文档视界 最新最全的文档下载
当前位置:文档视界 › 齐次线性方程组的基础解系存在定理及其应用

齐次线性方程组的基础解系存在定理及其应用

齐次线性方程组的基础解系存在定理及其应用
齐次线性方程组的基础解系存在定理及其应用

齐次线性方程组的基础解系及其应用

齐次线性方程组一般表示成AX=0的形式,其主要结论有:

(1)齐次线性方程组AX=0一定有解,解惟一的含义是只有零解,有非零解的含义是解不惟一(当然有无穷多解)。有非零解的充要条件是R(A)

(2)齐次线性方程组AX=0解的线性组合还是它的解,因而解集合构成向量空间,向量空间的极大线性无关组,叫基础解系;

(3)齐次线性方程组AX=0,当系数矩阵的秩r(A)小于未知量的个数n 时,存在基础解系,并且基础解系中含有n-r(A)个解向量;

(4)对于齐次线性方程组AX=0,如果r(A)

定理1:设A 是n m ?的矩阵,B 是s n ?的矩阵,并且AB=0,那么r(A)+r(B)n ≤

分析:这是一个非常重要的结论,多年考试题与它有关。同学们还要掌握本定理的证明方法。 证:设s B B B B ,,,21 的列向量为,则),,,(21s B B B B =,AB=0,即

0),,,(21=s B B B A 所以 s j AB j ,,2,1,0 ==

所以,s B B B ,,,21 都是齐次线性方程组AB=0的解

r(B)=秩)(),,,(21A r n B B B s -≤

所以 r(A)+r(B)n ≤

评论:AB=0,对B 依列分块,时处理此类问题的惯用方法。

例1:要使,110,20121????

? ??-=????? ??=ξξ都是线性方程组0=AX 的解,只要系数矩阵A 为

(A)[-2 1 1 ] (B)??????-110102 (C) ??????--110201 (D)????

??????---110224110 解:由答案之未知量的个数是3。,110,20121????

? ??-=????? ??=ξξ都是线性方程组0=AX 的解,并且

21,ξξ线性无关,

所以 1)(2)(3≤≥-A r A r ,从而,.只有(A )是正确的。

例2:设n 阶方阵A 的各行元素之和均为零,且A 的秩为n-1,则线性方程组AX=0的通解 为 .

解:记??????

? ??=111 ξ,由于n 阶方阵A 的各行元素之和均为零, 所以0=ξA ,0≠ξ 且A 的秩为n-1,所以ξ就是七次线性方程组AX=0的基础解系,

所以,线性方程组AX=0的通解为??????

? ??111 k

例3:已知Q=????

??????96342321t ,P 为3阶非零方阵,且满足PQ=0,则 (A)t=6时P 的秩必为1 (B) t=6时P 的秩必为2

(C)t ≠6时P 的秩必为1 (D)t ≠6时P 的秩必为2

解:记????

??????==96342321),,(321t Q Q Q Q ,因为所以,0=PQ 321,,Q Q Q 都是齐次线性方程组,0=PX 的解,当6≠t 时,31,Q Q 线性无关,所以1)(,

2)(3≤≥-P r P r 即 P 为非零方阵,所以1)(≥P r

因而:t ≠6时P 的秩必为1,选(C )

另解:因为所以,0=PQ 3)()(≤+Q r P r ,当6≠t 时,1)(,

2)(≤=P r Q r

P 为非零方阵,所以1)(≥P r

因而:t ≠6时P 的秩必为1,选(C )

例4:设A 是n (2≥)阶方阵,*A 是的伴随矩阵,那么:

?????=-=-<=n

A r n n A r n A r A r )(1)(1

1)(0)(*当当当 证明:1)(-

1)(-=n A r 当时,A 存在不为0的 n-1阶子式,所以1)(*≥A r 此时,0=A ,0*=AA ,所以,)()(*n A r A r <+1)(*≤A r

