文档视界 最新最全的文档下载
当前位置:文档视界 › 计数原理与排列合概率及概率分布知识概述

计数原理与排列合概率及概率分布知识概述

计数原理与排列合概率及概率分布知识概述
计数原理与排列合概率及概率分布知识概述

一、计数原理与排列组合

解决计数应用题时,要认真审题,弄清楚问题的背景:①搞清问题是否“有序”,即不同元素间是否有先后顺序、位置差异或识别区分,从而分清是排列问题还是组合问题;②弄清目标的实现是该分步实行还是需要分类研究,复杂的问题一般是先按元素的性质分类,再按事件发生的连续过程分步,操作上一般遵循先选元素(组合)后排列的原则.分类时要明确标准,做到不重复不遗漏,类与类之间是“互斥”关系,而分步时要注意各步间的连续性;③准确分清弄清题目中的关键字眼,如“在”与“不在”,“相邻”与“不相邻”,“至少”与“至多”,“有”与“恰好有”等.复杂的计数问题常常通过枚举试验、列表画图(树形图)、小数字简化等手段使问题直观化,从而寻求解题途径;或者利用转化的思想,把问题转化为若干简单的基本问题后再用两个原理去求解.由于结果的正确性难以直接检验,因而常需要用不同的方法求解来获得检验,例如,“正面算”与“反面剔”等.提倡一题多解.常见的解题策略有:

⑴特殊元素特殊位置优先安排

⑵相邻元素捆绑法(内部先排,团体与其他元素一起再排)(不全相邻,排除处理)

⑶不相邻问题插空法(其他元素先排得空,不相邻元素插空)(相间排列,定位处理)

⑷顺序一定问题他人先坐法(只要先将其他元素安排就座,顺序一定元素再依序入座)

或者,顺序一定问题用“除法”(先全体元素全排,再除以顺序一定元素的全排)

⑸多面手问题集合法(画出韦恩图,按某一类的元素入选情况分类)

⑹“至多”、“至少”问题分类处理或间接排除

⑺分排问题直排处理;混合问题先选后排;

复杂问题穷举画图,分类讨论,间接排除,构造处理

⑻有序分组(组有标识区别或个数有差异)依次分配;

无序均分(组无区分)先分配再除法;(防止重复,体会“分步乘法即有序”)

各组元素个数不定问题先依次分配再乘法处理.

⑼个数不定的分类组合(每组至少一个)问题,隔板处理

⑽相同元素隔板处理(无限制要求的一字排开,隔板(代表限制元素)插空)(或者把无限制元素理解成顺序一定)

二、古典概型

古典概型的特征:⑴基本事件是有限的;⑵基本事件都是等可能的.解决古典概型的基本步骤:明确所有基本事件,确定它们是等可能的,确定它们的个数n,确定事件A包含

的基本事件的个数m ,利用古典概型的概率计算公式()m

P A n

=

计算概率. 在古典概型中,难点之一是从怎样的角度看基本事件,选择最优的方式解决;难点之二是计数问题,涉及到是排列还是组合的问题.

古典概型的解题规范:

① 建立计数模型,并确定总的(等可能)基本事件数;

(建模方法:标识编号并枚举/列图表/画树形图/排列组合模型) ② 交代等可能性:“每个基本事件的发生是等可能的”; ③ 标记所求事件A ,并确定事件A 包含的基本事件数; ④ 由古典概型的概率计算公式,计算()P A 的值; ⑤ 答:所求事件A 发生的概率是()P A . 三、几何概型

几何概型的特征:⑴ 基本事件是无限的;⑵ 基本事件都是等可能的;几何概型的概率计算公式()的测度

的测度

d P A D =

.在几何概型中,应紧紧抓住“基本事件是点”这条主线,难点

是将一些实际问题转化成几何概型问题.解题中要关注等可能的切入维度,关注随机点需要几个变量来控制(一维线段长度、二维平面区域面积、三维空间体积).

几何概型的解题规范: ① 标记所求事件A ;

② 建立几何模型,交代随机点出现在区域内任一点处是等可能的; ③ 确定几何区域D 和d (当且仅当随机点落在区域d 内时事件A 发生); ④ 计算D 和d 的测度,由几何概型的概率计算公式,计算概率()P A ; ⑤ 答:所求事件A 发生的概率是()P A . 四、互斥事件与对立事件

互斥(对立)事件的概率解题规范:

① 标识相关互斥事件A 、B 等(常标识至每个单位互斥事件(12),,,i A i n =);

② 交代事件A 、B 等彼此互斥;

③ 计算出各相关互斥事件的概率()P A 、()P B 等;

④ 标记所求和事件A B +,由互斥事件的概率加法公式计算()()()P A B P A P B +=+; 或者,标记所求对立事件A ,由对立事件的概率公式,计算()1()P A P A =-;

⑤ 答:所求事件A 发生的概率是()P A . 五、随机变量的概率分布列

随机变量是随机事件的数量化,把随机实验的每一个可能出现的结果(基本事件)对应于一个实数,即用一个数来表示一个结果,这样就建立了从随机实验的每一个可能的结果的集合到实数集的映射.引进随机变量后,了解随机现象的规律转化为了解随机变量的所有可能取值以及随机变量取各个值的概率(也就是随机变量的概率分布列).

由于随机现象所有可能的结果的集合Ω对应的事件是一个必然事件,概率是1,而每一次实验结果是Ω的一个“元素”,故随机变量所有取值对应的概率和为1.

求随机变量的概率分布列的步骤: ① 明确随机变量的所有取值;

② 指出随机变量取每个值所表示的意义;

③ 利用古典概型的知识求出随机变量取每个值的概率; ④ 按规范给出随机变量的概率分布(列)表. 六、超几何分布

超几何分布模型的特征:

① 研究的是两类对象,一类看作正品,一类看作次品(与要发生的事件相关,数目较少);

② 每类对象的数目确定(次品M 件,正品N M -件,总产品共N 件); ③ 从中抽取n 件,即无放回的抽样考察;

④ 研究取出某类对象的个数的概率分布(随机变量ξ为抽到次品的件数,求恰好抽到k

件次品的概率()()(012min{});,,,,,,,k n k

M N M

n

N

C C P k H k n M N k n M C ξ--====); ⑤ 若(),,H n M N ξ,在公式中,分子两组合数的上标之和等于分母组合数的上标,

分子两组合数的下标之和等于分母组合数的下标,这也是判断一个随机变量是否服从超几何分布的一个方面. 超几何分布模型的解题规范:

① 标识各类产品及具体数目(将多少件什么看作一批产品,多少件什么看作正品,多少件什么看作次品)从中(不放回)随机抽取多少件; ② 引进随机变量,交代随机变量服从怎样的超几何分布; ③ 标记所求事件,并用超几何分布的概率表示所求事件的概率;

④ 答(按题目要求详细、明确回答).

