文档视界 最新最全的文档下载
当前位置:文档视界 › ANSYS传热分析实例汇总

ANSYS传热分析实例汇总

ANSYS传热分析实例汇总
ANSYS传热分析实例汇总

实例1:

某一潜水艇可以简化为一圆筒,它由三层组成,最外面一层为不锈钢,中间为玻纤隔热层,最里面为铝层,筒内为空气,筒外为海水,求内外壁面温度及温度分布。

几何参数: 筒外径30 feet

总壁厚 2 inch

不锈钢层壁厚0、75 inch

玻纤层壁厚 1 inch

铝层壁厚0、25 inch

筒长200 feet

导热系数不锈钢8、27 BTU/hr、ft、o F

玻纤0、028 BTU/hr、ft、o F

铝117、4 BTU/hr、ft、o F

边界条件空气温度70 o F

海水温度44、5 o F

空气对流系数2、5 BTU/hr、ft2、o F

海水对流系数80 BTU/hr、ft2、o F

沿垂直于圆筒轴线作横截面,得到一圆环,取其中1度进行分析,如图示。

以下分别列出log文件与菜单文件。

/, Steady1

/title, Steady-state thermal analysis of submarine

/units, BFT

Ro=15 !外径(ft)

Rss=15-(0、75/12) !不锈钢层内径ft)

Rins=15-(1、75/12) !玻璃纤维层内径(ft)

Ral=15-(2/12) !铝层内径 (ft)

Tair=70 !潜水艇内空气温度

Tsea=44、5 !海水温度

Kss=8、27 !不锈钢得导热系数 (BTU/hr、ft、oF) Kins=0、028 !玻璃纤维得导热系数 (BTU/hr、ft、oF) Kal=117、4 !铝得导热系数(BTU/hr、ft、oF)

Hair=2、5 !空气得对流系数(BTU/hr、ft2、oF) Hsea=80 !海水得对流系数(BTU/hr、ft2、oF)

/prep7

et,1,plane55 !定义二维热单元

mp,kxx,1,Kss !设定不锈钢得导热系数

mp,kxx,2,Kins !设定玻璃纤维得导热系数

mp,kxx,3,Kal !设定铝得导热系数

pcirc,Ro,Rss,-0、5,0、5 !创建几何模型

pcirc,Rss,Rins,-0、5,0、5

pcirc,Rins,Ral,-0、5,0、5

aglue,all

numcmp,area

lesize,1,,,16 !设定划分网格密度

lesize,4,,,4

lesize,14,,,5

lesize,16,,,2

eshape,2 !设定为映射网格划分

mat,1

amesh,1

mat,2

amesh,2

mat,3

amesh,3

/SOLU

SFL,11,CONV,HAIR,,TAIR !施加空气对流边界

SFL,1,CONV,HSEA,,TSEA !施加海水对流边界

SOLVE

/POST1

PLNSOL !输出温度彩色云图

finish

菜单操作:

1.U tility Menu> jobename, 输入Steady1;

U tility Menu> title,输入Steady-state thermal analysis of submarine;

3.在命令行输入:/units, BFT;

4.M ain Menu: Preprocessor;

M ain Menu: Preprocessor>Element Type>Add/Edit/Delete,选择PLANE55;

M ain Menu: Preprocessor>Material Prop>-Constant-Isotropic,默认材料编号为1,在KXX框中输入8、27,选择APPLY,输入材料编号为2,在KXX框中输入0、028,选择APPLY,输入材料编号为3,在KXX框中输入117、4;

M ain Menu: Preprocessor>-Modeling->Create>-Areas-Circle>By Dimensions ,在RAD1中输入15,在RAD2中输入15-(、75/12),在THERA1中输入-0、5,在THERA2中输入0、5,选择APPLY,在RAD1中输入15-(、75/12),在RAD2中输入15-(1、75/12),选择APPLY,在RAD1中输入15-(1、75/12),在RAD2中输入15-2/12,选择OK;

M ain Menu: Preprocessor>-Modeling->Operate>-Booleane->Glue>Area,选择PICK ALL;

M ain Menu: Preprocessor>-Meshing-Size Contrls>-Lines-Picked Lines,选择不锈钢层短边,在NDIV框中输入4,选择APPLY,选择玻璃纤维层得短边,在NDIV框中输入5,选择APPLY,选择铝层得短边,在NDIV框中输入2,选择APPLY,选择四个长边,在NDIV中输入16;

Main Menu: Preprocessor>-Attributes-Define>Picked Area,选择不锈钢层,在MAT框中输入1,选择APPLY,选择玻璃纤维层,在MAT框中输入2,选择APPLY,选择铝层,在MAT 框中输入3,选择OK;

Main Menu: Preprocessor>-Meshing-Mesh>-Areas-Mapped>3 or 4 sided,选择PICK ALL;

Main Menu: Solution>-Loads-Apply>-Thermal-Convection>On lines,选择不锈钢外壁,在VALI框中输入80,在VAL2I框中输入44、5,选择APPLY,选择铝层内壁,在VALI框中输入2、5,在VAL2I框中输入70,选择OK;

13.Main Menu: Solution>-Solve-Current LS;

Main Menu: General Postproc>Plot Results>-Contour Plot-Nodal Solu,选择Temperature。

对流换热系数

定义:流体与固体表面之间得换热能力,比如说,物体表面与附近空气温差1℃,单位时间单位面积上通过对流与附近空气交换得热量。单位为W/(m^2·℃)。表面对流换热系数得数值与换热过程中流体得物理性质、换热表面得形状、部位、表面与流体之间得温差以及流体得流速等都有密切关系。物体表面附近得流体得流速愈大,其表面对流换热系数也愈大。如人处在风速较大得环境中,由于皮肤表面得对流换热系数较大,其散热(或吸热)量也较大。对流换热系数可用经验公式计算,通常用巴兹公式计算。xOXaHI6。R70hfWk。buhfN00。

得大致量级:空气自然对流 5 ~ 25 ,气体强制对流20 ~ 100。

实例2:

一钢铸件及其砂模得横截面尺寸如图所示:

砂模得热物理性能如下表所示:

铸钢得热物理性能如下表所示:

初始条件:铸钢得温度为2875o F,砂模得温度为80o F;

