文档视界 最新最全的文档下载
当前位置:文档视界 › 高一化学竞赛培训讲义4分子结构-泰兴中

高一化学竞赛培训讲义4分子结构-泰兴中

高一化学竞赛培训讲义4分子结构-泰兴中
高一化学竞赛培训讲义4分子结构-泰兴中

泰兴中学化学竞赛培训讲义四2014/3/26

分子结构

【竞赛要求】

路易斯结构式(电子式)。价层电子对互斥模型对简单分子(包括离子)几何构型的预测。杂化轨道理论对简单分子(包括离子)几何构型的解释。共价键。键长、键角、键能。σ 键和π键。离域π键。共轭(离域)的一般概念。等电子体的一般概念。分子轨道基本概念。定域键键级。分子轨道理论对氧分子、氮分子、一氧化碳分子、一氧化氮分子的结构和性质的解释。一维箱中粒子能级。超分子基本概念。

【知识梳理】

一、路易斯理论

1、路易斯理论

1916年,美国的Lewis 提出共价键理论。认为分子中的原子都有形成稀有气体电子结构的趋势(八隅律),求得本身的稳定。而达到这种结构,并非通过电子转移形成离子键来完成,而是通过共用电子对来实现。

通过共用一对电子,每个H均成为He 的电子构型,形成共价键。

2、路易斯结构式

分子中还存在未用于形成共价键的非键合电子,又称孤对电子。添加了孤对电子的结构式叫路易斯结构式。如:

H∶H 或H—H ∶N≡N∶O=C=O C2H2(H—C≡C—H)

有些分子可以写出几个式子(都满足8电子结构),如HOCN,可以写出如下三个式子:

哪一个更合理?可根据结构式中各原子的“形式电荷”进行判断:

q = n v-n L-n b

式中,q为n v为价电子数n L为孤对电子数n b为成键电子数。

判断原则:q越接近于零,越稳定。

所以,稳定性Ⅰ>Ⅱ>Ⅲ

Lewis 的贡献在于提出了一种不同于离子键的新的键型,解释了△X 比较小的元素之间原子的成键事实。但Lewis 没有说明这种键的实质,适应性不强。在解释BCl 3, PCl 5 等未达到稀有气体结构的分子时,遇到困难。

二、价键理论

1927年,Heitler 和 London 用量子力学处理氢气分子H 2,解决了两个氢原子之间化学键的本质问题,并将对 H 2 的处理结果推广到其它分子中,形成了以量子力学为基础的价键理论(V . B. 法)

1、共价键的形成

A 、

B 两原子各有一个成单电子,当 A 、B 相互接近时,两电子以自旋相反的方式结成电子对,即两个电子所在的原子轨道能相互重叠,则体系能量降低,形成化学键,亦即一对电子则形成一个共价键。

形成的共价键越多,则体系能量越低,形成的分子越稳定。因此,各原子中的未成对电子尽可能多地形成共价键。

例如:H 2 中,可形成一个共价键;HCl 分子中,也形成一个共价键。N 2 分子怎样呢?

已知N 原子的电子结构为:2s 22p 3

每个N 原子有三个单电子,所以形成 N 2 分子时,N 与N 原子之间可形成三个共

价键。写成:

形成CO 分子时,与 N 2 相仿,同样用了三对电子,形成三个共价键。不同之处是,其中一对电子在形成共价键时具有特殊性。即C 和 O 各出一个 2p 轨道重叠,而其中

的电子是由O 单独提供的。这样的共价键称为共价配位键。于是,CO 可表示成:

配位键形成条件:一种原子中有孤对电子,而另一原子中有可与孤对电子所在轨道相互重叠的空轨道。在配位化合物中,经常见到配位键。

2、共价键的特征——饱和性、方向性

饱和性:几个未成对电子(包括原有的和激发而生成的),最多形成几个共价键。例如:O 有两个单电子,H 有一个单电子,所以结合成水分子,只能形成2个共价键;C

:N N : :C O :