例题(2006山东文改编)盒中装着标有数字1,2,3,4的蓝色卡片4张,标有数字1,2,

3,4的红色卡片4张,现从盒中任意任取3张,每张卡片被抽出的可能性都相等,设

取到一张求红色卡片记2分,取到蓝色卡片记1分,以X 表示抽出的3张卡片的总得分,

Y 表示抽出的3张卡片上最大的数字,求X 和Y 的概率分布.

解:① 设盒中8张卡片为一批产品,其中蓝色的为不合格品,依题意,随机变量X 的可能取值为3,4,5,6,相应地,蓝色卡片被抽出的张数Z 为3,2,1,0.由题意,随机变量(348),,Z

H .30

443

84

(3)(3)(3348)56

;,,C C P X P Z H C ======,(4)P X = 21443

824(2)(2348)56C C P Z H C =====;,,,12

443824

(5)(1)(1348)56

C C P X P Z H C ======;,,,03

44384

(6)(0)(0348)56

;,,C C P X P Z H C ======.故X 的概率分布为:

② 由于Y 表示抽出的3张卡片中的最大数字,则随机变量Y 可能的取值为2,3,4. 当2Y =时,表示抽出的3张卡片中最大数字为2,它包含两种情况:2张2,1张1;

或1张2,2张1.所以,由古典概型,得1221

2222381

(2)14

C C C C P Y C +==

=; 当3Y =时,表示抽出的3张卡片中最大数字为3,它包含两种情况:2张3,1张为1或

2;或1张3,另两张为1或2.所以,由古典概型,得2112

24243

82

(3)7

C C C C P Y C +===; 当4Y =时,表示抽出的3张卡片中最大数字为4,它包含两种情况:2张4,1张为1或

2或3;或1张4,另两张为1或2或3.由古典概型,得122126263

89

(4)14

C C

C C P Y C +===. 所以,随机变量Y 的概率分布为:

七、条件概率

条件概率(|)P B A (在事件A 已发生的条件下事件B 发生的概率)

条件概率是指当试验结果的一部分信息已知(即在原随机试验的条件上,再加上一件事已发生的条件)求另一件事在此条件下发生的概率.一般不放回问题常可用条件概率解决.

()

(|)()

P AB P B A P A =

;()()(|)P AB P A P B A =;()()(|)(|)P ABC P A P B A P C AB =; 当B ,C 互斥时,有(()|)(|)(|)P B C A P B A P C A +=+. 条件概率问题的解题规范:

① 标识各相关事件(一般第i 次(步)抽到什么为事件i A ); ② 说明所求事件可以转化为什么样的条件概率; ③ 利用条件概率的相关公式求其概率; ④ 答(按题目要求详细、明确回答). 八、事件的独立性

事件A 与B 独立,是指一个事件的发生与否对另一事件发生的概率没有影响,即(|)()P A B P A =?()()()P AB P A P B =.有放回问题多为独立事件模型.

若事件A ,B 相互独立,则A 与B ,A 与B ,A 与B 之间也相互独立. 独立事件问题的解题规范: ① 标识各相关事件(A ,B 等); ② 交代它们相互独立;

③ 标识所求事件,并用独立事件表示; ④ 利用乘法公式求概率;

⑤ 答(按题目要求详细、明确回答).

例题(2009湖南文)为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、

民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的

12、13、1

6

.现有3名工人独立地从中任选一个项目参与建设.求:⑴ 他们选择的项目所属类别互不相同的概率;⑵ 至少有1人选择的项目属于民生工程的概率.

解:记第i 工人选择的项目属于基础设施工程、民生工程和产业建设工程分别为事件 i A ,i B ,i C (123),,i =.由题意知1A ,2A ,3A 相互独立,1B ,2B ,3B 相互独立,1C ,2C ,3C 相互独立,(123),,

,,,,,且,,互不相同i j k A B C i j k i j k =相互独立,且1

()2

i P A =,

1()3i P B =,1

()6i P C =.

⑴ 记“他们选择的项目所属类别互不相同”为事件A ,则123A A B C =+ 132213231312321A B C A B C A B C A B C A B C ++++,123123()6()6()()()P A P A B C P A P B P C =?=???

1111

62366=???=.

⑵ 记“至少有1人选择民生工程项目”为事件B ,则123()1()P B P B B B =- 3123119

1()()()1(1)327P B P B P B =-=--=

. 九、二项分布

n 次独立重复试验(伯努利试验)要从三个方面考虑:一是每次试验在相同条件下进行;

二是每次实验相互独立,即每次试验与前后其他各次试验的结果无关,不受影响.从而,确保事件A 在相同条件下发生的概率()0P A p =>保持不变;三是每次实验的结果只有两种对立状态,即要么事件A 发生,要么事件A 发生.在n 次独立重复试验中,设事件A 发生的次数为X ,在每次试验中事件A 发生的概率为(01)p p <<,那么在n 次独立重复试验中,设

事件A 恰好发生k 次的概率为()(1)(012),,,,,k k

n k n

P x k C p p k n -==-=,此时称随机变量X 服从二项分布,记作(),X B n p .

二项分布问题的解题规范:

① 标识事件A ,求出事件A 发生的概率p ;

② 指出每次试验(事件A 发生一次)相互独立,引进随机变量X ,(),X B n p ;

③ 将所求事件用随机变量的取值表示; ④ 用二项分布概率公式计算概率; ⑤ 答(按题目要求详细、明确回答). 十、随机变量的均值和方差

均值(数学期望):11

()()(1012),,

,,,n

i i i i i i E x x p p p i n ===?==∑∑≥; 方差:2

1

1

(){[()]}(10),n n

i i i i i i V x x E x p p p ===-?=∑∑≥.

计数原理、概率、随机变量及其分布、统计、统计案例

计数原理、概率、随机变量及其分布、统计、统计案例 第Ⅰ卷(选择题 共60分) 一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1.已知随机变量ξ服从正态分布N (1,σ2),P (ξ≤4)=,则P (ξ≤-2)=( ) A . B . C . D . 2.以下茎叶图记录了甲、乙两组各五名学生在一次英语听力测试中的成绩(单位:分) 已知甲组数据的平均数为17,乙组数据的中位数为17,则x ,y 的值分别为( ) A .2,6 B .2,7 C .3,6 D .3,7 3.将4个颜色互不相同的球全部收入编号为1和2的两个盒 子里,使得放入每个盒子里的球的个数不小于该盒子的编号,则不同的放球方法有( ) A .10种 B .20种 C .36种 D .52种 4.已知f (x )、g (x )都是定义在R 上的函数,g (x )≠0,f ′(x )g (x )-f (x )g ′(x )<0,fx gx =a x ,f 1g 1+ f -1 g -1=52,则关于x 的方程abx 2+2x +5 2=0(b ∈(0,1))有两个不同实根的概率为( ) 5.用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为( ) A .243 B .252 C .261 D .279 6.四名同学根据各自的样本数据研究变量x ,y 之间的相关关系,并求得回归直线方程,分别得到以下四个结论: ①y 与x 负相关且y ^ =-; ② y 与x 负相关且y ^ =-+; ③y 与x 正相关且y ^ =+; ④y 与x 正相关且y ^ =--. 其中一定不正确的结论的序号是( ) A .①② B .②③

