用这种方式;SPEECH,用于语言录音,单声道,中高频略有失真感;STENO采样率太低,达不到广播级的音质要求,不推荐使用。

3)、关于AGC的使用

AGC是AUTO GAIN CONTROL,自动增益控制功能,在这种PAW120上,有几种选择,比如-5dBfs,-11dBfs等,实际功能是一种电平动态压限器,它可以提高弱电平的录音音量,减小最大电平与最小电平之间的差别,但是,使用不当,往往会造成整段录音电平过大、失真、底噪提升。

这一功能的原本的设计目的是为了在录音音源音量很小,或距离很远时使用,但经过实际采录的比较,发现当使用了这一功能时,环境的本底噪音会同时被加大,而且有些高电平的地方有很明显的失真。请谨慎使用。

下面是两段录音的波形比较,一段用了AGC,一段没有,录音时,话筒距离音源约3—4米。

从波形比较图上可以看出来,上面一个使用了AGC的,总体电平很大,而声音信号之间的电平差异变小了,下面一个是没有使用AGC的,事实上听觉更清晰。

2、MD采访机在使用中的注意事项:

1)、电源:

MD采访机,有电池供电与变压器供电两种。电池也有普通电池与可充电电池两类。

通常采访机在录音结束时,对所录内容的存盘动作是以按[Stop]键来完成的,所以如果在按[stop]键之前出现断电或电压不足等问题时就会造成采访内容的丢失。有的记者曾经试过用变压器供电的MD采访机采访结束后没按[stop]键就将变压器电源拔掉,结果导致近1个小时的采访内容的丢失。

2)、找尾巴:

一些旧型号的MD采访机通常都没有自动在空白处写盘的功能,所以对于一张录有内容又还想保留的MD盘,录音时一定要注意先按[end search]键,即找到盘上记录曲目的结尾处,然后再开始录音,以保证对原有内容的保护。

3)、电平:

采访机的录音可以用MD机的MIC IN插孔,由其他音源转录时,可用LINE IN 插孔。通常采访机的录音电平都是自动状态,当遇到所录音源音量很小,需要人为手动增大音量时,可转入手动录音电平状态。音量的调节方法如下:

按住暂停键,再按住红色的录音保护键并向右推录音键,保持2-3秒,屏幕上出现“MANUALREC”字样,表示进入手动调节录音音量状态,此时,再

,增大录音电平,

键可减小电平。

4)、MD碟片

A、对于录有珍贵资料的MD盘,不要录得太满,通常一张盘录满是74分钟,一般录到60分钟较安全,以避免当盘片出现问题又恢复时,造成数据混乱与丢失现象;

B、注意MD碟片的保养,避免高磁、高温,尽量不要把防护滑片推开而暴露里面的光盘;

C、一张MD碟片不要使用太久,在频繁使用了一段时间后,最好将里面的重要资料导出到CDR或电脑保存,然后更换新碟;

D、记者编辑自己要做好资料的分类保存工作,在盘片标签上标注警示信息。

二、话筒

1、话筒的分类

从构造上分,常用的采访话筒一般有这样几种:

1)、机身自带的话筒,一般为驻极体构造,灵敏度一般,音质一般,适合语言录音,但这种内置话筒容易录到机子本身的机械噪声、手与外壳的摩擦声等;

2)、动圈话筒,不需要外部供电,一般灵敏度不太高,适合在比较嘈杂的环境下使用;但需要特别指出的是,动圈话筒多数为单声道话筒,在接入PAW120或MD采访机时,一定要使用经过了特别改制的话筒线,否则会出现反相问题,导

致声音变弱,这一问

题也曾经在我台的

过。(改造方法见下

图)

3)、电容话筒,需要外部供电,灵敏度较高,适合在较为安静的环境下使用,可以在较远的距离录取到被采访对象的声音;缺点是,有时底噪会太大,另外还要经常检查电池的电量,电量低时,会出现噪音。比如,现在我台记者使用的SONY 907立体声话筒。

2、关于SONY907话筒上拾音角度的问题

在SONY907采访话筒上有120°/90°的切换开关,是L 、R 两个话筒的有效拾音角度的选择。在录音环境安静、场面较大时,可以选择120°,环境较嘈杂,采录的音源又不是太宽的时候,可选90°。

在较理想的环境下,用90°录出来的声音,立体声的声场宽度较窄,而用

120°

录出来

的,声

场宽度

要宽一

些。

三、关于录音电平的问题

关于录音电平的问题,有些观念需要扭转一下了。在过去的模拟设备时代,由于存在着声音信号电平与磁带以及录音机本身的本底噪音电平的比值问题,即所谓的信噪比,所以为了提高信噪比,要尽可能地把声音录得大一些。

但在数字设备中,由于不再使用磁带作为记录载体,因而系统的信噪比基本上就是由数字系统的量化比特数来决定的。而对于录出来的声音信号的信噪比,则基本上是由话筒的型号、使用方法、使用环境等来决定的。

所以,在不考虑话筒型号与使用方法等因素时,电平宁小勿大。小了,还可以调大,但如果大到失真了,就没辙了。包括一些喷话筒和风吹到话筒上的扑扑声,只要没失真,都能在后期进行处理的。

很多记者由于担心采访时录音电平太小而把话筒伸得距离讲话人的嘴巴太近,结果录制的声音失真严重。下面就说说话筒的使用习惯。

任何话筒使用时都不要离嘴太近,一是容易失真,二是容易损坏话筒。手持话筒时录音时,手在胸前,话筒在下巴附近就可以了,还有一条原则:话筒指着嘴,但别正对着嘴。就是说可以从侧面、下面、上面等方向斜着指向嘴巴,而不要放在嘴巴的正前方,避免嘴部的气流直接冲击到话筒振膜上。

为了了解某个型号的话筒的最佳使用距离,我做了如下的对比试验:

用SONY采访话筒,在距离嘴部10cm到200cm的位置上选取不同距离录音,然后比较声音的音质。结果表明,在10-15cm时,很容易出现喷话筒,低频也有一定提升,而显得低频过重;在20-100cm左右,声音音量适中,音质较真实,空间感也不错;100-150cm,音量开始趋弱,房间的空间感趋强,清晰度下降;在150-200cm声音比较虚,空间感太强,清晰度不够。这样比较下来,我们就知道,其实在1米以内都是可以录出不错的声音来的。

另外,我还在较安静的房间中做了两米到四米左右的录音对比试验,经过一定的后期处理与电平提升,在话筒指向性最高的方向上,即使在四米远,录出来的声音也还是很清晰的。

四、关于立体声与单声道的问题

从存储载体的容量上看,当然单声道比同样音质的立体声,可以多存放一倍,在较安静的环境下,语言录成单声道,也是没有任何问题的。但是,在较嘈杂的环境中,如果录成单声道,原本分布在不同空间位置上的声音就被叠加在一起,从而对有用的语言信号产生掩蔽,所以,在这样的环境下,如果存储卡的容量允许,尽量录成立体声的。