从而1)(*=A r

齐次线性方程组的基础解系(PPT)_1

---------------------------------------------------------------最新资料推荐------------------------------------------------------ 齐次线性方程组的基础解系(PPT) 齐次线性方程组的基础解系(PPT) 齐次线性方程组的基础解 系对于齐次线性方程组a11x1a12x2a1nxn0, a12x1a22x2a2nxn0, ax ax ax0. m22mnn m11 令a11a12 a21a22 , 1 2 am1 am2 a1n a2n ,,n amn 则上述方程组即为 x1 1 x2 2 xn n 0 (*) (其中 0 为零向量)。 将(*)的解视为 n 维向量,则所有解向量构成 K 中的一个向量组,记为 S。 n 命题 S 中的元素(解向量)的线性组合仍属于 S(仍是解)。 证明只需要证明 S 关于加法与数乘封闭。 设(k1,k2,,kn),(l1,l2,,ln)S,则k11k2 2 kn n 0 l1 1 l2 2 ln n 0 于是 (k1 l1) 1 (k2 l2) 2 (kn ln) n 0 故 (k1 l1,k2 l2, ,kn ln) S;又因为k K kk1 1 kk2 2 kkn n 0 所以(kk1,kk2, ,kkn) S。 证毕。 定义(线性方程组基础解系)齐次线性方程组(*)的一组解 1 / 7

向量1, 2, , s 如果满足如下条件: (1)1, 2, , s 线性无关;(2)方程组(*)的 任一解向量都可被1, 2, , s 线性表出,那么,就称1, 2, , s 是齐次线性方程组(*)的一个基础解系。 定理数域上的齐次线性方程组的基础解系中的向量个数等于变 元个数减去系数矩阵的秩。 证明记线性方程组为 x1 1 x2 2 xn n 0 其中a11a12 a21a22 , 1 2 am1 am2 a1n a2n , , n amn 设1, 2, , n 的秩为 r,无妨设1, 2, , n 为其极大线性无关部分组, 则r 1, r 2, , n 皆可被1, 2, , r 线性 表出,即存在 kij K(1 i n r,1 j r),使得r 1 k11 1 k1 2 2 k1r r r 2 k21 1 k22 2 k2r r n kn r1 1 kn r2 2 kn rr r, 即 ki1 1 ki2 2 kir r 1 r i 0, (i 1,2, n r)于是 S 中含 有向量1(k11,k12,,k1r,1,0,,0) 2 (k21,k22,,k2r,0,1,,0) n r(kn r1,kn r2, ,kn rr,0,0, ,1) 只需要证明1, 2, , n r 是解向量组的一个极大线性无关部分组即可。 易见,向量组1, 2, , n r 线性无关。 只需要再证明1, 2, , n r 能线性表出任意一个S 即

线性方程组有解的判别定理

非齐次线性方程组同解的讨论 摘要 本文主要讨论两个非齐次线性方程组有相同解的条件,即如何判定这两个非齐次线性方程组有相同的解. 关键词 非齐次线性方程组 同解 陪集 零空间 引言 无论是解齐次线性方程组,还是解非齐次线性方程组.所用的方法都是消元法,即对其系数矩阵或增广矩阵施以行的初等变换,而得到比较简单的同解方程组.用矩阵理论来说,就是系数矩阵或增广矩阵左乘以可逆矩阵后所得线性方程组与原线性方程组据有相同的解.这仅为问题的一面,而问题的反面是,如果两个非齐次线性方程组同解,则它们的系数矩阵或增广矩阵之间是否存在一个可逆矩阵?答案是肯定的,此即是本文主要解决的问题。 下面是一个非齐次线性方程组,我们用矩阵的形式写出 11121121222212n n m m mn m a x a x a x b a x a x a x b a x a x a x b +++=??+++=????+++=? 令 A= 111212122212n n m m mn a a a a a a a a a ???????????? ,b= 12m b b b ???????????? 。 即非齐次线性方程组可写成Ax b =。 一 、线性方程组同解的性质 引理 1 如果非齐次线性方程组Ax b =与Bx d =同解,则矩阵[]A b 与[]B d 的秩相等. 证明 设非齐次线性方程组Ax b =的导出组的基础解系为111,,,r ξξξ ,其中1 r 为矩阵[]A b 的秩,再设非齐次线性方程组Bx=d 的导出组的基础解系为 2 12,,,r ηηη ,其中2r 为矩阵[]B d 的秩,如果*η是非齐次线性方程组Ax=b 与Bx=d 特解,由于这两个方程组同解,所以向量组1*11,,,,r ξξξη 与向量组2*12,,,,r ηηηη 等价。从而这两个线性无关的向量组所含的向量个数相等,于是有12,r r =则矩阵[]A b 与[]B d 的秩相等. 引理[1]2 设A 、B 为m n ?矩阵,则齐次线性方程组0Ax =与0Bx =同解的充

