文档视界 最新最全的文档下载
当前位置:文档视界 › 水质模型与水环境容量(精)

水质模型与水环境容量(精)

水质模型与水环境容量(精)
水质模型与水环境容量(精)

水质模型与水环境容量

课程辅导

第四章 水质模型与水环境容量

1、污染物质在水中有哪些运动形式?

污染物质在水中运动的形式,可以分为两大类:一类是随流输移运动,一类是扩散运动。在随流输移运动中,污染物服从水体的总体流动特征,产生从一处到另一处的大范围运动(包括主流方向以及垂直主流方向)。而扩散运动则是使污染物质在水体中得到分散和混和的物理机制,按物理机制的不同,扩散运动包括分子扩散、紊动扩散和剪切流离散。此外,在工程实际当中遇到的水体大都是具有固体边界的(大面积水体中的局部污染问题除外),而污染物在边界附近,将产生所谓边界反射问题,而且这种反射作用往往对污染物的分布产生重要影响,不可忽略。

2、分子扩散运动的费克定律有哪些主要内容?

(1)费克(fick )第一定律

费克(fick )第一定律提出单位时间内,通过单位面积的溶解物质与溶质浓度在该面积法线方向的梯度成比例,扩散强度与污染物自身特性有关。 x

m x x c D Q ??-= 式中:Q x 为在x 方向单位时间通过单位面积的扩散物质的质量简称通量;C 为扩散物质的浓度(单位体积流体中的扩散物质的质量);

x c ??为扩散物质在x 方向的浓度梯度;D m 为分子扩散系数,与扩散物的种类和流体温度有关,具有[L 2/T]的量纲。式中的负号表示扩散物质的扩散方向为从高浓度向低浓度,与浓度梯度相反。

(2)费克(fick )第二定律

???? ????+??+??=??222222z c y c x

c D t c m

上式即为各向同性情况下的三维分子扩散方程,是费克第二定律的特殊形式。

3、移流扩散可分为哪些阶段?

从运动阶段上考察,移流扩散大致分为三个阶段:第一阶段为初始稀释阶段。该阶段主要发生在污染源附近区域,其运动主要为沿水深的垂向浓度逐渐均匀化。第二阶段为污染扩展阶段。该阶段中,污染物在过水断面上,由于存在浓度梯度,污染由垂向均匀化向过水断面均匀化发展。第三阶段为纵向离散阶段。该阶段中,由于沿水流方向的浓度梯度作用,以及断面上流速分布,出现了沿纵向的移流扩散,该扩散又反过来影响了断面的浓度分布,从而与第二阶段的运动相互作用。

4、如何求解水质模型?

水质模型主要有如下求解方法:

(1)理论解析解

将问题简化后,方程变为低维、低阶、线性的形式,可以用数理方程

中的标准方法进行求解,包括量纲分析方法、变量替换法、镜像法等。

(2)数值解法(数值模拟方法)

差分法、有限元方法、有限体积法等。数值模拟方法有许多优点,例如:可解决高阶非线性问题,不受场地和比尺限制,可在短时间内测试各种

可能方案等。而且由于当前计算机技术的高度发展,数值模拟方法有着更加

广阔的前景和应用范围。

(3)物理模型

这是传统的解决流体力学问题的方法,同样适用于水环境问题的解决。

在实物模型中,可以直接观测流动和扩散现象,测量所关心的污染物浓度分布。物理模型方法比较直观,而且对于一些未能建立数学方程的复杂问题,

只要抓住支配扩散的主要因素,即可得到较为符合实际的结果。该方法的不

足之处在于对概化的灵敏度较高,而且由于物理模型往往需要大量试验材料,

因此可能花费较多的经费。

(4)原型观测、类比分析

在天然流场中,对实际的污染物形成的浓度场进行观测。由于该方法较

之前面几种方法缺乏预测性,因此,一般用来确定解析方法或者数值模拟方法

中需要的扩散系数等参数,或用于验证物理模型和数学模型的可靠性及类似水

环境问题的类比分析。

5、如何理解镜像法?

镜像法,就是将边界当成虚拟的镜面,在边界的另一侧放置一个虚拟的污染源,其强度和与边界的距离与实际污染源完全相同,此时,边界就可以去掉,这样,我们就把解决边界反射问题转化为两个污染源的叠加问题。

要使用镜像法解决边界问题,需要满足边界处污染物“净通量为零”的条件,而虚拟污染源的放置正好满足这个基本条件。

6、试述水质模型的定义、研究目的及分类?

水质模型是一个用于描述污染物质在水环境中的混合、迁移过程的数学方程或方程组。求解方法很多,对于简单可解情况,可以求出其解析解;对于复杂情况,则可能采取数值解法。因此水质模型解的精度及可靠性不会超过其方程本身。

进行水质模型研究的主要目的,在现阶段主要是用于点源排放的纳污问题。随着社会的发展和水处理技术的进步,点源污染的影响相对变得越来越小,而非点源污染,例如农业和城市污染变得越来越重要,水质模型也向预测非点源污染问题发展。

根据具体用途和性质,水质模型的分类标准如下:

(1)以管理和规划为目的,水质模型可分为四类,即河流水质模型、河口水质模型(加入了潮汐作用)、湖泊(水库)水质模型以及地下水水质模型。其中河流水质模型研究比较成熟,有较多成果,且能更加真实的反映实际水质行为,因此应用比较普遍。

(2)根据水质组分,水质模型可以分为单一组分、耦合的和多重组分的三类。其中BOD-DO耦合模型能够较成功地描述受有机污染地水质变化情况。多组分水质模型比较复杂,它考虑地水质因素更多,例如水生生态模型等。

(3)根据水体的水力学和排放条件是否随时间变化,可以把水质模型分为稳态模型的和非稳态的模型。对于这两类模型,其研究的主要任务是模型的边界条件,即在何种条件下水质能够尽可能处于较好状态。稳态水质模型可以用于模拟水质的物理、化学和水力学过程;而非稳态模型则用于计算径流、暴雨过程中水质的瞬时变化。

(4)根据研究水质维度,可把水质模型分为零维、一维、二维、三维水质模型。其中零维水质模型较为粗略,仅为对于流量的加权平均,因此常常

用作其他维度模型的初始值和估算值,而三维水质模型虽然能够精确反映水质变化,但是受到紊流理论研究的局限,还在继续理论研究当中。一维和二维模型则可根据研究区域的情况适当选择,并可以满足一般应用要求的精度。

7、试述水质模型建模的一般步骤?

(1)模型概化

针对所研究污染的性质选择关心的变量,明确这些变量的变化趋势以及变量的相互作用,在保证能够反映实际状况的同时,力求所建模型尽可能简单。

(2)模型性质研究

对模型的稳定性、平衡性以及灵敏性进行研究。其中稳定性是指模型是否能够收敛,而灵敏性是指当模型中参数变化时,其结果产生的差别是否在允许范围之内。

(3)参数估计

对于模型中的一些需要通过实验或者实测数据进行确定的参数,要考虑这些实测资料能否全面、正确反映参数值,以及这些实测数据是否齐全,是否容易得到,对于无法通过实测数据反算的参数,需要重新设立参数,或者寻找其间接依赖关系。参数估计是水质模型中重要的一环。

(4)模型验证

若只用一套数据确定模型,则该模型不能具有预测功能,因此,需要用另一套或者几套实测数据来验证所建模型。如果检验结果具有良好的一致性,则该模型具有预测功能,否则需要重新返回到第三步,调整参数。(5)模型应用

如果所建模型后来被实际数据证明是正确的,则说明水质模型的方法是正确的,可以更高的概率用于污染预测。反之,需要修改模型,以便解决问题。

8、试述水质预测的方法?