砂模外边界得对流边界条件:对流系数0、014Btu/hr、in2、o F,空气温度80o F;求3个小时后铸钢及砂模得温度分布。

/Title, Casting Solidification

!进入前处理

/prep7

et,1,plane55 !定义单元

mp,dens,1,0、254 !定义砂模热性能

mp,kxx,1,0、025

mp,c,1,0、28

mptemp,1,0,2643,2750,2875 !定义铸钢得热性能

mpdata,kxx,2,1、44,1、54,1、22,1、22

mpdata,enth,2,0,128、1,163、8,174、2

mpplot,kxx,2

mpplot,enth,2

save

!创建几何模型

k,1,0,0,0

k,2,22,0,0

k,3,10,12,0

k,4,0,12,0

/pnum,kp,1

/pnum,line,1

/pnum,area,1

/Triad,ltop

kplot

a,1,2,3,4

save

rectng,4,22,4,8

aplot

aovlap,all

adele,3

aplot

save

!划分网格

esize,1

amesh,5

mat,2

aplot

amesh,4

eplot

/pnum,elem

/number,1

save

!进入加载求解

/SOLU

antype,trans !设定为瞬态分析

esel,s,mat,,2 !设定铸钢得初始温度

nsle,s

/replot

ic,all,temp,2875

esel,inve !设定砂模得初始温度

nsle,s

/replot

ic,all,temp,80

allsel

save

lplot

sfl,1,CONV,0、014,,80 !设定砂模外边界对流

sfl,3,CONV,0、014,,80

sfl,4,CONV,0、014,,80

/psf,conv,2

time,3 !设定瞬态分析时间

kbc,1 !设定为阶越得载荷

autots,on !打开自动时间步长

deltim,0、01,0、001,0、25 !设定时间步长

timint,on !打开时间积分

tintp,,,,1 !将THETA设定为1

outres,all,all !输入每个子步得结果

solve

!进入后处理

/post26

/pnum,node,1

/number,0

eplot

nsol,2,204,temp,center !设定铸钢中心点温度随时间得变量plvar,2 !绘制温度~时间曲线

save

finish

菜单操作:

1.Utility Menu> Title, 输入Casting Solidification;

定义单元类型:Main Menu>Preprocessor>Element Type>Add/Edit/Delete, Add, Quad 4node 55;

定义砂模热性能:Main Menu>Preprocessor>Material Props>Isotropic, 默认材料编号1, 在Density(DENS)框中输入0、054, 在Thermal conductivity (KXX)框中输入0、025, 在Specific heat(C)框中输入0、28;

定义铸钢热性能温度表:Main Menu>Preprocessor>Material Props>-Temp Dependent->Temp Table, 输入T1=0,T2=2643, T3=2750, T4=2875;

定义铸钢热性能:Main Menu>Preprocessor>Material Props>-Temp Dependent ->Prop Table, 选择Th Conductivity,选择KXX, 输入材料编号2,输入C1=1、44, C2=1、54, C3=1、22, C4=1、22,选择Apply, 选择Enthalpy,输入C1=0, C2=128、1, C3=163、8, C4=174、2;

创建关键点:Main Menu>Preprocessor>-Modeling->Create>Keypoints>In Active CS,输入关键点编号1,输入坐标0,0,0, 输入关键点编号2, 输入坐标22,0,0, 输入关键点编号3, 输入坐标10,12,0, 输入关键点编号4, 输入坐标0,12,0;

创建几何模型:Main Menu>Preprocessor>-Modeling->Create>-Areas->Arbitrary>Through KPs,顺序选取关键点1,2,3,4;

Main Menu>Preprocessor>-Modeling->Create>-Areas->Rectangle>By Dimension,输入X1=4,X2=22,Y1=4,Y2=8;

进行布尔操作:Main Menu>Preprocessor>-Modeling->Operate>-Booleans->Overlap>Area,Pick all;

删除多余面:Main Menu>Preprocessor>-Modeling->Delete>Area and Below,3

11.保存数据库:在Ansys Toolbar中选取SAVE_DB;

定义单元大小:Main Menu>Preprocessor>-Meshing->Size Cntrls>-Global->Size, 在Element edge length框中输入1;

对砂模划分网格:Main Menu>Preprocessor>-Meshing->Mesh>-Areas->Free,选择砂模;

对铸钢划分网格:Main Menu>Preprocessor>-Attributes->Define>Default Attribs, 在Material number菜单中选择2;

Main Menu>Preprocessor>-Meshing->Mesh>-Areas->Free,选择铸钢;

定义分析类型:Main Menu>Solution>-Analysis Type->New Analysis, 选择Transient;

选择铸钢上得节点:Utility Menu>Select>Entities, 选择element,mat,输入2,选择Apply,选择node, attached to element,选择OK;

定义铸钢得初始温度:Main Menu>Solution>-Loads->Apply>Initial Condit’n>Define, 选择Pick all,选择temp, 输入2875, OK;

选择砂模上得节点:Utility Menu>Select>Entities,Nodes, inverse

定义砂模得初始温度:Main Menu>Solution>-Loads->Apply>Initial Condit’n>Define, 选择Pick all, 选择temp, 输入80, OK;

21.Utility Menu>Select>Everything;

22.Utility Menu>Plot>Lines;

定义对流边界条件: Main Menu>Solution>-Loads->Apply>-Thermal->Converction>On Lines,选择砂模得三个边界1,3,4, 在框中输入80, 在Bulk temperature框中输入, 80;

24.设定瞬态分析时间选项:

Main Menu>Solution>Load Step Opts>Time/Frequenc>Time-Time Step,

Time at end of load step 3

Time Step size 0、01

Stepped or ramped b、c、Stepped

Automatic time stepping on

Minimun time Step size 0、001

Maximum time step size 0、25

设置输出:Main Menu>Solution>Load Step Opts>Output Ctrls>DB/Results File, 在frequency框中选择Every substep;

26.求解:Main Menu>Solution>-Solve->Current LS;

27.进入后处理: Main Menu>Timehist Postproc;

定义铸钢中心节点得温度变量: Main Menu>Timehist Postproc>Define Variables, Add, Nodal DOF result,2,204;

