文档视界 最新最全的文档下载
当前位置:文档视界 › 测量圆柱度误差的各种方法讲解

测量圆柱度误差的各种方法讲解

测量圆柱度误差的各种方法讲解
测量圆柱度误差的各种方法讲解

测量圆柱度误差的各种方法讲解

一、圆柱度

1. 圆柱度指圆柱面整个轮廓(圆柱面要素)的形状精度,即表示零件上圆柱面外形轮廓上的各点,对其轴线保持等距状况。圆柱度是限制实际圆柱面对理想圆柱面变动量的一项指标。

2.圆柱面要素几何特征:圆柱面要素至具有固定位置的直线(圆柱轴线)的距离为该要素的半径。实际圆柱面要素上各点的半径不相等时,说明实际要素存在形状误差。

3.实际圆柱面要素的形状误差,可分解为横向截面内的圆要素形状误差,轴向截面内直线要素的形状误差及相应直线间的平行度误差。因此,在圆柱度误差测量中,除了把握圆柱面要素的半径变化外,也可对圆柱面要素分解后,从各分项误差来反映圆柱面要素的形状误差。

二、圆柱度误差的评定原则

圆柱度误差是指实际圆柱面要素对其理想圆柱面的变动量。根据形状误差评定原则,实际圆柱面要素与理想原则面比较时,应根据实际圆柱面确定最小包容区域。当与圆柱度公差带形状一致的两同轴圆柱面紧紧包容实际圆柱面要素,及其半径差为最小值时,即为最小包容区域。

三、圆柱度检测原则

1、与理想要素比较原则

2、测量坐标值原则

3、测量特征参数原则

四、圆柱度测量方法

圆柱度测量方法主要有半径测量法,坐标测量法,二点法、三点测量法、分解测

量法、直接利用太友科技数据采集仪连接百分表测量法等。

五、测量方法简介

1、半径测量法

半径侧量法是确定被侧圆柱面相对于测量基准——回转轴线半径变化量的一种测量方法。它是按“与理想要素比较原则”拟定的检测方案。在测量时,以测头相对于被测圆柱面移动的轨迹,模拟理想圆柱面。半径变化量即是实际圆柱面上的采样点相对于理想圆柱面的偏离量。该法也可看作为在圆柱坐标系中按“测量坐标值原则”,对被测圆柱面测取采样点的坐标值。

(1)测量截面布置

圆柱面是连续的表面,不便于测遍整个表面,只有在被测表面上作离散的布点采样。为测量和数据处理上的需要,应对被侧表面布置侧量截面,再沿测量截面与被测表面的交线布置适当数量的采样点。从采样点获得的信息,反映被测表面的特征,并进而评定圆柱度误差。测量截面有以下三种类型。

①横向截面

横向截面是指垂直于被测圆柱面轴线的截面。如图1所示。为横向测量截面的两种布置方案。其中图1(a)为多个测量截面的布置方案,各个测量截面间作等间距布置,间距大小随被测圆柱面的长度和测量精度要求设定;图1(b)只在接近被测圆柱面的两端,各布置一个测量截面。

图1

②螺旋形截面

按适当大小的螺旋角,对被测圆柱面布置螺旋形测量截面,该截面与圆柱面的截交线为螺旋线,在螺旋线上布点采样。图2所示为螺旋形测量截面的两种布置方案。其中图2(a)布置了一个螺旋形测量截面;图2(b)布置了两个螺旋形测量截面。

图2

③横向与螺旋形截面相结合

在被测圆柱面上,以螺旋形测量截面为主,并辅以两个横向测量截面,如图3所示。其中图3(a)为单螺旋形测量截面与两个横向测量截面;图3(b)为双螺旋形侧量截面与两个横向测量截面。

图3

(2)测量装置

①用圆柱度仪测量

圆柱度仪是用半径测量法测量圆柱度的专用仪器。该仪器具有一个精密的回转轴系和一个平行于回转轴线的直线导向件联合构成。如图5所示。被测零件安装在具有高精度回转轴系的工作台上,由电机驱动作低速回转,回转编码器作同步回转,产生两种脉冲,一种作为数字化的调制信号,另一种作为控制测量系统的控制信号。控制器用来控制被测零件表面的测量范围。通过同步电机和电磁离合器驱动丝杆旋转,使测量系统的测头沿直线基准导板作缓慢而又协调的移动,传感器可随着一起作上下移动。由于被侧零件的回转和传感器的上下移动,传感器测头在被侧圆柱面上移动的轨迹为一螺旋线,以此体现理想圆柱面。当被测圆柱表面存在形状误差时,传感器测头沿被测圆柱表面径向摆动而发出信号,并与编码器发出的调制信号一起记录于数据记录器上。测量时,螺旋线的螺距大小可以按需要由控制器来调节。整个测量过程可以全部自动进行。通过测量,获得了被测圆柱表面上的一系列径向变化量,据此可进一步评定圆柱度误差值。

②用圆度仪测量

圆度仪具有精密的回转轴系,转台式圆度仪还具有支承测量架的垂直导轨,测量架可沿导轨作上下移动;转轴式圆度仪的主轴也可在一定范围内作上下移动。因此,从圆度仪的结构特点来看,具有类似圆柱度仪的功能。用圆度仪测量圆柱度,因受仪器功能的限制。故测量全过程不能连续进行,应布置横向测量截面进行测

量。测量时,将各横向测量截面内测得的轮廓形状误差,记录在同一张记录纸上,按记录下的重叠轮廓误差放大图像评定圆柱度误差。

2、坐标测量法

(1)直角坐标测量法

直角坐标测量法是在三维坐标测量系统中进行测量。图7所示,是在三维坐标测量系统中测量圆柱度的示意图。对被测圆柱面拟定若干等间距横向测量面,并由坐标z确定各测量截面的位置。在各测量截面内拟定一定数量的采样点数,由x-x,y-y坐标测量系统逐点进行采样,并记录其坐标值。在测量全过程中,被测零件和测头只作一次安装,以免由于多次安装而带来测量误差。

(2)圆柱坐标测量法

在圆柱坐标系内测量圆柱度时,需要一个回转分度装置,还需一个直线导向刻度装置,如图8所示。用分度装置指示被测零件在测量中回转的角度(极角)。直线导向刻度装置体现轴线方向和指示测量截面的位置。由指示器指示被测轮廓的径向变化量。

测量时,先对被测圆柱表面拟定若干个等间距横向测量截面,并在各测量截面内拟定一定数量的采样点。然后,在每一测量截面内依次逐点采样,并记录坐标值。根据各截面内测得的采样点圆柱坐标值,就可按需要求得圆柱度误差值。

3、两点、三点测量法

在圆柱度测量中,两点、三点法是根据检测原则3——测量特征参数原则确定的检测方案.该检测方案可以综合反映被测圆柱表面在横向截面内的圆度差,轴向截面内的素线相对于轴线的平行度误差,以及素线的直线度误差。

(1)两点测量法

两点测量法采用L形座测量装置,如图9所示.L形座的长度应不短于被测圆柱面的长度,其垂直面是为了测量方便而设置,反映被测圆柱表面的形状误差,是由水平方向的工作面与指示器来实现。

测量时,被测零件安放在L形座上,并靠紧其垂直面。拟定若干个横向测量截面后,用指示器在横向测量截面内进行测量。在每一个测量截面内进行测量时,被测零件在L形座上回转一周,并记录指示器所指示的最大值和最小值。两点测量法的特点是以直径差来反映被测圆柱面的形状误差。由于横向截面内的圆度误差和轴向截面内的素线平行度误差,都是由被测圆柱表面的半径变化量所形成,故由测得的最大示值与最小示值差之半为圆柱度误差值。

