文档视界 最新最全的文档下载
当前位置:文档视界 › 耐磨损钢

耐磨损钢

耐磨损钢
耐磨损钢

耐磨损钢

耐磨损性能强的钢铁材料的总称,耐磨钢是当今耐磨材料中用量最大的一种。

磨损是工件失效的主要形式之一,磨损造成了能源和原材料的大量消耗,根据不完全统计,能源的1/3到1/2消耗于摩擦与磨损。据原联邦德国技术科学部估测,原联邦德国因磨损造成的损失每年达到100亿马克。美国机械工程师学会(ASME)和美国能源发展局(ERDA)提出的一项减轻摩擦和磨损的发展计划,可使美国每年节支160亿美元,即为能源消耗的11%。据美国刊物介绍,美国几大类产品每年由于磨损所造成的损失是:飞机134亿美元,船舶64亿美元,汽车400亿美元,切削工具28亿美元。中国对摩擦和磨损所造成的损失尚缺乏全面的统计。根据中国机械部门1974~1975年的调查报告,汽车配件年耗用钢材23万t,其中2/3用于维修,而大部分是由于磨损所致。另据中国电力、建材、冶金、采煤和农机等5个部门的不完全统计,每年备件消耗钢材在150万t以上,以煤矿所用刮板输送机为例,由于中部槽磨损所造成的损失每年为1~2亿元人民币。如果再考虑到其他机械设备磨损造成的经济损失和钢材的消耗那将是很惊人的。由此可见,提高耐磨钢的质量,开发新型高性能耐磨钢,以及广泛、深入地开展钢材磨损机理的研究,以降低由于磨损造成的损失,对于国民经济建设的发展是一件具有重要意义的工作。

对于“材料磨损”目前尚无统一的定义。一般认为磨损是物体工作表面材料在相对运动中不断破坏或损失的现象。而对于磨损的分类也有很多方法,若按磨损机制划分,可分为磨料磨损、粘着磨损、腐蚀磨损、冲蚀磨损、接触疲劳磨损、冲击磨损、微动磨损等大类。在工业领域中磨料磨损和粘着磨损在工件磨损失效

中占有最大比例,而冲蚀、腐蚀、疲劳、微动等磨损失效方式由于往往产生在一些重要构件的运行中,故日益受到重视。在工况条件下,往往是几种磨损形式同时或先后出现,磨损失效交互作用呈现较复杂的形式。确定工件磨损失效的类型是合理选用或研制耐磨钢的依据。另外,零、部件的磨损是一个系统工程问题,影响磨损的因素很多,它包括工作条件(载荷、速度、运动方式)、润滑条件、环境因素(湿度、温度、周围介质等)、材料因素(成分、组织、力学性能)、零件表面质量及物理化学特性等。其中每个因素的改变都可能使磨损量改变,甚至使磨损机制改变。由此可见,材料因素只是影响工件磨损的因素之一,要提高钢件的耐磨性需要从特定条件下的摩擦、磨损系统整体着手才会取得预期的效果。

45号钢的性能

1强度强度指金属在外力作用下,抵抗塑性变形和断裂的能力 1)抗拉强度ób 金属试样拉伸时,在拉断前所承受的最大负荷与试样原横截面面积之比称为抗拉强度 ób=Pb/Fo 式中Pb——试样拉断前的最大负荷(N) Fo——试样原横截面积(mm2) 2)抗弯强度óbb MPa 试样在位于两支承中间的集中负荷作用下,使其折断时,折断截面所 承受的最大正压力 对圆试样:óbb=8PL/Лd³; 对矩形试样:óbb=3PL/2bh² 式中P——试样所受最大集中载荷(N) L——两支承点间的跨距(mm) d——圆试样截面之外径(mm) b——矩形截面试样之宽度(mm) h——矩形截面试样之高度(mm) 3)抗压强度óbc MPa 材料在压力作用下不发生碎、裂所能承受的最大正压力,称为抗压强度 óbc=Pbc/Fo 式中Pbc—试样所受最大集中载荷(N) Fo—试样原截面积(mm²) 4)抗剪强度てMPa 试样剪断前,所承受的最大负荷下的受剪截面具有的平均剪应力 双剪:óて=P/2F;单剪:óて=P/Fo 式中P—剪切时的最大负荷(N) Fo—受检部位的原横截面积(mm²) 5)抗扭强度MPa 指外力是扭转力的强度极限 てb≈3Mb/4Wp(适用于钢材) てb≈Mb/Wp(适用于铸铁) 式中Mb—扭转力矩(N?mm) Wp—扭转时试样截面的极断面系数(mm²) 6)屈服点ós MPa 金属试样在拉伸过程中,负荷不再增加,而试样仍继续发生变形的现象称为“屈服”。发生屈服现象时的应力,称为屈服点或屈服极限 ós=Ps/Fo 式中Ps——屈服载荷(N) Fo——试样原横截面积(mm2) 7)屈服强度ó0.2 MPa 对某些屈服现象不明显的金属材料,测定屈服点比较困难,常把产生O.2%永久变形的应力定为屈服点,称为屈服强度或条件屈服极限 ó0.2=P0.2/Fo 式中P0. 2——试样产生永久变形为0.2%时的载荷(N) Fo——试样原横截面积(mm2) 8)持久强度ób/时间(h)MPa 金属材料在高温条件下。经过规定时间发生断裂时的应力称为持久强度。通常所指的持久强度,是在一定的温度条件下,试样经l05h后的断裂强度 9)蠕变强度温度ó应变量/时间 MPa 金属材料在高于一定温度下受到应力作 用,即使应力小于屈服强度,试件也会随着时间的增长而缓慢地产生塑性变形,此种现象称为蠕变。在给定温度下和规定的时间内,使试样产生一定蠕变变形量的应力称为蠕变强度,例如 500 ó----------------- =100MPa 1/100000 ,表示材料在500%温度下,105h后应变量为l%的蠕变强度为100MPa。蠕变强度是材料在高温下长期负荷下对塑性变形抗力的性能指标 2弹性弹性是指金属在外力作用下产生变形,当外力取消后又恢复到原来的形状和大小的一种特性