高考数学 计数原理 知识汇总

计数原理 课表要求 1、会用两个计数原理分析解决简单的实际问题; 2、理解排列概念,会推导排列数公式并能简单应用; 3、理解组合概念,会推导组合数公式并能解决简单问题; 4、综合应用排列组合知识解决简单的实际问题; 5、会用二项式定理解决与二项展开式有关的简单问题; 6、会用二项式定理求某项的二项式系数或展开式系数,会用赋值法求系数之和。突破方法 1.加强对基础知识的复习,深刻理解分类计数原理、分步计数原理、排列组合等基本概念,牢固掌握二项式定理、二项展开式的通项、二项式系数的性质。2.加强对数学方法的掌握和应用,特别是解决排列组合应用性问题时,注重方法的选取。比如:直接法、间接法等;几何问题、涂色问题、数字问题、其他实际问题等;把握每种方法使用特点及使用范围等。 3.重视数学思维的训练,注重数学思想的应用,在解题过程中注重化归与转化思想的应用,将不同背景的问题归结为同一个数学模型求解;注重数形结合、分类讨论思想、整体思想等,使问题化难为易。 知识点 1、分类加法计数原理 完成一件事,有n类不同方案,在第1类方案中有m1种不同的方法,在第2类办法中有m2种不同的方法,……在第n类办法中有m n种不同的方法。那么完成这件事共有:N=m1+m2+……+m n种不同的方法。 注意:(1)分类加法计数原理的使用关键是分类,分类必须明确标准,要求每一种方法必须属于某一类方法,不同类的任意两种方法是不同的方法,这时分类问题中所要求的“不重复”、“不遗漏”。 (2)完成一件事的n类办法是相互独立的。从集合角度看,完成一件事分A、B两类办法,则A∩B=?,A∪B=I(I表示全集)。 (3)明确题目中所指的“完成一件事”是指什么事,完成这件事可以有哪些办法,怎样才算是完成这件事。 2、分步乘法计数原理 完成一件事,需要n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,……做第n步有m n种不同的方法,那么完成这件事共有:N=m1·m2·……·m n种不同的方法。 注意:(1)明确题目中所指的“做一件事”是什么事,单独用题中所给的某种方法是不是能完成这件事,是不是要经过几个步骤才能完成这件事。 (2)完成这件事需要分成若干个步骤,只有每个步骤都完成了,才算完成这件事,缺少哪一步,这件事都不可能完成。 (3)根据题意正确分步,要求各步之间必须连续,只有按照这几步逐步去

高中数学选修2-3基础知识归纳(排列组合、概率问题)

高中数学选修2-3基础知识归纳(排列组合、概率问题) 一.基本原理 1.加法原理:做一件事有n类办法,则完成这件事的方法数等于各类方法数相加。 2.乘法原理:做一件事分n步完成,则完成这件事的方法数等于各步方法数相乘。 注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。 二.排列:从n个不同元素中,任取m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列,所有排列的个数记为。

四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题)②有序还是无序③分步还是分类。 2.解排列、组合题的基本策略 (1)两种思路: ①直接法: ②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。这是解决排列组合应用题时一种常用的解题方法。 分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原

理得出结论。 注意:分类不重复不遗漏。即:每两类的交集为空集,所有各类的并集为全集。 (3)分步处理:与分类处理类似,某些问题总体不好解决时,常常分成若干步,再由分步计数原理解决。在处理排列组合问题时,常常既要分类,又要分步。其原则是先分类,后分步。 (4)两种途径:①元素分析法;②位置分析法。 3.排列应用题: (1)穷举法(列举法):将所有满足题设条件的排列与组合逐一列举出来; (2) 特殊元素优先考虑、特殊位置优先考虑; 例1. 电视台连续播放6个广告,其中含4个不同的商业广告和2个不同的公益广告,要求首尾必须播放公 益广告,则共有种不同的播放方式(结果用数值表示). 解:分二步:首尾必须播放公益广告的有种;中间4个为不同的商业广告有种,从而应当填=48. 从而应填48. 例2. 6人排成一行,甲不排在最左端,乙不排在最右端,共有多少

高考数学压轴专题人教版备战高考《计数原理与概率统计》基础测试题含解析

数学高考《计数原理与概率统计》复习资料 一、选择题 1.某光学仪器厂生产的透镜,第一次落地打破的概率为0.3;第一次落地没有打破,第二次落地打破的概率为0.4;前两次落地均没打破,第三次落地打破的概率为0.9.则透镜落地3次以内(含3次)被打破的概率是( ). A .0.378 B .0.3 C .0.58 D .0.958 【答案】D 【解析】 分析:分别利用独立事件的概率公式求出恰在第一次、恰在第二次、恰在第三次落地打破的概率,然后由互斥事件的概率公式求解即可. 详解:透镜落地3次,恰在第一次落地打破的概率为10.3P =, 恰在第二次落地打破的概率为20.70.40.28P =?=, 恰在第三次落地打破的概率为30.70.60.90.378P =??=, ∴落地3次以内被打破的概率1230.958P P P P =++=.故选D . 点睛:本题主要考查互斥事件、独立事件的概率公式,属于中档题. 解答这类综合性的概率问题一定要把事件的独立性、互斥性结合起来,要会对一个复杂的随机事件进行分析,也就是说能把一个复杂的事件分成若干个互斥事件的和,再把其中的每个事件拆成若干个相互独立的事件的积,这种把复杂事件转化为简单事件,综合事件转化为单一事件的思想方法在概率计算中特别重要. 2.安排5名学生去3个社区进行志愿服务,且每人只去一个社区,要求每个社区至少有一名学生进行志愿服务,则同学甲单独去一个社区不同的安排方式有( ) A .100种 B .60种 C .42种 D .25种 【答案】C 【解析】 【分析】 给三个社区编号分别为1,2,3,则甲可有3种安排方法,剩下的两个再进行分步计数,从而求得所有安排方式的总数. 【详解】 甲可有3种安排方法, 若甲先安排第1社区, 则第2社区可安排1个、第3社区安排3个,共1 3 43C C ?; 第2社区2个、第3社区安排2个,共22 42C C ?; 第2社区3个,第3社区安排1个,共11 41C C ?; 故所有安排总数为132211 4342413()42C C C C C C ??+?+?=. 故选:C.