第二个好处是:当话筒或话筒线上出现问题时,比如虚焊、插孔松动等,往往会一路好一路不好,如果录成单声道的,一旦有这种问题,录音是100%的出问题,但录成立体声,还有50%的希望。

共2页12

DSP在数字音频处理技术中的应用

万方数据

DSP在数字音频处理技术中的应用 作者:陈兴刚, 金鑫 作者单位:陈兴刚(贵州大学,电子科学与信息技术学院,贵州,贵阳,550025), 金鑫(云南大学软件学院,云南,昆明,650200) 刊名: 黑龙江科技信息 英文刊名:HEILONGJIANG SCIENCE AND TECHNOLOGY INFORMATION 年,卷(期):2008,(31) 引用次数:0次 参考文献(5条) 1.谢铿基于DSP的数字音频系统[学位论文] 2002 2.陆牧基于DSP的数字音效系统研究[学位论文] 2002 3.韩纪庆.冯涛.郑贵滨音频信息处理技术 2007 4.博创科技MP3播放器与U盘设计 2004 5.卢官明.宗昉数字音频原理及应用 2005 相似文献(9条) 1.会议论文陈佳.董金明StarCore SC140优化技术分析2006 软件优化是软件开发的重要部分.本文针对运行于StarCoreSC140平台的点对点数字音频系统,对该系统的软件部分的优化进行了分析,分别探讨了C语言优化和汇编语言优化的具体实现方法.通过优化,大大缩短了代码的运行周期,提高了运行效率,证明了优化方法的有效性. 2.学位论文曹承涛基于TMS320C5402 DSP的数字音频系统的研究2002 该论文首先简要介绍了TI公司的TMS320C54x系列DSP.之后,详细叙述了论文作者设计研制的一种基于DSP的数字音频系统.该系统以 TMS320C5402(DSP)为中央处理器,可完成MP3音频数字信号的分析和处理,并通过串行A/D/A芯片实现对外界模拟音频信号的采集和发送.该系统配有大容量FLASH和硬盘,用于程序和音频数据的存储,128K字节高速RAM作为数据缓冲区.同时,通过USB控制芯片完成系统与PC机之间的数据通信.系统中的大量控制信号由一片CPLD产生,该文也对CPLD的设计进行了描述.论文对ISO/IEC11172标准中的LayerⅢ音频算法和基本原理进行了介绍.在对关键解压算法技术,如霍夫曼解码,反量化的快速算法进行深入研究的基础上,提出基于DSP汇编语言的快速算法实现方案. 3.期刊论文王林章.李双田多路实时数字音频系统中的PCI通信-电声技术2003(6) 介绍一个多路实时数字音频系统的PCI通信,包括Windows管理体系,静态和动态设备内存映射方法,PCI配置寄存器的访问方法,以及PC机和DSP之间通信方法等必须的关键技术. 4.期刊论文白若冰.朱善安基于OMAP5912的数字音频系统-电子技术2005,32(9) OMAP5912处理器是由TI应用最为广泛的TMS320C55x DSP内核与低功耗、高性能的ARM926EJ-S微处理器组成的双核应用处理器.C55x系列可支持低功耗应用的实时多媒体处理,ARM926可满足控制和接口方面的处理需要.基于双核结构,OMAP5912采用开放式、易于开发的软件设施. 5.学位论文谢铿基于DSP的数字音频系统2002 该文首先综述了数字音频和数字信号处理器(DSP)的发展概况以及DSP技术在数字音频领域的应用情况.然后简单介绍了音频系统和组成,叙述了扬声器的频率响应特性及其对音质的影响,提出使用均衡器补偿扬声器频响特性的方法;动态范围压缩器、扩展器、限制器在音频系统中也起着重要的作用,该文也对其做出了介绍,并阐述了它们的用途和使用方法.在介绍数字音频系统结构的同时,还提到现时最新的数字功放技术.在系统的控制部分,介绍了TAS300X系列芯片所使用的控制总线—I<'2>C总线,及由德州仪器公司出口的MSP430超低功耗单片机,阐述了如何合作使用MSP430单片机通过 I<'2>C总线来控制TAS300X系列数字音频处理器实现各种功能.最后是使用TAS3001EVM评估板和MSP430单片机FLASH系列的FET开发工具制作出来的实验装置对扬声器进行频率响应补偿实验,实验结果显示与仿真结果相符,扬声器的音质得到在很大的改善. 6.期刊论文孙冬.王新金.许爽.SUN Dong.WANG Xin-jin.XU Shuang DSP与数字功放芯片DPPC2006的接口设计-电子器件2008,31(5) 介绍了专业数字音频功放芯片DPPC2006和DSP TMS320VC5409芯片的主要特点.数字音频处理系统使用了TI公司的通用DSP 作为声场处理器,根据系统和IIS数字音频格式的要求,设计了DSP与DPPC2006的数字音频接口电路,并给出了DSP的McBSP串口软件设置程序.该设计实现了DSP在数字音频系统中的应用,增强了系统的灵活性,并经实验验证了该接口电路的可靠性. 7.期刊论文潘涛涛.张正炳.夏振华.PAN Tao-tao.ZHANG Zheng-bing.XIA Zhen-hua OMAP5912双核通信及其数字音频系统实现-电声技术2008,32(1) 根据OMAP5912双核的特点,详细叙述了双核间通信的几种方式和基础应用程序.并以基于OMAP5912的数字音频系统为例,介绍OMAP双核问通信的具体应用. 8.期刊论文曾荣.严国萍.陆牧基于Motorola DSP的数字音效处理系统-电声技术2002(12) 提出一种基于Motorola DSP56364的数字音效处理系统的设计方案.文中首先讨论数字音频系统设计需要注意的事项,接着分析DSP56364的ESAI接口通过I2S协议与外部A/D、D/A进行无缝连接的问题,并给出系统的流程和硬件结构框图.最后以典型的回声音效算法为例,说明基于该系统平台的软件处理流程.实验证明在该系统平台上可以很好的运行多种音效处理算法. 9.学位论文董志刚基于DSP的数字音频处理系统的设计与实现2008 数字信号处理是伴随数值计算技术和计算机技术的发展而迅速发展起来的新兴学科,特别是数字信号处理器(DSP)的出现,使其理论得以广泛应用于实际系统之中。MPEG 1-LAYERS是MPEG-1国际标准音频(ISO/IEC 11172)第三层编码/解码算法,它具有压缩比例高,还原音质好等诸多优点。利用这种标准制作的MP3格式音乐,己经在网络上得到极大流行。但是目前市场上的MP3播放器大都是基于专用ASIC,因此存在着功能单一,灵活性不够的特点。