摩擦磨损性能测试试验

典型黑色金属磨损性能测试实验 史秋月 一、实验目的 1.了解M-2000型摩擦磨损试验机的结构,及材料进行耐磨性测试的意义; 2.掌握滑动摩擦、滚动摩擦及其在不同条件下(干式、湿式、磨粒等)的 实验方法; 3.掌握摩擦磨损性能指标的评估方法; 4.了解典型黑色金属灰铁和球铁在滑动摩擦条件下(干式)的耐磨情况。 二、实验设备 M-2000型摩擦磨损试验机,如图2-1 图2-1 三、实验材料 1.灰铁滑动摩擦试样一对,试样尺寸如附图(a) 2.球铁滑动摩擦试样一对,试样尺寸如附图(a) 四.实验原理与方法 将试样分别装在上下试样轴上,接通电源,双速电动机○1通过三角皮带○3齿12使下试样轴以200转/分(或400转/分)的速度转动;通过轮○4带动下试样轴○ 48的传递。使上试样轴○14以180转/分(或360转/ 47和齿轮○ 蜗杆轴○ 44,滑动齿轮○ 47分)的速度转动。当做滑动摩擦试验时,为使上试样轴不转动,应将滑动齿轮○ 46上。试验时,两试样间的压移至中间位置,齿轮○48必须用销子○22固定在摇摆头○ 19的作用下获得(弹簧中间是一重力传感器),负荷的增大或减少力负荷在弹簧○ 21上即可读出。也可将复合传感器接入25进行调整;负荷的数值从标尺○ 可用螺帽○ 电脑,从显示屏上读出,本实验载荷直接从显示屏上读出。试验的终止条件可由时间或总转速控制。试验结束之后根据不同的方法评估材料的耐磨情况。

五、实验内容 将加工好的滑动摩擦试样装在实验机上,在给定的条件下(干式、滑动摩擦、压力:200N、时间60min)进行试验,试验结束后将试样取下,评估耐磨性能。 根据所选取磨损试验方法的不同以及材料本质的差异,可以选择不同的耐磨性能评定方法,以期获得精确的试验数据,现简单例举下述几种方法以供参考。 1、称重法:采用试样在试验前后重量之差,本表示耐磨性能的方法,由于两试 样之间的摩擦所引起的磨损量,可以采用精度达万分之一的分析天平称量出试样试验前后重量之差非凡获得。试样在磨损前后必须严格进行去油污,烘干后再进行称量否则因残余的没污会影响试验数据的准确性。 计算可按下式进行: W=W0-W1 式中:W—试样的磨损量。 W0—试样在试验前的重量。 W1—试样在试验后的重量。 2、测量直径法:采用试样在试验前后直径的变化大小来表示耐磨性能的方法。 (1)用测微计(或其它测量仪器)测量试样试验前后的直径变化而获得。 (2)本试验机所带小滚轮○6可用来精确测量试样直径试验前后的变化。 测量方法:使用时首先将装有小滚轮○6的支架拆下来装在下试样轴轴承座的小轴(附图)上,在试验前后把试验机各开一分钟或下试样试验前后运转同样转数可得小滚轮转数N1和N2,由此通过下列计算可得到磨损量“S” 如果:D1—试样试验前的直径。 D2—试样试验后的直径。 D0小滚轮○6的直径。 N1—磨损前一分钟内小滚轮○6的转数。

摩擦衬片(衬块)的磨损特性计算

摩擦衬片(衬块)的磨损特性计算 摩擦衬片(衬块)的磨损与摩擦副的材质、表面加工情况、温度、压力以及相对滑磨速度等多种因素有关,因此在理论上要精确计算磨损性能是困难的。但试验表明,摩擦表面的温度、压力、摩擦系数和表面状态等是影响磨损的重要因素。 汽车的制动过程,是将其机械能(动能、势能)的一部分转变为热量而耗散的过程。在制动强度很大的紧急制动过程中,制动器几乎承担了耗散汽车全部动力的任务。此时由于在短时间内制动摩擦产生的热量来不及逸散到大气中,致使制动器温度升高。此即所谓制动器的能量负荷。能量负荷愈大,则摩擦衬片(衬块)的磨损亦愈严重。 制动器的能量负荷常以其比能量耗散率作为评价指标。比能量耗散率又称为单位功负荷或能量负荷,它表示单位摩擦面积在单位时间内耗散的能量,其单位为W/mm2 双轴汽车的单个前轮制动器和单个后轮制动器的比能量耗散率分别为 式中:δ——汽车回转质量换算系数; ma——汽车总质量 v1 v2——汽车制动初速度与终速度,m/s;计算时轿车取v1= 100km/h(27.8m/s);总质量 3.5吨以下的货车取vl=80km/h

(22.2m/s);总质量3.5 t以上的货车取v1=65 km/h(18m/s); t一制动时间,s;按下式计算 j一制动减速度,m/ s2计算时取j=0.6g; A1,A2一前、后制动器材特(衬块)的摩擦面积; β一制动力分配系数,见式(3-12) 在紧急制动到v2=0时,并可近似地认为δ=1,则有 鼓式制动器的比能量耗散率以不大于1.8 W/mm2为宜,但当制动初速度油vl低于式(4-25)下面所规定的v1时,则允许略大于 1.8 W/mm2。轿车盘式制动器的比能量D 耗散率应不大于6.0 W/mm2发比能量耗散率过高,不仅会加快制动摩擦衬片(衬块)的磨损,而且可能引起制动鼓或盘的龟裂。 磨损特性指标也可用衬片(衬块)的比摩擦力即单位摩擦面积的摩擦力来衡量。单个车轮制动器的比摩擦力为 式(4-27)Tf中:Tf一单个制动器的制动力矩; R一制动鼓半径(或制动盘有效半径)

各种材料摩擦系数表分析

各种材料摩擦系数表 摩擦系数是指两表面间的摩擦力和作用在其一表面上的垂直力之比值。它是和表面的粗糙度有关,而和接触面积的大小无关。依运动的性质,它可分为动摩擦系数和静摩擦系数。现综合具体各种材料摩擦系数表格如下。