计数原理知识点总结与训练

计数原理知识点总结 一、两个计数原理 3、两个计数原理的区别 二、排列与组合 1、排列: 一般地,从n个不同元素中取出m(m≤n)个元素,按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列。

2、排列数:从n 个不同元素中取出m(m ≤n)个元素的所有不同排列 的个数叫做从n 个不同元素中取出m 个元素的排列数。用符号 表 示. 3、排列数公式: 其中 4、组合: 一般地,从n 个不同元素中取出m(m ≤n)个元素合成一组,叫做从n 个不同元素中取出m 个元素的一个组合。 5、组合数: 从n 个不同元素中取出m(m ≤n)个元素的所有不同组合的个数叫做从n 个不同元素中取出m 个元素的组合数。用符号 表示。 6、组合数公式: 其中 注意:判断一个具体问题是否为组合问题,关键是看取出的元素是否与顺序有关,有关就是排列,无关便是组合.判断时要弄清楚“事件是什么”. 7、性质: m n A m n A ()()() ()! ! 121m n n m n n n n A m n -= +---=Λ . ,,*n m N m n ≤∈并且m n C ()()() ()! !! !121m n m n m m n n n n C m n -= +---= Λ . ,,*n m N m n ≤∈并且m n n m n C C -=m n m n m n C C C 1 1+-=+

三、二项式定理 如果在二项式定理中,设a=1,b=x ,则可以得到公式: 2、性质: 0241351 2 n n n n n n n C C C C C C -=+++=+++=L L 奇数项二项式系数和偶数项二项式系数和:

高中数学-排列组合概率综合复习

高中数学 排列组合二项式定理与概率统计

其系数性质,会把实际问题化归为数学模型问题或方程问题去解决,就可顺利获解。 例4、设88 018(1),x a a x a x +=+++L 则0,18,,a a a L 中奇数的个数为( ) A .2 B .3 C .4 D .5 例5、组合数C r n (n >r ≥1,n 、r ∈Z )恒等于( ) A .r +1n +1C r -1n -1 B .(n +1)(r +1) C r -1n -1 C .nr C r -1 n -1 D .n r C r -1n -1 . 例6、在的展开式中,含的项的系数是 (A )-15 (B )85 (C )-120 (D )274 例7、若(x +12x )n 的展开式中前三项的系数成等差数,则展开式中x 4项的系数为 (A)6 (B)7 (C)8 (D)9 考点三:概率 【内容解读】概率试题主要考查基本概念和基本公式,对等可能性事件的概率、互斥事件的概率、独立事件的概率、事件在n 次独立重复试验中恰发生k 次的概率、离散型随机变量分布列和数学期望等内容都进行了考查。掌握古典概型和几何概型的概率求法。 【命题规律】(1)概率统计试题的题量大致为2道,约占全卷总分的6%-10%,试题的难度为中等或中等偏易。 (2)概率统计试题通常是通过对课本原题进行改编,通过对基础知识的重新组合、变式和拓展,从而加工为立意高、情境新、设问巧、并赋予时代气息、贴近学生实际的问题。这样的试题体现了数学试卷新的设计理念,尊重不同考生群体思维的差异,贴近考生的实际,体现了人文教育的精神。 例8、在平面直角坐标系xoy 中,设D 是横坐标与纵坐标的绝对值均不大于2的点构成的区域,E 是到原点的距离不大于1的点构成的区域,向D 中随意投一点,则落入E 中的概率 为 。 例9、从编号为1,2,…,10的10个大小相同的球中任取4个,则所取4个球的最大号码是6的概率为 (A) 1 84 (B) 121 (C) 25 (D) 35 例10、在某地的奥运火炬传递活动中,有编号为1,2,3,…, 18的18名 火炬手.若从中任选3人,则选出的火炬手的编号能组成3为公差的等差数列的概率为 )5)(4)(3)(2)(1(-----x x x x x 4 x

高中数学选修2-3计数原理概率知识点总结

选修2-3定理概念及公式总结 第一章基数原理 1.分类计数原理:做一件事情,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法那么完成这件事共有 N=m 1+m 2+……+m n 种不同的方法 2.分步计数原理:做一件事情,完成它需要分成n 个步骤,做第一步有m 1种不同的方法,做第二步有m 2种不同的方法,……,做第n 步有m n 种不同的方法,那么完成这件事有N=m 1×m 2×……m n 种不同的方法 分类要做到“不重不漏”,分步要做到“步骤完整” 3.两个计数原理的区别: 如果完成一件事,有n 类办法,不论哪一类办法中的哪一种方法,都能独立完成这件事,用分类计数原理, 如果完成一件事需要分成几个步骤,各步骤都不可缺少,需要完成所有步骤才能完成这件事,是分步问题,用分步计数原理. 4.排列:从n 个不同的元素中取出m 个(m ≤n)元素并按一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列. (1)排列数: 从n 个不同的元素中取出m 个(m ≤n)元素的所有排列的个数.用符号m n A 表示 (2)排列数公式:)1()2)(1(+-???--=m n n n n A m n 用于计算, 或m n A )! (! m n n -=() n m N m n ≤∈*,, 用于证明。 n n A =!n =()1231????- n n =n(n-1)! 规定0!=1 5.组合:一般地,从n 个不同元素中取出m ()m n ≤个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合 (1)组合数: 从n 个不同元素中取出m ()m n ≤个元素的所有组合的个数,用m n C 表示 (2)组合数公式: (1)(2)(1) ! m m n n m m A n n n n m C A m ---+== 用于计算, 或)! (!! m n m n C m n -= ),,(n m N m n ≤∈*且 用于证明。

计数原理基本知识点

计数原理基本知识点 1.分类计数原理:做一件事情,完成它可以有n 类办法,在第一类办法中有1m 种不同的方法,在第二类办法中有2m 种不同的方法,……,在第n 类办法中有n m 种不同的方法那么完成这件事共有 12n N m m m =+++种不同的方法 2.分步计数原理:做一件事情,完成它需要分成n 个步骤,做第一步有1m 种不同的方法,做第二步有2m 种不同的方法,……,做第n 步有n m 种不同的方法,那么完成这件事有12n N m m m =??? 种不同的方法 3.排列的概念:从n 个不同元素中,任取m (m n ≤)个元素(这里的被取元素各不相同)按照一定的顺序.....排成一列,叫做从n 个不同元素中取出m 个元素的一个排列....4.排列数的定义:从n 个不同元素中,任取m (m n ≤)个元素的所有排列的个数叫 做从n 个元素中取出m 元素的排列数,用符号m n A 表示 5.排列数公式:(1)(2)(1)m n A n n n n m =---+(,,m n N m n *∈≤) 6 阶乘:!n 表示正整数1到n 的连乘积,叫做n 的阶乘规定0!1=. 7.排列数的另一个计算公式:m n A =!()!n n m - 8 组合的概念:一般地,从n 个不同元素中取出m ()m n ≤个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合 9.组合数的概念:从n 个不同元素中取出m ()m n ≤个元素的所有组合的个数,叫做从 n 个不同元素中取出m 个元素的组合数... .用符号m n C 表示. 10.组合数公式:(1)(2)(1)!m m n n m m A n n n n m C A m ---+== 或)! (!!m n m n C m n -=,,(n m N m n ≤∈*且 11 组合数的性质1:m n n m n C C -=.规定:10=n C ; 12.组合数的性质2:m n C 1+=m n C +1-m n C