齐次和非齐次线性方程组的解法(整理定稿)

线性方程组解的结构(解法) 一、齐次线性方程组的解法 【定义】 r (A )= r 时,若()r A n ≤,则存在齐次线性方程组的同解方程组; $ 若()r A n >,则齐次线性方程组无解。 1、求AX = 0(A 为m n ?矩阵)通解的三步骤 (1)?? →A C 行 (行最简形); 写出同解方程组CX =0. (2) 求出CX =0的基础解系,,,n r -12ξξξ; (3) 写出通解n r n r k k k --=++ +1122X ξξξ其中k 1,k 2,…, k n-r 为任意常数.

线性方程组解的判定

1 / 3 第四节 线性方程组解的判定 从本节开始,讨论含有n 个未知量、m 个方程的线性方程组的解. 11112211211222221122n n n n m m mn n m a x a x a x b a x a x a x b a x a x a x b +++=??+++=????+++= ? (13—2) 主要问题是要判断出方程组(13-2)何时有解?何时无解?有解时解有多少?如何求出方程组的解。 线性方程组有没有解,以及有怎样的解,完全决定于方程组的系数和常数项。因此,将线性方程组写成矩阵形式或向量形式,以矩阵或向量作为讨论线性方程组的工具,将带来极大的方便。 方程组(13-2)中各未知量的系数组成的矩阵111212122212n n m m mn a a a a a a A a a a ??????=?????? 称为方程组(13-2)的系数矩阵.由各系数与常数项组成的矩阵,称为增广矩阵,记作A ,即 11121121 222212n n m m mn m a a a b a a a b A a a a b ??????=?????? 方程组(13-2)中的未知量组成一个n 行、1列的矩阵(或列向量),记作X ;常数项组成一个m 行、1列 的矩阵(或列向量),记作b ,即12n x x X x ??????=??????,12m b b b b ??????=?????? 由矩阵运算,方程组(13—2)实际上是如下关系111212122212 n n m m mn a a a a a a a a a ????????????12n x x x ????????????=12m b b b ???????????? 即 AX=b

齐次线性方程组基础解系

齐次线性方程组的基础解系及其应用 齐次线性方程组一般表示成AX=0的形式,其主要结论有: (1)齐次线性方程组AX=0一定有解,解惟一的含义是只有零解,有非零解的含义是解不惟一(当然有无穷多解)。有非零解的充要条件是R(A)

线性方程组解题方法技巧与题型归纳

线性方程组解题方法技巧与题型归纳 题型一 线性方程组解的基本概念 【例题1】如果α1、α2是方程组 123131233231 2104 x x ax x x x ax x --=?? -=??-++=? 的两 个不同的解向量,则a 的取值如何 解: 因为α1、α2是方程组的两个不同的解向量,故方程组有无穷多解,r(A)= r(Ab)<3, 对增广矩阵进行初等行变换: 21131132031022352104002314510a a a a a a a ----???? ? ?-→-- ? ? ? ?-----???? 易见仅当a=-2时,r(A)= r(Ab)=2<3, 故知a=-2。 【例题2】设A 是秩为3的5×4矩阵, α1、α2、 α3是非齐次线性方程组Ax=b 的三个不同的解,若α1+α2+2α3=(2,0,0,0)T , 3α1+α2= (2,4,6,8)T ,求方程组Ax=b 的通解。 解:因为r(A)= 3,所以齐次线性方程组Ax=0的基础解系由4- r(A)= 1个向量构成, 又因为(α1+α2+2α3)-(3α1+α2) =2(α3-α1)=(0,-4,-6,-8)T , 是Ax=0的解, 即其基础解系可以是(0,2,3,4)T , 由A (α1+α2+2α3)=Aα1+Aα2+2Aα3=4b 知1/4

