文档视界 最新最全的文档下载
当前位置:文档视界 › 基于最小二乘的选权迭代抗差拟合模型研究_马洪滨

基于最小二乘的选权迭代抗差拟合模型研究_马洪滨

基于最小二乘的选权迭代抗差拟合模型研究_马洪滨
基于最小二乘的选权迭代抗差拟合模型研究_马洪滨

差分方程的解法

1、常系数线性差分方程的解 方程( 8)其中为常数,称方程(8)为常系数线性方程。 又称方程(9) 为方程(8)对应的齐次方程。 如果(9)有形如的解,带入方程中可得: (10) 称方程(10)为方程(8)、(9)的特征方程。 显然,如果能求出(10)的根,则可以得到(9)的解。 基本结果如下: (1)若(10)有k个不同的实根,则(9)有通解: , (2)若(10)有m重根,则通解中有构成项: (3)若(10)有一对单复根,令:,,则(9)的通解中有构成项: (4)若有m 重复根:,,则(9)的通项中有成项:

综上所述,由于方程(10)恰有k 个根,从而构成方程 (9)的通解中必有k个独立的任意常数。通解可记为: 如果能得到方程(8)的一个特解:,则(8)必有通解: + (11) (1)的特解可通过待定系数法来确定。 例如:如果为n 的多项式,则当b不是特征根时,可设成形如形式的特解,其中为m次多项式;如果b是r重根时,可设特解:,将其代入(8)中确定出系数即可。 2、差分方程的z变换解法 对差分方程两边关于取Z变换,利用的Z 变换F(z)来表示出的Z变换,然后通过解代数方程求出F(z),并把F(z)在z=0的解析圆环域中展开成洛朗级数,其系数就是所要求的 例1设差分方程,求 解:解法1:特征方程为,有根: 故:为方程的解。 由条件得: 解法2:设F(z)=Z(),方程两边取变换可得:

由条件得 由F(z)在中解析,有 所以, 3、二阶线性差分方程组 设,,形成向量方程组 (12)则 (13)(13)即为(12)的解。 为了具体求出解(13),需要求出,这可以用高等代数的方法计算。常用的方法有: (1)如果A为正规矩阵,则A必可相似于对角矩阵,对角线上的元素就是A的特征值,相似变换矩阵由A的特征向量构成:。 (2)将A 分解成为列向量,则有 从而,

差分方程模型的稳定性分析分析解析

分类号 学号密题 目 (中、英文) 作者姓名 指导教师 学科门类 提交论文日期专业名称 成绩评定 数学与应用数学 理 学

咸阳师范学院2016届本科毕业设计(论文) 摘要 微分方程是研究数学的一个重要分支,是本科期间我们必须掌握的基本知识,而本文我们研究的是一个递推关系式,也称差分方程。它是一种离散化的微分方程,是利用描述客观事物的数量关系的一种重要的数学思想来建立模型的。而利用差分方程建立模型解决问题的方法在生活中随处可见,比如在自由竞争市场经济中的蛛网模型是利用差分方程分析经济何时趋于稳定,又如金融问题中的养老保险也是利用差分方程来分析保险品种的实际投资价值。而差分方程模型是描述客观世界中随离散时间变量演化规律的有力建模工具。本文首先给出差分方程的定义以及求解过程并给出判断差分方程稳定性的判断方法,随后以同一环境下的羊群和草群的相互作用为模型分析其种群的数量变化过程,进而研究线性差分方程的稳定性,最后用一个实际模型来更好的说明差分方程的稳定性对解决实际问题有非常大的帮助。 关键字:差分方程;差分方程模型;平衡点;稳定性

差分方程模型的稳定性分析 Abstract Difference equation is also called recursive equation, it is to describe the relationship between the number of objective things of a kind of important mathematical model. And the use of the differential equation model of the solution can be found everywhere in life. Such as cobweb model in the free market economy is to use the difference equation analysis when the economic stability, and as the financial problem of pension insurance breed difference equation is used to analysis the actual investment value. This paper gives the judge the stability of difference equation to judge method, then in the same group of sheep and grass under the environment of interaction analysis for the model a process, the number of the population change, in turn, study the stability of the linear difference equation. In the end, one practical model to better explain the stability of difference equation. Key words:Difference equation;Difference equation model ; Balance point; Stability

差分方程的解法分析及MATLAB实现(程序)