高中数学竞赛标准讲义---排列组合与概率

高中数学竞赛标准讲义----排列组合与概率 一、基础知识 1.加法原理:做一件事有n 类办法,在第1类办法中有m 1种不同的方法,在第2类办法中有m 2种不同的方法,……,在第n 类办法中有m n 种不同的方法,那么完成这件事一共有N=m 1+m 2+…+m n 种不同的方法。 2.乘法原理:做一件事,完成它需要分n 个步骤,第1步有m 1种不同的方法,第2步有m 2种不同的方法,……,第n 步有m n 种不同的方法,那么完成这件事共有N=m 1×m 2×…×m n 种不同的方法。 3.排列与排列数:从n 个不同元素中,任取m(m ≤n)个元素,按照一定顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列,从n 个不同元素中取出m 个(m ≤n)元素的所有排列个数,叫做从n 个不同元素中取出m 个元素的排列数,用m n A 表示,m n A =n(n-1)…(n-m+1)= )! (! m n n -,其中m,n ∈N,m ≤n, 注:一般地0n A =1,0!=1,n n A =n!。 4.N 个不同元素的圆周排列数为n A n n =(n-1)!。 5.组合与组合数:一般地,从n 个不同元素中,任取m(m ≤n)个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合,即从n 个不同元素中不计顺序地取出m 个构成原集合的一个子集。从n 个不同元素中取出m(m ≤n)个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用m n C 表示: .)! (!! !)1()1(m n m n m m n n n C m n -=+--= 6.组合数的基本性质:(1)m n n m n C C -=;(2)11--+=n n m n m n C C C ;(3)k n k n C C k n =--11;(4)n n k k n n n n n C C C C 20 10==+++∑= ;(5)111++++-=+++k m k k m k k k k k C C C C ;(6)k n m n m k k n C C C --=。 7.定理1:不定方程x 1+x 2+…+x n =r 的正整数解的个数为11--n r C 。 [证明]将r 个相同的小球装入n 个不同的盒子的装法构成的集合为A ,不定方程x 1+x 2+…+x n =r 的正整数解构成的集合为B ,A 的每个装法对应B 的唯一一个解,因而构成映射,不同的装法对应的解也不同,因此为单射。反之B 中每一个解(x 1,x 2,…,x n ),将x i 作为第i 个盒子中球的个数,i=1,2,…,n ,便得到A 的一个装法,因此为满射,所以是一一映射,将r 个小球从左到右排成一列,每种装法相当于从r-1个空格中选n-1个,将球分n 份,共有11--n r C 种。故定理得证。 推论1 不定方程x 1+x 2+…+x n =r 的非负整数解的个数为.1r r n C -+

高中数学典型例题解析:第九章 计数原理与概率

第九章 计数原理与概率 §9.1 计数原理 一、知识导学 1.分类计数原理:完成一件事,有n类办法,在第1类办法中,有1m 种不同的方法,在第2类办法中,有2m 种不同的方法,……在第n类办法中,有n m 种不同的方法,那么完成这件事共有N =1m +2m +……+n m 种不同的方法. 2. 分步计数原理:完成一件事,需要分成n个步骤,做第1步,有1m 种不同的方法,做第2步,有2m 种不同的方法,……做第n步,有n m 种不同的方法,那么完成这件事共有N =1m ×2m ×…×n m 种不同的方法.注:分类计数原理又称加法原理 分步计数原理又称乘法原理二、疑难知识导析 1.分类原理中分类的理解:“完成一件事,有n类办法”这是对完成这件事的所有办法的一个分类.分类时,首先要根据问题的特点,确定一个适合它的分类标准,然后在这个标准下进行分类,其次,分类时要注意满足两条基本原则:第一,完成这件事的任何一种方法必须属于某一类;第二,分别属于不同类的两种方法是不同的方法.前者保证完成这件事的立法不遗漏,后者保证不重复. 2.分步原理中分步的理解:“完成一件事,需要分成n个步骤”这就是说完成这件事的任何一种方法,都要完成这n个步骤.分步时,首先要根据问题的特点确定一个可行的分步标准,其次,步骤的设置要满足完成这件事必须并且只需连续完成这n个步骤,这件事才算最终完成. 3.两个原理的区别在于一个和分类有关,一个和分步有关.如果完成一件事有n类办法, 这n类办法彼此之间是相互独立的,无论哪一类办法中的哪一个都能单独完成这件事,求完成这件事的方法种数,就用分类计数原理.如果完成一件事,需分成n个步骤,缺一不可,即需要依次完成所有的步骤,才能完成这件事,完成每一个步骤各有若干种不同的方法,求完成这件事的方法种数,就用分步计数原理. 4.在具体解题时,常常见到某个问题中,完成某件事,既有分类,又有分步,仅用一 种原理不能解决,这时需要认真分析题意,分清主次,选择其一作为主线. 5.在有些问题中,还应充分注意到在完成某件事时,具体实践的可行性.例如:从甲地 到乙地 ,要从甲地先乘火车到丙地,再从丙地乘汽车到乙地.那么从甲地到乙地共有多少种不同的走法?这个问题中,必须注意到发车时刻,所限时间,答案较多.三、经典例题导讲 [例1]体育场南侧有4个大门,北侧有3个大门,某学生到该体育场练跑步,则他进出门的方案有 ( ) A .12 种 B .7种 C .24种 D .49种