音频处理的一些技巧

一、正常对话两个人的音量大小在-15到-6之间会很河蟹 二、场景切换时间长度不要少于3秒,不然会感觉很赶。 三、淡入淡出时间长度不要少于2秒,不然会完全没感觉。 四、声音层次的分布:人声> 音效> BGM > 环境音效。 五、人物脚步声除非特定,不要多于4秒,不然会很拖节奏。 首先说一下:波形振幅处理 1、波形振幅—动态处理: 这个是一个用来做音量的动态处理的一般来说很少用到。。因为它用起来不如C4那么直观。 2、波形振幅--渐变: 渐变里面有很多的预制项,大多数时候我们只需要用到正常的预制就好了 前面6个10 3 6DB CUT或则是BOOST就是音量波形减小或则增大。 CENTE WAVE 就是调整直流偏移。。就是调波形中线的东西 FADE IN和FADE OUT就是淡入淡出,这个记得你要先选一段,不然直接处理就变全干音淡入或则淡出了。也可以通过调整那个-240的数值做出声音慢慢接近或则慢慢走远的效果。 然后是4个PAN开头的,意思是第一个,左边没声音,第二个,声音从左到右,第三个,声音从右到左,第四个,右边没声音。。这四个带耳机做一次就会听的很明显。 接下来4个和上面四个差不多,第一个是右声道淡入,第二个是右边衰减3,第三个是左声道淡入,第四个是左边衰减3。我们可用2 和4做出声音偏左或偏右的感觉!调整那个-3DB 数值可以让感觉更偏或更中间。 3、波形振幅--空间回旋: 就是立体声回旋啦,自己试听下就明白了 4、波形振幅--强硬限制: 这是一个限幅器,就是用来限制增幅强度的。类似音量标准化,不过不同的地方在于这个是增加是加法。而音量标准化是乘法即按比例放大。 5、波形振幅—声道重混缩: 这个就是混缩左右波形的让它重新生成的一个东西,比如说有一些干音左边大右边小,我们就声道重混缩一下,它就一样了。这个还有一个用处就是做伴奏带,消人声里面的VOCAL CUT 就是了。 6、波形振幅—声相/声场: 就是声音位置处理和加强立体声感觉的一个东西,试着做1、2下就明白了,大多数时候用不到。 7、波形振幅—音量包络:

浦喆科技音频处理器

音频处理器 品牌:浦喆 是一款高性能、多种音频处理技术高集成的8路输入8路输出的数字音频处理器,采用DSP 音频处理技术,为用户提供卓越的声音品质;内置反馈抑制、回声消除、噪声消除等功能,还原高品质声音。主要应用于中大型场所,可以满足远程视频会议、体育场馆、会议中心、礼堂、宴会厅、展厅、多媒体会议、指挥中心等公共扩声系统等多方面的应用需求。 功能特点: 1. 输入每通道:8路平衡式话筒/线路,采用裸线接口端子,平衡接法。 2. 输出每通道:8路平衡式线路输出,采用裸线接口端子,平衡接法。 3. 提供24bit/48KHz卓越的高品质声音。 4. 全功能矩阵混音,提供用户灵活、简单的信号路由操作,路由路径和电平大小可在一个按钮上完成。 5. 面板具备USB接口,支持多媒体存储,可进行播放或存储录播 6. 配置双向RS-232接口,可用于控制外部设备。 7. 配置RS-485接口,可实现自动摄像跟踪功能。 8. 配置8通道可编程GPIO控制接口(可自定义输入输出)。 9. 支持断电自动保护记忆功能。 10. 支持通道拷贝、粘贴、联控功能。 11. Enternet多用途数据传输及控制端口,可以支持实时管理单台及多台设备。 12. 支持通过浏览器访问设备,下载自带管理控制软件;软件界面直观、图形化,可工作在XP/Windows7、8、10等系统环境下。 13. 支持iOS、iPad、Android的手机/平板APP进行操作控制。 技术参数: 1. 输入通道:前级放大、信号发生器、扩展器、压缩器、5段参量均衡、AM自动混音功能、AFC自适应反馈消除、AEC回声消除、ANC噪声消除 2. 输出通道:31段参量均衡器、延时器、分频器、高低通滤波器、限幅器 3. 采样率:48K 4. 幻像供电:DC 48V 5. 频率响应:20Hz-20KHz 6. 总谐波失真+噪声:<0.002% @1KHz ,4dBu 7. 数/模动态范围(A-计权):120dB 8. 模/数动态范围(A-计权):120dB 9. 输入阻抗(平衡式):20KΩ; 10. 最大输出阻抗(平衡式):100Ω; 11. 通道隔离度:1kHz,100dB 12. 输入共模抑制:60Hz,80dB 13. 最大输出电平:+24dBu,平衡 14. 最大输入电平:+24dBu,平衡 15. 工作温度:0℃-40℃ 16. 工作电源:AC110V-220V,50Hz/60Hz 17. 电源功耗:<40W 18. 尺寸(宽x深x高):482×258×45(mm)

(完整版)audition人声处理技巧

audition人声处理技巧 人声音源的频谱分布比较特殊,就其发音方式而言,他有三个部分:一个是由声带震动所产生的乐音,此部分的发音最为灵活,不同音高、不同发音方式所产生的频谱变化也很大;二是鼻腔的形状较为稳定,因而其共鸣所产生的谐音频谱分布变化不大;三是口腔气流在齿缝间的摩擦声,这种齿音与声带震动所产生的乐音基本无关。 频率均衡可以大致的将这三部分频谱分离出来。用于调节鼻音的频率段在500Hz,以下均衡的中点频率一般在80~150Hz,均衡带宽为4个倍频程。例如,可以将100Hz定为频率均衡的中点,均衡曲线应从100~400Hz平缓的过渡,均衡增益的调节范围可以为+10Db~ -6dB。这里应提醒大家的是:进行此项调整的监听音箱不得使用低频发音很弱的小箱子,以避免鼻音被无意过分加重。 人声乐音的频谱随音调的变化也很大,所以调节乐音的均衡曲线应非常平缓,均衡的中点频率可在1000~3400Hz,均衡带宽为六个倍频程。此一频段控制着歌唱发音的明亮感,向上调节可温和地提升人声的亮度。然而如需降低人声的明亮度,情况就会更复杂一些。一般音感过分明亮的人声大多都是2500Hz附近的频谱较强,这里我们可用均衡带宽为1/2倍频程,均衡增益为-4dB左右的均衡处理,在2500Hz附近寻找一个效果最好的频点即可。 人声齿音的频谱分布在4kHz以上。由于此频段亦包含部分乐音频谱,所以建议调节齿音的频段应为6~16KHz,均衡带宽为3个倍频程,均衡中点频率一般在10~12KHz,均衡增益最大向上可调至+10Db;如需向下降低人声齿音的响度,则应使用均衡带宽为1/2倍频程,均衡中点频率为6800Hz的均衡处理,其均衡增益最低可向下降至-10Db。 由以上分析可以看出,对人声进行频率均衡处理时,为突出某一音感而进行的频段提升,都尽量使用曲线平缓的宽频带均衡。这是为了使人声鼻音、乐音、齿音三部分的频谱分布均匀连贯,以使其发音自然、顺畅。从理论上讲,应使人声在发任何音时,其响度都保持恒定。 为了在不破坏人生自然感的基础上对其进行特定效果的处理可以使用1/5倍频程的均衡处理,具体有以下几种情形: (1)音感狭窄,缺乏厚度,可在800Hz处使用1/5倍频程的衰减处理,衰减的最大值可以在-3dB。 (2)卷舌齿音的音感尖啸,"嘘"音缺乏清澈感,可在2500Hz处使用1/5倍频程的衰减处理,衰减的最大值可以在-6Db。 对音源的均衡处理,最好是使用能显示均衡曲线的均衡器。一般数字调音台均衡器上的均衡增益调节钮用"G"来标识,均衡频率调节钮用"F"来标识,均衡带宽调节钮用"F"或"Q"来标识。 延时反馈 延时反馈是效果处理当中应用最为广泛,但也是最为复杂的方式。其中,混响、合唱、镶边、回声等效果,其基本处理方式都是延时反馈。 1、混响 混响效果主要是用于增加音源的融合感。自然音源的延时声阵列非常密集、复杂,所以模拟混响效果的程序也复杂多变。常见参数有以下几种: 混响时间:能逼真的模拟自然混响的数码混响器上都有一套复杂的程序,其上虽然有很多技术参数可调,然而对这些技术参数的调整都不会比原有的效果更为自然,尤其是混响时间。 高频滚降:此项参数用于模拟自然混响当中,空气对高频的吸收效应,以产生较为自然的混响效果。一般高频混降的可调范围为0.1~1.0。此值较高时,混响效果也较接近自然混