差分方程的解法分析及MATLAB 实现(程序) 摘自:张登奇,彭仕玉.差分方程的解法分析及其MATLAB 实现[J]. 湖南理工学院学报.2014(03) 引言 线性常系数差分方程是描述线性时不变离散时间系统的数学模型,求解差分方程是分析离散时间系统的重要内容.在《信号与系统》课程中介绍的求解方法主要有迭代法、时域经典法、双零法和变换域 法[1]. 1 迭代法 例1 已知离散系统的差分方程为)1(3 1)()2(81)1(43)(-+=-+--n x n x n y n y n y ,激励信号为)()4 3()(n u n x n =,初始状态为21)2(4)1(=-=-y y ,.求系统响应. 根据激励信号和初始状态,手工依次迭代可算出24 59)1(,25)0(==y y . 利用MATLAB 中的filter 函数实现迭代过程的m 程序如下: clc;clear;format compact; a=[1,-3/4,1/8],b=[1,1/3,0], %输入差分方程系数向量,不足补0对齐 n=0:10;xn=(3/4).^n, %输入激励信号 zx=[0,0],zy=[4,12], %输入初始状态 zi=filtic(b,a,zy,zx),%计算等效初始条件 [yn,zf]=filter(b,a,xn,zi),%迭代计算输出和后段等效初始条件 2 时域经典法 用时域经典法求解差分方程:先求齐次解;再将激励信号代入方程右端化简得自由项,根据自由项形 式求特解;然后根据边界条件求完全解[3].用时域经典法求解例1的基本步骤如下. (1)求齐次解.特征方程为081432=+-αα,可算出4 1 , 2121==αα.高阶特征根可用MATLAB 的roots 函数计算.齐次解为. 0 , )4 1()21()(21≥+=n C C n y n n h (2)求方程的特解.将)()4 3()(n u n x n =代入差分方程右端得自由项为 ?????≥?==-?+-1,)4 3(9130 ,1)1()43(31)()43(1n n n u n u n n n 当1≥n 时,特解可设为n p D n y )4 3()(=,代入差分方程求得213=D . (3)利用边界条件求完全解.当n =0时迭代求出25)0(=y ,当n ≥1时,完全解的形式为 ,)4 3(213 )41()21()(21n n n C C n y ?++=选择求完全解系数的边界条件可参考文[4]选)1(),0(-y y .根据边界条件求得35,31721=-=C C .注意完全解的表达式只适于特解成立的n 取值范围,其他点要用 )(n δ及其延迟表示,如果其值符合表达式则可合并处理.差分方程的完全解为

时间序列分析讲义 第01章 差分方程

第一章 差分方程 差分方程是连续时间情形下微分方程的特例。差分方程及其求解是时间序列方法的基础,也是分析时间序列动态属性的基本方法。经济时间序列或者金融时间序列方法主要处理具有随机项的差分方程的求解问题,因此,确定性差分方程理论是我们首先需要了解的重要内容。 §1.1 一阶差分方程 假设利用变量t y 表示随着时间变量t 变化的某种事件的属性或者结构,则t y 便是在时间t 可以观测到的数据。假设t y 受到前期取值1-t y 和其他外生变量t w 的影响,并满足下述方程: t t t w y y ++=-110φφ (1.1) 在上述方程当中,由于t y 仅线性地依赖前一个时间间隔自身的取值1-t y ,因此称具有这种结构的方程为一阶线性差分方程。如果变量t w 是确定性变量,则此方程是确定性差分方程;如果变量t w 是随机变量,则此方程是随机差分方程。在下面的分析中,我们假设t w 是确定性变量。 例1.1 货币需求函数 假设实际货币余额、实际收入、银行储蓄利率和商业票据利率的对数变量分别表示为t m 、t I 、bt r 和ct r ,则可以估计出美国货币需求函数为: ct bt t t t r r I m m 019.0045.019.072.027.01--++=- 上述方程便是关于t m 的一阶线性差分方程。可以通过此方程的求解和结构分析,判断其他外生变量变化对货币需求的动态影响。 1.1.1 差分方程求解:递归替代法 差分方程求解就是将方程变量表示为外生变量及其初值的函数形式,可以通过以前的数据计算出方程变量的当前值。 由于方程结构对于每一个时间点都是成立的,因此可以将(1.1)表示为多个方程: 0=t :01100w y y ++=-φφ 1=t :10101w y y ++=φφ t t =:t t t w y y ++=-110φφ 依次进行叠代可以得到: 1011211010110101)()1()(w w y w w y y ++++=++++=--φφφφφφφφ 0111122113121102)1(w w w y y φφφφφφφ++++++=- i t i i t t i i t w y y ∑∑=-=++=0 111 1 0φφφφ (1.2) 上述表达式(1.2)便是差分方程(1.1)的解,可以通过代入方程进行验证。上述通过叠代将 t y 表示为前期变量和初始值的形式,从中可以看出t y 对这些变量取值的依赖性和动态变化 过程。 1.1. 2. 差分方程的动态分析:动态乘子(dynamic multiplier) 在差分方程的解当中,可以分析外生变量,例如0w 的变化对t 阶段以后的t y 的影响。假设初始值1-y 和t w w ,,1 不受到影响,则有:

差分方程求解

例题:已知差分方程51 (2)(1)()(+1)+0.5()66 x k x k x k r k r k +-++=,其中r (k )=1,k ≥0,x (0)=1, x (1)=2。 (1) 试由迭代法求其全解的前5项; (2) 分别由古典法求其零输入解、零状态解,以及全解; (3) 用Z 变换法求解差分方程。 解:注:解题过程中出现的下标“zi ”和“zs ”分别表示零输入条件和零状态条件。 1. 迭代法 题目中给出的条件仅仅是零输入初始条件,进行迭代求解时的初始条件应该是全解初始条件。 (1) 零输入初始条件 本题已给出零输入时的两个初始条件x zi (0)=1,x zi (1)=2。 (2) 零状态初始条件 取k =-2时,则51 (0)(1)(2)(1)0.5(2)66x x x r r --+-=-+-,得x zs (0)=0; 取k =-1 时,则51 (1)(0)(1)(0)0.5(1)66 x x x r r -+-=+-,求得x zs (1)=1。 (3) 全解初始条件 x (0)= x zi (0)+ x zs (0)=1; x (1)= x zi (1)+ x zs (1)=3。 (4) 根据求出的全解x (0)和x (1),利用迭代法求解 取k =0时,则51(2)(1)(0)(1)0.5(0)66x x x r r -+=+,求得23(2)6x =; 取k =1时,则51(3)(2)(1)(2)0.5(1)66x x x r r -+=+,求得151 (3)36x =; 取k =2时,则51(4)(3)(2)(3)0.5(2)66x x x r r -+=+,求得941 (4)216 x =。 2. 古典法 (1) 零输入解 令输入为零,则得齐次方程 51 (2)(1)()066 x k x k x k +-++= (a) 根据差分方程定义的算子()()n d x k x k n =+,可得它的特征方程251 066 d d -+= 求得特征根为: 112d = ,21 3 d =

迭代法

题目:Newton-Raphson 迭代法 (1)计算原理 (2)编出计算机程序 (3)给出算例(任意题型) (1)计算原理: 牛顿-拉夫森(Newton-Raphson)迭代法也称为牛顿迭代法,它是数值分析中最重要的方法之一,它不仅适用于方程或方程组的求解,还常用于微分方程和积分方程求解。 用迭代法解非线性方程时,如何构造迭代函数是非常重要的,那么怎样构造的迭代函数才能保证迭代法收敛呢?牛顿迭代法就是常用的方法之一,其迭代格式的来源大概有以下几种方式: 1设()[]2,f x C a b ∈,对()f x 在点[]0,x a b ∈,作泰勒展开: 略去二次项,得到()f x 的线性近似式:()()()()000f x f x f x x x '≈+- 由此得到方程()0f x =的近似根(假定()00f x '≠),() () 000f x x x f x =-' 即可构造出迭代格式(假定()00f x '≠):() () 1k k k k f x x x f x +=- ' 这就是牛顿迭代公式,若得到的序列{}k x 收敛于α,则α就是非线性方程的根。 2 牛顿迭代法 牛顿切线法,这是由于()f x 的线性化近似函数()()()()000l x f x f x x x '≈+-是曲线()y f x =过点()()00,x f x 的切线而得名的,求()f x 的零点代之以求() l x !2))((''))((')()(2 0000x x f x x x f x f x f -+ -+= ξ

的零点,即切线与x 轴交点的横坐标,如左图所示,这就是牛顿切线法的几何解释。实际上,牛顿迭代法也可以从几何意义上推出。利用牛顿迭代公式,由 k x 得到1k x +,从几何图形上看,就是过点()(),k k x f x 作函数()f x 的切线k l ,切线k l 与x 轴的交点就是1k x +,所以有()() 1 k k k k f x f x x x +'=-,整理后也能得出牛顿迭 代公式: 3 要保证迭代法收敛,不管非线性方程()0f x =的形式如何,总可以构造: 作为方程求解的迭代函数。因为: 而且 在根附近越小,其局部收敛速度越快,故可令: 若0(即根不是0的重根),则由得: , 因此可令 ,则也可以得出迭代公式: 。 4 迭代法的基本思想是将方程改写成等价的迭代形式,但随之而来的问题却是迭代公式不一定收敛,或者收敛的速度较慢。运用前述加速技巧,对于简单迭代过程 ,其加速公式具有形式: ,其中 记,上面两式可以合并写成: 这种迭代公式称作简单的牛顿公式,其相应的迭代函数是: 。 需要注意的是,由于是的估计值,若取,则实际上便是的估计值。假设,则可以用代替上式中的, 就可得到牛顿法的迭代公式: 。 )(')(1k k k k x f x f x x - =+)()()(x f x k x x x -==?)0)((≠x k )(')()()('1)('x f x k x f x k x --=?) ('x ?α0)('=α?≠)('αf α=)(x f 0)('=α?)('1 )(ααf k = )('1 )(x f x k = )(')(1k k k k x f x f x x - =+0)(=x f )(x x ?=)(1n n n x f x x +=+θθ?--= +1)(1n n n x x x ) (111n n n x x x --+=++θθ )(1 n n x x ?=+1-=θL L x f x x n n n )(1- =+L x f x x )()(- =?L )('x ?)()(x f x x +=?)('x ?)('x f 0)('≠x f )('x f L )(')(1n n n n x f x f x x - =+

用matlab实现线性常系数差分方程的求解

数字信号处理课程设计 题目:试实现线性常系数差分方程的求解 学院: 专业: 班级: 学号: 组员: 指导教师:

题目:用Matlab 实现线性常系数差分方程求解 一. 设计要求 1. 掌握线性常系数差分方程的求解 2. 熟练掌握Matlab 基本操作和各类函数调用 3. 结合Matlab 实现线性常系数差分方程的求解 二.设计原理 1.差分与差分方程 与连续时间信号的微分及积分运算相对应,离散时间信号有差分及序列求和运算。设有序列f(k),则称…,f(k+2),f(k+1),…,f(k -1),f(k -2),…为f(k)的移位序列。序列的差分可以分为前向差分和后向差分。一阶前向差分定义为 ()(1)()f k f k f k ?=+- (3.1—1) 一阶后向差分定义为 ()()(1)f k f k f k ?=-- (3.1—2) 式中Δ和Δ称为差分算子。由式(3.1—1)和式(3.1—2)可见,前向差分与后向差分的关系为 ()(1)f k f k ?=?- (3.1—3) 二者仅移位不同,没有原则上的差别,因而它们的性质也相同。此处主要采用后向差分,并简称其为差分。 由查分的定义,若有序列1()f k 、2()f k 和常数1a ,2a 则 1122112211221112221122[()()][()()][(1)(1)][()(1)][()(1)]()() a f k a f k a f k a f k a f k a f k a f k f k a f k f k a f k a f k ?+=+--+-=--+--=?+? (3.1—4) 这表明差分运算具有线性性质。 二阶差分可定义为 2()[()][()(1)]()(1) ()2(1)(2) f k f k f k f k f k f k f k f k f k ?=??=?--=?-?-=--+- (3.1—5) 类似的,可定义三阶、四阶、…、n 阶差分。一般地,n 阶差分

差分方程方法

第四章 差分方程方法 在实际中,许多问题所研究的变量都是离散的形式,所建立的数学模型也是离散的,譬如,像政治、经济和社会等领域中的实际问题。有些时候,即使所建立的数学模型是连续形式,例如像常见的微分方程模型、积分方程模型等等,但是,往往都需要用计算机求数值解。这就需要将连续变量在一定条件下进行离散化,从而将连续型模型转化为离散型模型,因此,最后都归结为求解离散形式的差分方程解的问题。关于差分方程理论和求解方法在数学建模和解决实际问题的过程中起着重要作用。 下面就不同类型的差分方程进行讨论。所谓的差分方程是指:对于一个数列{}n x ,把数列中的前1+n 项()n i x i ,2,1,0=关联起来所得到的方程。 4.1常系数线性差分方程 4.1.1 常系数线性齐次差分方程 常系数线性齐次差分方程的一般形式为 02211=+?+++---k n k n n n x a x a x a x (4.1) 其中k 为差分方程的阶数,()k i a i ,,2,1 =为差分方程的系数,且()n k a k ≤≠0。对应的代数方程 02 211=++++--k k k k a a a λ λλ (4.2) 称为差分方程的(4.1)的特征方程,其特征方程的根称为特征根。 常系数线性齐次差分方程的解主要是由相应的特征根的不同情况有不同的形式。下面分别就特征根为单根、重根和复根的情况给出差分方程解的形式。 1. 特征根为单根 设差分方程(4.1)有k 个单特征根 k λλλλ,,,,321 ,则差分方程(4.1)的通解为 n k k n n n c c c x λλλ+++= 2211, 其中k c c c ,,,21 为任意常数,且当给定初始条件 () 0 i i x λ= ()k i ,,2,1 = (4.3) 时,可以唯一确定一个特解。 2. 特征根为重根 设差分方程(4.1)有l 个相异的特征根()k l l ≤≤1,,,,321λλλλ 重数分别为 l m m m ,,,21 且k m l i i =∑=1 则差分方程(4.1)的通解为

差分方程的解法

第三节 差分方程常用解法与性质分析 1、常系数线性差分方程的解 方程)(...110n b x a x a x a n k k n k n =+++-++ ( 8) 其中k a a a ,...,,10为常数,称方程(8)为常系数线性方程。 又称方程0...110=+++-++n k k n k n x a x a x a (9) 为方程(8)对应的齐次方程。 如果(9)有形如 n n x λ=的解,带入方程中可得: 0 ...1110=++++--k k k k a a a a λλλ (10) 称方程(10)为方程(8)、(9)的特征方程。 显然,如果能求出(10)的根,则可以得到(9)的解。 基本结果如下: (1) 若(10)有k 个不同的实根,则(9)有通解: n k k n n n c c c x λλλ+++=...2211, (2) 若(10)有m 重根λ,则通解中有构成项: n m m n c n c c λ )...(121----+++

(3)若(10)有一对单复根 βαλi ±=,令:?ρλi e ±=, αβ?βαρarctan ,22=+=,则(9)的通解中有构成项: n c n c n n ?ρ?ρsin cos 21--+ (4) 若有m 重复根:βαλi ±=,φρλi e ±=,则(9)的通项中有成 项: n n c n c c n n c n c c n m m m m n m m ?ρ?ρsin )...(cos )...(1221121---++---+++++++ 综上所述,由于方程(10)恰有k 个根,从而构成方程 (9)的通解中必有k 个独立的任意常数。通解可记为:-n x 如果能得到方程(8)的一个特解:*n x ,则(8)必有通解: =n x -n x +* n x (11) (1) 的特解可通过待定系数法来确定。 例如:如果)(),()(n p n p b n b m m n =为n 的多项式,则当b 不是特征 根时,可设成形如)(n q b m n 形式的特解,其中)(n q m 为m 次多项式;如 果b 是r 重根时,可设特解:r n n b )(n q m ,将其代入(8)中确定出系 数即可。