(2)三点测量法

圆柱度的三点测量法,采用v形座测量装置,如图10所示。v形座的长度应不短于被测圆柱表面的长度。这样,可以综合反映横向截面内的圆度误差和轴向截面内的素线平行度误差。

测量时,通常运用具有不同夹角的两个v形座进行组合测量。被测零件由v形座支承后,在被测圆柱表面的若干横向截面内进行测量,被测零件回转一周中,记录该横向截面内指示器所指示的最大示值和最小示值。在各截面内测量完毕后,取最大值和最小值差的一半为圆柱度误差。因在两个不同夹角的v形座上分别进行测量,故将获得不同的圆柱度误差值,取两者中数值较大者为被测圆柱表面的圆柱度误差值。

两点、三点测量法所用测量设备简单,方法也简便易行,尤其在生产车间进行测量更有实用价值。但该种测量方法受L形座和V形座功能上的限制,故只适用于测量外表面的圆柱度。

按图2所示方法测出各给定横截面内零件回转一周过程指示表的最大示值与最小示值的一半作为圆柱度误差值。

4、分解测量法

分解测量法是按圆柱度误差的构成分别进行测量的方法,即分别测量横向截面内轮廓的圆度误差,轴向截面内的素线对轴线的平行度误差和素线的直线度误差,然后将分项的误差进行叠加,从而获得被测表面的圆柱度误差。

(1)外表面分解测量法

对于外表面的圆柱度。可在V形座上进行分解测量,确定圆度误差和素线对轴线的平行度误差。

①分项测量

作分项测量时有两种方案,其一为在若干横向截面内测量圆度误差.同时分解出素线对轴线的平行度误差;其二,在横向截面内测量圆度误差,并在轴向截面内测量素线对轴线的平行度误差,按某一横向测量截面,当被测零件在V形座上回转时找出该截面轮廓的最高点,过最高点的轴向截面内布点采样,对各采样点处测得的示值中取最小示值为最低点。

②叠加评定圆柱度误差

由被测零件上的最小直径处的圆度误差值和素线对轴线的平行度误差值,经叠加后即为被测圆柱表面的圆柱度误差。

(2)内表面分解测量法

测量内表面时,在被测圆柱表面的最小直径处的横向截面内测量轮廓的圆度误差;在轴向截面内测量素线对轴线的平行度误差。两项误差经叠加后求得圆柱度误差。

①分项测量

a.测量素线平行度误差

b.测量圆度误差

②用叠加法求圆柱度误差

圆柱度误差为被测内表面最小直径处的圆度误差值,以及素线对轴线的平行度误差值两者叠加而得。

5、利用数据采集仪连接百分表法

测量仪器:偏摆仪、百分表、太友科技QSmart 数据采集仪。

测量原理:数据采集仪会从百分表中自动读取测量数据的最大值跟最小值,然后由数据采集仪软件里的计算软件自动计算出所测产品的圆柱度误差,最后数据采集仪会自动判断所测零件的圆柱度误差是否在圆柱度范围内,如果所测圆柱度误差大于圆柱度公差值,采集仪会自动发出报警功能,提醒相关操作人员该产品不合格。

测量效果示意图:

利用数据采集仪连接百分表来测量圆柱度误差值的优势:

1)无需人工用肉眼去读数,可以减少由于人工读数产生的误差;

说明:由于测量圆柱度误差值时,需要测量到最大值跟最小值,最后的圆柱度值由最大值减去最小值,最终才得出圆柱度误差值,但是如果由人工去读数时,很难直接判断出哪次是最大值,哪次是最小值,这就需要多次去测量去判断,这样就很容易判断错误,而且当一台偏摆仪一次性连接几个百分表来同时测量时,那工作量会更大,更容易出错。直接利用数据采集仪连接百分表,采集仪就会自动读取测量的最大值跟最小值,完全不需要人工去操作。

2)无需人工去处理数据,数据采集仪会自动计算出圆跳动误差值。

说明:圆柱度误差计算公式已嵌入数据采集仪软件中,当测量完毕后数据采集仪会马上计算出圆柱度误差值,无需人工再去把测量的数据输入电脑进行数据分析计算,可以减少人工计算数据的繁琐工作,而且测量效率高。

3)测量结果报警,一旦测量结果不在圆跳动公差带时,数据采集仪就会自动报警。

说明:只有当所测量的圆柱度误差值小于轴类零件的圆柱度公差值时,该零件才算符合生产要求,才算合格,反之则不合格。一旦测量结果大于圆柱度公差值时,数据采集仪就会发出报警功能,提醒相关人员该零件不符合生产规格要求,需要进一步去完善,这就可以进一步提高测量效率。

以上讲述了圆柱度误差的几种常用的测量方法,在实际测量中还要根据实际情况和设备选择合适的测量方法,但最终目的都是尽可能的减小圆柱度误差,在节约成本的情况下,提高圆柱度的精度,达到生产所需要的精度值,其中在所有圆柱度测量方法中,最后一种利用数据采集仪连接百分表来测量是操作最简单,效率最高一种方法。

测量误差的分类1

测量误差的分类,表示方法及检测仪表的品质指标 测量误差: 定义:由仪表读得的被测参数的真实值之间,总是存在一定的差距,这种差距称为测量误差。 分类:(1)系统误差 这种误差的大小和方向不随时间测量过程而改变,这种误差是可以避免的。 (2)疏忽误差 测量者在测量过程中疏忽大意所致,这种误差也可以避免。 (3)偶然误差 这种误差是由一些随机的偶然原因引起的,亦称随机误差。它不易被发觉和修正。 偶然误差的大小反映了测量过程的精度。 表示方法: 式中△ —— 绝对误差 X ——被校表的读数值 X 0——标准表的读数值 Λ——仪表在X 0相对误差 检测仪表的品质指标: 常见的指标简介如下: (1)检测仪表的准确度(精确度) б={△max/(标尺上限值-标尺下限值)}×100% б——相对百分误差 △max ——绝对误差 允许误差是指在规定的正常情况下允许的相对百分误差的最大值,即 б允=±{仪表允许的最大绝对误差值/(标尺上限值-标尺下限值) }×100% б允越大,准确度越低,б允 越小,仪表的准确度越高。

一般数值越小,仪表的准确度等级越高。 (2)检测仪表的恒定度 恒定度常用变差(回差)来表示 变差={最大绝对差值/(标尺上限值-标尺下限值) }×100% (3)灵敏度与灵敏限 S=Δα/Δx 式中S——仪表灵敏度 Δα——指针的线位移或角位移 Δx——引起Δα所需的被测参数变化量 (4)反应时间 仪表反应时间的长短,实际上反映了仪表动态特征的好坏。 (5)线性度 线性度用来说明输出量与输入量的实际关系曲线偏离直线的程度。 线性度常用实际测得的输入-输出特征曲线(称为标定曲线)与理论拟合直线之间的最大偏差与检测仪表满量程输出范围之比的百分数来表示,即 б?=(△?max /仪表量程)×100% 式中б?——线性度(非线性误差) Δ?max——标定曲线对理论拟合直线的最大偏差 (6)重复性 重复性表示检测仪表在被测参数按同一方向作全程连续多次变动时所得标定特性曲线不一致的程度。 бz =(Δz max/仪表量程)×100% 式中бz——重复性误差 Δz max—同方向多次测量时仪表表示值得最大偏差值