(α1+α2+2α3)是Ax=b 的一个解, 故Ax=b 的通解是 ()1,0,0,00,2,3,42T T k ?? + ??? 【例题3】已知ξ1=(-9,1,2,11)T ,ξ2=(1,- 5,13,0)T ,ξ3=(-7,-9,24,11)T 是方程组 12234411223441 234432332494x a x x a x d x b x x b x x x x c x d +++=?? +++=??+++=?的三个解,求此方程组的通解。 分析:求Ax=b 的通解关键是求Ax=0的基础解系,判断r(A)的秩。 解:A 是3×4矩阵, r(A)≤3,由于A 中第2,3两行不成比例,故r(A)≥2,又因为 η1=ξ1-ξ2=(-10,6,-11,11)T , η2=ξ2-ξ3= (8,4,-11,-11)T 是Ax=0的两个线性无关的解向量, 于是4- r(A)≥2,因此r(A)=2,所以ξ1+k 1η1+k 2η2是通解。 总结: 不要花时间去求方程组,太繁琐,由于ξ1-ξ2,ξ1-ξ3或ξ3-ξ1,ξ3-ξ2等都可以构成齐次线性方程组的基础解系,ξ1,ξ2,ξ3都是特解,此类题答案不唯一。 题型2 线性方程组求解

齐次线性方程组

齐次线性方程组Ax=0 一、基本理论 齐次线性方程组的Ax=0解集是一个线性子空间, 称为解空间(或零空间),记作N(A ). N(A )的一组基称为方程组的一个基础解系。 解空间的维数:dim N(A ) = n - rank(A ). 求解齐次线性方程组Ax=0的方法: 利用初等行变换将A 化为最简行阶梯矩阵, 根据对应的方程组写出基础解系. 二、Matlab 实现 实现一:rref(A )将A 化成最简行阶梯矩阵. 根据对应方程组写出基础解系. 实现三:Matlab 函数null(A )可以返回解空间的一组基,但与上述方法所得结果不同。 三、例子 例. 求解线性方程组 12451234512345123451 2 3 4 5 25023450223024319803632490 x x x x x x x x x x x x x x x x x x x x x x x x +-+=??+++-=??+++-=??+--+=?+--+=?? 输入系数矩阵A A = [1 2 0 -5 1; 1 2 3 4 -5; 1 2 2 1 -3; 2 4 -3 -19 8; 3 6 -3 -24 9] A = 1 2 0 -5 1 1 2 3 4 -5 1 2 2 1 -3 2 4 -3 -19 8 3 6 -3 -24 9 解一 R=rref(A) R =

1 2 0 -5 1 0 0 1 3 -2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 原方程化为 12453 4 5 250320 x x x x x x x +-+=??+-=? 即 12453 45 5223x x x x x x x +-+=-??=-? 通解 12452234245445555220251100332010001x x x x x x x x x x x x x x x x +----?????????? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ?=-=++- ? ? ? ? ? ? ? ? ? ? ? ? ? ? ? ???????+??? 解二. 调用nulbasis(A)求零空间的基 N=nulbasis(A) N = -2 5 -1 1 0 0 0 -3 2 0 1 0 0 0 1 Matlab 的null(A)给出不同的结果 null(A) ans = -0.9331 -0.1583 -0.0875 0.1057 0.7349 -0.2499 0.0468 -0.0248 0.8851 -0.1995 0.3712 -0.0414 -0.2759 0.5444 0.3805 例. 求12340x x x x +++=的解空间 A=[1 1 1 1]; nulbasis(A) ans = -1 -1 -1 1 0 0 0 1 0 0 0 1