2017年高考概率与统计、计数原理专题分析

概率与统计、计数原理专题分析 高中数学课程中的“统计与概率”部分被安排在必修3和选修2-3,历来被老师认为易教、被学生认为易学,一线教师大多走马观花一带而过,以便腾出时间深挖其他章节内容.2017年全国高考概率与我们如约而至,常规内容紧密结合社会实际,以现实生活为背景设置试题,体现数学在解决实际问题中的巨大作用和应用价值,体现高考改革中加强应用性、实贱性的特点.研宄近几年高考试卷中“统计与概率试题,被认为“送分题”分数送不出去的尴尬,引发深思,促使我们重新审视“统计与概率”内容,深感“简单”的内容不简单! 一、专题考点分析 1.考点分析 2017年高考数学试题,概率与统计、计数原理部分考查的知识点覆盖面广,各卷考查知识点如下. (1)全国Ⅰ卷. 文科:样本的数字特征、几何概型、相关系数、方差均值计算; 理科:几何概型、二项式定理、正态分布、随机变量的期望和方差 (2)全国Ⅱ卷 文科:古典概型、频率分布直方图的应用; 理科:排列与组合、随机变量的期望、独立事件概率公式、独立性检验、频率分布直方图估计中位数. (3)全国Ⅲ卷. 文科:折线图、古典概型; 理科:折线图、离散型随机变量的分布列、数学期望 (4)北京卷. 文科:频率分布直方图的应用;理科:散点图的应用、古典概型、超几何分布、方差 (5)天津卷 文科:古典概型;理科:排列与组合、离散型随机变量的概率分布列及数学期望 (6)江苏卷 几何概型、分层抽样古典概型排列组合、随机变量及其分布、数学期望 (7)浙江卷 随机变量的期望和方差、二项式定理 (8)山东卷 文科:茎叶图、样本的数字特征、古典概型; 理科:回归直线方程、古典概型、随机变量的分布列与数学期望、超几何分布 2. 题量与分值分析 每年全国各地区的高考中都会有各种类型的概率题出现,分值占整套试卷总分的 8%~14%. 2017年各卷考查的题型及分值情况如下 (1)全国Ⅰ卷文、理科分别考查两道选择题和一道解答题,总分值均为22分 (2)全国Ⅱ卷文科考查一道选择题和一道解答题,总分值为17分;理科考查两道选择题和一道解答题,总分值为22分. (3)全国Ⅲ卷文、理科分别考查一道选择题和一道解答题,总分值均为17分. (4)北京卷文科考查一道解答题,分值为13分;理科考查一道填空题和一道解答题,总分值为18分. (5)天津卷文、理科分别考查一道选择题和一道解答题,总分值均为18分. (6)江苏卷考查两道填空题和一道解答题,总分值为20分.

第十章排列组合和概率(第1课)加法原理和乘法原理(1)

课题:10.1加法原理和乘法原理(一) 教学目的: 1了解学习本章的意义,激发学生的兴趣. 2.理解分类计数原理与分步计数原理,培养学生的归纳概括能力. 3.会利用两个原理分析和解决一些简单的应用问题. 教学重点:分类计数原理(加法原理)与分步计数原理(乘法原理) 教学难点:分类计数原理(加法原理)与分步计数原理(乘法原理)的准确理解 授课类型:新授课 课时安排:1课时 教具:多媒体、实物投影仪 内容分析: 两个基本原理是排列、组合的开头课,学习它所需的先行知识跟学生已熟知的数学知识联系很少,排列、组合的计算公式都是以乘法原理为基础的,而一些较复杂的排列、组合应用题的求解,更是离不开两个基本原理,所以在教学目标中特别提出要使学生学会准确地应用两个基本原理分析和解决一些简单的问题对于学生陌生的知识,在开头课中首先作一个大概的介绍,使学生有一个大致的了解是十分必要的基于这一想法,在引入新课时,首先是把这一章将要学习的内容,以及与其它科目的关系做了介绍,同时也引入了课题正确使用两个基本原理的前提是要学生清楚两个基本原理使用的条件;分类用加法原理,分步用乘法原理,单纯这点学生是容易理解的,问题在于怎样 的,目的就在于帮助学生对这一知识的理解与应用 两个原理是教与学重点,又具有相当难度.加法和乘法在小学就会,那么,在中学再学它与以往有什么不同?不同在于小学阶段重在运算结果的追求,而忽视了其过程中包含的深层次思想;两个原理恰恰深刻反映了人类计数最基本的“大事化小”,即“分解”的思想.更具体地说就是把事物分成类或分成步去数.“分类”、“分步”,看似简单,不难理解,却是全章的理论依据和基本方法,贯穿始终,所以,是举足轻重的重点.两个原理,要能在各种场合灵活应用并非易事,所以,着实有其难用之处 教学过程: 一、复习引入: 一次集会共50人参加,结束时,大家两两握手,互相道别,请你统计一下,大家握手次数共有多少? 某商场有东南西北四个大门,当你从一个大门进去又从另一个大门出来,问你共有多少种不同走法? 揭示本节课内容:等我们学了这一部分内容后,这些问题会很容易解决而这部分内容是代数中一个独立的问题,与旧知识联系很少,但它是以后学习二

18计数原理、概率与统计(陈选明)

— 高三数学(理十五)第1页 共6页— 2017-2018学年度南昌市高三第一轮复习训练题 数学(理十五)计数原理、概率与统计 命题人:新建二中 陈选明 审题人:新建二中 朱优奇 一.选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,只有一项是符合题目要求的. 1.《中国诗词大会》的播出引发了全民的读书热,某小学语文老师在班里开展了一次诗词默写比赛,班里40名学生得分数据的茎叶图如图所示.若规定得分不小于85分的学生得到“诗词达人”的称号,小于85分且不小于70分的学生得到“诗词能 手”的称号,其他学生得到“诗词爱好者”的称号,根据该次比赛 的成绩按照称号的不同进行分层抽样抽选10名学生,则抽选的 学生中获得“诗词能手”称号的人数为( ) A. 2 B. 4 C. 5 D. 6 2.已知两组数12345671234567:,,,,,,,:,,,,,,A x x x x x x x B y y y y y y y ,其中 ()23,1,2,3,4,5,6,7i i y x i =+=,A 组数的平均数与方差分别记为2,,A x S B 组数的平均数与方差分别记为2,B y S ,则下面关系式正确的是( ) A. 2223,23B A y x s s =+=+ B. 2223,4B A y x s s =+= C. 222,4B A y x s s == D. 222,43B A y x s s ==+ 3.某高校调查了200名学生每周的自习时间(单位: 小时),制成了如图所示的频率分布直方图,其 中自习时间的范围是[]17.5,30,样本数据分组为 [)17.5,20,[)20,22.5,[)22.5,25,[)25,27.5, []27.5,30. 根据直方图,若这200名学生中每周的 自习时间不超过m 小时的人数为164,则m 的值约为( ) A. 26.25 B. 26.5 C. 26.75 D. 27 4.“杨辉三角形”是古代重要的数学成就,它比西方的“帕斯卡三角形”早了300多 年,如图是三角形数阵,记n a 为图中第n 行各个数之和,则511a a +的值为( ) A.528 B.1020 C.1038 D. 1040 5.如图,一只蚂蚁从点A 出发沿着水平面的线条爬行到点C ,再由点C 沿着置于水平面的长方体的棱爬行至顶点B ,则它可以爬行的不同的最短路径有( )条 A. 40 B. 60 C. 80 D. 120