多媒体音频视频处理大作业范文

实验三:音频处理技术 实验目的:学会使用“超级解霸”的音频播放器实现简单的音频处理。 学会使用“超级解霸”的音频格式转换功能,完成几个文件的转换工作 实验内容:一、用音频解霸将影碟中的伴音单独分离出来存为W A VE格式文件 二、实现声音片段的任意截取并保存为MP3格式 三、将W A VE格式文件转换为MP3格式、将MP3格式转换为W A VE格式 四、将CD碟中的歌曲转换成MP3格式 实验要求:完成一个声音片段的转换 实验步骤: 一、将影碟中的伴音单独分离出 打开“超级解霸”中的声音播放器“音频解霸”其界面如下: 通过下拉菜单:文件/打开一个(多个)文件可以进入“打开文件”窗口在这里找到要打开的影音文件。

点击“打开”按钮后返回播放界面,这时只要点击播放按钮就可以实现当前影音文件的声音播放。由于在VCD影碟上的歌曲和音乐都是采用MPEG格式压缩当我们要使用 WA VE格式的时候就要进行转换,能实现这种功能的软件很多,如果是要转换的文件不多的情况下用直接用“音频解霸”来转换还是很方便的。 操作过程是这样的先找到要转换的开始点然后点击“波形录音”按钮就可以进入到保存波形文件对话框,选择好保存路径、输入保存文件名,点击“保存”按钮就可以开始转换 保存。当声音播放到需要结束的位置时点击“停止”按钮就完成了文件转换工作。二、实现声音片段的任意截取并保存为MP3格式 点击播放模式转换钮将“音频解霸”播放模式转换为“循环/选择录取区域”模式,此时该按钮旁边的设定“开始点”、“结束点”、“压缩录音”按钮变 为有效。移动播放器在时间轴上的滑块分别设定开始点和结束点然后点击“压 缩录音”按钮,进入保存对话框输入保存的文件名,就可以按照设定将选取的区域转换为MP3格式的声音文件。 三将W AVE格式文件转换成MP3格式 将W A VE格式文件转换成MP3格式或者将MP3转换成W A VE格式的软件有很多,我们这里用“超级解霸”中的附带功能就可以很方便的实现。 实验步骤: 少量的文件转换时可以采用实验二中介绍的方法,但是如果要转换的文件很多再用这种方法就太慢了,我们可以使用“超级解霸”软件包内里的音频工具“MP3格式转换器“来实现,其界面如下:

音频处理

使用技巧 不管你的MP3歌曲的简单剪接或者音频格式的转换,还是更加高级的后期加工GoldWave都可以令你轻松胜,甚至你自己录一首卡拉OK,也可以经过GoldWave的修饰成为像歌星一样水晶般的动人声音! 快速入门GoldWave是标准的绿色软件,不需要安装且体积小巧(压缩后只有0.7M),将压缩包的几个文件释放到硬盘下的任意目录里,直接点击GoldWave.exe就开始运行了。既然是音频编辑软件,我就先得用音频文件来"开刀"!选择文件菜单的打开命令,指定一个将要进行编辑的文件,然后按回车。在毫无等待的时间相应内,GoldWave马上显示出这个文件的波形状态和软件运行主界面,让我吃惊它的运行反应速度。整个主界面从上到下被分为3个大部分,最上面是菜单命令和快捷工具栏,中间是波形显示,下面是文件属性。我的主要操作集中在占屏幕比例最大的波形显示区域内,如果是立体声文件则分为上下两个声道,可以分别或统一对它们进行操作。选择音频事件要对文件进行各种音频处理之前,必须先从中选择一段出来(选择的部分称为一段音频事件)。GoldWave的选择方法很简单,充分利用了鼠标的左右键配合进行,在某一位置上左击鼠标就确定了选择部

分的起始点,在另一位置上右击鼠标就确定了选择部分的终止点,这样选择的音频事件就将以高亮度显示,现在我们的所有操作都只会对这个高亮度区域进行,其它的阴影部分不会受到影响。选择的部分以高亮度显示当然如果选择位置有误或者更换选择区域可以使用编辑菜单下的选择查看命令(或使用快捷键Ctrl+W),然后再重新进行音频事件的选择。剪切、复制、粘贴、删除音频编辑与Windows其它应用软件一样,其操作中也大量使用剪切、复制、粘贴、删除等基础操作命令,因此牢固掌握这些命令能够更有助于我们的快速入门。GoldWave的这些常用操作命令实现起来十分容易,除了使用编辑菜单下的命令选项外,快捷键也和其他Windows应用软件差不多。要进行一段音频事件的剪切,首先要对剪切的部分进行选择,然后按Ctrl+X就行了,稍事等待之后这段高亮度的选择部分就消失了,只剩下其他未被选择的阴影部分。用选择查看命令并重新设定指针的位置到将要粘贴的地方,用Ctrl+V就能将刚才剪掉的部分还原出来,真是太方便了,和普通软件使用方法完全相同!同理,用Ctrl+C 进行复制、用Del进行删除。如果在删除或其他操作中出现了失误,用Ctrl+Z就能够进行恢复,所以在操作中尽可以放心大胆的使用,任何错误都可以挽回嘛!