最多能与H 形成4个共价键。

方向性:各原子轨道在空间分布是固定的,为了满足轨道的最大重叠,原子间成共价键时,当然要具有方向性。如: HCl

Cl的3p

z

和H的1s轨道重叠,要沿着z轴重叠,从而保证最大重叠,而且不改变原有的对称性。再如:Cl2分子,也要保持对称性和最大重叠

3、共价键键型

成键的两个原子间的连线称为键轴。按成键与键轴之间的关系,共价键的键型主要为两种:

(1)键

键特点:将成键轨道,沿着键轴旋转任意角度,图形及符号均保持不变。即键轨道对键轴呈圆柱型对称,或键轴是n重轴。

(2)键

键特点:成键轨道围绕键轴旋转180°时,图形重合,但符号相反。如:两个2 p

z 沿z 轴方向重叠:

YOZ 平面是成键轨道的节面,通过键轴。则键的对称性为:通过键轴的节面呈现反对称(图形相同,符号相反)。为“肩并肩”重叠。

N2分子中:两个原子沿z轴成键时,p

z 与p

z

“头碰头”形成键,

此时,p

x 和p

x

,p

y

和p

y

以“肩并肩”重叠,形成键。1个键,2个键。

4、共价键的键参数

(1)键能

AB(g) = A(g) + B(g) △H = E AB = D AB

对于双原子分子,解离能D AB等于键能E AB,但对于多原子分子,则要注意解离能与键能的区别与联系,如NH3:

NH3(g) = H(g) +NH2(g) D1 = 435.1 kJ·mol-1

NH2(g) = H(g) +NH(g) D2 = 397.5 kJ·mol-1

NH(g) = H(g) +N(g) D3 = 338.9 kJ·mol-1

=(D1+D2+D3)/ 3 =390.5 kJ·mol-1。另外,E可以表三个D值不同,而且:E

H

N

示键的强度,E越大,则键越强。

(2)键长

分子中成键两原子之间的距离,叫键长。一般键长越小,键越强。例如:

表5-1 几种碳碳键的键长和键能

键长/pm 键能/ kJ·mol-1

**

C—C 154

**

C==C 133

**

120

另外,相同的键,在不同化合物中,键长和键能不相等。例如:CH3OH中和C2H6中均有C—H键,而它们的键长和键能不同。

(3)键角

是分子中键与键之间的夹角(在多原子分子中才涉及键角)。如:H2S 分子,H—S—H 的键角为92°,决定了H2S 分子的构型为“V”字形;又如:CO2中,O—C—O的键角为180°,则CO2分子为直线形。

因而,键角是决定分子几何构型的重要因素。

(4)键的极性

极性分子的电场力以偶极矩表示。偶极矩μ=g(静电单位)×d(距离,cm)即德拜(D)

三、杂化轨道理论

杂化:成键过程是由若干个能量相近的轨道经叠加、混合、重新调整电子云空间伸展方向,分配能量形成新的杂化轨道过程。

1、理论要点:

①成键原子中几个能量相近的轨道杂化成新的杂化轨道;

②参加杂化的原子轨道数= 杂化后的杂化轨道数。总能量不变;

③杂化时轨道上的成对电子被激发到空轨道上成为单电子,需要的能量可以由成键

时释放的能量补偿。

2、杂化轨道的种类

(1)按参加杂化的轨道分类

s-p型:sp杂化、sp2杂化和sp3杂化

s-p-d型:sp3d杂化、sp3d2杂化

(2)按杂化轨道能量是否一致分类

等性杂化,如C 的sp3杂化:

4 个sp3杂化轨道能量一致。

形成3个能量相等的sp2杂化轨道,属于等性杂化。

判断是否是等性杂化,要看各条杂化轨道的能量是否相等,不看未参加杂化的轨道的能量。

3、各种杂化轨道在空间的几何分布

杂化类型sp3sp2sp sp3d或dsp3sp3d2或d2sp3

立体构型正四面体正三角形直线形三角双锥体正八面体

4、用杂化轨道理论解释构型

(1)sp杂化

BeCl2分子,直线形,用杂化轨道理论分析其成键情况,说明直线形的原因。Be:1s22s22p0

:

sp杂化

2 条sp杂化轨道是直线形分布,分别与2 个Cl 的3p轨道成键,故分子为直线形。

sp杂化,sp-1s,sp-sp均为键。C中未杂化的p y与另一C中未杂化的p y沿纸面方

向形成π键;而p

z 与p

z

沿与纸面垂直的方向形成π键。

二氧化碳,直线形,C发生sp杂化,C 与O 之间sp-2p x两个键,所以,O—C —O 成直线形。

C中未杂化的p y与两侧O 的两个p y沿纸面方向成大π键,C 中未杂化的p z与两侧O 的p z沿垂直于纸面的方向成π键,故CO2中,C、O之间有离域π键(两个∏43大π键)。