注:表中摩擦系数是试验值,只能作近似参考

固体润滑材料 固体润滑材料是利用固体粉末、薄膜或某些整体材料来减少两承载表面间的摩擦磨损作用的材料。在固体润滑过程中,固体润滑材料和周围介质要与摩擦表面发生物理、化学反应生成固体润滑膜,降低摩擦磨损。 中文名 固体润滑材料 采用材料 固体粉末、薄膜等 作用 减少摩擦磨损 使用物件 齿轮、轴承等 目录 1.1基本性能 2.2使用方法 3.3常用材料 基本性能 1)与摩擦表面能牢固地附着,有保护表面功能固体润滑剂应具有良好的 成膜能力,能与摩擦表面形成牢固的化学吸附膜或物理吸附膜,在表面附着,防止相对运动表面之间产生严重的熔焊或金属的相互转移。 2)抗剪强度较低固体润滑剂具有较低的抗剪强度,这样才能使摩擦副的 摩擦系数小,功率损耗低,温度上升小。而且其抗剪强度应在宽温度范围内不发生变化,使其应用领域较广。 3)稳定性好,包括物理热稳定,化学热稳定和时效稳定,不产生腐蚀及 其他有害的作用物理热稳定是指在没有活性物质参与下,温度改变不会引起相变或晶格的各种变化,因此不致于引起抗剪强度的变化,导致固体的摩擦性能改变。 化学热稳定是指在各种活性介质中温度的变化不会引起强烈的化学反应。要求固体润滑剂物理和化学热稳定,是考虑到高温、超低温以及在化学介质中使用时性能不会发生太大变化,而时效稳定是指要求固体润滑剂长期放置不变质,以便长期使用。此外还要求它对轴承和有关部件无腐蚀性、对人畜无毒害,不污染环境等。 4)要求固体润滑剂有较高的承载能力因为固体润滑剂往往应用于严酷 工况与环境条件如低速高负荷下使用,所以要求它具有较高的承载能力,又要容易剪切。 使用方法 1)作成整体零件使用某些工程塑料如聚四氟乙烯、聚缩醛、聚甲醛、聚 碳酸脂、聚酰胺、聚砜、聚酰亚胺、氯化聚醚、聚苯硫醚和聚对苯二甲酸酯等的摩擦系数较低,成形加工性和化学稳定性好,电绝缘性优良,抗冲击能力强,可以制成整体零部件,若采用环璃纤维、金属纤维、石墨纤维、硼纤维等对这些塑料增强,综合性能更好,使用得较多的有齿轮、轴承、导轨、凸轮、滚动轴承保持架等。

45号钢的特性

45#(号)钢和40Cr钢调质的热处理工艺 调质是淬火加高温回火的双重热处理,其目的是使工件具有良好的综合机械性能。 调质钢有碳素调质钢和合金调质钢二大类,不管是碳钢还是合金钢,其含碳量控制比较严格。如果含碳量过高,调质后工件的强度虽高,但韧性不够,如含碳量过低,韧性提高而强度不足。为使调质件得到好的综合性能,一般含碳量控制在0.30~0.50%。 调质淬火时,要求工件整个截面淬透,使工件得到以细针状淬火马氏体为主的显微组织。通过高温回火,得到以均匀回火索氏体为主的显微组织。小型工厂不可能每炉搞金相分析,一般只作硬度测试,这就是说,淬火后的硬度必须达到该材料的淬火硬度,回火后硬度按图要求来检查。 工件调质处理的操作,必须严格按工艺文件执行,我们只是对操作过程中如何实施工艺提些看法。 1、45号钢的调质 45号钢是中碳结构钢,冷热加工性能都不错,机械性能较好,且价格低、来源广,所以应用广泛。它的最大弱点是淬透性低,截面尺寸大和要求比较高的工件不宜采用。 45号钢淬火温度在A3+(30~50) ℃,在实际操作中,一般是取上限的。偏高的淬火温度可以使工件加热速度加快,表面氧化减少,且能提高工效。为使工件的奥氏体均匀化,就需要足够的保温时间。如果实际装炉量大,就需适当延长保温时间。不然,可能会出现因加热不均匀造成硬度不足的现象。但保温时间过长,也会也出现晶粒粗大,氧化脱碳严重的弊病,影响淬火质量。我们认为,如装炉量大于工艺文件的规定,加热保温时间需延长1/5。 因为45号钢淬透性低,故应采用冷却速度大的10%盐水溶液。工件入水后,应该淬透,但不是冷透,如果工件在盐水中冷透,就有可能使工件开裂,这是因为当工件冷却到180℃左右时,奥氏体迅速转变为马氏体造成过大的组织应力所致。因此,当淬火工件快冷到该温度区域,就应采取缓冷的方法。由于出水温度难以掌握,须凭经验操作,当水中的工件抖动停止,即可出水空冷(如能油冷更好)。另外,工件入水宜动不宜静,应按照工件的几何形状,作规则运动。静止的冷却介质加上静止的工件,导致硬度不均匀,应力不均匀而使工件变形大,甚至开裂。 45号钢调质件淬火后的硬度应该达到HRC56~59,截面大的可能性低些,但不能低于HRC48,不然,就说明工件未得到完全淬火,组织中可能出现索氏体甚至铁素体组织,这种组织通过回火,仍然保留在基体中,达不到调质的目的。 45号钢淬火后的高温回火,加热温度通常为560~600℃,硬度要求为HRC22~34。因为调质的目的是得到综合机械性能,所以硬度范围比较宽。但图纸有硬度要求的,就要按图纸要求调整回火温度,以保证硬度。如有些轴类零件要求强度高,硬度要求就高;而有些齿轮、带键槽的轴类零件,因调质后还要进行铣、插加工,硬度要求就低些。关于回火保温时间,视硬度要求和工件大小而定,我们认为,回火后的硬度取决于回火温度,与回火时间关系不大,但必须回透,一般工件回火保温时间总在一小时以上。 2、40Cr钢的调质处理 Cr能增加钢的淬透性,提高钢的强度和回火稳定性,具有优良的机械性能。截面尺寸大或重要的调质工件,应采用Cr钢。但Cr钢有第二类回火脆性。 40Cr工件调质的淬回火,各种参数工艺卡片都有规定,我们在实际操作中体会是:(一)40Cr工件淬火后应采用油冷,40Cr钢的淬透性较好,在油中冷却能淬硬,而且工件的变形、开裂倾向小。但是小型企业在供油紧张的情况下,对形状不复杂的工件,可以在水中淬火,并未发现开裂,只是操作者要凭经验严格掌握入水、出水的温度。 (二)40Cr工件调质后硬度仍然偏高,第二次回火温度就要增加20~50℃,不然,硬度降低困难。

耐磨及减摩材料的摩擦磨损特性的探究..