测量误差的分类以及解决方法

测量误差的分类以及解决方法 1、系统误差 能够保持恒定不变或按照一定规律变化的测量误差,称为系统误差。系统误差主要是由于测量设备、测量方法的不完善和测量条件的不稳定而引起的。由于系统误差表示了测量结果偏离其真实值的程度,即反映了测量结果的准确度,所以在误差理论中,经常用准确度来表示系统误差的大小。系统误差越小,测量结果的准确度就越高。 2、偶然误差 偶然误差又称随机误差,是一种大小和符号都不确定的误差,即在同一条件下对同一被测量重复测量时,各次测量结果服从某种统计分布;这种误差的处理依据概率统计方法。产生偶然误差的原因很多,如温度、磁场、电源频率等的偶然变化等都可能引起这种误差;另一方面观测者本身感官分辨能力的限制,也是偶然误差的一个来源。偶然误差反映了测量的精密度,偶然误差越小,精密度就越高,反之则精密度越低。 系统误差和偶然误差是两类性质完全不同的误差。系统误差反映在一定条件下误差出现的必然性;而偶然则反映在一定条件下误差出现的可能性。 3、疏失误差 疏失误差是测量过程中操作、读数、记录和计算等方面的错误所引起的误差。显然,凡是含有疏失误差的测量结果都是应该摈弃的。 解决方法: 仪表测量误差是不可能绝对消除的,但要尽可能减小误差对测量结果的影响,使其减小到允许的范围内。 消除测量误差,应根据误差的来源和性质,采取相应的措施和方法。必须指出,一个测量结果中既存在系统误差,又存在偶然误差,要截然区分两者是不容易的。所以应根据测量的要

求和两者对测量结果的影响程度,选择消除方法。一般情况下,在对精密度要求不高的工程测量中,主要考虑对系统误差的消除;而在科研、计量等对测量准确度和精密度要求较高的测量中,必须同时考虑消除上述两种误差。 1、系统误差的消除方法 (1)对测量仪表进行校正在准确度要求较高的测量结果中,引入校正值进行修正。 (2)消除产生误差的根源即正确选择测量方法和测量仪器,尽量使测量仪表在规定的使用条件下工作,消除各种外界因素造成的影响。 采用特殊的测量方法如正负误差补偿法、替代法等。例如,用电流表测量电流时,考虑到外磁场对读数的影响,可以把电流表转动180度,进行两次测量。在两次测量中,必然出现一次读数偏大,而另一次读数偏小,取两次读数的平均值作为测量结果,其正负误差抵消,可以有效地消除外磁场对测量的影响。 2、偶然误差的消除方法 消除偶然误差可采用在同一条件下,对被测量进行足够多次的重复测量,取其平均值作为测量结果的方法。根据统计学原理可知,在足够多次的重复测量中,正误差和负误差出现的可能性几乎相同,因此偶然误差的平均值几乎为零。所以,在测量仪器仪表选定以后,测量次数是保证测量精密度的前提。 . 容:

测量气缸圆度圆柱度的方法及步骤

测量气缸圆度、圆柱度的方法及步骤 ①准备清洗干净的持修气缸体一台,与其内径相适应的外径千分尺、量缸表及清洁工具等。 ②将气缸孔内表面擦试洁净。 ③安装、校对量缸表。 ④用量缸表测量气缸孔第一道活塞环上止点处于平行于曲轴轴线方向的直径,记入检测记录。 ⑤在同一剖面内测量垂直于曲轴轴线方向的直径,记入检测记录。 ⑥上述两次测量值之差的一半即为该剖面的圆度误差。 ⑦用上述方法测量气缸孔第一道活塞环上止点至最后一道活塞环下止点行程的中部,将这一横剖面的圆度误差,记入检测记录。 ⑧用同样方法测量距气缸孔下端以上30mm左右处横剖面的圆度误差,记入检测记录。 ⑨三个圆度误差值中,最大值即为该气缸孔的圆度误差。 ⑩上述3个测量横剖面,6个测量值,其中最大值与最小值之差的一半,即为该气缸孔的圆柱度误差。 11上述方法只适用于待修或在用气缸套筒的一般检测。如要取精确测值,则应选多个横剖面、纵剖面测量,而且在对同一横剖面、纵剖面上进行多点测量,方能检测出圆度、圆柱度误差的值。 12气缸磨损圆柱度达到0.174~0.250mm或圆度己达到0.050~0.063mm(以其中磨损量最大一个气缸为准)送大修。

JT3101-81中规定:磨缸后,干式气缸套的气缸圆度误差应不大于0.005mm,圆柱度误差不大于0.0075mm湿式气缸套的气缸的圆柱度误差应不大于 0.0125mm. 13确定修理尺寸:气缸磨损超过允许限度或缸壁上有严重的刮伤、沟槽和麻点,均应采取修理尺寸法将气缸按修理尺寸搪削加大。 气缸修理尺寸的确定方法:先测量磨损最大的气缸最大磨损直径,加上加工余量(以直径计算一般为0.1~0.2mm),然后选取与此数值相适应的一级修理尺寸。 当策动机气缸圆度,圆柱度误差超过规定的标准时,如汽油机的圆度误差超过0.05mm 或者圆柱度误差超过 0.20mm 时,联合最大磨耗尺寸视情进行修理尺寸法镗缸或者更换缸套修理用量缸表测量气缸圆度误差,在同一横向截面内,在平行于曲轴轴线方向和垂直于曲轴轴线方向的两个方位进行测量,测得直径差之半即为该截面的圆度误差沿气缸轴线方向测上、中、下三个截面,如图3-40所示上面至关于活塞上止点第一道活塞环相对应的气缸处;中间取气缸中部;下面取活塞下止点时最下一道活塞环对应的气缸位置 测得的最大圆度误差即为该气缸的圆度误差测量气缸圆柱度误差凡是用量缸表在活塞行程内一股取上中下三处(如图3-41所示)气缸的各个方向测量,找出该缸磨耗的最大处气缸磨耗最大直径与活塞在下止点时活塞环运动地区范围以外,即距气缸套下部平面10MM范围内的气缸最小内径的差值的半壁,就是该气缸的圆柱度误差 图:测量气缸磨耗量 图:在活塞行程上、中、下三处测量气缸图:测量气缸磨耗量图:在活塞行程上、中、下三处测量气缸气缸磨耗的测量要领凡是用量缸表对气缸磨耗进行测量具体测量要领如下: 1 .把内径百分表装在表杆的上端,并使表盘朝向测量杆的勾当点,以便于观察,使表盘的短针有 1-2mm 的压缩量