多媒体实验报告:声音的采集与处理

深圳大学实验报告 课程名称:多媒体技术及应用 实验项目名称:声音采集与处理 学院:传播学院 专业: 指导教师:王志强 报告人:刘立娜学号: 2012080286 班 级:4 实验报告提交时间: 2013.03.30 教务处制

一、实验目的与要求 1.通过实验加深对声音数字化的理解。 2.学会正确连接耳麦以及设置录音和放音的方法。 3.掌握声音录制方法并从网上下载音频文件。 4.掌握一种数字音频编辑软件的使用方法。 二、实验方法及步骤 1.实验方法:运用以前了解到的知识内容,在通过阅读书上的实验步骤进行操作。 2.实验步骤 ①Audition的启动与退出 ②录制音频、播放音频、导入音频 ③音频的剪辑 ④音频的特效 三、实验过程及内容 1.Audition的启动与退出 Audition是集声音录制、音频混合和编辑于一身的音频处理软件,它的主要功能包括录音、混音、音频编辑、效果处理、降噪、音频压缩与刻录音乐CD等,还可以与其它音频软件或视频软件协同合作。 Audition提供广泛的、灵活的工具箱,完全能够满足专业录音和专业视频用户的需求。利用Audition,可以录制多轨文件、编辑音频文件、创建原始音乐文件、混缩无限的音频轨道。 启动计算机进入Windows后,可以用鼠标单击任务栏中的“开始”在弹出的开始菜单中,将鼠标指针移到“所有程序—Adobe Audition3.0”菜单命令上,单击即可启动。或把 Audition快捷方式一到桌面上来,单击即可。

图2.1Audition应用程序窗口 如果要退出Audition,可以选择“文件—退出”菜单命令,或按Ctrl+Q组合键,也可以直接单击Audition应用程序窗口右上角的“关闭”在退出之前,如果有已修改的但未存盘的文件,系统会提示保存它。或者点击左上角的“文件—保存”。 图2.2保存提示图2.3 “另存为“对话框 2.录音、播放音频、导入音频 1)录音的操作过程:(单轨录音) 1.选择“文件—新建”菜单命令,这时会出现“新建波形”会话框,如图 2.4所示。选择适当的采样频率、采样分辨率和声道数,如选取44100Hz,16-bit和立体声就可以到达CD 音频效果。 图2.4“新建波形”对话框 2.单击“传送器”控制面板中的红色“录音”按钮,开始录音。对准话筒进行录音,完成后单击“传送器”控制面板的“停止”按钮即可。我们还可以通过控制时间长短来录音,在编辑视图中,选择“选项”菜单中的“时间录音模式”命令。在“传送器”控制面板中单击“录音”这时会出现“定时录音模式”对话框,如图2.5所示。在该对话框中,可以设置录制的时间长短和开始录音。设置完毕,单击“确定”开始按设置进行录音。 图2.5“定时录音模式”对话框

多媒体技术复习资料

多媒体技术 感觉媒体直接作用于人的感官、使人能直接产生感觉的一类媒 体。声音、文字、图形和图像,物体的质地、形状、温度 表示媒体为了加工感觉媒体而构造出来的一种媒体。各种编码:语音编码、图像编码等 显示媒体感觉媒体与通信电信号进行转换的一类媒体可分为:输入表现媒体,输出表现媒体 存储媒体用于存放表示媒体的一类媒体如:硬盘、光盘等 传输媒体用来将表示媒体从一处传送到另一处的物理传输介质,如各种通信电缆。 多媒体概念以数字化为基础,能够对多种媒体信息进行采集、编码、存储、传输、处理和表现,综合处理多种媒体信息并使之建立起有机的逻辑联系,集成为一个系统并能具有良好交互性的技术。简言之, 多媒体技术就是计算机综合处理声、文、图信息, 具有多样性、集成性和交互性 多媒体的关键特性 多样性—适应了信息载体的多样性 交互性—易于人和计算机的交互集成性—实现了信息处理的集成性

多媒体计算机的关键技术 视频音频信号获取技术;多媒体数据压缩编码和解码技术;视频音频数据的实时处理和特技;视频音频数据的输出技术。 要把一台普通的计算机变成多媒体计算机需要解决哪些关键技术?答:视频音频信号的获取技术;多媒体数据压缩编码和解码技术;视频音频数据的实时处理和特技;视频音频数据的输出技术。 多媒体计算机的关键技术及其主要应用领域。 答:多媒体计算机的关键技术是:①视频音频信号获取技术;②多媒体数据压缩编码和解码技术;③视频音频数据的实时处理和特技; ④视频音频数据的输出技术。多媒体计算机的主要应用领域:①多媒体数据库和基于内容的检索;②多媒体通信;③多媒体创作工具。 音频处理技术 什么是模拟音频和数字音频?它们的特点是什么? 声音是机械振动。振动越强,声音越大,话筒把机械振动转换成电信号,模拟音频技术中以模拟电压的幅度表示声音强弱。在计算机内,所有的信息均是以数字表示的。各种命令是不同的数字,各种幅度的物理量也是不同的数字。当然,语音信号也是由一系列数字来表示,称之为数字音频。数字音频的特点是保真度好,动态范围大。模拟声音在时间上是连续的。数字声音在时间上是断续的。