线性方程组解的判定与解的结构

***学院数学分析课程论文 线性方程组解的判定与解的结构 院系数学与统计学院 专业数学与应用数学(师范) 姓名******* 年级 2009级 学号200906034*** 指导教师 ** 2011年6月

线性方程组解的判定与解的结构 姓名****** (重庆三峡学院数学与计算机科学学院09级数本?班) 摘 要:线性方程组是否有解,用系数矩阵和增广矩阵的秩来刻画.在方程组有解且有 多个解的情况下,解的结构就是了解解与解之间的关系. 关键词:矩阵; 秩; 线性方程组; 解 引言 通过系数矩阵和增广矩阵的秩是否相同来给出判定线性方程组的解的判别条件.在了解了线性方程组的判别条件之后,我们进一步讨论解的结构.对于齐次线性方程组,解的线性组合还是方程组的解.在线性方程组有无穷个解时可用有限多个解表示出来.另外以下还涉及到线性方程组通解的表达方式. 1 基本性质 下面我们分析一个线性方程组的问题,导出线性方程组有解的判别条件. 对于线性方程组 1111221121122222 1122n n n n s s sn n s a x a x a x b a x a x a x b a x a x a x b ++???+=??++???+=???????++???+=? (1) 引入向量 112111s αααα??????=?????????,122222s αααα??????=?????????,…12n n n sn αααα??????=????????? ,12s b b b β?? ?? ??=??????? ?? 方程(1)可以表示为 1122n n x x x αααβ++???+= 性质 线性方程组⑴有解的充分必要条件为向量β可以表成向量组α1,α2,…,αn 的线性组合. 定理1 线性方程组⑴有解的充分必要条件为它的系数矩阵

线性方程组解的判定

第四节 线性方程组解的判定 从本节开始,讨论含有n 个未知量、m 个方程的线性方程组的解。 11112211211222 22 11 22n n n n m m mn n m a x a x a x b a x a x a x b a x a x a x b +++=??+ ++= ????+++=? (13—2) 主要问题是要判断出方程组(13-2)何时有解?何时无解?有解时解有多少?如何求出方程组的解。 线性方程组有没有解,以及有怎样的解,完全决定于方程组的系数和常数项。因此,将线性方程组写成矩阵形式或向量形式,以矩阵或向量作为讨论线性方程组的工具,将带来极大的方便。 方程组(13-2)中各未知量的系数组成的矩阵11121212221 2 n n m m mn a a a a a a A a a a ? ?? ? ? ?=?? ?? ? ? 称为方程组(13-2)的系数矩阵。由各系数与常数项组成的矩阵,称为增广矩阵,记作A ,即 11121121 222212 n n m m mn m a a a b a a a b A a a a b ?? ????=??? ??? 方程组(13-2)中的未知量组成一个n 行、1列的矩阵(或列向量),记作X;常数项组成一个m 行、1 列的矩阵(或列向量),记作b ,即12n x x X x ??????=?????? ,12 m b b b b ?? ????=?????? 由矩阵运算,方程组(13-2)实际上是如下关系111212122212 n n m m mn a a a a a a a a a ? ?? ? ? ? ?? ?? ? ? 12n x x x ???????????? =12m b b b ???????????? 即 AX=b

线性方程组解的情况及其判别准则

摘要:近年来,线性代数在自然科学和工程技术中的应用日益广泛,而线性方程组求解问题是线性代数的基本研究内容之一,同时它也是贯穿线性代数知识的主线。本文探究了线性方程组一般理论的发展,用向量空间和矩阵原理分析了线性方程组解的情况及其判别准则。介绍了线性方程组理论在解决解析几何问题中的作用,举例说明了线性方程组解的结构理论在判断空间几何图形间位置关系时的便利之处。 关键字:线性方程组;解空间;基础解系;矩阵的秩 Abstract:In recent years, linear algebra in science and engineering application, and wide linear equations solving problems is the basic content of linear algebra, at the same time, it is one of the main knowledge of linear algebra.This article has researched the development of system of linear equations theory,discussed the general theory of linear equations, vector space with the development and matrix theory to analyze the linear equations and the criterion of the situation. Introduces the theory of linear equations in solving the problem of analytic geometry, illustrates the role of linear equations of structure theory in judgment space relation between the geometry of the convenience of position. space geometric figure between time the position relations with theory of the system of linear equation with examples. Key words: linear equations, The solution space, Basic solution, Matrix rank