耐磨耐蚀材料 题目:耐磨及减摩材料的摩擦磨损特性探究 学院:材料科学与工程学院 专业:材料加工工程 指导老师:路阳杨效田 学生姓名:王鹏春 学号: 132080503043 2104年5月1日

耐磨及减摩材料的摩擦磨损特性探究 摘要:综述了耐磨及减摩材料的基本性能要求,简单阐述了常见的耐磨及减摩材料的成分、组织与性能等和目前耐磨及减摩材料的新进展及方向。最后,论述了耐磨及减摩材料在表面工程技术中的应用形式,及耐磨涂层的发展方向。 关键词: 耐磨材料;减摩材料;耐磨涂层 0前言 众所周知,摩擦磨损特性的探究对国民经济来说,有着非凡的意义。据统计,全世界大约有2/1-3/1的能源以各种形式消耗在摩擦上。而摩擦导致的磨损是机械设备零件失效的三大原因之一,大约有80%的损坏零件是由于各种磨损形式引起的[1]。为了节约能源和材料,解决因磨损带来的损失显得至关重要,随着技术水平的发展,而其解决措施也变得各种各样,而本文主要从最基础的材料的选择上入手,来综述耐磨及减摩材料的摩擦磨损特性的探究现状及发展方向。 1 耐磨材料 材料的耐磨性通常是指在一定的工作环境下,摩擦副材料在,摩擦过程中抵抗磨损的能力。材料的耐磨性不是材料固有的本性,而是材料性质在一定的摩擦规范、表面状态、环境介质、工件结构、材料配对等某种条件下的体现。因此材料的耐磨性是相对的、有条件的。耐磨材料的一般性要求有以下几点[2]: 1.机械性能方面要有高的抗拉、抗压、抗拉、抗剪切强度;有高的硬度和韧性;有较高的相对延伸率;在摩擦的高温、高压下,机械性能应该稳定。 2.物理、化学性能方面要有良好的导热性,低的热膨胀系数,且各相的线膨胀系数差别要小;合金元素在其内的溶解度要高,分布要均匀;各相间微观电势要小,抗腐蚀性好;各相成分要在较宽的温度、压力范围内保持稳定。 3.金相结构方面金属晶体的滑移系要少;固溶体与强化相要恰当配合;强化相要有高的弥散性,分布要均匀;各相的位向要互相接近。 4.工艺性能方面要有良好的淬透性和机加工性,以及其他必要工艺性能,如铸件的铸造性。

摩擦学实验报告

摩擦磨损实验报告 一、实验目的: 1、了解常用的摩擦磨损试验机结构、测试原理及测试过程。 2、了解常用的摩擦磨损试验机的使用方法。 3、了解摩擦系数与磨损量的测量。 4、测试实验用材料摩擦系数。 二、实验设备: 1、划痕实验仪。 2、销盘摩擦磨损实验机。 3、四球摩擦磨损实验机。 4、疲劳摩擦磨损实验机。 三、实验要求: 1、了解常用的摩擦磨损试验机结构、测试原理及测试过程。 2、熟悉并掌握常用的摩擦磨损试验机的使用方法。 3、测试实验用材料摩擦系数。 4、对实验结果进行分析 四、实验设备与实验结果: MT-3000工作原理与结构 1、测试原理

MS-T3000摩擦磨损运用球-盘之间摩擦原理及微机自控技术,通过砝码或连续加载机构将负荷加至球上,作用于试样表面,同时试样固定在测试平台上,并以一定的速度旋转,使球摩擦涂层表面。通过传感器获取摩擦时的摩擦力信号,经放大处理,输入计算机经A/D转换将摩擦力信号通过运算得到摩擦系数变化曲线。μ=F/N μ—摩擦系数F—摩擦力 N—正压力(载荷) 通过摩擦系数曲线的变化得到材料或薄膜的摩擦性能和耐磨强度,即在特定载荷下,经过多长时间(多长距离)摩擦系数会发生变化。 2、试验机结构 1.加载方式:砝码加载; 2.加载范围: 10g~2000g、精度0.1g; 3.平台转速: 1转/min~3000转/min、精度±1转; 4.升降高度:20mm; 5.旋转半径:3mm~20mm; 6.摩擦副夹具:Φ3mm、Φ4mm 、Φ5mm、Φ6mm ; 7.摩擦副:GCr15钢球、AlO陶瓷球、ZrO陶瓷球、SiN陶瓷球; 8.测试操作:键盘操作,微机控制; 实验结果

磨损的特性 2

磨损特性 机械零件的磨损过程通常经历不同的磨损阶段,直至失效。如图给出典型的磨损特性曲线(浴盆曲线): 图磨损特性曲线 图中的纵坐标表示单位时间的磨损量,称磨损率。通常在磨合期内,磨损率比较大,并是递降的。然后进入一个较长时间的稳定期,磨损率较小并保持不变。直至某一点,斜率陡升,这预兆着磨损急剧增大,失效即将发生。对于一些磨损过程,例如滚动轴承或齿轮中发生的表面疲劳磨损,开始时磨损率可能为零,当工作时间达到一定数值后,点蚀开始出现并迅速扩展,磨损率迅速上升,很快发展为大面积剥落和完全失效。 磨损阶段的描述: 1.磨合阶段(I阶段) 又称跑合阶段。新的摩擦副表面具有一定的表面粗糙度。在载荷作用下,由于实际接触面积较小,故接触应力很大。因此,在运行初期,表面的塑性变形与磨损的速度较快。随着磨合的进行,摩擦表面粗糙峰逐渐磨平,实际接触面积逐渐增大,表面应力减小,磨损减缓。 一个崭新的,即加工后未经摩擦的固体表面总具有一定的表面粗糙度和比较尖锐的微凸体尖峰,实际上两个表面之间通过微凸体进入真实接触的面积是很小的。在这些接触着的微凸体之间会产生很大单位面积接触压力,乃至超过材料的

屈服强度,并造成微凸体材料的迁移,以及接触面之间的变形在局部微区产生很高的温度,致使接触面发生熔焊,随即又由于表面之间的相对运动而被撕裂。同时微凸体在相对运动过程中也很容易发生碰撞、折断、划伤。因此在磨合阶段,摩擦副表面的磨损量迅速增加,并达到较高的磨损率。 另一方面由于加工和装配等工况原因,使接触表面之间的间隙不均匀,从而难以形成稳定的油膜,这时的润滑状态处于一种从边界润滑到混合润滑的过度;随着磨合阶段的结束,微凸体不断被磨平,促使它们之间的接触面积不断增大,而单位面积的接触压力随之减小,同时通过一定的磨损之后,摩擦副的间隙趋于均匀,油膜得以建立,即进一步向完全流体动力润滑过度;于是磨损率也随之减小,并向稳定磨损阶段过度。 磨合阶段的轻微磨损为正常运行、稳定运转创造条件。通过选择合理的磨合规程、采用适当的摩擦副材料及合理的加工工艺、正确地装配与调整,使用含有活性添加剂的润滑油等措施能够缩短磨合期。上述磨合阶段最好受到监控,以免造成过度的磨损或磨合不够的情况产生。 2.稳定磨损阶段(II阶段) 经过磨合,摩擦表面发生加工硬化,微观几何形状改变,建立了弹塑性接触条件。这一阶段磨损趋于稳定、缓慢,工作时间可以延续很长。它的特点是磨损量与时间成正比增加,间隙缓慢增大。 稳定磨损阶段此时磨损量趋于平缓地增加,而磨损率则由高过度到低,并维持在一个比较稳定的水平上,表明零件摩擦副表面之间已形成较为稳定的油膜,在润滑油充裕的工况下处于一种流体动力润滑状态。流体动力油膜的存在不仅在很大程度上避免了微凸体尖峰受力为大部分表面处于一种比较均匀的受力状态。这对于减小磨损是极为有利的。特别是当油膜厚度大大超过两个接触表面的粗糙度时,摩擦副处于完全流体动力润滑状态;这时微凸体之间几乎不接触,摩擦表面依靠油膜传递压力,故磨损量保持在一个非常低的水平上。稳定磨损阶段是机器设备的正常工作阶段,稳定磨损阶段的长短与机器的工况有关,也与磨合阶段的磨合质量有关。这是因为机器在启动或停止的过程中,也就是摩擦副流体动力油膜建立或消除的过程,其润滑状态也就从边界—混合—完全流体的