预测水质变化的方法,一般有三种:①根据经验进行的专家判断法;②从已兴建的类似工程进行类比法;③模拟方法。

在初评中多使用前两种方法,其结果都是定性结论,最好也是半定量的。但这种定性分析方法在很多方面可以满足影响评价的要求,也可给出影响大小的等级。另外水环境中包括各方面的问题,有些问题不是都能通过定量指

标来描述的,或尚没有满意的定量预测方法,所以也只能给出定性结论。因此在水质预测中对定性分析法应给预足够重视,片面追求定量结果有时是不必要或不可能的。前两种方法将在环境影响评价中预以评述。

水质的定量预测目前多采用水质模拟(数学模拟或物理模拟),最常用的是采用数学模拟即水质数学模型进行预测,在进行预测时一定要注意水文特征值和污染源的变化发展情况。

9、试述水环境容量的定义、影响因素、分类及作用。

一定的环境在人类生存和生态系统不致受害的情况下,对污染物的容纳也有一定的限度。这个限度便称之为环境容量或环境负荷量。水环境容量则是特指在满足水环境质量标准的要求下,水体容纳污染物的最大负荷量,因此又称做水体负荷量或纳污能力。

水环境容量是建立在水质目标和水体稀释自净规律的基础上,因此

它与水环境的空间特性,运动特性、功能,本底值,自净能力及污染物特性、排放数量及排放方式等多种因素有关。

从水体稀释、自净的物理实质看,水环境容量由两部分组成,即差值容量和同化容量。前者出于水体的稀释作用,而后者是各种自净作用的综合去污容量。从控制污染的角度看,水环境容量可从两方面反映:一是绝对容量,即某一水体所能容纳某污染物的最大负荷量,它不受时间的限制;一是年(日)容量,即在水体中污染物累积浓度不超过环境标准规定的最大容许值的前提下,每年(日)水体所能容纳某污染物的最大负荷量。年(日)容量受时间限制,并且和水体的本底值、水质标准及净化能力有关。实用上则根据具体情况,采用其中较适宜的一种。河流、湖泊、水库是最常见的三种贮水体,通常也主要研究推求这三者的水环境容量。

水环境容量的主要作用是:对排污进行控制,利用水体自净能力进行环境规划。

10、试述水环境容量的m值计算法。

m值计算法既是浓度控制法的改进(直接推求允许排放浓度),也是总量控制法的简化。它适用于确定受毒性较小的污染物和其他有机污杂物影响的水环境容量,即确定这些污染物的排放标准。

此方法从河段水环境质量标准出发,根据河段水量与混合物的质量守恒

原理,推求河段内各排污口允许排放浓度,同时也规定出排污流量。如,大河流量为Q ,一侧岸边某排污口排污流量为q ,排污浓度为Cd ,排污口附近上下两断面的污染物浓度分别为C o 和C N ,如果忽略污染物的衰减作用,只考

()q C Q C q Q C d o N +=+

那么:()[]???

? ??-+=-+=-+=N o N o N N o N d C C q Q q Q C Q q C C C Q C q Q C q C 11 若取C N 为符合环境要求的水质标准(浓度),并令Q/q =γ,C 0/C N =β,

符合水环境要求的允许排放浓度即为:()γβγ++='1N d C C

再令m =1+γ-γβ——标准稀释系数,则:N d

mC C =' 上式只适用于β≤1的情况,表面看这似乎只是对排放浓度的控制,而实质上对污水排放流量的控制已隐含在确定m 值过程中,即由清污水流量比γ来控制q

对河段中有多个排污口相距又不太远时,可把它们合并为一个排污口考虑。总污水控制流量就是各排污口控制流量之和,即q =q 1+q 2……+q n ;而各

排污口排放浓度控制都用相同的

d C '

m 值计算法没有直接考虑衰减作用,但从()q Q C C C C o N N d /-+=中

可以看出:此式右端第二项反映了由流量比Q/q 控制的稀释作用,即允许d

C '超过

N C '的值是通过控制排污流量q

当q =Q ,C d =2C N -C o ;当q 》Q 时,C d =C N ,即排污标准必须达到水质控

制标准:W p =d C '·q ·△t=86.4d C '·q ,式中:d C '—mg/l ,q —m 3

/s ,W p —kg/d 。 11、试述水环境容量的安全容积法。

研究表明:湖、库水环境容量主要与其蓄水量(容水体积)有关。因此防止水体污染就必须保证有一定的安全库容。这样才能使湖、库水体发挥其净化功能,使水体中污染物控制在安全水平以下。通常把这种安全库容,即实

际入湖、库负荷量等于该水体最大容许负荷量时的湖、库蓄水量,称之为防止污染的临界库容。湖、库水体的环境容量也可按能维持某种水环境质量标准的污染物排放总量进行计算。取枯水期湖泊容积等于安全容积,则其计算

()q C V KC V C C t

W N N O N ++-?=1 式中:W ——湖泊水体环境容量(g/d);

△t ——枯水期时间(d),它取决于湖水位年内变化情况。若水位年内变幅较大,△t 取60~90天;若湖水位常年稳定,△t 取90~150天。 C N ——某污染物的水环境质量标准浓度(mg/l);

C 0——湖中该污染物的起始浓度(mg/l);

V ——湖泊的安全容积(m 3);

q ——在安全容积期间,从湖泊排出的流量(m 3/d);

K ——湖泊污染物质自然衰减系数(1/d),K 值可从实测资料中反推求:o

o M t M M t P K ??-+?= 式中:P ——每日进入湖泊的污染物质量(kg/d),

P △t ——△t 时段内进入的污染物质总量(kg);

M O ——起始时水体污染物质总量(kg);

M ——时段末水体污染物质总量(kg) K 值也可由实验确定,

C

C t K o ln 1?=

式中:△t ——实验时段(日); C o ——起始时的污染物浓度(mg/l)

C ——经过△t 时段后的污染物浓度(mg/l)。

12、在推求河流水环境容量时,应选择什么流量为设计流量?