齐次和非齐次线性方程组的解法精编日

齐次和非齐次线性方程组的解法精编日 Company number【1089WT-1898YT-1W8CB-9UUT-92108】

线性方程组的解法 注意:考试以非齐次线性方程组的无穷多解为主要考查点,但是同学们学得时候要系统,要全面,要完整。下面是解线性方程组各种情况的标准格式,请同学们以此为准,进行练习。 一、齐次线性方程组的解法 定理齐次线性方程组一定有解: (1) 若齐次线性方程组() =,则只有零解; r A n (2) 齐次线性方程组有非零解的充要条件是() r A n <.(注:当=时,齐次线性方程组有非零解的充要条件是它的系数行列式 m n A=.) 注:1、基础解系不唯一,但是它们所含解向量的个数相同,且基础解系所含解向量的个数等于() -. n r A 2、非齐次线性方程组AX B =的同解方程组的导出方程组(简称“导出组”)为齐次线性方程组AX O =所对应的同解方程组。 由上面的定理可知,若m是系数矩阵的行数(也即方程的个数),n 是未知量的个数,则有:(1)当m n <时,() ≤<,此时齐次线性方 r A m n 程组一定有非零解,即齐次方程组中未知量的个数大于方程的个数就一定有非零解; (2)当m n =时,齐次线性方程组有非零解的充要条件是它的系数行列式0 A=; (3)当m n A≠,故齐次线=且() =时,此时系数矩阵的行列式0 r A n 性方程组只有零解;

(4)当m n >时,此时()r A n ≤,故存在齐次线性方程组的同解方程组,使“m n ≤”. 例 解线性方程组12 341 23412341 2 3 4 2350,320,4360,2470. x x x x x x x x x x x x x x x x +-+=??++-=? ?+-+=??-+-=? 解法一:将系数矩阵A 化为阶梯形矩阵 显然有()4r A n ==,则方程组仅有零解,即12340x x x x ====. 解法二:由于方程组的个数等于未知量的个数(即m n =)(注意:方程组的个数不等于未知量的个数(即m n ≠),不可以用行列式的方法来判断),从而可计算系数矩阵A 的行列式: 231531 2132704 13 6 1247 A --= =≠---,知方程组仅有零解,即12340x x x x ====. 例 解线性方程组123 451 2 3452 34512 3 4 5 0,3230,2260,54330. x x x x x x x x x x x x x x x x x x x ++++=??+++-=??+++=??+++-=? 解:将系数矩阵A 化为简化阶梯形矩阵 可得()2r A n =<,则方程组有无穷多解,其同解方程组为 134523 4 55,226. x x x x x x x x =++??=---?(其中3x ,4x ,5x 为自由未知 量) 令31x =,40x =,50x =,得121,2x x ==-;令30x =,41x =,50x =,得121,2x x ==-;令30x =,40x =,51x =,得125,6x x ==-,于是得到原方程组的一个基础解系为

齐次和非齐次线性方程组的解法(整理定稿)

线性方程组解的结构(解法) 一、齐次线性方程组的解法 【定义】 r (A )= r 时,若()r A n ≤,则存在齐次线性方程组的同解方程组; 若()r A n >,则齐次线性方程组无解。 1、求AX = 0(A 为m n ?矩阵)通解的三步骤 (1)?? →A C 行 (行最简形); 写出同解方程组CX =0. (2) 求出CX =0的基础解系,,,n r -12L ξξξ; (3) 写出通解n r n r k k k --=+++1122L X ξξξ其中k 1,k 2,…, k n-r 为任意常数.

线性方程组解的结构

线性方程组解的结构 11111221n n b a x a x a x =++???+ 22112222n n b a x a x a x =++???+ 33113223n n b a x a x a x =++???+ ………………………………… 1122n n n nn n b a x a x a x =++???+ 表示从变量12 ,n x x x ???到变量12,n b b b ???的线性变换,其中ij a 是常数。确 定了线性变换,它的系数所构成的矩阵(系数矩阵)也就确定,线性变换根矩阵是一一对应的关系。 上式可以表示为以向量x 为未知元的向量方程: Ax=b 线性方程组如果是有解的,称它是相容的,否则称为不相容。 一、 定理4:N 元线性方程组Ax=b (1) 无解的充要条件是R(A)