绘制节点温度随时间变化曲线:Main Menu>Timehist Postproc>Graph Variable,2。

ANSYS非稳态热分析及实例详解解析

本章向读者介绍非稳态热分析的基本知识, 主要包括非稳态热分析的应用、 非稳态热分析的基本步骤。 非稳态导热的基本概念 非稳态热分析的应用 非稳态热分析单元 分析的基本步骤 丄本章案例 钢球非稳态传热过程分析 不同材料金属块水中冷却的非稳态传热过程分析 高温铜导线冷却过程分析 7.1 非稳态热分析概述 物体的温度随时间而变化的导热过程称为非稳态导热。 根据物体温度随着时间的推移而变化的 特性可本章要点 非稳态热分析单兀、

以区分为两类非稳态导热:物体的温度随时间的推移逐渐趋于恒定的值以及物体的温度随时间而作周期性的变化。无论在自然界还是工程实际问题中,绝大多数传热过程都是非稳态的。许多工程实际问题需要确定物体内部的温度场随时间的变化,或确定其内部温度达到某一限定值所需要的时间。例如:在机器启动、停机及变动工况时,急剧的温度变化会使部件因热应力而破坏,因此需要确定物体内部的瞬时温度场;钢制工件的热处理是一个典型的非稳态导热过程,掌握工件中温度变化的速率是控制工件热处理质量的重要因素。再例如,金属在加热炉内加热时,需要确定它在加热炉内停留的时间,以保证达到规定的中心温度。可见,非稳态热分析是有相当大的应用价值的。 ANSYS 11.0 及其相关的下属产品均支持非稳态的热分析。非稳态热分析确定了温度以及其它随时间变化的热参数。 7.1.1 非稳态热分析特性 瞬态热分析用于计算一个系统的随时间变化的温度场及其它热参数。在工程上一般用瞬态热分析计算温度场,并将之作为热载荷进行应力分析。 瞬态热分析的基本步骤与稳态热分析类似。主要的区别是瞬态热分析中的载荷是随时间变化的。为了表达随时间变化的载荷,首先必须将载荷 - 时间曲线分为载荷步。对于每一个载荷步,必须定义载荷值及时间值,同时必须选择载荷步为渐变或阶越。

ANSYS热分析指南与经典案例

第一章简介 一、热分析的目的 热分析用于计算一个系统或部件的温度分布及其它热物理参数,如热量的获取或损失、热梯度、热流密度(热通量〕等。 热分析在许多工程应用中扮演重要角色,如内燃机、涡轮机、换热器、管路系统、电子元件等。 二、ANSYS的热分析 ?在ANSYS/Multiphysics、ANSYS/Mechanical、ANSYS/Thermal、ANSYS/FLOTRAN、ANSYS/ED五种产品中包含热分析功能,其中 ANSYS/FLOTRAN不含相变热分析。 ?ANSYS热分析基于能量守恒原理的热平衡方程,用有限元法计算各节点的温度,并导出其它热物理参数。 ?ANSYS热分析包括热传导、热对流及热辐射三种热传递方式。此外,还可以分析相变、有内热源、接触热阻等问题。 三、ANSYS 热分析分类 ?稳态传热:系统的温度场不随时间变化 ?瞬态传热:系统的温度场随时间明显变化 四、耦合分析 ?热-结构耦合 ?热-流体耦合 ?热-电耦合 ?热-磁耦合 ?热-电-磁-结构耦合等

第二章 基础知识 一、符号与单位 W/m 2-℃ 3 二、传热学经典理论回顾 热分析遵循热力学第一定律,即能量守恒定律: ● 对于一个封闭的系统(没有质量的流入或流出〕 PE KE U W Q ?+?+?=- 式中: Q —— 热量; W —— 作功; ?U ——系统内能; ?KE ——系统动能; ?PE ——系统势能; ● 对于大多数工程传热问题:0==PE KE ??; ● 通常考虑没有做功:0=W , 则:U Q ?=; ● 对于稳态热分析:0=?=U Q ,即流入系统的热量等于流出的热量; ● 对于瞬态热分析:dt dU q = ,即流入或流出的热传递速率q 等于系统内能的变化。 三、热传递的方式 1、热传导 热传导可以定义为完全接触的两个物体之间或一个物体的不同部分之间由于温度梯度而引起的内能的交换。热传导遵循付里叶定律:dx dT k q -='',式中''q 为热流

ABAQUS顺序热力耦合分析实例

ABAQUS顺序热力耦合分析实例此实例中需要确定一个冷却栅管的温度场分布。温度场的求解采用稳态热分析,在此之后还将进行热应力分析来求出冷却栅管在温度作用下产生的位移和应力分布。由于冷却栅管比较长,并且是轴对称结构,根据上述特点,可以简化有限元分析模型。此实例中使用国际单位制。 1、part中创建轴对称可变形壳体,大致尺寸为1,通过creat line创建一个封闭曲线(0.127,0) (0.304,0)(0.304,0.006)(0.152,0.006)(0.152,0.031)(0.127,0.031)(0.127,0) 使用creat Fillet功能对模型倒角处设置0.005的倒圆角。倒角后,模型并未改变,需要在模型树中,part下的Features右键,Regenerate,最终模型如下图所示。 2、在材料模块中定义密度7800,弹性模量1.93E11,泊松比0.3。所不同的是,热分析还需 要指定热传导系数以及比热。在Thermal里输入参数,热铲刀系数25.96,比热451。 3、创建截面属性以及装备部件,和普通的静力分析设置一样。 4、Step有所不同,分析类型仍为通用分析步,下面要更改为Heat Transfer。在Edit Step窗 口中,使用默认的瞬态分析(Transient),时长设置为3s。切换到Incrementatin进行相应的设置,如下图。

5、Load模块中,设置左边温度为100度,右边及上边温度为20度。Creat BC,类型选择 Other>Temperature。在纯粹的热传导分析方程中,没有位移项,因此不会发生刚体位移,这里也就不需要设置位移边界条件。 6、接下来划分网格,种子尺寸给0.005,单元类型需要在单元族中选择专门用来热分析的 Heat Transfer,查看下面确保使用的单元为DCAX4。使用结构化的全四边形网格划分方法。 7、到此,热分析的设置已经完成,可以提交计算,完成后,查看变量NT11即为节点温度。