音频处理器的调节方法

现在数字音频处理器越来越多地运用到工程当中了,对于有基础有经验的人来说,处理器是一个很好用的工具,但是,对于一些经验比较欠缺的朋友来说,看着一台处理器,又是一大堆英文,不免有点无从下手。其实不用慌,我来介绍一下处理器使用步骤。/ J( E: b) J3 }0 ^! _ a9 U 以一个2进4出的处理器控制全频音箱+超低音音箱的系统为例:# a- X* J3 A1 _9 r/ ^ 1、首先是用处理器连接系统,先确定好哪个输出通道用来控制全频音箱,哪个输出通道用来控制超低音音箱,比如你用输出1、2通道控制超低音,用输出3、4通道控制全频。接好线了,就首先进入处理器的编辑(EDIT)界面来进行设置,进入编辑界面不同的产品的方法不同,具体怎么进入,去看说明书。& F5 r/ N5 p! S* I1 A 2、利用处理器的路由(ROUNT)功能来确定输出通道的信号来自哪个输入通道,比如你用立体声方式扩声形式,你可以选择输出通道1、3的信号来自输入A,输出通道的2、4的信号来自输入B。信号分配功能不同的产品所处的位置不同,有些是在分频模块里,有些是在增益控制模块里,这个根据说明书的指示去找。7 m. z) | a8 P1 d+ f6 ~& E 3、根据音箱的技术特性或实际要求来对音箱的工作频段进行设置,也就是设置分频点。处理器上的分频模块一般用CROSSOVER或X-OVER表示,进入后有下限频率选择(HPF)和上限频率选择(LPF),还要滤波器模式和斜率的选择。首先先确定工作频段,比如超低音的频段是40-120赫兹,你就把超低音通道的HPF设置为40,LPF设置为120。全频音箱如果你要控制下限,就根据它的低音单元口径,设置它的HPF大约在50-100Hz,。处理器滤波器形式选择一般有三种,bessel,butterworth和linky-raily,我以前有帖子专门说明过三种滤波器的不同之处,这里不赘述。常用的是butterworth和linky-raily两种,然后是分频斜率的选择,一般你选24dB/oct就可以满足大部分的用途了。 4、这个时候你需要检查一下每个通道的初始电平是不是都在0dB位置,如果有不是0的,先把它们都调到0位置上,这个电平控制一般在GAIN功能里,DBX的处理器电平是在分频器里面的,用G表示。 5、现在就可以接通信号让系统先发出声音了,然后用极性相位仪检查一下音箱的极性是否统一,有不统一的,先检查一下线路有没有接反。如果线路没接反,而全频音箱和超低音的极性相反了,可以利用处理器输出通道的极性翻转功能(polarity或pol)把信号的极性反转,一般用Nomal或“+”表示正极性,用INV或“-”表示负极性。6 e0 u% [% V% E% p 6、接下来就要借助SIA这类工具测量一下全频音箱和超低音的传输时间,一般来说是会有差异的,比如测到全频的传输时间是10ms,超低音是18ms,这个时候就要利用处理器的延时功能对全频进行延时,让全频和低音的传输时间相同。处理器的延时用DELAY或DL Y 表示,有些用m(米)有些用MS(毫秒)来显示延时量,SIA软件也同时提供了时间和距离的量,你可以选择你需要的数据值来进行延时。 7、接下来就该进行均衡的调节了,可以配合测试工具也可以用耳朵来调,处理器的均衡用EQ来表示,一般都是参量均衡(PEQ),参量均衡有3个调节量,频率(F),带宽(Q或OCT),增益(GAIN或G)。具体怎么调,就根据产品特性、房间特性和主观听觉来调了,这个就自己去想了。1 i# v# n ?; ^, B 8、均衡调好后,就要进行限幅器的设置了,处理器的限幅器用LIMIT来表示,进去以后一般有限幅电平(THRESHOLD),压缩比(RATIO)的选项,你要做限幅就要先把压缩比RA TIO 设置为无穷大(INF),然后配合功放来设置限幅电平,变成限幅器后,启动时间ATTACK 和恢复时间RELEASE就不用去理了。DBX处理器的限幅器用PEAKSTOP来表示,启动后,直接设置限幅电平就可以了,至于怎么调限幅器,我有专门的帖子,自己去看。/ W( y9 c' h- o6 v+ ~( X 9、都调好了就要保存数据,处理器的保存一般用STORE或SA VE表示,怎么存,就看产

(完整word版)数字音频处理

数字语音实验 吕佩壕 10024134 一、实验要求 1.编程实现一句话语音的短时能量曲线,并比较窗长、窗口形状(以直 角窗和和哈明窗为例)对短时平均能量的影响 ; 2. 编程分析语音信号的短时谱特性,并比较窗长、窗口形状(以直角窗 和和哈明窗为例)对语音短时谱的影响 ; 3. 运用低通滤波器、中心削波和自相关技术估计一段男性和女性语音信 号的基音周期,画出基音轨迹曲线,给出估计准确率。 二、实验原理及实验结果 1.窗口的选择 通过对发声机理的认识,语音信号可以认为是短时平稳的。在5~50ms 的范围内,语音频谱特性和一些物理特性参数基本保持不变。我们将每个短时的语音称为一个分析帧。一般帧长取10~30ms 。我们采用一个长度有限的窗函数来截取语音信号形成分析帧。通常会采用矩形窗和汉明窗。图1.1给出了这两种窗函数在窗长N=50时的时域波形。 图1.1 矩形窗和hamming 窗的时域波形 矩形窗的定义:一个N 点的矩形窗函数定义为如下: {1,00,()n N w n ≤<=其他 Hamming 窗的定义:一个N 点的hamming 窗函数定义为如下: 0.540.46cos(2),010,()n n N N w n π-≤<-??? 其他 = 这两种窗函数都有低通特性,通过分析这两种窗的频率响应幅度特性可以发 0.2 0.40.60.811.2 1.41.61.82矩形窗 sample w (n ) 0.1 0.20.30.40.50.6 0.70.80.91hanming 窗 sample w (n )

现(如图1.2):矩形窗的主瓣宽度小(4*pi/N ),具有较高的频率分辨率,旁瓣峰值大(-13.3dB ),会导致泄漏现象;汉明窗的主瓣宽8*pi/N ,旁瓣峰值低(-42.7dB ),可以有效的克服泄漏现象,具有更平滑的低通特性。因此在语音频谱分析时常使用汉明窗,在计算短时能量和平均幅度时通常用矩形窗。表1.1对比了这两种窗函数的主瓣宽度和旁瓣峰值。 图1.2 矩形窗和Hamming 窗的频率响应 2.短时能量 由于语音信号的能量随时间变化,清音和浊音之间的能量差别相当显著。因此对语音的短时能量进行分析,可以描述语音的这种特征变化情况。定义短时能量为: 2 2 1 [()()] [()()]n n m m n N E x m w n m x m w n m ∞ =-∞ =-+= -= -∑∑ ,其中N 为窗长 特殊地,当采用矩形窗时,可简化为: 2 () n m E x m ∞ =-∞ = ∑ 图2.1和图2.2给出了不同矩形窗和hamming 窗长,对所录的语音“我是吕佩壕”的短时能量函数: (1)矩形窗(从上至下依次为“我是吕佩壕”波形图,窗长分别为32,64,128,256,512的矩形窗的短时能量函数): 00.10.20.3 0.40.50.60.70.80.91 -80 -60-40-20 0矩形窗频率响应 归一化频率(f/fs)幅度/d B 00.10.20.3 0.40.50.60.70.80.91 -100 -50 Hamming 窗频率响应 归一化频率(f/fs) 幅度/d B

浙教版高一多媒体模块声音素材第三课时教学设计

浙教版高一多媒体模块声音素材第三课时教学设计

浙教版高一多媒体模块《声音素材》第三课时教学设计 一、设计思想 根据高中信息技术课程标准,对这节课我特设计如下的教学思路:学生从网上或其他途径获取自己感兴趣、熟悉、拿手的一首MP3歌曲,然后经过加工,去原唱,录伴唱,再进行简单的编辑,录制自己第一首金曲,切身体验其中的乐趣和成就感,消除学生盲目崇拜明星的幼稚思想。本节教学设计最大的特色就是除了激发学生强烈的学习兴趣外,很大程度上纠正了学生盲目崇拜明星的 扭曲心理,从而树立起正确的人生观和价值观,充分 ..体现了我们平时上信息技术课容易忽视的“情感态度与价值观”的教学目标。这是新课程标准中与以前的课程指导纲要最主要的区别和改善的内容之一,也是我们信息技术作为一门独立的基础学科主要体现。不能把信息技术当作纯粹的“技术培训”或如标准主编李艺教授所说的“微软软件培训班”。 二、教材分析 本节内容选自浙教版高一下《多媒体技术应用》的第三章“媒体的采集与制作”的第四节“声音素材”的第三课时,对于声音素材的内容,《浙江省普通高中新课程实验学科教学指导意见》给出教学内容的要求是:1、了解音频信号数字化的概念及存储量的计算。2、初步掌握声音媒体的采集与制作。3、了解声音文件格式的转换,共所需三课时。由于指导意见已明确指出3.4.2——4节“声音素材的截取”内容教学中不作要求,而且第三个内容“了解声音文件格式的转换”相对简单,故把它提到第一节上,第一课时为“了解音频信号数字化的概念及存储量的计算”和“声音文件格式的转换”,第二课时为声音媒体的采集,包括录制伴唱,为下节做准备,第三课时为“音频的处理与制作”。 本节内容主要有录制并编辑伴唱、消除歌曲原唱、添加效果、合成并导出等学习内容,这些内容是处理声音素材的核心,对学生在多媒体声音模块的学习是非常重要的。 另外,本节的教学内容是上学期第3.3.2节“声音和视频处理”的深化,又是第四章创作多媒体作品做好准备。 三、学情分析