排列组合与二项式定理及概率应用综合

第一讲 排列组合概念及简单应用 排列和排列数公式 A m n =n (n -1)(n -2)…(n -m +1)=n ! (n -m )!(m ,n ∈N *,并且m ≤n ) A n n =n !=n ×(n -1)×(n -2)×…×3×2×1. 规定:0!=1. 组合与组合数公式 1.组合数公式 C m n =A m n A m m =n (n -1)(n -2)…(n -m +1)m !=n !m !(n -m )!(m ,n ∈N *,并且 m ≤n ) 2.组合数的性质 (1)C m n =C n -m n (2)C m n +1=C m n +C m - 1n 常规题型 一、投信问题 1、个口袋里有5封信,另一个口袋里有4封信,各封信内容均不相同. (1)从两个口袋里各取一封信,有多少种不同的取法? (2)把这两个口袋里的9封信,分别投入4个邮筒,有多少种不同的放法? 2、五位旅客到一个城市出差,这个城市有6家旅馆,有多少种住宿方法? 3、12名旅客在一辆火车上,共有六个车站,有多少种下车方案? 4、3个同学在一座只有两个楼梯的楼上下楼,有几种下楼方案? 二、染色问题 1、如图所示,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种颜色可供使用,求不同的染色方法总数. 2. 如图所示,用五种不同的颜色分别给A ,B ,C ,D 四个区域涂色,相邻区域必须涂不同颜色,若允许同一种颜色多次使用,则不同的涂色方法共有________种. 3.用红、黄、蓝三种颜色去涂图中标号为1,2,…,9的9个小正方形(如图),使得任意相邻(有公共边)的小正方形所涂颜色都不相同,且标号为1,5,9的小正方形涂相同的颜色,则符合条件的所有涂法共有________种.

高中计数原理与概率计数原理

高中计数原理与概率计数原理 一、知识导学 1.分类计数原理:完成一件事,有n类办法,在第1类办法中,有1m 种不同的方法,在第2类办法中,有2m 种不同的方法,……在第n类办法中,有n m 种不同的方法,那么完成这件事共有N =1m +2m +……+n m 种不同的方法. 2. 分步计数原理:完成一件事,需要分成n个步骤,做第1步,有1m 种不同的方法,做第2步,有2m 种不同的方法,……做第n步,有n m 种不同的方法,那么完成这件事共有N =1m ×2m ×…×n m 种不同的方法.注:分类计数原理又称加法原理 分步计数原理又称乘法原理 二、疑难知识导析 1.分类原理中分类的理解:“完成一件事,有n类办法”这是对完成这件事的所有办法的一个分类.分类时,首先要根据问题的特点,确定一个适合它的分类标准,然后在这个标准下进行分类,其次,分类时要注意满足两条基本原则:第一,完成这件事的任何一种方法必须属于某一类;第二,分别属于不同类的两种方法是不同的方法.前者保证完成这件事的立法不遗漏,后者保证不重复. 2.分步原理中分步的理解:“完成一件事,需要分成n个步骤”这就是说完成这件事的任何一种方法,都要完成这n个步骤.分步时,首先要根据问题的特点确定一个可行的分步标准,其次,步骤的设置要满足完成这件事必须并且只需连续完成这n个步骤,这件事才算最终完成. 3.两个原理的区别在于一个和分类有关,一个和分步有关.如果完成一件事有n类办法,这n类办法彼此之间是相互独立的,无论哪一类办法中的哪一个都能单独完成这件事,求完成这件事的方法种数,就用分类计数原理.如果完成一件事,需分成n个步骤,缺一不可,即需要依次完成所有的步骤,才能完成这件事,完成每一个步骤各有若干种不同的方法,求完成这件事的方法种数,就用分步计数原理. 4.在具体解题时,常常见到某个问题中,完成某件事,既有分类,又有分步,仅用一种原理不能解决,这时需要认真分析题意,分清主次,选择其一作为主线. 5.在有些问题中,还应充分注意到在完成某件事时,具体实践的可行性.例如:从甲地到乙地 ,要从甲地先乘火车到丙地,再从丙地乘汽车到乙地.那么从甲地到乙地共有多少种不同的走法?这个问题中,必须注意到发车时刻,所限时间,答案较多. 三、经典例题导讲 [例1]体育场南侧有4个大门,北侧有3个大门,某学生到该体育场练跑步,则他进出门的方案有 ( ) A .12 种 B .7种 C .24种 D .49种 错解:学生进出体育场大门需分两类,一类从北边的4个门进,一类从南侧的3个门进,由分类计数原理,共有7种方案. ∴选B

高考数学压轴专题2020-2021备战高考《计数原理与概率统计》全集汇编附答案解析

【高中数学】数学《计数原理与概率统计》高考知识点 一、选择题 1.已知()9 29012913x a a x a x a x -=++++L ,则019a a a +++…等于( ) A .92 B .94 C .93 D .1 【答案】B 【解析】 【分析】 求出二项式()9 13x -展开式的通项为()193r r r T C x +=?-,可知当r 为奇数时,0r a <,当 r 为偶数时,0r a >,然后代入1x =-即可得出019a a a ++?+的值. 【详解】 二项式()9 13x -展开式的通项()193r r r T C x +=?-,当r 为奇数时,0r a <,当r 为偶数 时,0r a >, 因此,()9 90191314a a a ??++?+=-?-=??. 故选:B. 【点睛】 本题考查利用赋值法求各项系数绝对值之和,要结合二项式定理判断各项系数的符号,考查推理能力与计算能力,属于中等题. 2.安排5名学生去3个社区进行志愿服务,且每人只去一个社区,要求每个社区至少有一名学生进行志愿服务,则同学甲单独去一个社区不同的安排方式有( ) A .100种 B .60种 C .42种 D .25种 【答案】C 【解析】 【分析】 给三个社区编号分别为1,2,3,则甲可有3种安排方法,剩下的两个再进行分步计数,从而求得所有安排方式的总数. 【详解】 甲可有3种安排方法, 若甲先安排第1社区, 则第2社区可安排1个、第3社区安排3个,共1 3 43C C ?; 第2社区2个、第3社区安排2个,共22 42C C ?; 第2社区3个,第3社区安排1个,共11 41C C ?; 故所有安排总数为132211 4342413()42C C C C C C ??+?+?=. 故选:C. 【点睛】

数学竞赛教案讲义排列组合与概率

第十三章 排列组合与概率 一、基础知识 1.加法原理:做一件事有n 类办法,在第1类办法中有m 1种不同的方法,在第2类办法中有m 2种不同的方法,……,在第n 类办法中有m n 种不同的方法,那么完成这件事一共有N=m 1+m 2+…+m n 种不同的方法。2 乘法原理:做一件事,完成它需要分n 个步骤,第1步有m 1种不同的方法,第2步有m 2种不同的方法,……,第n 步有m n 种不同的方法,那么完成这件事共有N=m 1×m 2×…×m n 种不同的方法。3.排列与排列数:从n 个不同元素中,任取m(m ≤n)个元素,按照一定顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列,从n 个不同元素中取出m 个(m ≤n)元素的所有排列个数,叫做从n 个不同元素中取出m 个元素的排列数,用m n A 表示,m n A =n(n-1)…(n-m+1)= )! (! m n n -,其中m,n ∈N,m ≤n, 注:一般地0 n A =1,0!=1,n n A =n!。 4.N 个不同元素的圆周排列数为n A n n =(n-1)!。 5.组合与组合数:一般地,从n 个不同元素中,任取m(m ≤n)个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合,即从n 个不同元素中不计顺序地取出m 个构成原集合的一个子集。从n 个不同元素中取出m(m ≤n)个元素的所有组合的个数,叫做从n 个不同元素中取出m 个元素的组合数,用m n C 表示: .)! (!! !)1()1(m n m n m m n n n C m n -=+--= 6.组合数的基本性质:(1)m n n m n C C -=;(2)1 1--+=n n m n m n C C C ;(3) k n k n C C k n =--11;(4)n n k k n n n n n C C C C 20 10==+++∑= ;(5)111++++-=+++k m k k m k k k k k C C C C ;(6) k n m n m k k n C C C --=。 7.定理1:不定方程x 1+x 2+…+x n =r 的正整数解的个数为1 1--n r C 。