在推求河流水环境容量时,应选择枯水流量为设计流量,这样选择设计流量,对保证河流水环境质量而言,才偏于安全。

地表水环境容量核定技术报告编制大纲

地表水环境容量核定技术报告编制大纲 根据《全国地表水环境容量核定和总量分配工作方案》(环发[2003]141号)和《2003年-2005年污染防治工作计划》(环办[2003]36号)精神,现制定《全国地表水环境容量核定技术报告编制大纲》(以下简称《大纲》)。 本大纲是水环境容量核定技术报告编制的基本要求,各省(自治区、直辖市)环保局(厅)应参照本大纲编制辖区地表水水环境容量核定技术报告,分流域水系、行政区两个层次汇总、分析,处理好省内市界的衔接关系,提出省界要求和依据,对环境容量大、跨市界的河流进行整体测算,在汇总分析过程中完成对辖区数据合理性校核。各地市(区)技术报告可作为省级报告附件参加技术复核,有关基础数据仅作参考。 技术报告应保证数据的准确性、系统性和规范性。各省(自治区、直辖市)的技术报告应包括数据准确性分析,并将其作为各类数据的有机组成部分;规范性要求各地水环境容量核定提交的基础数据完备、信息表达一致;系统性要求全国地表水环境容量核定工作各类数据相互匹配、相互照应;报告中图表数据要与数据分析相结合,数据结论要与计算方法、关键参数选择相结合。 各省(自治区、直辖市)地表水环境容量核定技术报告应包括如下内容:报告名称 ╳╳╳省(自治区、直辖市)地表水环境容量核定技术报告

第一章总论 1.1工作过程 列出本次工作的组织机构、技术组成员及分工、时间进度等情况,应附联系方式,说明省、市、县工作分工和相互衔接情况。 附各省结合本地实际编制的水环境容量核定实施方案、各省组织审查情况、有关文件等。 介绍本省内有关水环境容量核定的前期工作积累情况及其有关数据。 1.2 工作内容 叙述基本的工作思路,列出技术路线,并分步骤说明相应的工作重点及技术要求。 对影响计算结果关键的技术环节应特别说明,包括基础数据的收集、处理过程,模型选择、计算的依据等。 1.3 主要结论 对控制单元划分、水质评价、污染源调查、水环境容量测算、剩余环境容量等分别做出结论。 1.4 问题与建议 对容量测算过程、环境容量测算结果、容量总量控制方案等技术、管理方面提出建议。 第二章区域背景 2.1 自然环境 主要内容应包括: (1)地理位置:毗邻省市、所属的流域分区、辖区土地面积、各市区面

水环境容量计算

水环境容量计算 水环境容量是水体在环境功能不受损害的前提下所能接纳的污染物最大允许排放量。分为稀释容量(稀E )和自净容量(自E )两部分: 稀释容量: ()r b Q C S E ?-?=4.86稀 式中:稀E -稀释容量,kg/d S -水质标准,mg/L ; b C -河流背景浓度,mg/L ; r Q -河流流量,m 3/s 。 自净容量: ??? ? ??-?-u kl t e SQ E 8640014.86=自 式中:自E -自净容量,kg/d S -水质标准,mg/L ; t Q -河流流量+废水流量,m 3/s ; l -河段长度,m ; k -综合衰减系数,1/d ; u -河流流速,m/s 。 水环境总容量:自稀E E E += 本次选取环境总量控制因子为COD 、NH 3-N 和TP 。 根据规划要求,区内生产废水和生活污水达标排放后进入园区新建的污水处理厂集中处理,处理达标后,尾水排入兴隆河。污水处理厂排入兴隆河的污水总共为1.2万t/d 。污水厂污染物排放浓度COD 为60mg/l 、NH 3-N 为8(15)mg/l 。 本次评价选取兴隆河排污口下游约4000m 河段计算环境容量。 地表水环境容量计算参数选取见表1。

表1 地表水环境容量计算参数选取表 水环境承载能力分析 (1)背景浓度 背景浓度选取排污口附近断面现状监测浓度平均值:COD 17mg/L、氨氮0.63mg/L、TP 17mg/L。 (2)计算结果 水环境容量计算结果见表2: 表2 地表水环境容量计算结果单位:kg/d (3)水环境承载能力分析 50%水环境容量可用于接纳本区域排污量。 根据计算结果进行分析,必要时提出解决方案。

地表水环境影响评价报告书

地表水环境影响评价——紫金山铜矿环境影响报告书(报批版) 评价项目紫金山铜矿开发过程中将产生废水、废气、噪声和固体废物等污染源,其 中主要是废水和固体废弃物,并伴有植被破坏、土层扰动等可能导致水土流失与影响矿区生态的问题。 结合区域环境特征和环境保护目标的分布情况,确定的评价项目有地表水环境、生态环境和大气环境。 评价工作等级 (1)地表水环境影响评价工作等级 紫金山铜矿正常情况下的废水排放量为5700~12300m/d,主要污染物有pH、Cu、3Pb、Zn、As 和Cd,排入的地表水体为汀江。汀江年均流量为185m/s(属大河),3水质按Ⅲ类标准控制。根据《环境影响评价技术导则-地面水环境》(HJ/T2.3-93),确定地表水 环境评价工作等级为二级。 评价内容 (1)地表水环境影响评价 采矿废水正常和事故排放情况下对汀江的影响;选冶废水事故排放情况下对汀江的影响。 评价因子 (1)地表水环境评价因子:pH、Cu、Pb、Zn、As、Cd。 环境质量现状. 由表4-5可知:汀江及旧县河各项水质指标均符合《地表水环境质量标准》(GB3838 说明汀江及旧县河的水质情况良好。%,2002)“Ⅲ类标准”要求,其达标率为100-地表水环境影响预测与评价 1 预测模式及参数选取

1.1预测模式选取 由于在铜矿排入汀江处建有金山电站,堆浸场废水排入金山电站库区内,520m 中段废水排入发电站下游的汀江,故评价分排入库区和汀江两种情况进行预测,同时考虑金山电站发电期(非发电期)水文情况。 (1)汀江:混合过程段采用二维稳态混合模式(岸边排放),混合过程段的长度计算采用(2)式。 M =(0.058H+0.0065B)(gHI)1/2 y 式中:C —预测点污染物浓度,mg/L ; (x,y) Q —废水排放量,m/s ; 3p C -污染物排放浓度,mg/L ; p C —河流上游污染物浓度,mg/L ; h x —预测点距排放口的距离,m ; y —预测点距岸边的距离,m ; B —河流宽度,m ; u —河流中断面平均流速,m/s ; M —横向混合系数,m ;/s 2y H —河流平均水深,m ; a —排放口到岸边的距离,m ; I —河流坡降; g —重力加速度,取9.81m/s 。 2 (2)金山电站库区:预测模式选用(3)式。 式中:符号含义同前。 )汀江:完全混合段采用河流完全混合模式(3) +Q+CQ/(QC =(CQ hhpphp 式中:符号含义同前。 参数选取1.2 )按导则中推荐的经验公式求取。横向混合系数(M y 水文参数1.3 水文基本特征(1)、/s ,多年日平均最大流量4090m 据上杭县水文站资料,汀江年平均流量186m/s 33 ,年平均含沙993.3mmm ,年平均径流深度,年径流量58.49×108.45m 最小流量/s 338 1370kt 。,年平均输沙量量0.25kg/m 3 旧县河为境内汀江第一大支流,发源于连城莒溪白眉山北麓,经新泉进入上杭县境内,流经南阳、旧县、临城三个乡,在临城乡九州村汇入汀江。上杭县境内流,1090m/s 多年平均流量47.3m/s,多年日平均最大流量域面积716km ,河长45.38km ,323 /s 。最小流量2.23m 3 ,0.0012m/m ,坡降为50m ,平均水深为0.77m 汀江水文基本参数:枯水期河宽为 。0.0026m ·s 粗糙率为-1/3 金山水电站对汀江水文的影响(2),死m ×10100.55×m ,调节库容0.264金山水电站总库容(校核洪水位以下)3388 4.95km 。m0.28×10,正常蓄水位设计水库面积库容238不发电时22:00,和5:00~金山电站正常情况下放水发电时间为每天8:00~12:00 丰(个小时电站下泄流量为零。雨季~13:0014:00,即在一天中有11~间为23:007:00和 24小时放水发电。水期)整天年最枯月平均根据金山水电站的发电情况,本评价考虑最不利情况,选择近10 1。—/s 流量16.7m 作为上游来水量,相应的水库出流(根据径流调节)详见表5 3