如何用Audition进行人声处理 让你的声音更有磁性

人声音源的频谱分布比较特殊,就其发音方式而言,他有三个部分:一个是由声带震动所产生的乐音,此部分的发音最为灵活,不同音高、不同发音方式所产生的频谱变化也很大;二是鼻腔的形状较为稳定,因而其共鸣所产生的谐音频谱分布变化不大;三是口腔气流在齿缝间的摩擦声,这种齿音与声带震动所产生的乐音基本无关。? 频率均衡可以大致的将这三部分频谱分离出来。用语调节鼻音的频率段在500Hz,以下均衡的中点频率一般在80~150Hz,均衡带宽为4个倍频程。例如,可以将100Hz定为频率均衡的中点,均衡曲线应从100~400Hz平缓的过渡,均衡增益的调节范围可以为+10Db~-6dB。这里应提醒大家的是:进行此项调整的监听音箱不得使用低频发音很弱的小箱子,以避免鼻音被无意过分加重。? 人声乐音的频谱随音调的变化也很大,所以调节乐音的均衡曲线应非常平缓,均衡的中点频率可在1000~3400Hz,均衡带宽为六个倍频程。此一频段控制着歌唱发音的明亮感,向上调节可温和地提升人声的亮度。然而如需降低人声的明亮度,情况就会更复杂一些。一般音感过分明亮的人声大多都是2500Hz附近的频谱较强,这里我们可用均衡带宽为1/2倍频程,均衡增益为-4dB左右的均衡处理,在2500Hz附近寻找一个效果最好的频点即可。? 人声齿音的频谱分布在4kHz以上。由于此频段亦包含部分乐音频谱,所以建议调节齿音的频段应为6~16KHz,均衡带宽为3个倍频程,均衡中点频率一般在10~12KHz,均衡增益最大向上可调至+10Db;如需向下降低人声齿音的响度,则应使用均衡带宽为1/2倍频程,均衡中点频率为6800Hz 的均衡处理,其均衡增益最低可向下降至-10Db。? 由以上分析可以看出,对人声进行频率均衡处理时,为突出某一音感而进行的频段提升,都尽量使用曲线平缓的宽频带均衡。这是为了使人声鼻音、乐音、齿音三部分的频谱分布均匀连贯,以使其发音自然、顺畅。从理论上讲,应使人声在发任何音时,其响度都保持恒定。? 为了在不破坏人生自然感的基础上对其进行特定效果的处理可以使用1/5倍频程的均衡处理,具体有以下几种情形:? (1)音感狭窄,缺乏厚度,可在800Hz处使用1/5倍频程的衰减处理,衰减的最大值可以在-3dB。? (2)卷舌齿音的音感尖啸,"嘘"音缺乏清澈感,可在2500Hz处使用1/5倍频程的衰减处理,衰减的最大值可以在-6Db。? 对音源的均衡处理,最好是使用能显示均衡曲线的均衡器。一般数字调音台均衡器上的均衡增益调节钮用"G"来标识,均衡频率调节钮用"F"来标识,均衡带宽调节钮用"F"或"Q"来标识。? 延时反馈? 延时反馈是效果处理当中应用最为广泛,但也是最为复杂的方式。其中,混响、合唱、镶边、回声等效果,其基本处理方式都是延时反馈。? 1、混响?

目前市面上流行的音频处理芯片汇总

目前市面上流行的音频处理芯片汇总一下,目前我们使用的较为熟练的为ADAU1701,与大家分享. 美国Cirrus Logic上市了用于车载音响放大器,集 32bit DSP、4声道A-D转换器、8声道A-D转换器以及数码音响接口(收发信)电路等于一身的SoC“CS47048”(英文发布资料).以DSP性能高为特点. DSP的工作频率为150MHz.为固定小数点类型,运算能力为300MMACS.配备有72bit的累加器.内置32K word的32bit SRAM.A-D转换器为ΔΣ型,分辨率为24bit.动态范围为105dB,THD+N为98dB.D-A转换器分辨率为24bit,动态范围为 108dB,THD+N为98dB.输入、输出信号均支持单端信号和差分信号.数码音响接口电路支持S/PDIF、TDM及I2S各种规格的收发.采样频率最大为192kHz,支持 32bit分辨率的音频数据.备有支持SPI、I2C的控制用串行接口. 电源电压方面,内核为+1.8V,输入输出电路为+3.3V.封装为100端子的LQFP.备有工作温度范围0~+70℃和-40~+85℃的型号.计划2008年12月开始样品供货.每1万个批量购入时的单价为6.12美元. 资料下载 cs47078 1227429840.pdf1227429887.pdf ADI日前宣布,其SigmaDSP数字音频处理器系列三款新产品──ADAV400、ADAU1701和ADAU1702问世,新产品针对音频系统等需求设计,包括高清电视(HDTV)以及多媒体播放器使用的便携式扬声器系统. ADI表示,ADAV400具备125MHz的速度,符合新一代高清平面电视(如LCD电视)对音频处理的需求.该产品整合56位音频处理核心,以及具有超过95dB动态范围的模拟数字转换器(ADC)和数字模拟转换器(DAC).并包含一组延迟内存,针对弥补目前电视的视频处理延迟所设计,能使影像与声音同步传送,同时还支持16个数字输出入信道(I2S). ADAU1701和ADAU1702则使设计者可选择采用50MHz或25MHz的DSP引擎,适合数字音频应用方案,如MP3随身听使用的扩充基座、车载收音机和接电扩音器.新组件整合了ADC和DAC、多信道数字I/O(I2S)与延迟内存,以及具备自行开机、外部控制、实体按键和音量控制接口,为一组turnkey系统设计解决方案,不需额外的处理器或微控制器,适合搭配ADIAD199x Class-D放大器系列. 新组件并可与SigmaStudio GUI(图形使用者界面)设计工具合并使用;该工具拥有易于使用的拖曳画面,数据库内的区块包括音量控制、跨接及等化滤波器、动态处理器等.SigmaStudio并支持多种业界标准算法,如SRS TruSurroundXT、Waves MaxxBass、Dolby Prologic-II 或BBE-Viva. ADAV400现正提供样本,采用无铅80脚LQFP封装,包括SigmaStudio设计工具的评估板也已开始供货.ADAU1701和ADAU1702目前开始供应样本,采用无铅48接脚LQFP封装,两者的评估板与SigmaStudio设计工具同样已开始限量供应. adau1701 1227430054.pdf满足消费类音频对高保真度的要求为了强化致力为消费类音频电子产品提供高质量集成电路的决心,德州仪器|仪表 (TI) 日前宣布其高性能数字音频处理器系列又添一款新成 员.TAS3308 音频片上系统是一款单芯片SoC 解决方案,为音响设备制造商提供了出色的处理性能,以创建各种可满足严格要求的应用,如数字电视 (DTV) 音频子系统、迷你∕微型组合音响、5.1 条形音箱以及其它消费类音频电子产 品. TAS3308 在TI 原有高端音频解决方案的基础上得到了进一步增强,其集成了一个模拟多路复用器、立体声 ADC、一个高性能数字音频处理器以及六个脉宽调制 (PWM) 输出通道.这种高硬件集成度配合直观易用的 PurePath Studio 软件开发环境,使客户能在尽可能降低软硬件开发资源投入的情况下,向市场推出高级数字音频信号处理产品. 高性能的系统级集成TI 最新处理器采用包括 PWM 输出在内的全面集成数字音频信号链,有助于降低系统成