ANSYS稳态热分析的基本过程和实例

ANSYS稳态热分析的基本过程 ANSYS热分析可分为三个步骤: ?前处理:建模、材料和网格 ?分析求解:施加载荷计算 ?后处理:查看结果 1、建模 ①、确定jobname、title、unit; ②、进入PREP7前处理,定义单元类型,设定单元选项; ③、定义单元实常数; ④、定义材料热性能参数,对于稳态传热,一般只需定义导热系数,它可 以是恒定的,也可以随温度变化; ⑤、创建几何模型并划分网格,请参阅《ANSYS Modeling and Meshing Guide》。 2、施加载荷计算 ①、定义分析类型 ●如果进行新的热分析: Command: ANTYPE, STATIC, NEW GUI: Main menu>Solution>-Analysis Type->New Analysis>Steady-state ●如果继续上一次分析,比如增加边界条件等: Command: ANTYPE, STATIC, REST GUI: Main menu>Solution>Analysis Type->Restart ②、施加载荷 可以直接在实体模型或单元模型上施加五种载荷(边界条件) : a、恒定的温度 通常作为自由度约束施加于温度已知的边界上。 Command Family: D GUI:Main Menu>Solution>-Loads-Apply>-Thermal-Temperature b、热流率 热流率作为节点集中载荷,主要用于线单元模型中(通常线单元模型不能施加对流或热流密度载荷),如果输入的值为正,代表热流流入节点,即单元获取热量。如果温度与热流率同时施加在一节点上则ANSYS读取温度值进行计算。 注意:如果在实体单元的某一节点上施加热流率,则此节点周围的单元要

Ansys 第 例瞬态热分析实例一水箱

第33例瞬态热分析实例——水箱 本例介绍了利用ANSYS进行瞬态热分析的方法和步骤、瞬态热分析时材料模型所包含的内容,以及模型边界条件和初始温度的施加方法。 33.1概述 热分析是计算热应力的基础,热分析分为稳态热分析和瞬态热分析,稳态热分析将在后面两个例子中介绍,本例介绍瞬态热分析。 33.1.1 瞬态热分析的定义 瞬态热分析用于计算系统随时间变化的温度场和其他热参数。一般用瞬态热分析计算温度场,并找到温度梯度最大的时间点,将此时间点的温度场作为热载荷来进行应力计算。 33.1.2 嚼态热分析的步骤 瞬态热分析包括建模、施加载荷和求解、查看结果等几个步骤。 1.建模 瞬态热分析的建模过程与其他分析相似,包括定义单元类型、定义单元实常数、定义材料特性、建立几何模型和划分网格等。 注意:瞬态热分析必须定义材料的导热系数、密度和比热。 2.施加载荷和求解 (1)指定分析类型, Main Menu→Solution→Analysis Type→New Analysis,选择 Transient。 (2)获得瞬态热分析的初始条件。 定义均匀的初始温度场:Main Menu→Solution→Define Loads→Settings→Uniform Temp,初始温度仅对第一个子步有效,而用Main Menu →Solution→Define Loads→Apply→Thermal→Temperature命令施加的温

度在整个瞬态热分析过程中均不变,应注意二者的区别。 定义非均匀的初始温度场:如果非均匀的初始温度场是已知的,可以用Main Menu→Solution→Define Loads→Apply→Initial Condit'n→Define 即IC命令施加。非均匀的初始温度场一般是未知的,此时必须先进行行稳态分析确定该温度场。该稳态分析与一般的稳态分析相同。 注意:要设定载荷(如已知的温度、热对流等),将时间积分关闭,选择Main Menu→Solution→Load Step Opts→Time/Frequenc→Time Integration→Amplitude Decay;设定只有一个子步,时间很短(如(0.01s)的载荷步, Main Menu→Solution→Load Step Opts→Time/Frequenc→Time →Time Step。 (3)设置载荷步选项。 普通选项包括每一载荷步结束的时间、每一载荷步的子步数、阶跃选项等,选择Main Menu→Solution→Load Step Opts→Time/Frequenc→Time-Time Step. 非线性选项包括:迭代次数(默认25),选择Main Menu→Solution→Load Step Opts→Nonlinear→Equilibrium Iter;打开自动时间步长,选择Main Menu→Solution→Load Step Opts→Time/Frequenc→Time→Time Step:将时间积分打开,选择Main Menu→Solution→Load Step Opts→Time/Frequenc→Time Integration→Amplitude Decay. 输出选项包括:控制打印的输出,选择Main Menu→Solution→Load Step Opts→Output Ctrls→Solu Printout; 结果文件的输出,选择Main Menu →Solution→Load Step Opts→Output Ctrls→DB/Results File.

基于ABAQUS的热应力分析

1.1基于ABAQUS的热应力分析 1.1.1 温度场数据处理 (1)打开INP_Generator.exe,出现如下软件界面: 图1.数据处理软件 (2)点击“浏览”按钮,选择由FLUENT导出的inp文件所在路径,如下图 所示: 图2.路径选择 (3)点击“生成”按钮,则在inp文件所在路径下自动生成包含多个温度场的 ABAQUS输入文件ABAQUSinputfile.inp。 图3.生成包含连续温度场INP文件

1.1.2 复材工装模板热应力分析 (1)打开ABAQUS,导入inp文件后,打开Tools菜单下“Set - Manager”, 如下图所示。检查是否有名为“PID6”的set,若没有则创建一个名为 “PID*”的set,set为模板整体。(“*”为任意数字或字母) 图4.创建SET (2)打开Plug-ins菜单下“CAC Project - Composite Analyse”,弹出如下界面。 在Step1标签中输入用到的材料名称并选择工作路径;在Step2中定义铺 层信息,可通过右键删除或添加行;按照Step3和Step4的提示,使用 ABAQUS/CAE自身功能完成剩余分析工作。 (a)

(b) (c) 图5.定义材料及铺层 (3)进入Load模块,定义垂直于模板表面平面部分的局部坐标系。选择“Tools” 菜单下“Datum”,Type选择“CSYS”Method选择“3Points”,然后默认点击“Continue”按钮。依次在模板表面选择坐标原点、X轴上点和XY面上的点,生成局部坐标。 图6.定义模板局部坐标系 (4)点击“Create Boundary Condition”按钮,弹出边界条件定义对话框。

一个经典的ansys热分析实例(流程序)