差分方程及微分方程数值解

差分方程及微分方程数值解 部门: xxx 时间: xxx 整理范文,仅供参考,可下载自行编辑

东南大学《数学实验》报告实验内容:差分方程及微分方程数值解 一实验目的 熟悉迭代法及微分方程数值方法 二预备知识 <1)了解差分方程稳定性、周期分解、混沌等相关知识 <2)了解欧拉方法、龙格-库特方法。 三实验内容与要求 <一)Volterra方程数值解

Numerical Calculable rank (2)轨线图 四/五阶龙格-库塔公式: Numerical Euler 欧拉公式:

(二)差分阻滞增长模型 在t时刻单位时间内的人口数量的变化量仅仅与此时的人口数量x有关(等于右边的值>,其中的r表示人口的固有增长率,N表示能容纳的最大人口数.b5E2RGbCAP 经过单位时间,即一个繁殖周期的种群数量的增长量仅仅与前一个时期的种群数量有关。于是模型为 即 这是一个一阶非线性差分方程.对于给定的初值,我们可以从这个递推公式运用计算机很容易地计算出一些xk.这是在计算机出现以后的一个新的特点.但是我们更关心的是当时间趋于无穷时,即k趋于无穷时, xk的极限如何,即差分方程平衡点的稳定性问题。p1EanqFDPw

求得差分方程(2>的平衡点为0和(b-1>/b.它们分别对应于差分方程(1>的平衡点0和N. 我们将这个差分方程(2>在平衡点附近展开,有 注意到b=1+r>1,平衡点0是不稳定的. 略去高阶项得 因此当|2-b|<1时,平衡点x*= (b-1>/b是稳定的. |2-b|>1即 b>3时,平衡点x*是不稳定的.DXDiTa9E3d <1)稳定情况<) < function x=block(b,x0> 图)function x=block(b,x0>

2.差分方程及其求解---数字信号处理实验报告

计算机与信息工程学院验证性实验报告 一、实验目的 1.学习并掌握系统的差分方程表示方法以及差分方程的相关概念。 2.熟练使用filter 函数对差分方程进行数值求解。 3.掌握差分方程的求解及MATLAB 实现方法。 二、实验原理及方法 1.一LTI 系统可以用一个线性常系数差分方程表示: ()()N M k m k m a y n k b x n m ==-=-∑∑,任意n 如果N a ≠0,那么这个差分方程就是N 阶的,已知系统的输入序列,用这个方程可以根据当前输入x(n)和以前M 点的输入x(n-m ),…,x(n-1),以及以前N 点的输出y(n-N),…,y(n -1)来计算当前输出y(n)。在实际中这个方程在时间上是从n =-∞到n =+∞朝前计算的,因此该方程的另一种形式是: ()()()M N m k m k y n b x n m a y n k ===---∑∑ 方程的解能以下面形式求得:()()()H p y n y n y n =+分别为方程的齐次解跟特解部分。已知输入和差分方程的稀疏,可用filter 对差分方程进行数值求解。最简单形式为:y=filter(b,a,x) 其中b=[b0,b1,…,bM];a=[a0,a1,…,aN]; 2.上面差分方程解的形式为齐次解和特解,另外还可以求零输入解和零状态解理论计算中要用到z 变换,请好好掌握z 变换的内容。用MATLAB 实现时,若已知初始条件,则应用y=filter(b,a, x, xic)来求完全响应。这里xic 是初始状态输入数组。MATLAB 还提供一种filtic 函数来得到xic 。

差分方程的解法

1、常系数线性差分方程的解 方程 a 0x n k a 1x n k 1 ... a k x n b(n) 其中 a 0 , a 1,..., a k 为常数,称方程( 8)为常系数线性方程。 又称方程 a 0x n k a 1x n k 1 ... a k x n 为方程( 8)对应的齐次方程。 第三节 差分方程常用解法与性质分析 9) n 如果( 9)有形如 x n 的解, 带入方程中可得: k k 1 a 0 a 1 ... a k 1 a k 0 10) 称方程( 10)为方程( 8)、 9)的特征方程。

n n n c 1 1 c 2 2 ... c k k , 若(10) 有 m 重根 ,则通解中有构成项: (c 1 m 1 n c 2 n ... c m n ) 显然, 如果能求出( 10)的根,则可以得到( 9)的解。 基本结果如下: 1) 若(10) 有 k 个不同的实根,则( 9)有通解:

(3)若(10)有一对单复根 综上所述,由于方程(10)恰有k 个根,从而构成方程 (9)的通解中必有k 个独立的任意常数。通解可记为:X n 如果能得到方程(8)的一个特解:X n ,则(8)必有通解: * X n X n + 焉 (11) (1)的特解可通过待定系数法来确定。 例如:如果b (n )bk m (n ), pMn )为门的多项式,则当b 不是特征 根 时,可设成形如 bq m (n ) 形式的特解,其中 q m (n ) 为m 次多项式;如 果b 是 r 重根时,可设特解:b n n r q m (n ) ,将其代入(8)中确定出系 数即可。 arcta n — ,则(9) 的通解中有构成项: C l n . cos n C 2 sin (4)若有 m 重复根: i e ,则 (9)的通项中有成 项: cos n (C m 1 C m 2 n m 1 、 n ? c 2m n ) sin n

差分方程和微分方程数值解

东南大学《数学实验》报告 实验内容:差分方程及微分方程数值解 一 实验目的 熟悉迭代法及微分方程数值方法 二 预备知识 (1)了解差分方程稳定性、周期分解、混沌等相关知识 (2)了解欧拉方法、龙格-库特方法。 三 实验内容与要求 (一)V olterra 方程数值解 方程 0,,,,,>?????? ?+-=-=d c b a dxy cx dt dy bxy ax dt dx 其中 a=1,b=0.1,c=0.5,d=0.04 命令与结果 在函数编辑器中输入: function dxdt = euler( t,x ) dxdt=[ x(1)*(1-0.1*x(2)) x(2)*(-0.5+0.02*x(1))]; end 四阶龙格-库塔公式: 在命令窗口中输入: tspan=[0 15]; x0=[25;2]; [t,x]=ode45(@euler,tspan,x0); plot(t,x(:,1),'r-','LineWidth',0.5); hold on; plot(t,x(:,2),'g-','LineWidth',0.5); hold on; axis([0 15 0 125]) legend('x(1)','x(2)') grid on (1) 相图 四阶龙格-库塔公式: 欧拉公式: (2) 轨线图 四/五阶龙格-库塔公式: 欧拉公式:

title('The Numerical Solution Of Calculable way of fourth rank Rounge-kutt') plot(x(:,1),x(:,2)) 欧拉方法: 在命令窗口中输入: tspan=[0 15]; x0=[25;2]; [t,x]=ode23(@euler,tspan,x0); plot(t,x(:,1),'r-','LineWidth',0.5); hold on; plot(t,x(:,2),'g-','LineWidth',0.5); hold on; axis([0 15 0 125]) legend('x(1)','x(2)') grid on title('The Numerical Solution Of Euler Equation') >> plot(x(:,1),x(:,2)) (二)差分阻滞增长模型 在t 时刻单位时间内的人口数量的变化量仅仅与此时的人口数量x 有关(等于右边的值),其中的r 表示人口的固有增长率,N 表示能容纳的最大人口数. 经过 单位时间,即一个繁殖周期的种群数量的增长量仅仅与前一个时期的种群数量有关。于是模型为 即 这是一个一阶非线性差分方程.对于给定的初值,我们可以从这个递推公式运用计算机很容易地计算出一些xk.这是在计算机出现以后的一个新的特点.但是我们更关心的是当时间趋于无穷时,即k 趋于无穷时, xk 的极限如何,即差分方程平衡点的稳定性问题。 求得差分方程(2)的平衡点为0和(b-1)/b.它们分别对应于差分方程(1)的平衡点0和N. 我们将这个差分方程(2)在平衡点附近展开,有 注意到b=1+r>1,平衡点0是不稳定的. 略去高阶项得 因此当|2-b|<1时,平衡点x*= (b-1)/b 是稳定的. |2-b|>1即 b>3时,平衡点x*是不稳定的. (1)稳定情况(b=1.6,2.2) 稳定性分析 b=1.6,在1到3范围之间 稳定 命令与结果(~()n x n 图) function x=block(b,x0) 稳定性分析 b=2.2,在1到3范围之间 稳定 命令与结果(~()n x n 图) function x=block(b,x0) )1()(N x rx t x -= )(1 ' =+-+=+ ,2,1,0),)1(1()1(1k N r ry y r y k k k

解线性方程组的迭代法_计算方法大作业

解线性方程组的迭代法 1.1 方法概述 对于线性方程组Ax=b ,其中A 为非奇异矩阵,当A 为大型稀疏矩阵时,考虑用迭代法求解上述方程组,其基本思想是求不动点 f BX X k k +=+)()1(, 即构造一个向量系列(){} n X ,使其收敛至某个极限*X , 则*X 就是要求的方程组的准确解。这儿主要介绍Jacobi 迭代法和Gauss-Seidel 迭代法的算法理论及数值实验。 1)Jacobi 迭代法算法概述 Jacobi 迭代法推导过程为将方程组: ???????=+++=+++=+++n n nn n n n n n n b x a x a x a b x a x a x a b x a x a x a 22112 22221211 1212111 )1( 在假设0≠ii a 下,改写成 ()?? ? ??? ?++++=++++=++++=--n n n n n n n n n n n g x b x b x b x g x b x b x b x g x b x b x b x 1122112 23231212113132121 )2( 如果引用系数矩阵 ?? ?? ? ?????=nn n n a a a a A 1111, ?? ?? ? ?????=0011 n n b b B 及向量 ??????????=n x x X 1,??? ? ??????=n b b b 1,????? ?????=n g g g 1, 方程组(1)和(2)分别可写为:b AX =及g BX X +=,这样得到了jacobi