实验四 圆度误差的测量

实验四圆度误差的测量 一.实验目的 1.了解光学分度头、电感测微仪的工作原理和使用方法; 2.学会用光学分度头、电感测微仪测量圆柱体的圆度; 3.学会用最小二乘法、最小区域法处理测量的实验数据。 二.测量对象 φ22、公差等级8级、圆度误差9um的圆柱体工件 三、测量仪器 仪器名称:光学分度头、电感测微仪刻度值:6′′,1um 仪器测量范围:360°,±30um 四、测量原理 1、最小包容区法 最小包容区法是以最小区域圆为评定基准圆来评定圆度误差,最小区域圆是包容被测圆的轮廓且半径差Δr为最小的两同心圆。它符合最小条件,所评定的圆度误差值(两同心最小区域的半径差)最小。此方法的特征是用两同心圆包容被测实际圆时,至少应有内外交替的四点接触。 当被测圆的实际轮廓曲线已绘出,则可用以下方法来确定最小区域圆和圆度误差值。 (1)模板比较法 将绘好的被测实际圆轮廓的图形放在有光学放大装置的仪器的投影屏上看,再将刻有一组等间距同心圆的透明模板紧贴在图形上面。调整仪器投影的放大倍率,是其中两同心圆恰好包容被测实际圆图形,并且至少有四个内外相间的接触点a,c与b,d则模板上此两包容圆即为最小区域圆。其半径差Δr除以图形的放大倍率M,即为符合最小包容区的圆度误差值。 f=Δr/M (2)作图法 用作图法可逐步寻找最小区域圆心,其方法如下: ①在实际圆轮廓图形的中心附近任意找一点O1,以O1为圆心,找图形上的最远 点A并以O1 A为半径作圆Ⅰ,将实际圆的图形全部包容在内。 ②在O1 A的连线或延长线上找第二个圆心O2,要使以O2为圆心,以O1 A为半 径所做的圆Ⅱ,能通过实际圆图形上的另一点,即O1 A=O2B,并仍将实际圆的图形全部包容在内,O2点为AB连线的垂直平分线与O1 A的交点。 ③在被直线AB分成两部分ACB和ADC的图形上,各找一至圆Ⅱ的距离为最大的 点。 ④作CD连线的垂直平分线与AB连线的垂直平分线相交于O点,O点即为所搜 寻的最小区域圆的圆心。 ⑤以O为圆心,以OA和OC为半径作两同心圆,即为最小区域圆,全部实际圆 轮廓都应包容子啊此两同心圆内,此两同心圆的半径差Δr为圆度误差值。 (3)计算法

实验一 圆度与圆柱度误差测量

实验一圆度与圆柱度误差测量 一、实验目的 1.掌握圆度误差及圆柱度误差的测量方法; 2.学会对测量数据的处理,加深对基本概念的理解; 3.了解测量工具结构并熟悉它的使用方法。 二、圆度与圆柱度误差测量原理 1.圆度误差及测量、评定方法 圆度误差为包容同一横截面实际轮廓,且半径差为最小的两同心圆间的距离f,如图1.1所示。 圆度误差最小包容区域的判别方法是:由两同心圆包容 被测实际轮廓时,至少有4个实测点内、外相间地在两个圆 周上(即同心圆的内、外接点至少两次交替发生),如图1.1 所示。圆度误差最小区域的同心圆圆心,通常是和零件的测 量回转中心不一致。图中,O点是测量时的回转中心,O’ 测量点是圆度误差的评定中心。 测量圆度误差的方法,主要有:圆度仪测量,两点法测量圆 度误差,三点法测量圆度误差。这里只介绍两点法测量圆度 误差。 两点法测量圆度误差(检测方案代号:3—3) 用千分尺在垂 直于轴线的固定截面的直径方向进行测量,测量截面一周中直径最大差一半即为单个截面的圆度误差。如此测量若干个截面。取其最大的误差值作为该零件的圆度误差。 2.圆柱度误差 圆柱度误差是指包容实际表面且半径差为最小的两同轴圆柱面间的半径差f。圆柱度误差综合地反映了圆柱面轴线的直线度误差、圆度误差和圆柱面相对素线间的平行度误差。用它来综合评定圆柱面的形状误差是比较全面的,常用在精度要求比较高的圆柱面。 3.圆柱度误差的检测与评定方法 圆柱度误差的评定方法有:(1)用圆度仪测量,(2)用两点法测量。这里只介绍两点 法测量圆度误差。 ‘ 测量时,将被测件放在精确平板上,并紧靠直角座;在被测件回转一周过程中,测量一个横截面上的最大与最小读数差;如此测量若干个横截面,然后取整个测量过程中,所有读数中的最大与最小读数差的一半作为图1.3 两点法测量圆柱度误差

误差及其表示方法

误差及其表示方法 误差——分析结果与真实值之间的差值( > 真实值为正,< 真实值为负) 一. 误差的分类 1. 系统误差(systermaticerror )——可定误差(determinateerror) (1)方法误差:拟定的分析方法本身不十分完善所造成; 如:反应不能定量完成;有副反应发生;滴定终点与化学计量点不一致;干扰组分存在等。 (2)仪器误差:主要是仪器本身不够准确或未经校准引起的; 如:量器(容量平、滴定管等)和仪表刻度不准。 (3)试剂误差:由于世纪不纯和蒸馏水中含有微量杂质所引起; (4)操作误差:主要指在正常操作情况下,由于分析工作者掌握操作规程与控制条件不当所引起的。如滴定管读数总是偏高或偏低。 特性:重复出现、恒定不变(一定条件下)、单向性、大小可测出并校正,故有称为可定误差。可以用对照试验、空白试验、校正仪器等办法加以校正。 2. 随机误差(randomerror)——不可定误差(indeterminateerror) 产生原因与系统误差不同,它是由于某些偶然的因素所引起的。 如:测定时环境的温度、湿度和气压的微小波动,以其性能的微小变化等。 特性:有时正、有时负,有时大、有时小,难控制(方向大小不固定,似无规律) 但在消除系统误差后,在同样条件下进行多次测定,则可发现其分布也是服从一定规律(统计学正态分布),可用统计学方法来处理 系统误差——可检定和校正 偶然误差——可控制

只有校正了系统误差和控制了偶然误差,测定结果才可靠。 二. 准确度与精密度 (一)准确度与误差(accuracy and error) 准确度:测量值(x)与公认真值(m)之间的符合程度。 它说明测定结果的可靠性,用误差值来量度: 绝对误差 = 个别测得值 - 真实值 (1) 但绝对误差不能完全地说明测定的准确度,即它没有与被测物质的质量联系起来。如果被称量物质的质量分别为1g和0.1g,称量的绝对误差同样是0.0001g,则其含义就不同了,故分析结果的准确度常用相对误差(RE%)表示: (2) (RE%)反映了误差在真实值中所占的比例,用来比较在各种情况下测定结果的准确度比较合理。 (二)精密度与偏差(precision and deviation) 精密度:是在受控条件下多次测定结果的相互符合程度,表达了测定结果的重复性和再现性。用偏差表示: 1. 偏差 绝对偏差:(3) 相对偏差:(4) 2. 平均偏差 当测定为无限多次,实际上〉30次时: 总体平均偏差(5) 总体——研究对象的全体(测定次数为无限次) 样本——从总体中随机抽出的一小部分 当测定次数仅为有限次,在定量分析的实际测定中,测定次数一般较小,<20

测量误差与精度

5.5.1 测量误差与精度 1. 测量误差的含义及表示方法 测量误差是测量结果与被测量的真值之差。由于测量误差的存在,被测量的真值是不能准确得到的。实用中,一般是以约定真值或以无系统误差的多次重复测量值的平均值代替真值。 测量误差有绝对误差和相对误差之分。 上述定义的误差称为绝对误差。即 = - (5-3) 绝对误差可能是正值或负值。被测尺寸相同的情况下,绝对误差大小能够反映测量精度。被测尺寸不同时,绝对误差不能反映测量精度。这时,应用相对误差的概念。 相对误差是指绝对误差的绝对值与被测量真值之比,即 (5-4) 2. 测量的精确度 测量的精确度是测量的精密度和正确度的综合结果。测量的精密度是指相同条件下多次测量值的分布集中程度,测量的正确度是指测量值与真值一致的程度。下面用打靶来说明测量的精确度: 把相同条件下多次重复测量值看作是同一个人连续发射了若干发子弹,其结果可能是每次的击中点都偏离靶心且不集中,这相当于测量值与被测量真值相差较大且分散,即测量的精密度和正确度都低;也可能是每次的击中点虽然偏离靶心但比较集中,这相当于测量值与被测量真值虽然相差较大,但分布的范围小,即测量的正确度低但精密度高;还可能是每次的击中点虽然接近靶心但分散,这相当于测量值与被测量真值虽然相差不大但不集中,即测量的正确度高但精密度低;最后一种可能是每次的击中点都十分接近靶心且集中,这相当于测量值与被测量真值相差不大且集中,测量的正确度和精密度都高,即测量的精确度高。 5.5.2 测量误差的来源及减小测量误差的措施 测量误差直接影响测量精度,测量误差对于任何测量过程都是不可避免的。正确认识测量误差的来源和性质,采取适当的措施减小测量误差的影响,是提高测量精度的根本途径。测量误差主要来源于以下几个方面:

圆柱度误差测量方法讲解

圆柱度误差测量方法讲解

圆柱度 指在垂直于回转体轴线截面上,被测实际圆(柱)对其理想圆(柱)的变动量,以形成最小包容区域的两同心圆(柱)面的半径差计算。常用的近似测量方法有两点法、三点法、坐标测量法等。 1、两点法 按图1所示方法测出各给定横截面内零件回转一周过程指示表的最大示值与最小示值,并以所有各被测截面示值中的最大值与最小值的一半作为圆柱度误差值。 图1 2、三点法 按图2所示方法测出各给定横截面内零件回转一周过程指示表的最大示值与最小示值的一半作为圆柱度误差值。 图2

3、三坐标测量法 通常是在三坐标测量机上按要求测量被测零件各横截面轮廓各测点的坐标值, 再利用相应的计算机软件计算圆柱度误差值。 利用圆度仪测量圆柱度时, 将被测圆柱体工件沿垂直轴线分成数个等距截面放在回转台上, 回转台带动工件一起转动; 3个传感器安装在导轨支架上, 并可沿导轨做上下的间歇移动, 逐个测量等距截面, 获取含有混合误差的原始信号(测量原理图如图3所示)。测量传感器拾取的原始信号中不仅包含有被测工件的各个截面的圆度误差母线的直线度误差, 而且还含混入了导轨的直行运动误差及回转台的回转运动误差。将上述误差相分离, 并依据最小二乘圆心进行重构出实际圆柱面轮廓, 然后采用国标规定的误差评定方法得到被测圆柱面的圆柱度误差。 图3 三坐标测量机(Coordinate Measuring Machine, CMM) 是指在一个六面体的空间范围内,能够表现几何形状、长度及圆周分度等测量能力的仪器,又称为三坐标测量仪或三次元。 三坐标测量机能够在用测头所确定的三维空间(xyz空间)坐标系内, 由光学刻尺或激光干涉仪进行测量。通过测头和测量对象的接触, 由测头的坐标来获取对象的形状信息。 三坐标测量机通常由本体、侧头、各轴移动量的测量、显示装置、电子计算机及其外围设备、驱动控制部分以及软件等构成。

测量误差及其处理的基本知识

第五章 测量误差及其处理的基本知识 1、测量误差的来源有哪些?什么是等精度测量? 答:测量误差的来源有三个方面:测量仪器的精度,观测者技术水平,外界条件的影响。该三个方面条件相同的观测称为等精度观测。 2、什么是系统误差?什么是偶然误差?它们的影响是否可以消除? 答:系统误差是指在相同的观测条件下对某量作一系列的观测,其数值和符号均相同,或按一定规律变化的误差。偶然误差是指在相同的观测条件下对某量作一系列的观测,其数值和符号均不固定,或看上去没有一定规律的误差。系统误差的影响采取恰当的方法可以消除;偶然误差是必然发生的,不能消除,只能削弱偶然误差的影响。 3、举出水准测量、角度测量及距离测量中哪些属于系统误差? 答:水准仪的i 角误差,距离测量时钢尺的尺长误差,经纬仪的视准轴误差、横轴误差和竖盘指标差等都属于系统误差。 4、评定测量精度的指标是什么?何种情况下用相对误差评定测量精度? 答:测量中最常用的评定精度的指标是中误差,其绝对值越大精度越低。当误差大小与被量测量的大小之间存在比例关系时,采用相对误差作为衡量观测值精度的标准。例如距离丈量,采用往返丈量的相对误差作为评定精度的指标。 所谓相对中误差(简称相对误差)就是中误差之绝对值(设为|m|)与观测值(设为D )之比,并将分子化为1表示K =| |/1||m D D m = 。 5、观测值中误差如何计算? 答:设在相同条件下对某量进行了n 次观测,得一组观测值L 1、L 2、……Ln ,x 为观测值的算术平均值, i v 表示观测值改正数,即 11L x v -= 22L x v -= ...... n n L x v -= 则中误差 [] 1-±=n vv m 6、算术平均值及其中误差如何计算?

实验二 轴类零件的圆度和圆柱度误差的测量

实验二轴类零件的圆度和圆柱度误差的测量 一、实验目的 1.掌握圆度误差及圆柱度误差的测量方法; 2.学会对测量数据的处理,加深对基本概念的理解; 3.了解测量工具结构并熟悉它的使用方法。 二、实验内容 利用XW-250-1型多功能形位误差分选仪测量圆度和圆柱度。 三、计量器具及测量原理 (一)计量器具 1、形位误差测量仪 仪器工作原理: 以顶尖支承定位被测零件,被测件回转时各测点位置可由仪器刻度盘读出;装在拖板上的传感器可由齿轮齿条机构带动,沿仪器侧导轨作平行于顶尖轴线的直线运动,其测头的轴向位 置可由仪器上的刻度尺读出。 2、电感测微仪 电感测微仪是一种能够测量微小尺寸变化的精

密测量仪器。 3、多功能便携式形位数据采集器 实现测量时数据的半自动采集。数据采集器接受电感测微仪模拟量输入并进行模数转换。 4、各部分的连接 (二)测量原理: 1.圆度误差及测量、评定方法 圆度误差为包容同一横截面实际轮廓,且半径差为最小的两同心 圆间的距离f,如图1.1所示。 测量方法采用半径法。 圆度误差最小包容区域的判别方法是:由两同心圆包容被测实际 轮廓时,至少有4个实测点内、外相间地在两个圆周上(即同心圆的内、 外接点至少两次交替发生),如图1.1所示。圆度误差最小区域的同心圆圆心,通常是和零件的测量回转中心不一致。图中,O点是测量时的回转中心,O’测量点是圆度误差的评定中心。 其评定方法有:最小二乘圆法和最小区域法。

最小平方中心法,也叫最小二乘圆中心法(LSC):最小二乘圆是穿过被测截面轮廓的理想圆,从被测实际轮廓上各点至该理想圆的径向距离的平方和应为最小值。以最小二乘圆中心为中心,做两个包容实际轮廓的同心圆,取二圆的半径差为圆度误差。此法适用于具有精密回转轴(或转台),其测量头可描绘出理想圆的检测仪器的评定,如圆度仪。评定对象适用于圆度、同心度等。 最小区域法(MZC):指包容圆柱面之间的区域,适用于具有精密回转轴(或转台),其测量头可描绘出理想圆的检测仪器,如圆柱度仪。评定对象适用于圆柱度、同轴度等。 2.圆柱度误差 圆柱度误差是指包容实际表面且半径差为最小的两同轴圆柱面间的半径差f。圆柱度误差综合地反映了圆柱面轴线的直线度误差、圆度误差和圆柱面相对素线间的平行度误差。用它来综合评定圆柱面的形状误差是比较全面的,常用在精度要求比较高的圆柱面。 测量方法采用半径法。 其评定方法有:最小二乘法和最小区域法。 四、实验步骤 1.采集器与有关设备的连接 2.开机、时间设定及复位 采集器开机后,无论处于何种工作状态需要复位时,按“复位”键即可,此时各位显示窗均显示“一”号。 3.测量仪器选定 按“仪器”键,在第二位显示窗上依次循环显示“A”、“B”、“C”、“D”字符,各字符表示所用的测量仪器,其含义为: A —电感测微仪(可用于测量圆度、圆柱度、圆跳动、全跳动)