/PREP7 /TITLE,Steady-state thermal analysis of pipe junction /UNITS,BIN ! 英制单位;Use U. S. Customary system of units (inches) ! /SHOW, ! Specify graphics driver for interactive run ET,1,90 ! Define 20-node, 3-D thermal solid element MP,DENS,1,.285 ! Density = .285 lbf/in^3 MPTEMP,,70,200,300,400,500 ! Create temperature table MPDATA,KXX,1,,8.35/12,8.90/12,9.35/12,9.80/12,10.23/12 ! 指定与温度相对应的数据材料属性;导热系数;Define conductivity values MPDATA,C,1,,.113,.117,.119,.122,.125 ! Define specific heat values(比热) MPDATA,HF,2,,426/144,405/144,352/144,275/144,221/144 ! Define film coefficient;除144是单位问题,上面的除12也是单元问题 ! Define parameters for model generation RI1=1.3 ! Inside radius of cylindrical tank RO1=1.5 ! Outside radius Z1=2 ! Length RI2=.4 ! Inside radius of pipe RO2=.5 ! Outside pipe radius Z2=2 ! Pipe length CYLIND,RI1,RO1,,Z1,,90 ! 90 degree cylindrical volume for tank WPROTA,0,-90 ! 旋转当前工作的平面;从Y到Z旋转-90度;;Rotate working plane to pipe axis CYLIND,RI2,RO2,,Z2,-90 ! 角度选择在了第四象限;90 degree cylindrical volume for pipe WPSTYL,DEFA ! 重新安排工作平面的设置;另外WPSTYL,STAT to list the status of the working plane;;Return working plane to default setting BOPT,NUMB,OFF ! 关掉布尔操作的数字警告信息;Turn off Boolean numbering warning VOVLAP,1,2 ! 交迭体;Overlap the two cylinders /PNUM,VOLU,1 ! 体编号打开;Turn volume numbers on /VIEW,,-3,-1,1

ansys热分析例题

问题描述:一个30公斤重、温度为70℃的铜块,以及一个20公斤重、温度为80℃的铁块,突然放入温度为20℃、盛满了300升水的、完全绝热的水箱中,如图所示。过了一个小时,求铜块与铁块的最高温度(假设忽略水的流动)。 材料热物理性能如下:热性能单位制 铜铁水 导热系数W/m℃ 383 37 密度Kg/m 8889 7833 996 比热J/kg℃ 390 448 4185 菜单操作过程: 一、设置分析标题 1、选择“Utility Menu>File>Change Jobname”,输入文件名Transient1。 2、选择“Utility Menu>File>Change Title”输入Thermal Transient Exercise 1。 二、定义单元类型 1、选择“Main Menu>Preprocessor”,进入前处理。 2、选择“Main Menu>Preprocesor>Element Type>Add/Edit/Delete”。选择热平面单元plane77。 三、定义材料属性 1、选择“Main Menu>Preprocessor>Material Props>Material Models”,在弹出的材料定义窗口中顺序双击Thermal选项。 2、点击Conductivity,Isotropic,在KXX框中输入383;点击Density,在DENS框中输入8898;点击Specific Heat,在C框中输入390。 3、在材料定义窗口中选择Material>New Model,定义第二种材料。 4、点击Conductivity,Isotropic,在KXX框中输入70;点击Density,在DENS框中输入7833;点击Specific Heat,在C框中输入448。 5、在材料定义窗口中选择Material>New Model,定义第三种材料。 6、点击Conductivity,Isotropic,在KXX框中输入.61;点击Density,在DENS框中输入996;点击Specific Heat,在C框中输入4185。 四、创建几何模型 1、选择“Main Menu>Preprocessor>-Modeling->Create>-Areas->Retangle>By Dimensions”,输入X1=0, Y1=0, X2=, Y2=, 点击Apply;输入X1=, Y1=, X2= ,Y2=, 点击Apply;输入X1= Y1=, X2= Y2=+, 选择OK。 2、选择“Main Menu>Preprocessor>-Modeling->Operate>Booleans>Overlap”,选择Pick All。 3、选择“Utility Menu>Plotctrls>Numbering>Areas, on”。 4、选择“Utility Menu>Plot>Areas”。 五、划分网格 1、选择“Main Menu>Preprocessor>-Attributes->Define->All Areas”,选择材料1。 2、选择“Main Menu>Preprocessor>Meshing->Size Cntrls->-Manualsize->-Global->Size”,输入单元大小。 3、选择“Main Menu>Preprocessor>Meshing->Mesh->-Areas->Mapped>3 or 4 sided”,选择铜块。 4、选择“Main Menu>Preprocessor>-Attributes->Define->All Areas”,选择材料2。 5、选择“Main Menu>Preprocessor>Meshing->Mesh->-Areas->Mapped>3 or 4 sided”,选

ANSYS热分析指南

ANSYS热分析指南 第一章简介 1.1热分析的目的 热分析用于计算一个系统或部件的温度分布及其它热物理参数,我们一般关心的参数有: 温度的分布 热量的增加或损失 热梯度 热流密度 热分析在许多工程应用中扮演着重要角色,如内燃机、涡轮机、换热器、管路系统、电子元件等等。通常在完成热分析后将进行结构应力分析,计算由于热膨胀或收缩而引起的热应力。 1.2ANSYS中的热分析 ANSYS/Multiphysics、ANSYS/Mechanical、ANSYS/Professional、 ANSYS/FLOTRAN四种产品中支持热分析功能。ANSYS热分析基于由能量守恒原理导出的热平衡方程,有关细节,请参阅《ANSYS Theory Reference》。ANSYS使用有限元法计算各节点的温度,并由其导出其它热物理参数。 ANSYS可以处理所有的三种主要热传递方式:热传导、热对流及热辐射。1.2.1对流 热对流在ANSYS中作为一种面载荷,施加于实体或壳单元的表面。首先需要输入对流换热系数和环境流体温度,ANSYS将计算出通过表面的热流量。如果对流换热系数依赖于温度,可以定义温度表,以及在每一个温度点处的对流换热系数。 1.2.2辐射 ANSYS提供了四种方法来解决非线性的辐射问题: 辐射杆单元(LINK31) 使用含热辐射选项的表面效应单元(SURF151-2D,或SURF152-3D)