排列组合与计数原理

排列组合与计数原理 【复习目标】1.能熟练的判断利用加法原理和乘法原理。简单的排列组合组合数公式。 【复习重难点】加法原理和乘法原理公式的计算及应用。 1.高三(1),(2),(3)班分别有学生52,48,50人。 (1)从中选1人当学生代表的不同方法有____________种; (2)从每班选1人组成演讲队的不同方法有____________种; (3)从这150名学生中选4人参加学代会的不同方法有____________种; (4)从这150名学生中选4人参加数理化三个课外活动小组,共有不同方法有__________种。 2.假设在200件产品中有三件次品,现在从中任意抽取5件,期中至少有2件次品的抽法有__________种。 3.若,64 3n n C A 则n=___________。 例1.在1到20这20个整数中,任取两个数相加,使其和大于20,共有________种取法。 变式训练:从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为_______。 例2.从6人中选4人分别到张家界、韶山、衡山、桃花源四个旅游景点游览,要求每个旅游景点只有一人游览,每人只游览一个旅游景点,且6个人中甲、乙两人不去张家界游览,则不同的选择方案共有______________种. 例3.如图,用4种不同的颜色对图中5个区域涂色(4种颜色全部使用),要求每个区域涂一种颜色,相邻的区域不能涂相同的颜色,则不同的涂色种数有_______ . 变式训练:要安排一份5天的值班表,每天有一人值班,现有5人,每人可以值多天班或不值班,但相邻两天不准由同一人值班,问此值班表共有_______ 种不同的排法.

高考数学压轴专题长沙备战高考《计数原理与概率统计》知识点训练及答案

【高中数学】数学高考《计数原理与概率统计》复习资料 一、选择题 1.某校组织由5名学生参加的演讲比赛,采用抽签法决定演讲顺序,在“学生甲和乙都不是第一个出场,甲不是最后一个出场”的前提下,学生丙第一个出场的概率为( ) A . 13 B . 14 C . 15 D . 12 【答案】A 【解析】 【分析】 根据条件概率的公式与排列组合的方法求解即可. 【详解】 由题意得学生甲和乙都不是第一个出场,甲不是最后一个出场的概率11333315 5C C A 9A 20P ==,其中学生丙第一个出场的概率13 3325 5C A 3A 20P ==,所以所求概率为21 13P P P ==. 故选:A 【点睛】 本题主要考查了根据排列组合的方法求解条件概率的问题,属于中等题型. 2.将一颗骰子掷两次,观察出现的点数,并记第一次出现的点数为m ,第二次出现的点数为n ,向量p u v =(m ,n),q v =(3,6).则向量p u v 与q v 共线的概率为( ) A . 1 3 B . 14 C . 16 D . 112 【答案】D 【解析】 【分析】 由将一枚骰子抛掷两次共有36种结果,再列举出向量p u r 与q r 共线的基本事件的个数,利用 古典概型及其概率的计算公式,即可求解。 【详解】 由题意,将一枚骰子抛掷两次,共有6636?=种结果, 又由向量(,),(3,6)p m n q ==u r r 共线,即630m n -=,即2n m =, 满足这种条件的基本事件有:(1,2),(2,4),(3,6),共有3种结果, 所以向量p u r 与q r 共线的概率为31 3612 P = =,故选D 。 【点睛】 本题主要考查了向量共线的条件,以及古典概型及其概率的计算,其中解答中根据向量的共线条件,得出基本事件的个数是解答的关键,着重考查了推理与运算能力,属于基础

排列组合概率专题讲解

专题五: 排列、组合、二项式定理、概率与统计 【考点分析】 1. 突出运算能力的考查。高考中无论是排列、组合、二项式定理和概率题目,均是用数 值给出的选择支或要求用数值作答,这就要求平时要重视用有关公式进行具体的计算。 2. 有关排列、组合的综合应用问题。这种问题重点考查逻辑思维能力,它一般有一至两 3. 个附加条件,此附加条件有鲜明的特色,是解题的关键所在;而且此类问题一般都有 多种解法,平时注意训练一题多解;它一般以一道选择题或填空题的形式出现,属于中等偏难(理科)的题目。 4. 有关二项式定理的通项式和二项式系数性质的问题。这种问题重点考查运算能力,特 别是有关指数运算法则的运用,同时还要注意理解其基本概念,它一般以一道选择题或填空题的形式出现,属于基础题。 5. 有关概率的实际应用问题。这种问题既考察逻辑思维能力,又考查运算能力;它要求 对四个概率公式的实质深刻理解并准确运用;文科仅要求计算概率,理科则要求计算分布列和期望;它一般以一小一大(既一道选择题或填空题、一道解答题)的形式出现,属于中等偏难的题目。 6. 有关统计的实际应用问题。这种问题主要考查对一些基本概念、基本方法的理解和掌 握,它一般以一道选择题或填空题的形式出现,属于基础题。 【疑难点拨】 1. 知识体系: 2.知识重点: (1) 分类计数原理与分步计数原理。它是本章知识的灵魂和核心,贯穿于本章的始终。 (2) 排列、组合的定义,排列数公式、组合数公式的定义以及推导过程。排列数公式 的推导过程就是位置分析法的应用,而组合数公式的推导过程则对应着先选(元素)后排(顺序)这一通法。 (3) 二项式定理及其推导过程、二项展开式系数的性质及其推导过程。二项式定理的 推导过程体现了二项式定理的实质,反映了两个基本计数原理及组合思想的具体应用,二项展开式系数性质的推导过程就对应着解决此类问题的通法——赋值法(令1±=x )的应用。 (4) 等可能事件的定义及其概率公式,互斥事件的定义及其概率的加法公式,相互独 立事件的定义及其概率的乘法公式,独立重复试验的定义及其概率公式。互斥事件的概率加法公式对应着分类相加计数原理的应用,相互独立事件的概率乘法公式对应着分步相乘计数原理的应用。 (5) (理科)离散型随机变量的定义,离散型随机变量的分布列、期望和方差。 (6) 简单随机抽样、系统抽样、分层抽样,总体分布,正态分布,线性回归。

相关文档
相关文档 最新文档