圆柱度、圆度、圆跳动、全跳动区别

路漫漫其修远兮,吾将上下而求索- 百度文库 圆柱度公差是限制实际圆柱面相对于理想圆柱面的变动。它表示实际圆柱面必须位于半径公差给定的两个同轴圆柱面之间 径向全跳动是被测表面绕基准轴线连续回转时,在整个圆柱面上所允许的最大跳动量。它表示被测表面绕基准轴线连续回转时,同时百分表相对于圆柱面作轴向移动,在整个圆柱面上的径向跳动量不得大于给定公差值 疑问:假如说一个圆柱面,它的径向全跳动公差和圆柱度公差都是0.05 我是这么想的:既然圆柱度公差0.05表示实际圆柱面必须位于半径公差0.05的两个同轴圆柱面之间,那么它在整个圆柱面上的径向跳动量一定也不会大于0.05.这样的话圆柱度和径向全跳动还有什么区别? 简单地讲圆柱度就是单讲圆柱外表面的实际轮廓与理想轮廓的差异,就是假想用最大极限与最小两个极限两个圆柱来限定实际圆柱的轮廓范围,超出这个范围就不合格。指圆柱外形的要求。 跳动时一项综合性的误差项目,反映被测要素的形状和位置误差。 他们的区别是:全跳动公差带与圆柱度公差带相同,可以利用全跳动公差控制圆柱度误差。还能反映出端面、圆柱面对于基准轴的垂直、平行误差。 总的来讲,全跳动测量比圆柱度测量要全面,甚至可以包括他。 圆跳动和全跳动的差别: 跳动的分类:可分为圆跳动和全跳动. 圆跳动:是指被测实际表面绕基准轴线作无轴向移动的回转时,在指定方向上指示器测得的最大读数差. 全跳动:是指被测实际表面绕基准轴线无轴向移动的回转,同时指示器作平行或垂直于基准轴线的移动,在整个过程中指示器测得的最大读数差. ********圆度与圆跳动的区别,圆柱度与全跳动的区别 圆度是形状误差,只是表达一个表面形状.而跳动给这个形状规定了一个基准,即中心轴线.跳动小的一定圆,圆的跳动可能大.当偏离基准的时候圆的跳动也大.就这样. 圆柱度增加了一个轴向概念,成为一个空间问题. 圆度是任一正截面上半径差为某一数值的两个同心圆区域,它的实际尺寸不能走超出给定的尺寸公差范围,实效尺寸就是零件的最大实体尺寸,这就是通常所说的尺寸公差控制形状误差。而圆跳动是有基准轴线的,任一截面的圆表面位置在 11

形位公差之圆度误差测量方法介绍

形位公差之圆度误差测量方法介绍 摘要 在机械制造中,经常会加工轴、套筒等回转体类零件,这些零件需要配合起来使用,这就要求不仅满足尺 寸精度要求,同时还要满足形位精度要求。圆度属于形位公差中的一种,其测量方法主要有回转轴法、三 点法、两点法、投影法和坐标法以及利用数据采集仪连接百分表法等。 圆度 圆度是表示零件上圆的要素实际形状,与其中心保持等距的情况。即通常所说的圆整程度。 圆度公差 圆度是限制实际圆对理想圆变动量的一项指标,其公差带是以公差值t为半径差的两同心圆之间的区域。 圆度公差属于形状公差,圆度误差值不大于相应的公差值,则认为合格,下图为圆度公差标注图: 圆度误差的评定原则 圆度误差评定有4种主要方法。 ①最小区域法:以包容被测圆轮廓的半径差为最小的两同心圆的半径差作为圆度误差。 ②最小二乘圆法:以被测圆轮廓上相应各点至圆周距离的平方和为最小的圆的圆心为圆心,所作包容被测 圆轮廓的两同心圆的半径差即为圆度误差。 ③最小外接圆法:只适用于外圆。以包容被测圆轮廓且半径为最小的外接圆圆心为圆心,所作包容被测圆 轮廓的两同心圆半径差即为圆度误差。 ④最大内接圆法:只适用于内圆。以内接于被测圆轮廓且半径为最大的内接圆圆心为圆心,所作包容被测 圆轮廓两同心圆的半径差即为圆度误差. 圆度误差测量方法 圆度测量方法主要有回转轴法、三点法、两点法、投影法和坐标法、直接利用我们太友科技的数据采集仪 连接百分表法。 1、回转轴法 利用精密轴系中的轴回转一周所形成的圆轨迹(理想圆)与被测圆比较,两圆半径上的差值由电学式长度

传感器转换为电信号,经电路处理和电子计算机计算后由显示仪表指示出圆度误差,或由记录器记录出被测圆轮廓图形。回转轴法有传感器回转和工作台回转两种形式。前者适用于高精度圆度测量,后者常用于测量小型工件。按回转轴法设计的圆度测量工具称为圆度仪。 2、三点法 常将被测工件置于V形块中进行测量。测量时,使被测工件在V形块中回转一周,从测微仪(见比较仪)读出最大示值和最小示值,两示值差之半即为被测工件外圆的圆度误差。此法适用于测量具有奇数棱边形状误差的外圆或内圆,常用2α角为90°、120°或72°、108°的两块V形块分别测量。 3、两点法 常用千分尺、比较仪等测量,以被测圆某一截面上各直径间最大差值之半作为此截面的圆度误差。此法适于测量具有偶数棱边形状误差的外圆或内圆。 4、投影法 常在投影仪上测量,将被测圆的轮廓影像与绘制在投影屏上的两极限同心圆比较,从而得到被测件的圆度误差。此法适用于测量具有刃口形边缘的小型工件。 5、坐标法 一般在带有电子计算机的三坐标测量机上测量。按预先选择的直角坐标系统测量出被测圆上若干点的坐标值x、y,通过电子计算机按所选择的圆度误差评定方法计算出被测圆的圆度误差。 6、利用数据采集仪连接百分表法

测量误差的基本概念测量误差的基本概念

测量误差的基本概念测量误差的基本概念 使用任何仪器进行测量时,都存在测量误差。测量结果与测量的真值之间的差异,称为测量误差。真值就是一个量所具有的真实数值。真值是一个理想概念,实际应用中通常用实际值来替代真值。实际值是根据测量误差的要求,用更高一级的标准器具测量所得之值。 一、测量误差的表示方法 测量误差的表示方法 测量误差有绝对误差和相对误差两种表示方法。 1、绝对误差是指被测量的测量值与其真值之差。与绝对误差的大小相等,但符号相反的量值称为修正值。绝对误差只能说明测量结果偏离实际值的情况,不能确切反映测量的准确程度。 2、相对误差是指绝对误差与被测量的真值之比。相对误差是两个相同量纲的量的比值,只有大小和符号。 测量中常用绝对误差与仪器的满刻度值之比来表示相对误差,称为引用相对误差。测量仪器使用最大测量仪器使用最大引用相对误差表示它的准确度引用相对误差表示它的准确度,,它反应了仪器综合误差的大小它反应了仪器综合误差的大小。。 电工仪表一般分为7级:0.1,0.2,0.5,1.0,1.5,2.5,5.0。当仪表的准确度等级确定以后,示值越接近量程,示值相对误差越小。所以测量时要注意选择量程,尽量使仪表指示在满度值的2/3以上区域。 二、测量误差的来源 测量误差的来源 1、仪器误差,是测量仪器本身及其附件引入的误差。例如仪器的零点漂移、刻度不准确等引起的误差。 2、影响误差,是指由于温度、湿度、振动、电源电压、电磁场等环境因素和仪表要求条件不一致而引起的误差。 3、方法误差,是指由于测量方法不合理而造成的误差。 4、人身误差,是指测量人员由于分辨力、视力疲劳、不良习惯或缺乏责任心,如读错数字、操作不当等引起的误差。 5、测量对象变化误差,是指由于测量过程中测量对象的变化使得测量值不准确而引起的误差。 三、测量误差的分类 测量误差的分类 按性质可分为三类:系统误差、随机误差、过失误差。 1、系统误差是指在确定的测试条件下,误差的数值(大小和符号)保持恒定或在条件改变时按一定规律变化的误差,也叫确定性误差。系统误差常用来表示测量的正确度系统误差常用来表示测量的正确度系统误差常用来表示测量的正确度。。系统误差越小系统误差越小,,则正确度越高则正确度越高。。