在AUX12中,生成辐射矩阵,作为超单元参与热分析 使用Radiosity求解器方法 有关辐射的详细描述请阅读本指南第四章。 1.2.3特殊的问题 除了前面提到的三种热传递方式外,ANSYS热分析还可以解决一些诸如:相变(熔融与凝固)、内部热生成(如焦耳热)等的特殊问题。例如,可使用热质点单元MASS71模拟随温度变化的内部热生成。 1.3热分析的类型 ANSYS支持两种类型的热分析: 1.稳态热分析确定在稳态的条件下的温度分布及其他热特性,稳态条件指热量随时间的变化可以忽略。 2.瞬态热分析则计算在随时间变化的条件下,温度的分布和热特性。 1.4耦合场分析 ANSYS中可与热分析进行耦合的方式有热—结构、热-电磁等。耦合场分析可以使用ANSYS中的矩阵耦合单元,或者在独立的物理环境中使用序惯荷载耦合。有关耦合场分析的详细描述,请参阅《ANSYS Coupled-Field Analysis Guide》。 1.5关于菜单路径和命令语法 在本指南中,您将会看到相关的ANSYS命令及其等效的菜单路径。这些参考的命令仅仅包括命令名,因为并不总是需要指定所有的参数,而且不同的参数组合会有不同的作用。有关ANSYS命令的更多的叙述,请参考《ANSYS Commands Reference》。 菜单路径将近可能完整得列出。对于多数情况,选择菜单就能够完成所需要的功能;但还有一些情况,选择文中所示菜单后会弹出一个菜单或是对话框,由此定义其他的选项来执行一些特定的任务。 第二章基础知识 2.1符号与单位

abaqus有限元建模例子

问题一:工字梁弯曲 1.1问题描述: 在<<材料力学实验>>中,弯曲实验測定了工字梁弯曲应变大小及其分布,以验证弯曲正应力公式。在这里,採用ABAQUS/CAE建立试验件的有限元模型,ABAQUS/Standard模块进行分析求解,得到应力、应变分布,对比其与理论公式计算值及实验測量值的差別。 弯曲实验的相关数据: 材料:铝合金E=70GPa泊松比0.3 实验装置结构简图如图所示: 结构尺寸测量值:H=50(+/-0.5mm) h=46(+/-0.5mm) B=40(+/-0.5mm) b=2(+/-0.02mm) a=300(+/-1mm) F1=30N Fmax=300N N ? F100 = 1.2ABAQUS有限元建模及分析 一对象: 工字型截面铝合金梁 梁的结构简图如图1所示,結构尺寸、载荷、約束根据1.1设定,L取1600mm,两端各伸出100mm。 二用ABAQUS/CAE建立实验件的有限元模型,效果图如下: 边界条件简化: 左侧固定铰支座简化为下表面左参考点处的约束U1=U2=U3=0

右侧活动铰支座简化为下表面右参考点处的约束U1=U2=UR3=0 几何模型

有限元模型 三ABAQUS有限元分析結果 ①应力云图(Z方向正应力分量):施加载荷前 F=300N

②应变(Z方向分量): 中间竖直平面的厚度方向应变分布图: F=100N F=200N

F=300N 由上图可以看出应变沿着厚度方向呈线性比例趋势变化,与实验测得的应变值变化趋势相同。中性轴处应变均接近零值,应变与距离中性轴位移基本为正比关系。 1.3分析结果: 中间竖直截面上下边缘轴向应力数值对比:*10^-6MPa 距中性轴距ABAQUS模拟实验测量值平均理论值 1/2H-96.182*70000-97*70000-6.9165=-70000*98.807 -1/2H95.789*7000092*70000 6.9165

ANSYS_热分析(两个实例)有限元热分析上机指导书

第四讲 热分析上机指导书 CAD/CAM 实验室,USTC 实验要求: 1、通过对冷却栅管的热分析练习,熟悉用ANSYS 进行稳态热分析的基本过程,熟悉用直接耦合法、间接耦合法进行热应力分析的基本过程。 2、通过对铜块和铁块的水冷分析,熟悉用ANSYS 进行瞬态热分析的基本过程。 内容1:冷却栅管问题 问题描述:本实例确定一个冷却栅管(图a )的温度场分布及位移和应力分布。一个轴对称的冷却栅结构管内为热流体,管外流体为空气。冷却栅材料为不锈钢,特性如下: 导热系数: W/m ℃ 弹性模量:×109 MPa 热膨胀系数:×10-5 /℃ 泊松比: 边界条件: (1)管内:压力: MPa 流体温度:250 ℃ 对流系数 W/m 2℃ (2)管外:空气温度39℃ 对流系数: W/m 2℃ 假定冷却栅管无限长,根据冷却 栅结构的对称性特点可以构造出的有限元模型如图b 。其上下边界承受边界约束,管内部承受均布压力。 练习1-1:冷却栅管的稳态热分析 步骤: 定义工作文件名及工作标题 定义工作文件名:GUI: Utility Menu> File> Change Jobname ,在弹出的【Change Jobname 】对话框中输入文件名Pipe_Thermal ,单击OK 按钮。 定义工作标题:GUI: Utility Menu> File> Change Title ,在弹出的【Change Title 】对话框中2D Axisymmetrical Pipe Thermal Analysis ,单击OK 按钮。 关闭坐标符号的显示:GUI: Utility Menu> PlotCtrls> Window Control> Window Options ,在弹出的【Window Options 】对话框的Location of triad 下拉列表框中选择No Shown 选项,单击OK 按钮。 定义单元类型及材料属性 定义单元类型:GUI: Main Menu> Preprocessor> Element Type> Add/Edit>Delete 命令,弹出【Element Types 】对话框,单击Add 按钮,弹出【Library Type 】对话框,选择Thermal Solid Quad 8node 77选项,单击OK 按钮。 设置单元选项:单击【Element Type 】对话框的Options 按钮,弹出【Plane77 element type options 】对话框,在Element behavior 下拉列框中选择Axisymmetrical 选项,单击OK 按钮,单击Close 按钮。 设置材料属性:GUI: Main Menu> Preprocessor> Material Props> Material Models ,弹出【Define () ()