摩擦磨损

博士入学考试 名词解释 粗糙度:评定加工过的材料表面由峰、谷和间距等构成的微观几何形状误差的物理量。 固体润滑:利用固体所具有的减摩作用的润滑方法。 固体润滑材料:为了防止相对运动中的表面损伤,并降低摩擦与磨损而使用的薄膜或粉状固体。 滑动磨损:两个相对滑动物体公共接触面积上产生的切向阻力和材料流失的现象。 自由磨料磨损和固定磨料磨损:两者皆为磨料磨损,自由磨料磨损磨料保持自由状态,而固定磨料磨损磨料保持固定状态。 耐磨性和相对耐磨性:材料的耐磨性是指一定条件下材料耐磨性的特性;相对耐磨性是指两种材料在相同的外部条件下磨损量的比值。 微切削和微犁沟:微切削是磨料(磨粒或硬突起)从被磨损表面切削下微切屑的磨料磨损过程;在相对滑动中,硬颗粒或两表面中硬微突体使较软表面塑性变形而形成犁痕式的破坏。 问答题 1.简述摩擦的概念和分类。 摩擦:两个相互接触的物体在外力作用下发生相对运动或具有相对运动的趋势时,就会发生摩擦。 摩擦学:摩擦学是研究相对运动互作用表面的科学与技术,它包括材料的摩擦、磨损和润滑三个部分。 分类: (1)按摩擦副表面的润滑情况分: 干摩擦:物件间或试样间不加任何润滑剂时的摩擦。 边界摩擦:两接触表面间存在一层极薄的润滑膜,其摩擦和磨损不是取决于润滑剂的粘度,而是取决于两表面的特性和润滑特性。 流体摩擦:由流体的黏滞阻力或流变阻力引起的内摩擦。 半干摩擦:部分干摩擦,部分边界摩擦。半流体摩擦:部分边界摩擦,部分流体摩擦。 (2)按摩擦副的运动形式分: 滑动摩擦:当接触表面相对滑动或具有相对滑动趋势时的摩擦。 滚动摩擦:当物体在力矩的作用下沿接触表面滚动时的摩擦。

摩擦磨损实验报告概要

摩擦磨损实验实验报告 汪骏飞(机自92 学号09011041) 一、实验目的 1. 摩擦系数和磨损量的测量 2. 了解和熟悉表面粗糙度测量仪、电子分析天平、多功能摩擦磨损试验机等实验仪器的 基本原理与实验步骤 二、实验仪器 1. 表面粗糙度测量仪 2. 光学显微镜 3. 电子分析天平 4. 多功能摩擦磨损试验机 三、实验内容 1. 摩擦系数的读取 2. 磨损量的测量 3. 磨损前后的表面形貌的显微观察,辨别磨损形式 四、实验步骤 1. 用丙酮在超声波中清洗钢球和圆盘,然后用脱脂棉球擦拭;最后热风吹干待用 2. 将一个清洁钢球安装在球夹具中,并固定于摩擦试验机 3. 测试试样的表面粗糙度 4. 用双面胶把圆盘固定于摩擦试验机 5. 在实验载荷和速度下,开动电动机驱动主轴旋转 6. 试验时间达到给定时间时,关掉电动机,卸去载荷取出试样,并清洗试样 7. 用光学显微镜测量球上的磨斑直径,显微镜观察圆盘的磨痕宽度和深度,取平均值 8. 清理现场 9. 撰写实验报告 五、实验参数 试样:直径9.5mm的钢球;直径30mm,高度5mm的高速工具钢涂层圆盘实验条件:载 荷5n或10n;速度0.05m/s;时间:20min;润滑方式:干摩擦实验内容: 1. 摩擦系数的读取: (1)静摩擦系数 静摩擦系数随着时间慢慢减小,一开始为最大cof=0.004 半径:radius = 8.999 mm 速度:velocity = 0 m/s 力: set force = -10 n (2)动摩擦系数的读取:半 径:radius = 8.999mm 速度:velocity = 53.05 力:set force = -10n 对12000行数据进行数学计算,发现cof在0.28附近,不妨取cof=0.28 3.磨损量的测算: (1)小钢球 磨损直径d=830.27+838.622=834.45um 已知球半径r=9.5mm求线磨损量:h=r? r2?(2=18.36mm 2d磨损体积v=πh2 r?3 =5.02 ×10?3mm3 h磨损系数: 取硅薄膜的维氏硬度为1400hv 由archard磨损公式 vh5.02×10?3×1400k===5.85×10?2 由以上数据分析知,钢球与硅薄膜之间的磨损属于 严重磨损 (2)圆盘

磨损特性曲线2

磨损特性曲线2 机械零件的磨损过程通常经历不同的磨损阶段,直至失效。如图给出典型的磨损特性曲线(浴盆曲线): 图磨损特性曲线 图中的纵坐标表示单位时间的磨损量,称磨损率。通常在磨合期内,磨损率比较大,并是递降的。然后进入一个较长时间的稳定期,磨损率较小并保持不变。直至某一点,斜率陡升,这预兆着磨损急剧增大,失效即将发生。对于一些磨损过程,例如滚动轴承或齿轮中发生的表面疲劳磨损,开始时磨损率可能为零,当工作时间达到一定数值后,点蚀开始出现并迅速扩展,磨损率迅速上升,很快发展为大面积剥落和完全失效。 磨损阶段的描述: 1.磨合阶段(I阶段) 又称跑合阶段。新的摩擦副表面具有一定的表面粗糙度。在载荷作用下,由于实际接触面积较小,故接触应力很大。因此,在运行初期,表面的塑性变形与磨损的速度较快。随着磨合的进行,摩擦表面粗糙峰逐渐磨平,实际接触面积逐渐增大,表面应力减小,磨损减缓。 一个崭新的,即加工后未经摩擦的固体表面总具有一定的表面粗糙度和比较尖锐的微凸体尖峰,实际上两个表面之间通过微凸体进入真实接触的面积是很小的。在这些接触着的微凸体之间会产生很大单位面积接触压力,乃至超过材料的屈服强度,并造成微凸体材料的迁移,以及接触面之间的变形在局部微区产生很