迭代格式01 f BX X k k +=+用jacobi 迭代解方程组b AX =时,就可任意取 初值0X 带入迭代可知式g BX X k k +=+1,然后求k k X ∞ →lim 。但是,n 比较大的时候,写方程组)1(和)2(是很麻烦的,如果直接由A ,b 能直接得到B ,g 就是矩阵与向量的运算了,那么如何得到B ,g 呢 实际上,如果引进非奇异对角矩阵()0≠ii a ?? ??? ?????=nn a a D 00011 将A 分解成:,D D A A +-=要求b AX =的解,实质上就有 ,)(DX X D A AX +-=而D 奇异的,所以1-D 存在, ,)(X A D AX DX -+=从而有,11b D AX D X --+=我们在这里不妨令,1A D I B --=b D g 1-=就得到jacobi 迭代格式:f BX X k k +=+1 。 用向量的分量来表示为: ? ??[] ,... ,,k , n ,...,i x a b a x n i j j ) k (j j i i ii )k (i 21021111==∑-=≠=+ 其中() () () () ()T n x ,...x ,x x 002010=为初始向量. 由此看出,雅可比迭代法公式简单,每迭代一次只需计算一次矩阵和向量的乘法.在电算时需要两组存储单元,以存放()k x 及() 1+k x . 2)Gauss-Seidel 迭代法算法概述 由雅可比迭代公式可知,在迭代的每一步计算过程中是用()k x 的全部分量来计算() 1+k x 的所有分量,显然在计算第i 个分量() 1+k i x 时,已经 计算出的最新分量() () 11 11+-+k i k x ,...,x 没有被利用,从直观上看,最新计算 出的分量可能比旧的分量要好些.因此,对这些最新计算出来的第 1+k 次近似() 1+k x 的分量() 1+k j x 加以利用,就得到所谓解方程组的高斯—

差分方程的解法

差分方程常用解法 1、 常系数线性差分方程的解 方程)(...110n b x a x a x a n k k n k n =+++-++ (1) 其中k a a a ,...,,10为常数,称方程(1)为常系数线性方程。 又称方程0...110=+++-++n k k n k n x a x a x a (2) 为方程(1)对应的齐次方程。 如果(2)有形如n n x λ=的解,代入方程中可得: 0...1110=++++--k k k k a a a a λλλ (3) 称方程(3)为方程(1)、(2)的特征方程。 显然,如果能求出方程(3)的根,则可以得到方程(2)的解。 基本结果如下: (1) 若(3)有k 个不同的实根,则(2)有通解: n k k n n n c c c x λλλ+++=...2211, (2) 若(3)有m 重根λ(即m 个根均为λ),则通解中有构成项: n m m n c n c c λ)...(121----+++

(3)若(3)有一对单复根 βαλi ±=,令:?ρλi e ±=, αβ ?βαρarctan ,22=+=,则(2)的通解中有构成项: n c n c n n ?ρ?ρsin cos 21- -+ (4) 若有m 重复根:βαλi ±=,φρλi e ±=,则(2)的通项中有构 成项: n n c n c c n n c n c c n m m m m n m m ?ρ?ρsin )...(cos )...(1221121---++---+++++++ 综上所述,由于方程(3)恰有k 个根,从而构成方程(2)的通解中必有k 个独立的任意常数。通解可记为:-n x 如果能得到方程(1)的一个特解:*n x ,则(1)必有通解: =n x -n x +* n x (4) 方程(4) 的特解可通过待定系数法来确定。 例如:如果)(),()(n p n p b n b m m n =为n 的m 次多项式,则当b 不是特征根时,可设成形如)(n q b m n 形式的特解,其中)(n q m 为n 的m 次多 项式;如果b 是r 重特征根时,可设特解:r n n b )(n q m ,将其代入(1) 中确定出系数即可。