水环境容量计算方法

水环境容量计算方法 中国环境规划院李云生 2004.5 ?基本涵义 ?计算模型 ?计算步骤 ?校核方法 第一部分水环境容量的基本涵义 容量涵义 技术指南中的概念定义 ?在给定水域范围和水文条件,规定排污方式和水质目标的前提下,单位时间内该水域最大允许纳污量,称作水环境容量。 ?从上述定义可知,水环境容量主要决定于三个要素:水资源量、水环境功能区划和排污方式。 要素之一:水资源量 ?从某种意义上讲,水资源量是水环境容量基础; ?为了确保用水安全,水环境容量计算采用的是较高保证率的水文设计条件; ?并不是所有的水资源量都用来计算环境容量。 要素之二:水环境功能区 ?水环境功能区划体现人们对水环境质量的需求,反映了人们对水资源的态度:开发、利用或保护。 ?已划分水环境功能区的水域,要从时间、空间两个方面规范功能区达标标准; ?未划分水环境功能区的水域可不进行容量计算;若考虑计算,按较高功能标准进行(II类)。 要素之三:排污方式 ?排污口沿河(或其他水体)位置布设,对河流整体水环境容量影响较大; ?排污口排放方式(岸边或中心,浅水或深水),对局部的污染物稀释混合影响很大; ? ? 第二部分水环境容量的计算模型 ?1、流域概化模型 ?2、水动力学模型 ?3、污染源概化模型 ?4、水质模型 1、流域概化 ?将天然水域(河流、湖泊水库)概化成计算水域,例如天然河道可概化成顺直河道,复杂的河道地形可进行简化处理,非稳态水流可简化为稳态水流等。水域概化的结果,就是能够利用简单的数学模型来描述水质变化规律。同时,支流、排污口、取水口等影响水环境的因素也要进行相应概化。若排污口距离较近,可把多个排污口简化成集中的排污口。 2、水动力学模型 ?最枯月设计条件

益阳市水环境容量核定分析报告

益阳市水环境容量核定分析报告 益阳市环境保护局 二OO四年七月

目录 第一章总论 第二章污染源调查 第三章水环境容量计算 第四章水环境容量核定成果利用

第一章总论 一、水环境容量核定工作过程与情况 1、工作背景 改善水环境质量是我国环境保护的主要任务之一。实施水污染物总量控制是改善水环境质量的重要措施。我国对水污染物排放总量控制先后经过了浓度控制和目标总量控制,现已逐渐进入容量排放总量控制阶段。浓度控制和目标总量控制没有建立水污染物排放量和水体水质之间的对应关系,即按照水体水质保护目标,水污染物排放总量需要控制的水平,也没有解决水污染物排放量的分配问题。这两个问题的解决,必须在水环境容量核定的前提下,进行容量总量控制。 2、工作目标 本次水环境容量核定的工作目标为:通过污染源水陆对应关系以及水污染物排放的分类调查,通过建立污染源与水环境质量的输入响应关系,通过模型正向模拟,得到全河段符合不同区域水质目标要求的水环境容量,校核、分析、确定水环境功能区、河流、流域、行政区域不同层次的水环境容量,为管理提供科学基础和技术平台,为总量分解和排污许可证发放奠定基础,为制定水环境保护各专业规划提供依据。 3、工作过程 根据国家环保总局和省局的统一安排,我市从2003年11月

在全市全面开展了水环境容量核定工作。 3.1 成立市水环境容量核定工作领导小组,组成如下: 组长:罗文 副组长:余德涵 成员:熊明民邓智明李桂更粟剑斌 3.2 2003年11月6日至7日,市环保局选派3名技术人员参加了省局组织的水环境容量核定工作培训,各区(县)市环保局也各选派1名业务骨干参加了培训。通过培训,明确了水环境容量核定工作思路和方法,为全面、准确完成该项工作任务奠定了基础。 3.3 各区(县)市环保局完成基本表格数据调查,摸清各类污染源的排放去向和排放量,将基础数据上报市环保局。 3.4 市环保局校验并最终确定各类源强系数和入河系数,对各区(县)市环保局上报基本表格进行校核后,进行汇总和计算,将结果上报省局。 3.5 根据省局确定的容量计算模式和参数,市环保局完成全市容量计算和核定(其中洞庭湖水系容量由省局统一计算核定),并编写水环境容量分析报告。 二、区域水资源和水环境现状背景 1、水系概况 益阳市有大小溪河293条,流经市内最长的河流是资水,自西南蜿蜒向东北经安化、桃江、益阳市区至甘溪港注入洞庭湖,

河流、湖泊、水库、湿地水环境容量计算模型

水环境容量计算模型 1)河流水环境容量模型 水环境容量是在水资源利用水域内,在给定的水质目标、设计流量和水质条件的情况下,水体所能容纳污染物的最大数量。按照污染物降解机理,水环境容量W 可划分为稀释容量W 稀释和自净容量W 自净两部分,即: W W W =+稀释自净 稀释容量是指在给定水域的来水污染物浓度低于出水水质目标时,依靠稀释作用达到水质目标所能承纳的污染物量。自净容量是指由于沉降、生化、吸附等物理、化学和生物作用,给定水域达到水质目标所能自净的污染物量。 河段污染物混合概化图如图。根据水环境容量定义,可以给出该河段水环境容量的计算公式: 图 完全混合型河段概化图 0()i si i i W Q C C =-稀释 i i si i W K V C =??自净 即:0()i i si i i i si W Q C C K V C =-+?? 考虑量纲时,上式整理成: 086.4()0.001i i si i i i si W Q C C K V C =-+?? 其中: 当上方河段水质目标要求低于本河段时:0i si C C = 当上方河段水质目标要求高于或等于本河段时:00i i C C =

式中:i W —第i 河段水环境容量(kg/d ); i Q —第i 河段设计流量(m 3/s ); i V —第i 河段设计水体体积(m 3); i K —第i 河段污染物降解系数(d -1); si C —第i 河段所在水功能区水质目标值(mg/L ); 0i C —第i 河段上方河段所在水功能区水质背景值 (mg/L ),取上游来水浓度。 若所研究水功能区被划分为n 个河段,则该水功能区的水环境容量是n 个河段水环境容量的叠加,即: 1n i i W W ==∑ 01131.536()0.000365n n i si i i i i i i W Q C C K V C ===-+??∑∑ 式中:W —水功能区水环境容量(t/a ); 其他符合意义和量纲同上。 2)湖泊、水库水环境容量计算模型 有机物COD 、氨氮的水环境容量模型: 在目前国内外的研究中,多采用完全均匀混合箱体水质模型来预测水库水体长期的动态变化,即将水库视为一个完全混合反应器时,有机物的容量计算模型可以用水体质量平衡基本方程计算。水库中有机物容量模型如下: C t kV S t C t Q t C t Q dt dc c out in in )()()()()(V(t)++?-?= 假设条件:水量为稳态,出流水质混合均匀。 式中:V(t)——箱体在t 时刻的水量,m 3; dt dc ——箱体水质参数COD 、氨氮的变化率; )(t Q in ——t 时刻水库的入流水量,m 3/a ; )(t Q out ——t 时刻水库的出流水量,m 3/a ;