高的温度,致使接触面发生熔焊,随即又由于表面之间的相对运动而被撕裂。同时微凸体在相对运动过程中也很容易发生碰撞、折断、划伤。因此在磨合阶段,摩擦副表面的磨损量迅速增加,并达到较高的磨损率。 另一方面由于加工和装配等工况原因,使接触表面之间的间隙不均匀,从而难以形成稳定的油膜,这时的润滑状态处于一种从边界润滑到混合润滑的过度;随着磨合阶段的结束,微凸体不断被磨平,促使它们之间的接触面积不断增大,而单位面积的接触压力随之减小,同时通过一定的磨损之后,摩擦副的间隙趋于均匀,油膜得以建立,即进一步向完全流体动力润滑过度;于是磨损率也随之减小,并向稳定磨损阶段过度。 磨合阶段的轻微磨损为正常运行、稳定运转创造条件。通过选择合理的磨合规程、采用适当的摩擦副材料及合理的加工工艺、正确地装配与调整,使用含有活性添加剂的润滑油等措施能够缩短磨合期。上述磨合阶段最好受到监控,以免造成过度的磨损或磨合不够的情况产生。 2.稳定磨损阶段(II阶段) 经过磨合,摩擦表面发生加工硬化,微观几何形状改变,建立了弹塑性接触条件。这一阶段磨损趋于稳定、缓慢,工作时间可以延续很长。它的特点是磨损量与时间成正比增加,间隙缓慢增大。 稳定磨损阶段此时磨损量趋于平缓地增加,而磨损率则由高过度到低,并维持在一个比较稳定的水平上,表明零件摩擦副表面之间已形成较为稳定的油膜,在润滑油充裕的工况下处于一种流体动力润滑状态。流体动力油膜的存在不仅在很大程度上避免了微凸体尖峰受力为大部分表面处于一种比较均匀的受力状态。这对于减小磨损是极为有利的。特别是当油膜厚度大大超过两个接触表面的粗糙度时,摩擦副处于完全流体动力润滑状态;这时微凸体之间几乎不接触,摩擦表面依靠油膜传递压力,故磨损量保持在一个非常低的水平上。稳定磨损阶段是机器设备的正常工作阶段,稳定磨损阶段的长短与机器的工况有关,也与磨合阶段的磨合质量有关。这是因为机器在启动或停止的过程中,也就是摩擦副流体动力油膜建立或消除的过程,其润滑状态也就从边界—混合—完全流体的

(完整版)45号钢的最佳切削速度

45号钢的最佳切削速度 1.切削速度的选取 切削速度快慢直接影响切削效率。若切削速度太快,虽然可以缩短切削时间,但不可避免刀具产生高热现象,影响刀具的寿命。若切削速度过小,则切削时间会加长,效率低,刀具无法发挥其功能;决定切削速度的因素很多,概括起来有:(1)刀具材料。刀具材料是影响切削速度的最主要因素。刀具材料不同,允许的最高切削速度也不同。高碳钢刀具的切削速度约为5m/min,高速钢刀具的切削速度约为20m/min,硬质合金刀具的切削速度约为80m/min,涂层硬质合金刀具的切削速度约为200m/min,陶瓷刀具的切削速度可高达1000m/min。 (2)工件材料。工件材料硬度高低会影响刀具切削速度,同一刀具加工硬材料时切削速度应降低,而加工较软材料时,切削速度可以提高。 表4 工件材料刀具材料硬度耐热度(℃)切削速度(m/min) 45号钢高速钢HRC66~70 600~645 3 硬质合金HRA90~92 800~1000 100~150 2.切削深度的选取 切削深度要根据机床、工件和刀具的刚度来决定,主要受机床刚度的制约。在机床刚度允许的情况下,切削深度应尽可能大,如果不受加工精度的限制,可以使切削深度等于零件的加工余量。这样可以减少走刀次数,提高生产效率。 为了保证加工表面质量,应根据加工余量确定,留少量精加工余量,一般粗加工时,一次进给应尽可能切除全部余量。背吃刀量不均匀时,粗加工要分几次进给,并且应当把第一,二次进给时的切削深度尽量取得大一些;在中等功率的机床上,切削深度取为8~10mm。半精加工时,切削深度选取为0.5~2mm。精加工时,切削深度选取0.2~0.5mm。 总之,切削深度的具体数值应根据机床性能、相关的手册并结合实际经验用类比方法确定。 3.进给量的选取 进给量是数控机床切削用量中的重要参数,根据零件的表面粗糙度,零件的加工精度要求,及刀具材料、工件材料等因素来决定,可以参考切削用量手册选取。最大的进给量受到机床刚度和进给驱动以及数控系统的限制。 此外在切削时,刀尖半径与进给量、表面粗糙度的理论值存在一定关系,此关系可以用公式 三、切削用量的选择 在数控铣削中,切削用量有切削深度、主轴转速、进给速度,在指导学生的过程