差分方程的解法1

第三节差分方程常用解法与性质分析 高中数学新课标选修内容“一阶线性差分方程”的解法分析 江西省高中数学课程标准研究组舒昌勇(341200)在高中数学新课标选修系列4的“数列与差分”专题中,一阶常系数线性差分方程x n+1=kx n+b (1) 是讨论的重点,其一般形式为 x n+1=kx n+f(n) (2) 其中k为已知的非零常数,f(n)为n的已知函数.当f(n)≠0时,方程(2)称为非齐次的,f(n)=0时,方程 x n+1=kx n(3) 称为齐次的,并称(3)为(2)相应的齐次方程.方程(1)是方程(2)当f(n)为常数的情况,是方程(2)能用待定系数法求特解时所具有的几种特殊形式里最简单的一种.我们来讨论方程(1)和(3)通解的求法. 1 求一阶齐次差分方程x n+1=kx n的通解 用迭代法,给定初始值为x0,则一阶齐次差分方程x n+1=kx n的通解为 x1 = kx0,x2=kx1=k2x0,x3=kx2=k3x0,…, 一般地,有 x n= kx0-1= k(k n-1x0)= k n x0,n = 1,2,…, 由于x0表示初始值,可任意给定,所以可视其为任意常数,不妨用c来表示.又根据差分方程通解的定义:如果差分方程的解中含有与方程的阶数相同个数的相互独立的任意常数,则为其通解,故一阶线性齐次方程x n+1=kx n的通解可表为 x n=k n c(c为任意常数). 对于每一个任意给定的初始值x0,都能得到方程相应于该初始值的一个特解.而求特解只要将给定的初始值x0代入通解求出待定常数c即可. 2 求一阶非齐次差分方程x n+1=kx n+b的通解 2.1探索一阶非齐次差分方程x n+1=kx n+b通解的结构 设数列﹛y n﹜,﹛z n﹜为方程(3)的任意两个解,则 y n+1=k y n +b (4) z n+1= k z n +b (5) (4)-(5) 得y n +1-z n +1=k(y n- z n ) 这意味着一阶非齐次线性差分方程任意两个解的差为相应齐次差分方程的解.从而,若a n为非齐次方程(3)的任意一个解,b n为非齐次方程(3)的一个特解,则a n-b n就为相应齐次方程的一个解.为了探索一阶非齐次差分方程通解的结构,我们对它的任意一个解a n 作适当变形: a n=a n+ b n- b n= b n +( a n - b n) 这表明,一阶非齐次差分方程的任意一个解可表示为它的一个特解与相应齐次方程一个解的和的形式.从而非齐次方程的通解等于其一个特解加上相应齐次方程的通解. 2.2 求一阶非齐次差分方程(3)的通解 ①用迭代法,设给定的初始值为x0,依次将n=0,1,2,…代入(3),有 x1=kx0+b x2=kx1+b=k(kx0+b)+b =k2x0+b(1+k)

差分方程模型(讲义)

差分方程模型 一. 引言 数学模型按照离散的方法和连续的方法,可以分为离散模型和连续模型。 1. 确定性连续模型 1) 微分法建模(静态优化模型),如森林救火模型、血管分支模型、最优价格模型。 2) 微分方程建模(动态模型),如传染病模型、人口控制与预测模型、经济增长模型。 3) 稳定性方法建模(平衡与稳定状态模型),如军备竞赛模型、种群的互相竞争模型、种群的互相依存模型、种群弱肉强食模型。 4) 变分法建模(动态优化模型),如生产计划的制定模型、国民收入的增长模型、渔业资源的开发模型。 2. 确定性离散模型 1) 逻辑方法建模,如效益的合理分配模型、价格的指数模型。 2) 层次分析法建模,如旅游景点的选择模型、科研成果的综合评价模型。 3)图的方法建模,如循环比赛的名次模型、红绿灯的调节模型、化学制品的存放模型。 4)差分方程建模,如市场经济中的蛛网模型、交通网络控制模型、借贷模型、养老基金设置模型、人口的预测与控制模型、生物种群的数量模型。 随着科学技术的发展,人们将愈来愈多的遇到离散动态系统的问题,差分方程就是建立离散动态系统数学模型的有效方法。 在一般情况下,动态连续模型用微分方程方法建立,与此相适应,当时间变量离散化以后,可以用差分方程建立动态离散模型。有些实际问题既可以建立连续模型,又可建立离散模型,究竟采用那种模型应视建模的目的而定。例如,人口模型既可建立连续模型(其中有马尔萨斯模型Malthus、洛杰斯蒂克Logistic模型),又可建立人口差分方程模型。这里讲讲差分方程在建立离散动态系统数学模型的的具体应用。

二. 差分方程简介 在实际中,许多问题所研究的变量都是离散的形式,所建立的数学模型也是离散的,譬如,像政治、经济和社会等领域中的实际问题。有些时候,即使所建立的数学模型是连续形式,例如像常见的微分方程模型、积分方程模型等。但是,往往都需要用计算机求数值解。这就需要将连续变量在一定的条件下进行离散化,从而将连续型模型转化为离散型模型。因此,最后都归结为求解离散形式的差分方程解的问题。关于差分方程理论和求解方法在数学建模和解决实际问题的过程中起着重要作用。 1. 差分方程的定义 给定一个数列{}n x , 把数列中的前1+n 项i x ),,2,1,0(n i =关联起来得到的方程,则称这个方程为差分方程。 2. 常系数线性齐次差分方程 常系数线性齐次差分方程的一般形式为 02211=++++---k n k n n n x a x a x a x , (1) 或者表示为 0),,,,(1=++k n n n x x x n F (1’) 其中k 为差分方程的阶数,其中k a a a ,,,21 为差分方程的系数,且0≠k a )(n k ≤。 对应的代数方程 02211=++++--k k k k a a a λλλ (2) 称为差分方程(1)的对应的特征方程。(2)式中的k 个根k λλλ,,,21 称为(1)式的特征根。 2.1 差分方程的解 常系数线性齐次差分方程的解主要是由相应的特征根的不同情况有不同的形式。下面分别就特征根为单根、重根和复根的情况给出方程解的形式。 2.1.1 特征根为单根(互不相同的根) 设差分方程(1)有k 个单特征根(互不相同的根)k λλλ,,,21 ,则

相关文档
相关文档 最新文档