地表水环境影响评价

地表水环境影响评价 ——紫金山铜矿环境影响报告书(报批版) 评价项目 紫金山铜矿开发过程中将产生废水、废气、噪声和固体废物等污染源,其中主要是废水和固体废弃物,并伴有植被破坏、土层扰动等可能导致水土流失与影响矿区生态的问题。 结合区域环境特征和环境保护目标的分布情况,确定的评价项目有地表水环境、生态环境和大气环境。 评价工作等级 (1)地表水环境影响评价工作等级 紫金山铜矿正常情况下的废水排放量为5700~12300m3/d,主要污染物有pH、Cu、Pb、Zn、As 和Cd,排入的地表水体为汀江。汀江年均流量为185m3/s(属大河),水质按Ⅲ类标准控制。根据《环境影响评价技术导则-地面水环境》(HJ/T2.3-93),确定地表水环境评价工作等级为二级。 评价内容 (1)地表水环境影响评价 采矿废水正常和事故排放情况下对汀江的影响;选冶废水事故排放情况下对汀江的影响。 评价因子 (1)地表水环境评价因子:pH、Cu、Pb、Zn、As、Cd。 环境质量现状

由表4-5可知:汀江及旧县河各项水质指标均符合《地表水环境质量标准》(GB3838 -2002)“Ⅲ类标准”要求,其达标率为100%,说明汀江及旧县河的水质情况良好。 地表水环境影响预测与评价 1 预测模式及参数选取 1.1预测模式选取 由于在铜矿排入汀江处建有金山电站,堆浸场废水排入金山电站库区内,520m 中段废水排入发电站下游的汀江,故评价分排入库区和汀江两种情况进行预测,同时考虑金山电站发电期(非发电期)水文情况。 (1)汀江:混合过程段采用二维稳态混合模式(岸边排放),混合过程段的长度计算采用(2)式。 M y=(0.058H+0.0065B)(gHI)1/2 式中:C(x,y)—预测点污染物浓度,mg/L; Q p—废水排放量,m3/s; C p-污染物排放浓度,mg/L; C h—河流上游污染物浓度,mg/L; x—预测点距排放口的距离,m; y—预测点距岸边的距离,m; B—河流宽度,m; u—河流中断面平均流速,m/s; M y—横向混合系数,m2/s;

水环境容量计算方法研究及应用

水环境容量计算方法研究及应用 赵君 (河海大学,江苏 南京 210098) E-mail:zsmzyq@https://www.docsj.com/doc/de6522918.html, 摘要:一维稳态条件下计算水环境容量的3种方法,即段首控制方法、段尾控制方法和功能区段尾控制方法。本文通过分析比较各方法的优劣及其相互联系,针对曹娥江支流--长乐河的具体情况,采用段首控制对其水环境容量进行计算,系统地将各方法的物理含义及其适用奈件推广到实际中。计算结果证明了方法的可靠性。 关键词:水环境容量;段首控制;段尾控制;功能区段末控制 1 计算方法 1.1基本概念和方程 水环境容量是在给定水域范围和水文条件,规定排污方式和水质目标的前提下,单位时间内该水域最大允许纳污量,称作水环境容量。水环境容量具有资源性、区域性、系统性、发展需要性四个基本特征,其大小主要与水域特性、环境功能要求、污染物质以及排污方式有关,这些因素直接影响入流污染物的稀释能力以及污染物质在水体中的时空分布。由于河流具有对污染物质的稀释、输移、降解能力,因此河流环境容量可分为以下三个组成部分: 输移容量:污染物在水体中随水流的对流运动产生的输移量,它只与水力要素和水质目标有关,因此输移容量是有限的不可再生的。较大的输移容量并不代表较大的允许排放量。对保守物质来说,河段总的环境容量只由输移容量组成。 稀释容量:当水体本底水质浓度低于水质标准时,由于对流及扩散作用,使排入的污染物逐步均匀分布到整个水体,其浓度达到标准浓度的限值时,水体所增加的污染物容量。稀释容量在数量上等于标准浓度时的输移容量与本底浓度时输移容量的差值,也称差值容量。 自净容量:由于沉降、生化、吸附等物理、化学和生物作用,给定水域达到水质目标所能自净的污染物量称为自净容量。自净容量是反映水体对污染物的自净能力,也称同化容量。自净容量是水环境容量中最重要的组成部分,河流水环境容量的计算关键在于自净容量的计算。它是可不断再生的量。 河流是我国最常见、最基本的纳污水域。河流的水环境容量占在我国的很大的比重。污染物进入河流后,在一定范围内经过平流输移、纵向离散和横向混合后达到充分混合,或者根据水质管理的精度要求,允许不考虑混合过程而假定在