MM1000系列型摩擦磨损性能试验设备

MM1000系列型摩擦磨损性能试验设备 由西安顺通机电应用技术研究所研制成功的我国最新型全自动化控制的惯性系列摩擦磨损性能试验机,己在国内的摩擦材料领域得到了普及应用和配置。 全自动控制的系列摩擦磨损性能试验机应用现代工业控制技术和计算机应用技术从主机的结构、动力源、采集值、测试技术、应用瞬间值的采集技术即提取同一瞬间的压力值和扭矩值计算出该瞬间的摩擦系数等相关的测试值,提高了测试数据的精度等级及准确性,实现了测试数据的可靠性和重复性。它集机、电、气技术和传感器技术、变频调速技术、现代工业控制技术、计算机应用技术为一体,成功的实现了摩擦材料性能测试自动化,涉入全部摩擦材料领域。在实现全自动控制的工艺过程时全部按照国标、行标、(企标)的工艺路线和模拟实际工况试验条件设置进行,制作出符合企业生产、科研院所、大专院校进行摩擦材料生产、研究、配方工艺、质量控制和新材料研制、开发的专业检测设备。应用现代先进的科学技术,提供科学的试验方法和准确的测试数据使该试验机具备了小样试验机和整片1:1台架试验功能。它保持了与产品工况的一致性,又保持了与台架试验的一致性。保持与路试、航试有稳定的对应关系,应用小样试验的跟踪工艺性强,满足了快速变化的试验步骤,为企业赢得了时间,节约了资金。 全自动控制的系列摩擦磨损性能试验机应用了小样缩比模拟制动惯性试验原理,建立了模拟制动的试验方法,应用了全自动控制技术,实现了实验室条件下小样缩比模拟制动试验的功能。应用了多元相似原理模拟实际工况完成了(惯性制动)热冲击刹车试验的功能. 该检测设备不但具备了髙速、髙压、低速、低压、变速、变压、变温等技术条件下的测试功能,完成了摸拟飞机、坦克、火车、汽车、轨道列车等重载大惯量等制动工况进行的摩擦材料的摩擦、磨损、热负荷、及可靠性的试验研究要求,以材料可承载的最大负荷完成各种试验项目和极限试验功能;对于全部试验参数的采集频率高、采集精度高、采集速度快、采集数量大都较之所有试验机、试验台无以比拟的,实现采控一体采集信号,能与计算机通讯完成数据的转存和试验机的监测系统。全系统在全自动控制实验过程中有安全警示、有过载保护能力,以专用控制程序完成全系统控制指令,试验参数任意设置,测试数据随机采集,测试软件参数完全放开可设置,试验曲线坐标随试验条件变化,在整亇制动曲线中反映出实验全过程绘制的七条曲线并记录其任一瞬间的压力、转速、扭矩、温度值,即可计算出这一状态下的.动、静摩擦力矩;动、静摩擦系数、;摩擦功、;

摩擦磨损试验

实验四 摩擦学基础实验(1学时) 一.实验目的 1.通过实验了解不同材料配副摩擦系数的变化及磨损量的不同。 2.掌握摩擦学实验的基本方法及有关仪器设备的使用方法。 二.实验原理 1.概述 摩擦表面上的物质,由于表面相对运动而不断损失的现象称磨损。在一般正常工作状态下,磨损可分三个阶段: (1).跑合(磨合)阶段:轻微的磨损,跑合是为正常运行创造条件。 (2).稳定磨损阶段:磨损更轻微,磨损率低而稳定。 (3).剧烈磨损阶段:磨损速度急剧增长,零件精度丧失,发生噪音和振动,摩擦温度迅速升高,说明零件即将失效。(如图4.1) 机件磨损是无法避免的。但是如何缩短跑合期、延长稳定磨损阶段和推迟剧烈磨损的到来,是研究者致力的方向。 伯韦尔(Burwell)根据磨损机理的不同,把粘着磨损,磨粒磨损、腐蚀磨损和表面疲劳磨损列为磨损的主要类型,而把表面侵蚀,冲蚀等列为次要类型。这些不同类型的磨损,可以单独发生,相继发生或同时发生(称为复合磨损形式)。 2磨损的检测与评定 研究磨损要通过各种摩擦磨损试验设备,检测摩擦过程中的摩擦系数及磨损量(或磨损率)。摩擦过程中从表面上脱落下来的材料(磨屑),记录了磨损的发展历程,反映了磨损机理,描述了表面磨损的程度。发生磨损后的表面,同样有着磨损机理、磨损严重程度及其发展过程的记载。因此研究磨屑和磨损后表面 磨损量 跑合 稳定磨损阶段 剧烈 图4.1 磨损三个阶段的示意图 摩擦行程(时间)

上的信息是研究磨损的重要一环。 2.1摩擦磨损试验机 磨损试验的目的在于研究各种因素对摩擦磨损的影响,从而合理地选择配对材料,采用有效措施降低摩擦、磨损,正确设计摩擦副的结构尺寸及冷却设施等等。 摩擦磨损试验大体上可分为实验室试验,模拟试验或台架试验,以及使用试验或全尺寸试验三个层次,各层次试验设备的要求各不相同。 (1)实验室评价设备 实验室设备主要用于摩擦磨损的基础研究,研究工作参数(载荷、速度等)对摩擦磨损的影响。可以得到单一参量变化与摩擦磨损过程之间的关系。还可控制试验环境,如加润滑(剂或材料、剂量和组分及润滑方式),周围气氛(惰性气氛、真空、温度、特殊介质),求得特定环境条件下的结果,研究者需要选择合适的试验设备和试验条件: 试验设备有各种不同的摩擦形式、接触形式和运动形式,有不同的主变参数(载荷、速度)和可测结果(摩擦系数、磨损),将这些形式排列组合成不同的试验设备。 摩擦形式:滑动摩擦、滚动摩擦及滚动-滑动混合摩擦; 接触形式:点接触、线接触和面接触; 运动形式:旋转运动和直线运动,又各自有单向和往复两种形式。 实验室设备的特点是: a.摩擦副是抽象了的各种不同的摩擦形式、接触形式和运动形式,而不是实际摩擦零件的形式; b.要有定量测定摩擦系数和(或)磨损的装置,以及能定量地显示实验条件(载荷和速度)的设备,有的设备和试验方法已经标准化。使用标准化的设备和方法,可以得到可比的试验结果。 几种常用的实验室摩擦试验设备见表4.1 表4.1 实验室常用的摩擦试验设备 摩擦副对偶实验机名称接触及运动形式可测数据应用范围

摩擦磨损测试及考核评价方式

摩擦磨损测试及考核评价方式 一、磨损 1.1磨损定义 磨损是指摩擦副相对运动时,表面物质不断损失或产生残余变形的现象。表面物质运动主要包括机械运动、化学作用和热作用:(1)机械作用使摩擦表面发生物质损失及摩擦表面的物理变形;(2)化学作用使摩擦表面发生性状改变;热作用是摩擦表面发生形状改变。典型的磨损曲线通常由三部分组成,如图1.1所示。 磨 损 量 图1.1 磨损曲线示意图 磨合阶段:磨损量随时间的增加而增加。发生在初始运动阶段,由于表面存在粗糙度,微凸体接触面积小,接触应力大,磨损速度较快。 稳定磨损阶段:摩擦表面磨合后达到稳定状态磨损率保持不变。稳定磨损阶段标志磨损条件保持相对稳定,是零件整个寿命范围内的工作过程。 剧烈磨损阶段:工作条件恶化,磨损量急剧增大。该阶段内零件精度降低、间隙增大,温度升高,产生冲击、振动和噪声,最终导致零部件完全失效。 1.2磨损种类 按磨损的破坏机理,通常把磨损分为粘着磨损、磨料磨损、疲劳磨损、腐蚀磨损和微动磨损五种。 (1)粘着磨损 当摩擦副相对滑动时, 由于粘着效应所形成结点发生剪切断裂,被剪切的材料或脱落成磨屑,或由一个表面迁移到另一个表面,此类磨损称为粘着磨损。粘着磨损再细分还有轻微磨损、涂抹、擦伤、划伤和咬死五种。