abaqus热残余应力分析实例

利用Abaqus的Moldflow接口进行翘曲分析和残余应力分析 Abaqus关键特征和优势 1.力学性质、有限元网格以及残余应力数据都能从Moldflow很简便地传递到Abaqus 2.包含了成型工艺残余应力的Abaqus分析使得注塑模具产品的仿真更加精确 分析方法 对一个注塑模具产品的翘曲和应力分析的过程来说,一开始是利用Moldflow对注塑成型过程进行仿真。Moldflow的分析结果包括材料性质的描述以及固化零件中的残余应力分布。Abaqus的Moldflow接口此时用来将这些数据转换成Abaqus可以应用的格式。特别强调的是,接口产生的文件包含了塑料的网格信息、残余应力结果以及材料的性质。这些数据会在接下来的Abaqus分析中用来进行翘曲和残余应力影响的建模。椅子和手机外壳塑模的离散化模型如图1所示。对于这两个模型,Moldflow分析在模型厚度上分了21层并使用了壳体网格元素。翘曲的仿真运用Abaqus/Standard的静态分析功能分析完成。 图1:椅子和手机外壳模型的网格 结果和讨论 运用Abaqus/Standard进行翘曲分析后,椅子模型和手机外壳模型的变形如图2及图3所示。

图2:椅子模型的翘曲位移[米]分布云图 图3:手机外壳模型的翘曲位移[米]分布云图 由Abaqus/Standard翘曲分析所得到的椅子模型和手机外壳模型的Mises应力分布云图如图4及图5所示。很明显可以看出,由于翘曲引起了变形,原来零件中所储存的Mises 应力大小降低了。

图4:椅子模型的Mises应力[帕]分布分布—翘曲前[左]和翘曲后[后] 图5:手机外壳模型的Mises应力[帕]分布—翘曲前[左]和翘曲后[后] 结论 Abaqus为进行细致的结构分析提供了强大的能力。Moldflow为注塑模具产品提供了运算残余应力和材料性质的能力。Abaqus的Moldflow接口通过提供Moldflow分析结果向Abaqus分析过程传送的方法,使得更加精确、更加高效的设计过程得以实现。

ANSYS热应力分析--精选实例.docx

ANSYS 热应力分析实例 当一个结构加热或冷却时,会发生膨胀或收缩。如果结构各部分之间膨胀收 缩程度不同,和结构的膨胀、收缩受到限制,就会产生热应力。 热应力分析的分类 ANSYS提供三种进行热应力分析的方法: 在结构应力分析中直接定义节点的温度。如果所以节点的温度已知,则可以 通过命令直接定义节点温度。节点温度在应力分析中作为体载荷,而不是节点自由度 间接法。首先进行热分析,然后将求得的节点温度作为体载荷施加在结构应 力分析中。 直接法。使用具有温度和位移自由度的耦合单元,同时得到热分析和结构应 力分析的结果。 如果节点温度已知,适合第一种方法。但节点温度一般是不知道的。对于大多数问题,推荐使用第二种方法—间接法。因为这种方法可以使用所有热分析的功能和结构分析的功能。如果热分析是瞬态的,只需要找出温度梯度最大的时间点,并将此时间点的节点温度作为荷载施加到结构应力分析中去。如果热和结构的耦合是双向的,即热分析影响结构应力分析,同时结构变形又会影响热分析(如大变形、接触等),则可以使用第三种直接法—使用耦合单元。此外只有第三种方法可以考虑其他分析领域(电磁、流体等)对热和结构的影响。 间接法进行热应力分析的步骤 首先进行热分析。可以使用热分析的所有功能,包括传导、对流、辐射和表 面效应单元等,进行稳态或瞬态热分析。但要注意划分单元时要充分考虑结构分

析的要求。例如,在有可能有应力集中的地方的网格要密一些。如果进行瞬态分析,在后处理中要找出热梯度最大的时间点或载荷步。 热单元结构单元 LINK32LINK1 LINK33LINK8 PLANE35PLANE2 PLANE55PLANE42 SHELL57SHELL63 PLANE67PLANE42 LINK68LINK8 SOLID79SOLID45 MASS71MASS21 PLANE75PLANE25 PLANE77PLANE82 PLANE78PLANE83 PLANE87PLANE92 PLANE90PLANE95 SHELL157SHELL63 重新进入前处理,将热单元转换为相应的结构单元,表7-1 是热单元与结构单元的对应表。可以使用菜单进行转换:

ANSYS传热分析实例汇总

实例1: 某一潜水艇可以简化为一圆筒,它由三层组成,最外面一层为不锈钢,中间为玻纤隔热层,最里面为铝层,筒内为空气,筒外为海水,求内外壁面温度及温度分布。 几何参数:筒外径30 feet 总壁厚 2 inch 不锈钢层壁厚0.75 i nch 玻纤层壁厚 1 inch 铝层壁厚0.25 i nch 筒长200 feet 导热系数不锈钢8.27 B TU/hr.ft.o F 玻纤0.028 BTU/hr.ft.o F 铝117.4 BTU/hr.ft.o F 边界条件空气温度70 o F 海水温度44.5 o F 空气对流系数 2.5 BTU/hr.ft2.o F 海水对流系数80 BTU/hr.ft2.o F 沿垂直于圆筒轴线作横截面,得到一圆环,取其中1度进行分析,如图示。 以下分别列出log文件和菜单文件。 /filename, Steady1 /title, Steady-state thermal analysis of submarine /units, BFT Ro=15 !外径(ft)

Rss=15-(0.75/12) !不锈钢层内径ft) Rins=15-(1.75/12) !玻璃纤维层内径(ft) Ral=15-(2/12) !铝层内径(ft) Tair=70 !潜水艇内空气温度 Tsea=44.5 !海水温度 Kss=8.27 !不锈钢的导热系数(BTU/hr.ft.oF) Kins=0.028 !玻璃纤维的导热系数(BTU/hr.ft.oF) Kal=117.4 !铝的导热系数(BTU/hr.ft.oF) Hair=2.5 !空气的对流系数(BTU/hr.ft2.oF) Hsea=80 !海水的对流系数(BTU/hr.ft2.oF) /prep7 et,1,plane55 !定义二维热单元 mp,kxx,1,Kss !设定不锈钢的导热系数 mp,kxx,2,Kins !设定玻璃纤维的导热系数 mp,kxx,3,Kal !设定铝的导热系数 pcirc,Ro,Rss,-0.5,0.5 !创建几何模型 pcirc,Rss,Rins,-0.5,0.5 pcirc,Rins,Ral,-0.5,0.5 aglue,all numcmp,area lesize,1,,,16 !设定划分网格密度 lesize,4,,,4 lesize,14,,,5 lesize,16,,,2 eshape,2 !设定为映射网格划分 mat,1 amesh,1 mat,2 amesh,2 mat,3 amesh,3 /SOLU SFL,11,CONV,HAIR,,TAIR !施加空气对流边界