误差理论与数据处理考试题试题及答案

《误差理论与数据处理》考试题( 卷) 一、填空题(每空1分,共计25分) 1.误差的表示方法有 绝对误差 、 相对误差 、 引用误差 。 2.随机误差的大小,可用测量值的 标准差 来衡量,其值越小,测量值越 集中 ,测量 精密度 越高。 3.按有效数字舍入规则,将下列各数保留三位有效数字:— ;— ;— ;— ;547300— ×105 。 4.系统误差是在同一条件下,多次测量同一量值时,误差的 绝对值和符号 保持不变,或者在条件改 变时,误差 按一定规律变化 。系统误差产生的原因有(1)测量装置方面的因素、(2) 环境方面的因素 、(3) 测量方法的因素 、(4) 测量人员方面的因素 。 5.误差分配的步骤是: 按等作用原则分配误差 ; 按等可能性调整误差 ; 验算调整后的总误差 。 6.微小误差的取舍准则是 被舍去的误差必须小于或等于测量结果总标准差的1/3~1/10 。 7.测量的不确定度与自由度有密切关系,自由度愈大,不确定度愈 小 ,测量结果的可信赖程度愈 高 。 8.某一单次测量列的极限误差lim 0.06mm σ=±,若置信系数为3,则该次测量的标准差σ= 0.02mm 。 9.对某一几何量进行了两组不等精度测量,已知10.05x mm σ=,20.04x mm σ=,则测量结果中各组的权之比为 16:25 。 10.对某次测量来说,其算术平均值为,合成标准不确定度为,若要求不确定度保留两位有效数字, 则测量结果可表示为 (15) 。 二、是非题(每小题1分,共计10分) 1.标准量具不存在误差。 ( × ) 2.在测量结果中,小数点的位数越多测量精度越高。 ( × ) 3.测量结果的最佳估计值常用算术平均值表示。 ( √ ) 4.极限误差就是指在测量中,所有的测量列中的任一误差值都不会超过此极限误差。 ( × ) 5.系统误差可以通过增加测量次数而减小。 ( × ) 6.在测量次数很小的情况下,可以用3σ准则来进行粗大误差的判别。 ( × ) 7.随机误差的合成方法是方和根。 ( √ ) 8.测量不确定度是无符号的参数,用标准差或标准差的倍数,或置信区间的半宽表示。 ( √ ) 9.用不同的计算方法得到的标准不确定度A 类评定的自由度相同。 ( × ) 10.以标准差表示的不确定度称为展伸不确定度。 ( × ) 三、简答题(每题4分,共计20分) 1.误差计算: (1) 检定级(即引用误差为2.5%)、量程为100V 的电压表,发现在50V 刻度点的示值误差为3V 为最大误差,问该电压表是否合格。 解:由引用误差的定义,引用误差=示值误差/测量范围上限(量程),则 3100%3% 2.5%100V V ?=> 因此,该电压表不合格。 (2)用两种方法测量150L mm =,280L mm =,实际测得的值分别为50.004mm ,80.006mm 。试评定两种测量方法精度的高低。 解:第一种方法测量的相对误差: (50.00450) 100%0.008%50 -?= 第二种方法测量的相对误差:

圆度测量

圆度测量方法: 回转轴法、三点法、两点法、投影法和坐标法等方法。 (1)回转轴法: 利用精密轴系中的轴回转一周所形成的圆轨迹(理想圆)与被测圆比较,两圆半径上的差值由电学式长度传感器转换为电信号,经电路处理和电子计算机计算后由显示仪表指示出圆度误差,或由记录器记录出被测圆轮廓图形。回转轴法有传感器回转和工作台回转两种形式(图1)。前者适用于高精度圆度测量,后者常用于测量小型工件。按回转轴法设计的圆度测量工具称为圆度仪。 (2)三点法:常将被测工件置于V形块中进行测量(图2)。测量时,使被测工件在V形块中回转一周,从测微仪(见比较仪)读出最大示值和最小示值,两示值差之半即为被测工件外圆的圆度误差。此法适用于测量具有奇数棱边形状误差的外圆或内圆,常用2α角为90°、120°或72°、108°的两块V形块分别测量。 (3)两点法:常用千分尺、比较仪等测量,以被测圆某一截面上各直径间最大差值之半作为此截面的圆度误差。此法适于测量具有偶数棱边形状误差的外圆或内圆。 (4)投影法:常在投影仪上测量,常在投影仪上测量,将被测圆的轮廓影像与绘制在投影屏上的两极限同心圆(图3)比较,从而得到被测件的圆度误差。此法适用于测量具有刃口形边缘的小型工件。

(5)坐标法:一般在带有电子计算机的三坐标测量机上测量。按预先选择的直角坐标系统测量出被测圆上若干点的坐标值x、y,通过电子计算机按所选择的圆度误差评定方法计算出被测圆的圆度误差。 圆度误差评定就是将双绞线导线横截面的实际轮廓与理想圆比较的过程。 圆度误差评定方法: ①最小区域法:以包容被测圆轮廓的半径差为最小的两同心圆的半径差作为圆度误差。

基于视觉检测的圆度误差测量技术(精)

基于视觉检测的圆度误差测量技术 圆度误差是一项比较科学、先进的评定零件表面质量的指标,它能客观直接的反映圆柱面的旋转精度。由于圆度误差是实际轮廓相对于理想圆而确定的,所以被测量轴径截面的实际轮廓的精确测量,是求圆度误差的重要组成部分。本文测量的对象是直径为120mm、长90mm的超精密回转主轴。在深入研究零件圆度误差的测量理论和测量方法的基础上,采用V形块立式测量法,并利用精密干涉仪结合CMOS图像传感器,进行了图像采集、处理与分析,成功读取了图像信息,并将之转换成有效的实验数据,完成了对回转主轴圆度误差的测量。首先,从理论上说明了圆度误差常用的测量方法及测量中心的评定方法,阐述了最小二乘圆评定方法在V形块测量中的数学实现,并说明了实验数据的处理方法——误差联系法的运用。其次,完成了超精密主轴圆度误差测量系统的设计,对图像采集系统进行了调试。根据本文采集的干涉条纹图像的特性,运用图像灰度值列求和的方法,求出了干涉仪测头的实际位移。提出了适合本课题的图像质量评价方法——运用曲线拟合残差来评价去噪后图像质量,并与传统的评价方法进行了对比。根据不同的图像质量评价方法选择了适合的图像处理方案,使图像采集系统分辨率达到每像素点2.9nm。最后用Matlab编程实现了图像分析,求出了超精密回转主轴的圆度误差。设计实验,证明了测量结果的正确性。分析了测量系统的误差来源和具体影响因素,求出了测量系统的误差。 同主题文章 [1]. 袁懿先,靳春芬. 小孔的图像处理与圆度误差的评定' [J]. 农业机械学报. 1997.(03) [2]. 傅师伟. 圆度误差测量的一种新方法' [J]. 计量与测试技术. 2004.(09) [3]. 王峰,詹小四,陈蕴. 图像处理中光学因素的影响' [J]. 洁净煤技术. 2005.(01) [4]. 樊琳. 圆度误差的评定和计算机处理' [J]. 苏州大学学报(工科版). 1988.(02) [5]. 刘杰锋,王建华,刘桂珍. 圆度误差的计算机检测系统' [J]. 佳木斯大学学报(自然科学版). 1999.(02) [6]. 高国胜. 用最小二乘法计算圆度误差' [J]. 压缩机技术. 1987.(02) [7].