图1.1 粘着磨损机理 (2)磨料磨损 外来的硬料介质进入摩擦副,或摩擦副一个表面比另一个表面硬,在较硬表面上存在的微凸体,在摩擦过程中对较软表面犁沟或拉槽,引起表面材料的脱落,这种现象叫做磨料磨损。磨料磨损是一种最常见的磨损,按照磨损机理还可细分为微观切削、挤压剥落和疲劳破坏三小类。

图1.2 二体/三体磨粒磨损机理 (3)化学磨损 化学磨损是在摩擦促进作用下,摩擦副的一方或双方与中间物质或环境介质中的某些成分发生化学或电化学作用,造成表面材料损失的过程。分为氧化磨损与特殊介质腐蚀磨损两类。 图1.3 化学磨损机理 (4)疲劳磨损 摩擦接触表面在交变接触压应力作用下,材料表面因疲劳损伤而引起表面脱落的现象。疲劳磨损有两种基本类型,宏观疲劳磨损和微观疲劳磨损。宏观疲劳磨损主要是指两个相互滚动或滚动兼滑动的摩擦表面,在循环变化的接触应力作用下,材料疲劳而发生脱落的现象;微观疲劳磨损是滑动接触表面由于微凸体相互接触使材料发生疲劳而引起的机械磨损现象。此外,疲劳磨损的破坏机理又分为麻点剥落、浅层剥落、深层剥落。

摩擦磨损试验机结构毕业设计

摩擦磨损试验机结构设计 摘要 先进的摩擦磨损试验机及试验技术对于摩擦学研究的深入开展有着重意义。本文在对摩擦磨损试验机的发展概况、分类、特点,摩擦磨损试验的目的、试验的基本方法等进行综合分析的基础上,建立了摩擦磨损试验机的要求明细表,通过功能分析确定试验机的整体结构,从主机的结构设计、主轴回转结构、多样式装夹、气压加载结构等方面对摩擦磨损试验机结构进行设计。该试验机能实现对摩擦副的轴向加载、径向加载以及往复运动等,结构稳定符合一般实验要求。 关键词:摩擦磨损试验机;气压加载;往复运动

structural design of Friction-Wear Tester machine Abstract Advanced friction and wear tester and test technology for tribological studies have highlighted significant depth. In this paper, friction and wear testing machine on the overview of development, classification, characteristics, friction and wear test purposes, test the basic methods for comprehensive analysis based on the established requirements of friction and wear testing machine schedule, determined by functional analysis of test machines The overall structure of the structural design from the host, Spindle structure, multi-style fixture, air pressure load structure in terms of friction and wear test machine structure design. The trial function of the friction pair to achieve the axial load, radial load and the reciprocating movement, structural stability and meet the general test requirements. Keywords: Friction-Wear Tester; Pressure load; Reciprocating

橡胶摩擦磨损特性的研究进展_吕仁国

第18卷第5期高分子材料科学与工程V o l.18,No.5 2002年9月POLYM ER M ATERIALS SCIENCE AN D EN GIN EERING Sept.2002橡胶摩擦磨损特性的研究进展 吕仁国,李同生,刘旭军 (中国科学院兰州化学物理研究所固体润滑国家重点实验室,甘肃兰州730000) 摘要:综述了近年来橡胶材料摩擦学的研究进展,论述了橡胶摩擦磨损的特点,讨论了影响橡胶摩擦学性能的各种因素,诸如物理力学性能、温度、溶胀、改性等。并针对橡胶摩擦磨损的研究现状及其发展前景,提出了今后值得重视的研究发展方向。 关键词:橡胶;摩擦磨损;影响因素 中图分类号:O631.2+1 文献标识码:A 文章编号:1000-7555(2002)05-0012-04 橡胶是非常重要且用量很大的工业材料之一,据不完全统计,2000年我国橡胶总消耗量将达220万吨,摩擦学性能是橡胶制品的一项非常重要的指标,例如橡胶轮胎的耐磨性能、刹车性能和行车效率、密封件的耐磨性等[1]。提高橡胶制品的耐磨性和使用寿命,可以在节约能源、材料、润滑剂等方面带来相当可观的经济效益和社会效益。因此,许多学者对此产生兴趣[2],橡胶摩擦磨损研究成为当今材料摩擦学研究的热点之一。 本文概括了近年来国内外橡胶摩擦磨损的研究进展,重点对橡胶摩擦磨损的特点和影响因素进行论述,并提出今后值得重视的研究发展方向。 1 橡胶摩擦的特点 橡胶是一种弹性模量很低、粘弹性很高的材料,因此橡胶的摩擦具有不同于金属和一般聚合物的特征。橡胶与刚性表面在滑动接触界面上的相互作用力包括粘着和滞后两项,而其摩擦力也正是由这两部分组成[3]: F=F a+F h(1)式中,F a——粘着摩擦力;F h——滞后摩擦力。 粘着摩擦起因于橡胶与对偶面之间粘着的不断形成和破坏[4],滞后摩擦则是由表面微凸体使滑动橡胶块产生周期性变形过程中能量的耗散引起的[5]。 当橡胶在坚硬光滑的表面上滑动时,摩擦力主要表现为粘着摩擦,根据弹性体摩擦的粘着理论,可以得出粘着摩擦力F a为[6]: F a=K1S(E′/p V)ta n W (V<1)(2)式中,K1——常数;S——滑动界面的有效剪切强度;p——正压力;E′——储能模量;tan W——损耗角正切(粘弹性参数)。显然,橡胶的粘着摩擦与材料的损耗角正切ta n W成正比。 润滑剂的存在可以阻止橡胶与对偶间的直接接触,使粘着摩擦成分大大降低,滞后摩擦起主要作用。根据弹性体滞后摩擦的松弛理论,可得出滞后摩擦力为[6]: F h=K2(p/E′)n tan W (n≥1)(3)式中,K2为与几何形状因子有关的常数。滞后摩擦力也与ta n W成正比,所不同的是,滞后摩擦力与变形程度因子(p/E′)n成正比。由此,橡胶的摩擦力可表示为: F=[K1S(E′/p V)+K2(p/E′)n]tan W(4) 2 橡胶磨损的特点 金属和塑料磨损表面的特征是磨痕与摩擦方向平行,而橡胶磨损表面的磨痕却垂直于摩擦方向,并且,磨痕在橡胶表面形成山脊状突 收稿日期:2000-10-18;修订日期:2001-02-20 作者简介:吕仁国,男,24岁,硕士生.

相关文档
相关文档 最新文档