(2) 若R(A)=R(B),则进一步把B 化成最简型,而对于齐次线性 方程组,则把系数矩阵A 化成最简型。 (3) 设R(A)=R(B)=r ,把行最简型中r 个非0行的非0首个元素所对应的未知数取做非自由未知数,其他的元素取做自由未知数。带入原方程,就可以得到一个关于自由为未知量的表达式。 三、 齐次线性方程组求解步骤:Ax=0 (1) 根据R(A)与n (变量个数)来判断解的结构: A. R(A)

非齐次线性方程组同解的判定和同解类

非齐次线性方程组同解的判定和同解类 摘要 本文主要讨论两个非齐次线性方程组同解的条件及当两个非齐次线性方程组的导出组的解空间相同时解集之间的关系。 关键词 非齐次线性方程组 同解 陪集 引言 无论是解齐次线性方程组,还是解非齐次线性方程组.所用的方法都是消元法,即对其系数矩阵或增广矩阵施以行的初等变换,而得到比较简单的同解方程组.用矩阵理论来说,就是系数矩阵或增广矩阵左乘以可逆矩阵后所得线性方程组与原线性方程组据有相同的解.这仅为问题的一面,而问题的反面是,如果两个非齐次线性方程组同解,则它们的系数矩阵或增广矩阵之间是否存在一个可逆矩阵?答案是肯定的,此即是本文主要解决的问题. 预备知识 定理1设,A B 是向量组C 两个线性无关的极大组,则存在可逆矩阵P ,使得 B PA =。 定理2设A 、B 为m n ?矩阵,且秩A =秩B ,如果存在矩阵C ,使得 CA B = 则存在m m ?可逆矩阵P ,使得 PA B = 证明 设秩A =秩B =r ,则存在可逆矩阵1P 与Q 使 011A P A A ??=????, 01B QB B ??=???? 其中0A ,0B 分别为秩数等于r 的r n ?矩阵,由于B CA =,则B 的行可由A 的行线性表出,从而B 的行可由0A 的行线性表出,进而0B 的行可由0A 的行线性表出, 于是矩阵00A B ?? ???? 的行向量组的极大线性无关组为0A 的各行,因为0B 的各行线性无 关且秩0B r =,所以0B 的各行亦构成一个线性无关组,则存在可逆矩阵r P 使得 00r B P A = 又设 110A C A =,12020r B C B C P A == 令 221 0r r n r P P C P C I -?? =? ?-?? 则1P 为可逆矩阵,且

高斯消元法解线性方程组

高斯消元法解线性方程组 在工程技术和工程管理中有许多问题经常可以归结为线性方程组类型的数学模型,这些模型中方程和未知量个数常常有多个,而且方程个数与未知量个数也不一定相同。那么这样的线性方程组是否有解呢?如果有解,解是否唯一?若解不唯一,解的结构如何呢?这就是下面要讨论的问题。 一、线性方程组 设含有n 个未知量、有m 个方程式组成的方程组 a x a x a x b a x a x a x b a x a x a x b n n n n m m mn n m 11112211211222221122+++=+++=+++=??????? (3.1) 其中系数a ij ,常数b j 都是已知数,x i 是未知量(也称为未知数)。当右端常数项b 1, b 2, …, b m 不全为0时, 称方程组(3.1)为非齐次线性方程组;当b 1=b 2= … =b m = 0时,即 a x a x a x a x a x a x a x a x a x n n n n m m mn n 111122121122221122000 +++=+++=+++=??????? (3.2) 称为齐次线性方程组。 由n 个数k 1, k 2, …, k n 组成的一个有序数组(k 1, k 2, …, k n ),如果将它们依次代入方程组(3.1)中的x 1, x 2, …, x n 后,(3.1)中的每个方程都变成恒等式,则称这个有序数组(k 1, k 2, …, k n )为方程组(3.1)的一个解。显然由x 1=0, x 2=0, …, x n =0组成的有序数组(0, 0, …, 0)是齐次线性方程组(3.2)的一个解,称之为齐次线性方程组(3.2)的零解,而当齐次线性方程组的未知量取值不全为零时,称之为非零解。 (利用矩阵来讨论线性方程组的解的情况或求线性方程组的解是很方便的。因此,我们先给出线性方程组的矩阵表示形式。) 非齐次线性方程组(3.1)的矩阵表示形式为: AX = B 其中 A = ????????????mn m m n n a a a a a a a a a 212222111211,X = ????????????n x x x 21, B = ????? ???????n b b b 21 称A 为方程组(3.1)的系数矩阵,X 为未知矩阵,B 为常数矩阵。将系数矩阵A 和常数矩阵B 放在一起构成的矩阵