ansys中的热分析

【转】热-结构耦合分析 知识掌握篇2009-05-31 14:09:19 阅读131 评论0 字号:大中小订阅 热-结构耦合问题是结构分析中通常遇到的一类耦合分析问题.由于结构温度场的分 布不均会引起结构的热应力,或者结构部件在高温环境中工作,材料受到温度的影响会发 生性能的改变,这些都是进行结构分析时需要考虑的因素.为此需要先进行相应的热分析, 然后在进行结构分析.热分析用于计算一个系统或部件的温度分布及其它热物理参数,如 热量的获取或损失,热梯度,热流密度(热通量)等.本章主要介绍在ANSYS中进行稳 态,瞬态热分析的基本过程,并讲解如何完整的进行热-结构耦合分析. 21.1 热-结构耦合分析简介 热-结构耦合分析是指求解温度场对结构中应力,应变和位移等物理量影响的 分析类型.对于热-结构耦合分析,在ANSYS中通常采用顺序耦合分析方法,即 先进行热分析求得结构的温度场,然后再进行结构分析.且将前面得到的温度场作 为体载荷加到结构中,求解结构的应力分布.为此,首先需要了解热分析的基本知 识,然后再学习耦合分析方法. 21.1.1 热分析基本知识 ANSYS热分析基于能量守恒原理的热平衡方程,用有限元法计算各节点的温 度,并导出其它热物理参数.ANSYS热分析包括热传导,热对流及热辐射三种热传 递方式.此外,还可以分析相变,有内热源,接触热阻等问题. 热传导可以定义为完全接触的两个物体之间或一个物体的不同部分之间由于温度梯度 而引起的内能的交换.热对流是指固体的表面和与它周围接触的流体之间,由于温差的存 在引起的热量的交换.热辐射指物体发射电磁能,并被其它物体吸收转变为热的热量交换 过程. 如果系统的净热流率为0,即流入系统的热量加上系统自身产生的热量等于流出系统 的热量:q流入+q生成-q流出=0,则系统处于热稳态.在稳态热分析中任一节点的温度不随时间变 化. 瞬态传热过程是指一个系统的加热或冷却过程.在这个过程中系统的温度,热流率, 热边界条件以及系统内能随时间都有明显变化. ANSYS热分析的边界条件或初始条件可分为七种:温度,热流率,热流密度, 对流,辐射,绝热,生热. 热分析涉及到的单元有大约40种,其中纯粹用于热分析的有14种,它们如表 21.1所示. 表21.1 热分析单元列表 单元类型名称说明 线性 LINK32 LINK33 LINK34 LINK31 两维二节点热传导单元 三维二节点热传导单元 二节点热对流单元

ANSYS非稳态热分析及实例详解

第7 章非稳态热分析及实例详解 本章向读者介绍非稳态热分析的基本知识,主要包括非稳态热分析的应用、非稳态热分析单元、非稳态热分析的基本步骤。 本章要点 非稳态导热的基本概念 非稳态热分析的应用 非稳态热分析单元 分析的基本步骤 本章案例 钢球非稳态传热过程分析 不同材料金属块水中冷却的非稳态传热过程分析 高温铜导线冷却过程分析

7.1 非稳态热分析概述 物体的温度随时间而变化的导热过程称为非稳态导热。根据物体温度随着时间的推移而变化的特性可以区分为两类非稳态导热:物体的温度随时间的推移逐渐趋于恒定的值以及物体的温度随时间而作周期性的变化。无论在自然界还是工程实际问题中,绝大多数传热过程都是非稳态的。许多工程实际问题需要确定物体内部的温度场随时间的变化,或确定其内部温度达到某一限定值所需要的时间。例如:在机器启动、停机及变动工况时,急剧的温度变化会使部件因热应力而破坏,因此需要确定物体内部的瞬时温度场;钢制工件的热处理是一个典型的非稳态导热过程,掌握工件中温度变化的速率是控制工件热处理质量的重要因素。再例如,金属在加热炉内加热时,需要确定它在加热炉内停留的时间,以保证达到规定的中心温度。可见,非稳态热分析是有相当大的应用价值的。ANSYS 11.0及其相关的下属产品均支持非稳态的热分析。非稳态热分析确定了温度以及其它随时间变化的热参数。 7.1.1 非稳态热分析特性 瞬态热分析用于计算一个系统的随时间变化的温度场及其它热参数。在工程上一般用瞬态热分析计算温度场,并将之作为热载荷进行应力分析。 瞬态热分析的基本步骤与稳态热分析类似。主要的区别是瞬态热分析中的载荷是随时间变化的。为了表达随时间变化的载荷,首先必须将载荷-时间曲线分为载荷步。对于每一个载荷步,必须定义载荷值及时间值,同时必须选择载荷步为渐变或阶越。 7.1.2 非稳态热分析的控制方程 热储存项的计入将稳态系统变为非稳态系统,计入热储存项的控制方程的矩阵形式如下: []{}[]{}{}C T K T Q += 其中,[]{} C T 为热储存项。 在非稳态分析时,载荷是和时间有关的函数,因此控制方程可表示如下: []{}[]{}(){}C T K T Q t += 若分析为分线性,则各参数除了和时间有关外,还和温度有关。非线性的控制方程可表示如下: (){}(){}(){},C T T K T T Q T t +=???????? 7.1.3 时间积分与时间步长 1、时间积分 从求解方法上来看,稳态分析和非稳态分析之间的差别就是时间积分。利用ANSYS 11.0分析问题时,只要在后续载荷步中将时间积分效果打开,稳态分析即转变为非稳态分析;同样,只要在后续载荷步中将时间积分关闭,非稳态分析也可转变为稳态分析。 2、时间步长 两次求解之间的时间称为时间步,一般来说,时间步越小,计算结果越精确。确定时间步长的方法有两种: (1)指定裕度较大的初始时间步长,然后使用自动时间步长增加时间步。

相关文档
相关文档 最新文档