圆度,圆柱度及球度的测量及评价方法讲解

圆度 一. 基本概念 1. 圆要素几何特征 中心:横向截面与回转表面的轴线相交的交点; 半径:圆要素上各点至该中心的距离。 圆要素是一封闭曲线,其向量半径R 与相位角θ具有函数关系,即:()R F θ= 按傅里叶级数展开后,有: () 001 cos m k k R k k a c θθ==++∑ 2. 圆度及圆度误差 圆度:回转表面的横向截面轮廓(圆要素)的形状精度; 圆度误差:表示实际圆要素精度的技术参数,即实际圆要素对理想圆的变动量。 3. 圆度误差评定原则 按形状误差评定原则,评定圆度误差时,应根据实际圆要素确定最小包容区域。圆度误差的最小包容区域与圆度公差带的形状一致,由两同心圆构成,当实际圆要素被两同心圆紧紧包容,即两同心圆的半径差为最小值时,即为最小包容区域。 4. 圆度检测原则 ① 与理想要素比较原则:理想要素由测量器具模拟体现理想圆。在实际圆要素上获 得的信息,通常是实际要素的半径变化量,根据获得的半径变化量再评定圆度误差。 ② 测量坐标值原则:对实际圆要素应用坐标测量系统对其采样点测取坐标值,由测 得的坐标值经过计算,求得圆度误差值。 ③ 测量特征参数原则:根据实际圆要素的具体特征,采用能反映实际要素几何特征 的手段进行测量,从而方便的获得圆度误差值。 二. 圆度测量方法 1. 半径测量法 半径测量法是确定被测圆要素半径变化量的方法,是根据“与理想要素比较原则”拟定的一种检测方案。 ① 仪器类型和工作原理(加备注解释) 下图分别为转轴式圆度仪和转台式圆度仪

圆度仪可运用测得信号的输出特性,将被测轮廓的半径变化量放大后同步自动记录下来,获得轮廓误差的放大图形,可按放大图形评定圆度误差。 ② 用圆度仪测量注意事项(加备注择项解释) 选择适当的侧头类型;静态测量力选择;测量平面和测量方向确定;频率响应选择;选择适当的放大倍率;正确安装被测件,径向偏心和轴向倾斜;主轴误差的影响 2. 坐标测量法 坐标测量法是根据测量坐标值原则提出的一种检测方案。将被测零件放置在设定的坐标系中,用相应的测量器具,测取被测零件横向截面轮廓上各点的坐标值,然后按要求,用相应的方法来评定圆度误差值。 ⑴极坐标测量法 在极坐标系中测量圆度,需要有精密回转轴系的分度装置,分度台或分度头。 测量前,按需要对被测轮廓拟定适量的采样点数。测量时,将被测零件安装到测量装置上,适当地调整安装位置,避免过大的径向偏心,用具有固定位置的指示器,对各采样点逐一进行采样,取得的示值反映了各采样点处的半径变化量R ?。被测横向截面轮廓的极坐标值为 () ,i i i M R θ?。这些极坐标值时评定圆度误差的原始数据,由原始数据, 可以在极坐标系中描述出经放大后的被测轮廓误差曲线。最后可由图解法或计算法求得圆度误差值。 ⑵直角坐标测量法 应用直角坐标测量装置 ( ) ,i i i y x M ,对被测轮廓上的采样点测取直角坐标。 各采样点至理想圆圆心的距离用下式求得 i R 1,2, ,.i n =

误差与测量结果的表示

误差与测量结果的表示 物理实验中使用的误差有三类:仪器误差、系统误差和偶然误差;所谓粗差可视为测量错误,需要剔除或重新测量。系统误差反映了每一次测量都偏离真值的程度,即测量结果的准确度。偶然误差反映了各次误差之间的分散(或密集)程度,即测量的精密度或可重复性。系统误差与偶然误差的算术和,反映测量的可信程度或精确度。 系统误差主要来源有四个方面:仪器(如图3.3.2);实验者的不妥观察(如总从左侧视读);测试环境不符合仪器的正常工作要求(如温度、湿度)以及实验原理本身的局限。用自由落体法测重力加速度,原理本身就忽略了空气阻力的影响,由空气阻力引起的误差就属于系统误差。虽然,确定系统误差是很困难的事,但从理论上说它总是可以被发现和消除的。 3.5.1直接测量的偶然误差 无论如何,应该承认被测的量有一个客观存在的值,即通常叫做真值的值。公认的一些理论值和高精确度测定的物理常数可被认为是真值。在实际实验中,经常采用有限次测量数据的算术平均值作真值替代值。这是因为当测量次数趋于无穷的情况下,误差正负出现的机会是相等的。基于同样的理由,减小偶然误差的方法是增加测量次数。 (1)直接测量的绝对误差 用仪器直接量度被测对象叫直接测量。任一次测量x i与真值x0的差的绝对值叫绝对误差au(absolute uncertainty):au=|x i-x0|。计算n次测量的绝对误差的简单方法,是对各次测量的绝对误差取算术平均值,即算术平

均误差的这种作用,这里只需保留一位有效数字,如(42.7±0.2)毫米。 (2)直接测量的相对误差 绝对误差与真值的比叫相对误差fu(fractionaluncertainty)。相对误差可以用小数表示。更常见的是将小数写成百分数。用百分数表示的相对误差简称百分误差pu(percentage uncertainty)。表示相对误差的另一种方式是将小数写成分子是1的分数,叫做精密度等级。例如由测量一个棒长的10次数据 =0.2/42.7=0.0047≈0.005。也可以说这次测量的百分误差pu(l)=0.005×100%≈0.5%;也可以说这次测量的精密度等级为1/200(0.005=5/1000=1/200)。 相对误差是一个没有单位的数。它可以比较对不同实验对象(无论单位相同的还是不同的)进行测量的质量。下面的例子可以说明即使被测对象的单位没有改变,只有绝对误差也是不够的。当测量一个更长的棒(例如427.0毫米的棒)时,测量的算术平均绝对误差完全可能与上例一样,也恰为0.2毫米。但这次测量的相对误差就要减小到0.05%,即在数据密集程度上,测量质量比上一次要高出很多。 根据相对误差的定义和有效数字运算规则,相对误差也应只保留一位有效数字(精密度等级的表示法除外)。但当绝对误差或相对误差(不含精密度等级)中的有效数字是很小的数时,可再保留一位有效数字,以反映误差 0.15米·秒-1或pu=2.4%。 3.5.2直接测量结果的表示

相关文档
相关文档 最新文档