开题报告(线性方程组解的结构

本科毕业论文(设计)开题报告题目:线性方程组解的结构研究 二级学院:数学与财经学院 专业:数学与应用数学 班级: 学号: 学生姓名: 指导教师: 2013年 11 月 10 日

学院本科毕业论文(设计)开题报告 题目线性方程组解的结构 二级学院数学与财经学院 班级开题日期 专业数学与应用数学 姓名学号指导教师 1、选题目的和意义 线性方程组在解决应用问题中起着重要的作用,是一个极其重要的数学工具.线性方程组的求解过程通常与向量相联系,而空间又可以用向量来表示,向量又与我们日常生活的许多事例相关,所以,我们生活中遇到的许多无法快捷解出的难题中的很大一部分都可以通过与向量相联系,运用向量方程组的求解进而解决一些复杂的难题。而在方程组的求解中,线性方程组是方程组中的最基本的方程组,所以,线性方程组的求解是十分重要的,故归纳和总结出求解线性方程组的方法就显得尤其必要,对线性方程组解的结构研究具有重要意义。 2、国内外研究现状 国内外都对方程组的解的结构的求解过程做出了详尽的分析,但是很少有人对线性方程组下的齐次线性方程组和非齐次线性方程组解的过程放在一起做具体的分析,比较和概括,所以本文将对线性方程组下的齐次线性方程组和非齐次线性方程组解的求解过程做详尽的分析,从中我们可以看到两者在求解过程中的联系与区别,最后将两者解集间的区别与相互间关系作一个系统的归纳,便于理解和记忆。 3、研究的主要内容: 线性方程组解的结构研究包括两方面的内容,齐次线性方程组和非齐次线性方程组的解法。而非齐次线性方程组的解法与齐次线性方程组的解法相联系,所以,本文通过递进的形式先研究齐次线性方程的解法,再研究非齐次线性方程的解法。即通过齐次线性方程组解的表示及解集的结构,对非齐次线性方程组解的表示及解集的结构进行讨论和分析,给出了有无穷多解的非齐次线性方程组的解集.然后通过矩阵初等变化及秩等,运用齐次线性方程组的求解方法等来求解非齐次线性方程组。

线性方程组解的判定与证明

21.线性方程组解的判定与证明 一、基础知识 (1)线性方程组有4种表示形式: ○ 1标准型 11112211 211222221122 n n n n m m mn n m a x a x a x b a x a x a x b a x a x a x b +++=?? +++=??+++=? ○ 2矩阵型 令A =''1212[],(,, ),(,,)ij m n n m A a x x x x B b b b ?==,那么上面的方程可以表述为 Ax B = ○ 3列向量型 令11112212221212,,,n n n m m mn a a a a a a a a a a a a ?? ???? ????????? ???===???????????????? ?? , 那么方程又可表述为 1122n n x a x a x a B ++ += ○ 4行向量型 ''''1122n n x a x a x a B +++= (2)在方程组○ 2的表述方式中,若0B =,即0Ax =,称为齐次线性方程组,若0B ≠,称为非齐次线性方程组。 (3)称0Ax =为Ax B =的导出组。 (4)方程组○ 2中,称(,)A A B =为○2的增广矩阵。 (5) 方程组○2中,若0,Ax B =则称0 x 为它的一个解。 (6) 方程组○ 2中,若A 为m n ?矩阵,则方程组○2的解的情况为 ◇ 1秩A =秩A =n ,方程组○2有唯一解; ◇ 2秩A =秩A

相关文档