地表水水环境容量计算方法回顾与展望_董飞

第25卷第3期 2014年5月水科学进展ADVANCES IN WATERSCIENCE Vol.25,No.3May ,2014 地表水水环境容量计算方法回顾与展望 董飞1,2,刘晓波1,2,彭文启1,2,吴文强 1,2(1.中国水利水电科学研究院水环境研究所,北京100038; 2.流域水循环模拟与调控国家重点实验室,北京100038) 摘要:为厘清中国地表水水环境容量计算方法演变历史,探讨计算方法发展趋势,在系统调研大量水环境容量研 究文献基础上,详细梳理水环境容量从概念引入到研究至今的过程,归纳出中国地表水水环境容量研究过程中产 生的五大类计算方法:公式法、模型试错法、系统最优化法(线性规划法和随机规划法)、概率稀释模型法和未确 知数学法。解析了各类方法的基本思路、产生过程及应用进展,评述了各类方法的优缺点及适用范围。通过与国 外水环境容量计算方法的比较,基于水环境系统复杂性及中国水资源管理特点与应用需求,认为中国应强化对概 率稀释模型法、未确知数学法及随机规划法等3种方法的研究和改进。 关键词:地表水;水环境容量;计算方法;概率稀释模型;系统最优化;未确知数学 中图分类号:TV131,X143;G353.11文献标志码:A 文章编号:1001- 6791(2014)03-0451-13收稿日期:2013- 10-11;网络出版时间:2014-04-10网络出版地址:http ://https://www.docsj.com/doc/de6522918.html, /kcms /detail /32.1309.P.20140410.0950.010.html 基金项目:国家自然科学基金资助项目(51209230);水体污染控制与治理科技重大专项(2013ZX07501- 004)作者简介:董飞(1983—),男,山东淄博人,博士研究生,主要从事流域容量总量控制理论与方法等研究。 E-mail :dongfei99999@https://www.docsj.com/doc/de6522918.html, 通信作者:彭文启,E- mail :pwq@https://www.docsj.com/doc/de6522918.html, 环境容量是环境科学的基本理论问题之一,是环境管理的重要实际应用问题之一[1]。水环境容量是环 境容量的重要组成部分,是容量总量技术体系的核心内容之一。随着中国水环境管理体系从浓度控制、目标 总量控制向容量总量控制的转变,实现流域水质目标管理 [2]与水功能区限制纳污红线管理[3],水环境容量理论及计算方法研究的重要性更加凸显。 早在20世纪70年代后期,随着环境容量概念的引入,中国学者即开始了对水环境容量的研究[4]。在经 过短时期的对水环境容量基本概念的强烈争论后,迅速实现从基本理论到实际应用,从定性研究到定量化计 算的转变[5];同时注重吸收欧美等国的研究成果[6]。随着研究的不断深入,特别是水环境数学模型应用及 计算机技术的不断进步,逐渐形成了公式法 [7]、系统最优化法[5]、概率稀释模型法[6]、模型试错法[8]等计算方法,盲数理论等不确定性数学方法也引入其中[9]。在地表水方面,水环境容量计算中所用的水环境数学模型从Streeter- Phelps 简单模型[5]发展到WASP 、Delft 3D 等大型综合模型软件[10],计算区域从河段、河流发展到河口、湖库、河网、流域[11],计算维数从一维发展到二维和三维[12],计算条件从稳态发展到动 态[13],所针对的污染物从易降解有机物、重金属发展到营养盐等[7]。近年来,常见关于水环境容量总体研究进展的文献 [14-15],然而未有专门系统论述水环境容量计算方法研究进展的文献;同时,文献中通常将中国水环境容量计算方法分为3类或4类 [8,10],笔者认为这难以对水环境容量计算方法作全面概括,本研究旨在弥补这一不足。以地表水水环境容量为重点,兼顾海洋水环境容量,大量调研中外文献,系统研究中国在地表水水环境容量计算方面从起步到当前的各种方法;同时对照欧美国家的计算方法,对中国地表水水环境容量计算方法进行重新归类。在解析各类计算方法研究及应用情况的基础上,对各类计算方法的优缺点及适用范围作了评述。在比较分析国内外计算方法特征的基础上,结合各类计算方法对复杂水环境系统的适应性及中国水资源管理特点对水环境容量计算的需求,对中国今后地表水水环境容量计算方法的发展趋势作了展望。DOI:10.14042/https://www.docsj.com/doc/de6522918.html,ki.32.1309.2014.03.020

水环境容量估算

根据《规划环境影响评价技术导则 总纲》(HJ 130-2014),规划环评应“在充分考虑累积环境影响的情况下,动态分析不同规划时段可供规划实施利用的资源量、环境容量及总量控制指标”。本章就上述内容展开分析。 14.1 环境容量分析 14.1.1 水环境容量估算 《规划环境影响评价技术导则 总纲》(HJ 130-2014)中未详细给出环境容量的计算方法,故本次评价参考《开发区区域环境影响评价技术导则》(HJ /T 131-2003)附录B 的2.4条和2.5条,采用水质模型建立污染物排放和受纳水体水质之间的输入响应关系,并应考虑多点排污的叠加影响,以受纳水体水质按功能达标为前提,估算其最大允许排放量。 14.1.1.1 估算指标 按照各级环境保护规划,国家将化学需氧量(COD )、氨氮(NH 3-N )作为水污染物总量控制指标,因此本次水环境容量估算的指标也定为上述两项。 14.1.1.2 控制单元划分及其所对应的环境功能区划 水环境容量计算的控制单元一般是在综合考虑混合过程段长度及重点污染源排放口、大型水工构筑物、水质控制断面等因素的基础上进行划分。河流岸边排污的混合过程段长度计算采用如下公式: ()()()2 1 0065.0058.06.04.0gHI B H Bu a B L +-= 式中:L ——混合过程段的长度,m B ——河流宽度,m H ——平均水深,m I ——平均坡度,无量纲 u ——平均流速,m /s a ——排放口到岸边的距离,m

根据其水文参数,滃江干流枯水期岸边排放污染物情况的混合过程段长度计算结果如表14.1-1所示。 表14.1-1滃江干流岸边排放污染物情况的混合过程段长度计算一览表 清远华侨工业园的废水排放受纳水体最终均为滃江。根据调查,园区附近的滃江干流上主要建有3座低水头径流式水电站,分别为红桥水电站、英华水电站及狮子口水电站;此外,大镇水汇入口处为滃江干流的水质交界断面,该断面上游江段的水质控制目标为Ⅲ类,其下游江段的水质控制目标为Ⅱ类。清远华侨工业园内的东华镇污水处理厂排污口位于滃江一级支流虾公坑,规划建设的英华污水处理厂和五石污水处理厂排污口均拟设于省道347线跨江大桥至英华水电站之间的江段附近。根据上述情况,本次水环境容量估算的控制单元定为以下5段: (1)滃江干流自红桥水电站至省道347线跨江大桥之间的江段,河流长度约为6.3 km(因前述计算出的混合过程段长度约为4.6 km,故以下计算中本单元长度取为4.6 km),末端断面水质控制目标为Ⅲ类。 (2)滃江干流自省道347线跨江大桥至英华水电站之间的江段,河流长度约为4.5 km,末端断面水质控制目标为Ⅲ类。 (3)滃江干流自英华水电站至虾公坑汇入口之间的江段,河流长度约为4.9 km(因前述计算出的混合过程段长度约为4.6 km,故以下计算中本单元长度取为4.6 km),末端断面水质控制目标为Ⅲ类。 (4)滃江干流自虾公坑汇入口至大镇水汇入口之间的江段,河流长度约为3.4 km,末端断面水质控制目标为Ⅱ类。 (5)滃江干流自大镇水汇入口至楣头(该处有跨滃江桥梁)之间的江段,河流长度约为5.4 km(因前述计算出的混合过程段长度约为4.6 km,故以下计算中本单元长度取为4.6 km),末端断面水质控制目标为Ⅱ类。

全国水环境容量核定技术指南

全国水环境容量核定 技术指南 中国环境规划院 2003年9月

一、总论 ......................... 错误!未定义书签。 工作目标........................................ 错误!未定义书签。 工作内容........................................ 错误!未定义书签。 工作原则........................................ 错误!未定义书签。 时间要求........................................ 错误!未定义书签。 组织机构........................................ 错误!未定义书签。 工作成果........................................ 错误!未定义书签。 二、污染源调查 ................... 错误!未定义书签。 技术路线........................................ 错误!未定义书签。 水陆对应关系调查................................ 错误!未定义书签。 确定水域范围............................ 错误!未定义书签。 确定排污控制城镇........................ 错误!未定义书签。 确定排放去向............................ 错误!未定义书签。 基础数据调查.................................... 错误!未定义书签。 工业污染源调查.......................... 错误!未定义书签。 城市生活污染源调查...................... 错误!未定义书签。 农村生活污染源调查...................... 错误!未定义书签。 农田径流污染源调查...................... 错误!未定义书签。 畜禽养殖污染源调查...................... 错误!未定义书签。 城市径流污染源调查...................... 错误!未定义书签。 矿山径流(固体废物)污染源调查.......... 错误!未定义书签。 城市供排水管网及污水处理设施调查........ 错误!未定义书签。 入河排污口调查.......................... 错误!未定义书签。 数据计算分析.................................... 错误!未定义书签。 城市生活污染物排放量计算................ 错误!未定义书签。 农村生活污染物排放量计算................ 错误!未定义书签。