教师处理声音的小技巧

教师处理声音的小技巧 一、声音的打开、播放和存储技巧 声音在教师的教学中广泛应用,在课堂中使用声音可以创设教学情境,实现人机会话、规范朗读,调节学习情绪,提高注意力,激发兴趣等等。 声音的处理软件有很多,常用的主要有Windows自带的录音机、数码录音及编辑软件GoldWave、专业音频处理软件Adobe Audition等等,本课程介绍如何使用GoldWave处理声音。 GoldWave的主要功能有:录音、声音剪辑、合成声音、增加特效和文件操作等等。GoldWave 不需要安装,直接双击Goldwave.exe就开始运行了,第一次运行会弹出需要安装设置和预置的对话框,单击“是”即可。 GoldWave启动后会打开两个窗口,一个是“音频编辑窗口”,另一个是“控制器窗口”,其中“控制器窗口”的显示方式可以通过“窗口”菜单来设置。如果还打开了音频文件,在“音频编辑窗口”中还会显示声音的信息。 GoldWave可以一次打开一个音频文件,也可以一次选中多个文件一起打开。当打开的文件较多时,可以通过“窗口”菜单让文件对应的窗口进行“层叠”、“平铺”等显示和排列。 GoldWave打开声音文件以后,可以进行声音的播放,主要是通过“控制器”窗口来完成。在“控制器”窗口中,有专门负责播放的两个按钮(绿色播放按钮和黄色播放按钮),对这两个用户自定义播放按钮设置后,可以控制不同声音选择区域的播放。设置方法为:单击“选项”→“控制器属性”,在“播放”标签下进行设置。另外,在“控制器”窗口还可以进行声音的录制,音量、声道和播放速度的调整,这些控制都不会影响声音文件的编辑结果。 GoldWave录制或处理完声音后,可以把声音文件保存成合适的类型和属性。操作方法为:单击“文件”→“另存为”,设置名称、保存地点、保存类型和声音文件的属性。保存类型可设置常见的声音类型,比如MP3格式,声音文件的属性可以根据实际需要选择一组设置。

《多媒体技术》实验一 声音信号的获取与处理

实验一声音信号的获取与处理 预备知识 1.数字音频和模拟音频 模拟音频和数字音频在声音的录制和播放方面有很大不同。模拟声音的录制是将代表声音波形的电信号转换到适当的媒体上,如磁带或唱片。播放时将纪录在媒体上的信号还原为波形。数字音频就是将模拟的(连续的)声音波形数字化(离散化),以便利用数字计算机进行处理,主要包括采样和量化两个方面。 2.数字音频的质量 数字音频的质量取决于采样频率和量化位数这两个重要参数。采样频率是对声音波形每秒钟进行采样的次数。人耳听觉的频率上限在20kHz左右,根据采样理论,为了保证声音不失真,采样频率应在4OkHz左右。经常使用的采样频率有11.025kHz、22.05kHz和44.lkHz等。采样频率越高,声音失真越小、音频数据量越大。量化数据位数(也称量化级)是每个采样点能够表示的数据范围,经常采用的有8位、12位和16位。例如,8位量化级表示每个采样点可以表示256个(0-255)不同量化值,而16位量化级则可表示65536个不同量化值。量化位数越高音质越好,数据量也越大。反映数字音频质量的另一个因素是通道(或声道)个数。单声道是比较原始的声音复制形式, 每次只能生成一个声波数据。立体声(双声道)技术是每次生成二个声波数据,并在录制过程中分别分配到两个独立的声道出输出,从而达到了很好的声音定位效果。Dolby AC-3音效(5.1声道)是由5个全频声道和一个超重低音声道组成的环绕立体声。 在多媒体音频技术中,存储声音信息的文件有多种格式,如Wav、Midi、Mp3、Rm等等。1)Wav格式 Wav格式的文件又称波形文件,是用不同的采样率对声音的模拟波形进行采样得到的一系列离散的采样点,以不同的量化位数(16位、32位或64位)把这些采样点的值转换成二进制数得到的。Wav是数字音频技术中最常用的格式,它还原的音质较好,但所需存储空间较大。 2)Midi格式 Midi是Musical Instrument Digital Interface(乐器数字接口)的缩写。它是由世界上主要电子乐器制造厂商建立起来的一个通信标准,并于1988年正式提交给MIDI制造商协会,便成为数字音乐的一个国际标准。MIDI标准规定了电子乐器与计算机连接的电缆硬件以及电子乐器之间、乐器与计算机之间传送数据的通信协议等规范。MIDI标准使不同厂家生产的电子合成乐器可以互相发送和接收音乐数据。Midi文件纪录的是一系列指令而不是数字化后的波形数据,所以它占用存储空间比Wav文件要小很多。 3)MP3格式 MP3是对MPEG Layer 3的简称,是目前最热门的音乐文件。其技术采用MPEG Layer 3标准对W A VE音频文件进行压缩而成,特点是能以较小的比特率、较大的压缩率达到近乎CD 音质。其压缩率可达1:12,每分钟CD音乐大约需要1兆的磁盘空间。 4)Rm格式 Rm是RealMedia文件的简称。Real Networks公司所制定的音频视频压缩规范称为RealMedia,是目前在Internet上相当流行的跨平台的客户/服务器结构多媒体应用标准,它采用音频/视频流和同步回放技术来实现在Intranet上全带宽地提供最优质的多媒体,同时也能够在Internet上以28.8Kbps的传输速率提供立体声和连续视频。 实验一声音信号的获取与处理 一、实验目的和要求

相关文档
相关文档 最新文档