第四章地表水环境影响评价

第四章地表水环境影响评价 第一节地表水的污染和自净 地表水是河流、河口、湖泊(水库、池塘)、海洋和湿地等各种水体的统称,是地球水资源的重要组成部分。 一、地表水资源 地球水97%的水是海水,剩余3%的淡水中2.977%是以冰川或冰川的形式存在,只有0.003%的淡水是可为人类直接利用的,包括土壤水、可开采地下水、水蒸气、江河和湖泊水等。只要人类不过度开采和滥用并适当的保护,这些淡水资源通过水循环和自净过程还是可以满足人类对水的需求的。水循环过程示意图如图4-1. 二、水体污染 人类活动和自然过程的影响可使水的感官性状(色、嗅、味、透明度等)、物理化学性质(温度、氧化还原电位、电导率、放射性、有机和无机物质组分等)、水生物组成(种类、数量、形态和品质等),以及底部沉积物的数量和组分发生恶化、破坏水体原有的功能,这种现象称为水体污染。 按排放形式不同,将水体污染分为点污染源和非点污染源。 1.点污染源 是指由城市和乡镇生活污水和工企业通过管道和沟渠收集排入水体的废水。 居住区生活污水量Q s 计算式(4-1): Q s = 86400 s qNK(4-1) 式中:Q s ——居住区生活污水量,L/s; q ——每人每日的排水定额,L/(人.d); N——设计人口数 K s ——总变化系数(1.5~1.7)。] 工业废水Q s 按式(4-2)估算:

Q = t m M K i 3600 (4-2) 式中:m ——单位产品废水量,L/t ; M ——该产品的日产量,t; K i ——总变化系数,根据工艺或经验决定; t ——工厂每日工作时数,h. 某些工业的污染物排放系数见表4—1。 2. 非点污染源 又称面源,是指分散或均匀地通过岸线进入水体的废水和自然降水通过沟渠进入水体的废水。 (1) 城市非点污染源负荷估计:不同区域径流系数见表4-2 (2) 农田径流污染负荷估算 3.水体污染物 由点源和非源排入水体的主要污染物可分为:耗氧有机污染物、营养物、有机毒物、重金属、非金属无机毒物、病原微生物、酸碱污染物、石油类、热量和放射核素等。 三、水体自净 水体可以在其环境容量范围内,经过自身的物理、化学和生物作用,使受纳的污染物浓度不断降低,逐渐恢复原有的水质,这种过程叫水体自净。水体自净可以看作是污染物在水体中迁移、转化和衰减有过程。 1. 迁移和转化作用包括:推流迁移、分散稀释、吸附沉降等方面。 2. 衰减变化包括: (1) 污染物的好氧生化衰减过程 见图4-2; (2) 有机污染物的好氧生化降解 (3) 硝化作用 (4) 温度影响 (5) 脱氮作用 (6) 硫化物的反应 (7) 细菌衰减作用 (8) 重金属和有机毒物的衰减作用

第九章 水环境规划模型

第九章水环境规划 第一节规划的原则与依据 一、规划目标与水功能区划分 水环境规划的主要目标是通过对水污染物排放的合理组织与控制,保证水体的水质满足人类生活、生产,以及生态与景观的需求。一般说来,水环境规划是一个多目标规划,涉及生态环境、经济技术、社会生活的各个方面。作为一个具体规划,其主要的目标是水质和实现水质目标的费用。 人们对水质的需求体现在水功能区目标上。水功能区是指为满足水资源开发和有效保护的需求,根据自然条件、功能要求、开发利用现状,按照流域综合规划、水资源保护规划和经济社会发展要求,在相应水域按其主导功能划定并执行相应质量标准的特定区域。 地表水的水功能区一般分为水功能一级区和水功能二级区。水功能一级区分为保护区、缓冲区、开发利用区和保留区四类。在水功能一级区中的开发利用区中又可以划分为七类二级区,它们是:饮用水源区、工业用水区、农业用水区、渔业用水区、景观娱乐用水区、过渡区和排污控制区。每一类水功能区都对应特定的水质标准(表9-1)。 水功能区的划分是水环境质量标准在具体水域的具体应用,是水环境规划的依据。水功能区的划分需要遵循“自上而下”的原则,即从流域层次上制订宏观的功能区划,然后从区域或城市的角度制订具体的功能区划。

表9-1 水功能区划分的条件指标和水质标准 二、水环境容量与允许排放量 环境容量一词早先用于描述某一地区的环境对人口增长和经济发展的承载能力。20世纪70年代初,针对当时的环境污染和公害肆 一级区 二级区 区划条件 区划指标 执行水质标准 保护区 国家级、省级自然保护区;具有典型意义的自然生境;大型调水工程水源地;重要河流的源头 集水面积、水量、 调水量、水质级别 I ~Ⅱ级或维持现状 缓冲区 跨地区边界的河流、湖泊的边界水域;用水矛盾突出的地区之间的水域 省界断面水域;矛盾突出的水域 按实际需要执行相关标准或按现状控制 饮用水源区 现有城镇生活用水取水口较集中 的水域;规划水平年内设置城镇供水 的水域 城镇人口、取水量、取水口分布等 Ⅱ~Ⅲ类 工业用水区 现有或规划水平年内设置的矿企业生产用水集中取水地 工业产值、取水总囊、取水口分布等 Ⅳ类 农业用水区 现有或规划水平年内需要设置的农业灌溉集中取水地 灌区面积、取水总量、取水口分布等 V 类 开发利用区 渔业用水区 自然形成的鱼、虾蟹、贝等水生生物的产卵场、索饵场。越冬场及回游通道天然水域中人工营造的水生生物养殖场 渔业生产条件及 生产状况 《渔业水质标准》并参照执行Ⅱ~Ⅲ类 景观娱乐 用水区 休闲、度假、娱乐、水上运动所涉及的水域;风景名胜区所涉及的水域 景观、娱乐类型、 规模、用水量 执行《景观娱乐用 水水质标准》或Ⅲ~Ⅳ 类 过渡区 下游用水的水质高于上游水质状况,有双向水流且水质要求不同的相邻劝能区之间的水域 水质、水量 出流断面水质达到相邻功能区的水质要求 排污控制区 接受含可稀释、降解污染物的污水的水域;水域的稀释自净能力较 强,有能力接纳污水的水域 污水量、污水水质、排污口的分布 出流断面水质达到相邻功能区的水质要求 保留区 受人类活动影响较少、水资源开 发利用程度较低的水域;目前不具备开发条件的水域;预留今后发展的水资源区 水域水质及其周边的人口产值、用水量等 按现状水质控制

数学模型在水环境中的应用

江西理工大学题目 学模型在水环境中的应用 姓名:XXX 专业班级:XXX班 学号:XXXX 指导教师XXX老师 日期:XXX年XXX月 XXX 日

数学模型在水环境中的应用 摘要:水环境数学模型是十分重要的科学工具与技术手段。在水资源保护科研、评价与监测分析中应用,不但增加理论色彩,还可以提高成果水平。本文对常用各类数学模型进行了深入系统的理论解读与技术应用研究,明确指出,“模型”是十分有用的,但不是万能的,每种模型都有自己的使用范围与针对性,因此,选准模型,正确使用,至关重要。 关键词:水环境;数学模型;概述;理论解析 水环境数学模型可以描述水环境中物质混合、输移和转化的规律。它是在分析水环境中发生的物理、化学及生物现象基础上,依据质量、能量和动量守恒的基本原理,应用数学方法建立起来的模型。通过模型求解计算可以预报水文、水质在时间与空间上的变化,为水资源管理、规划、评价与控制服务。 1水环境数学模型概述 1.1水动力学模型 在1950年以前,数学模拟的基本理论已经建立,并运用这些理论解决过一些简单的工程问题。1952—1954年Isaacson和Twesch首次建立了俄亥俄河和密西西比河的部分河段数学模型,并进行了实际洪水过程的模拟。到20世纪中期,水动力学模型再次得到重视,随着计算机技术的发展,模型功能也在增加,可以对整个流域、洪泛区、已建或规划中的水利工程进行系统模拟。 1.2水质模型 Streefer和Phelps于1925年开发的,用于分析生活污水排入河流后对水中溶解氧的影响,即BOD/DO模型。O’connor在此基础上又开发了港湾的稳态BOD/DO模型及适用于河流的动态BOD/DO模型。Thomann采用有限差分法离散求解模型方程,使水质模型更好地反映河底高程及纵断面变化等水质特征。 20世纪70年代早期开发出水体富营养化模型,80年代以来,专家们又研究开发了反应毒性物质在水体中迁移转化的模型。 1.3数学模型分类 1)按解的过程可以分为确定性模型和随机模型。对一组给定的输入条件,确定性模型只给出一组确定值,这是一种使用最广泛的数学模型。随机性模型的输入是随机的,其解不具有唯一性。

水环境影响评价

某年产10万吨啤酒生产线项目环境影 ——地表水环境质量现状评价及环境影响预测与评价 工程分析见上部分 4 地表水环境质量现状及评价 4.1 区域水资源与污染源调查 舞阳县地表水资源比较丰富,境内大小河流11条,主要河流有沙河,澧河,三里河等,过境径流总水量年平均1.68亿立方米,合计水资源总量为2.65亿立方米。本工程的纳污水体三里河发源于漯河市境内的排涝泄洪道,河床窄,流量小,现主要接纳舞阳县城的生活污水和工业废水,为主要的排污河道。三里河出境后汇入洪河。2000年监测结果显示,该河流水质已超过Ⅴ类水质标准,呈有机污染型。 本区域的污染源除了生活污水之外,较大一部分是工业废水。工业废水以造纸废水为主,由于污水处理设施不当,经常有超标排污的现象,废水中污染物含量较高。区域中的75%的生活污水和除了万成纸业外的全部工业废水进入城市排水系统,经过排污总干渠汇入三里河,万成纸业的废水直接排入三里河。 4.2 地表水环境质量现状监测与评价 4.2.1 监测断面的布设 本项目所排放的废水经过排污总干渠汇入三里河。由于该区域拟建一污水处理厂,建成之后,县城中的生活污水和工业废水将经过处理之后排放,进入三里河。根据实地勘察,拟在三里河上布置三个监测断面,在排污总干渠上布设一个断面。具体监测断面的位置和功能情况见表9和图3。

4.2.2 监测因子 根据本工程的废水排放特点和地表纳污水体的污染现状,本次地表水现状监测选取PH,COD,BOD5,SS,NH3-N五项作为本次地表水环境质量现状的监测因子。监测结果见表10:

4.2.3 监测时间,频次 地表水环境质量现状监测时间为纳污水体的枯水期,连续监测三天,采集混合样品,每天报一组有效数据。 4.2.4 监测方法 监测方法执行《水和废水监测分析方法》,《环境监测技术规范》等有关监测技术要求。监测分析方法见表11。 4.2.5 评价因子 本次地表水环境质量现状评价因子确定为PH,COD,BOD 5,NH 3-N 共四项。 4.2.6 评价标准 本次地表水环境质量现状评价拟采用《地表水环境质量标准》(GB3838-2002)Ⅳ类水质标准。具体指标见表12: 4.2.7 评价方法 根据地表水环境质量现状监测结果,采用单因子指数法对地表水各评价因子进行评价。 单因子污染指数公式为:ij S =ij C /si C 式中,ij S ——某污染物的单项污染指数 ij C ——某污染物的实测浓度,mg/L si C ——某污染物的评价标准,mg/L PH 的标准指数为: j pH S =sd j pH pH --0.70.7 j pH ≤7.0;

智慧环保系统水环境适用模型分析

智慧环保系统 水环境适用模型分析 xxxx年xxx月

目录 1. 水环境污染扩散分析 (3) 1.1. 主要实现功能 (3) 1.2. 适用方法及模型 (4) 1.2.1. 水质水动力模型 (4) 1.2.2. 面源污染估算模型 (12) 1.2.3. 黑箱模型 (20) 2. 水环境点源污染消减分配 (20) 2.1. 实现功能 (20) 2.2. 适用模型及方法 (21) 3. 水环境质量分析 (21) 3.1. 实现功能 (21) 3.2. 适用模型及方法 (21) 3.2.1. QUASAR模型 (22) 3.2.2. FCWQA模型 (23) 4. 水环境流量调控分析 (23) 4.1. 实现功能 (23) 4.2. 适用模型及方法 (24) 4.2.1. 黑箱模型 (24) 4.2.2. 水动力模型 (24) 4.2.3. 多目标环境流量调控模型 (25) 5. 总结 (26)

智慧环保系统中水资源环境管理平台提供了水资源生态环境的监测、评价、预警、应急、规划等业务信息系统,实现了对水资源生态环境的智慧化管控,其平台系统中对水环境的污染扩散分析、点源污染消减分配、水环境质量分析、流量调控分析中涉及到了水环境模型的应用。 1.水环境污染扩散分析 建立水环境污染扩散分析模型,结合水质污染源排放清单、河流水文数据、地形结构数据等,对污染源进入水体后的污染扩散形式进行分析模拟预测,对可能出现水体水质超标的时段进行预警,为保护水体水质提供决策支持。 1.1.主要实现功能 1、河流污染源扩散轨迹模拟分析 根据排污数据对河流污染物的扩散轨迹进行模拟,分析水体中超标污染带的沿程推移速度和污染区间,预测不同时段水质变化趋势,为水环境风险管理及应急决策提供技术支持。 水质模拟 面源污染负荷估算 水污染风险预警 出境断面水质预测预报 2、水质污染溯源分析 对污染河段的水质污染物进行溯源分析,分析引起污染的可能因素及水质污染源排放的贡献率。 排放特征污染物企业筛查 重要支流筛查 水质水量平衡分析 重点污染源对断面水质贡献率分析 重点影响区域划分与显示

相关文档
相关文档 最新文档