(2)sp2杂化

BCl3平面三角形构型,B的3 个sp2杂化轨道呈三角形分布,分别与3 个Cl 的3p成σ键,分子构型为三角形。属于sp2杂化。

乙烯C发生sp2杂化,sp2杂化轨道与sp2杂化轨道形成1个C–C σ键,sp2杂化轨道与H的1s轨道形成4个C–H σ键;未杂化的p轨道之间形成π键,故分子中有碳碳双键存在。

(3)sp3杂化

甲烷C发生sp3杂化,4个轨道呈正四面体分布,4个sp3杂化轨道分别与4个H 的1s轨道形成σ键,因没有未杂化的电子(轨道),故CH4分子中无双键。

(4)s-p-d杂化

PCl5三角双锥,P:1s22s22p63s23p33d 0

5个sp3d杂化轨道呈三角双锥形分布,分别与5 个Cl 的3p成σ键。空间图形为:

(5)不等性杂化

H2O O发生sp3不等性杂化:

两个含单电子的sp3杂化轨道与2个H的1s轨道形成σ键,含孤电子对的两个sp3杂化轨道不成键,故水呈V形结构。水分子中的O–H键的夹角本应为109°28’,但由于孤电子对的斥力,键角变小,为104°45’。

NH 3 N 发生sp 3

不等性杂化:

单电子占据的sp 3杂化轨道分别与 H 的1s 成σ键,孤对电子占据的sp 3单独占据四面体的一个顶角。由于孤对电子的影响,H —N —H 键的键角小于109°28′,为107°18′。

在等性杂化中由分子构型(与电子对构型一致)可以直接看出杂化方式。但在不等性杂化中,分子结构当然与杂化方式有关,但要知道孤电子对数,方可确定分子构型。关键是电子对构型可以直接标志杂化方式,故电子对构型非常重要。不等性杂化与配体数小于对数是对应的。有未参加杂化的电子,一般形成π键或大π键。

四、价层电子对互斥理论(Valance Shell Electron Pair Repulsion Theory )简称VSEPR 适用AD m 型分子

1、理论要点:

①AD m 型分子的空间构型总是采取A 的价层电子对相互斥力最小的那种几何构型; ②分子构型与价层电子对数有关(包括成键电子对和孤电子对); ③分子中若有重键(双、叁键)均视为一个电子对; ④电子对的斥力顺序:

孤对电子对与孤对电子对间斥力>孤对与键对间>键对与键对间; 键对电子对间斥力顺序

叁键与叁键>叁数与双键>双键与双键>双键与单键>单与单键。 2、判断共价分子构型的一般规则——经验总结

第一步:计算中心原子的价层电子对数=2

1

(中心离子电子数+配对原子提供电子总数) 注意:①氧族元素的氧做中心时:价电子数为 6, 如 H 2O ,H 2S ;做配体时:提供电子数为 0,如在 CO 2中。

②处理离子体系时,要加减离子价。如PO -34 5+(0×4)+3 = 8;NH +4 5+(1×4)

-1 = 8。

③结果为单电子时视作有一个电子对。 例:IF 5 价层电子对数为

2

1

[7+(5×1)] = 6对 正八面体(初步判断) N H +4 价层电子对数为

2

1

[5+(4×1)-1] = 4对 正四面体 PO -

34 价层电子对数为

2

1

[5+(0×4)+3] = 4对 正四面体

NO 2 价层电子对数为

2

1

[5+0] = 2.5?→?3对 平面三角形 第二步:计算中心原子的孤对电子对数 Lp =

2

1

(中心离子价层电子数—几个配位原子的未成对电子数) IF 5 Lp =

2

1

[7-(5×1)] = 1 构型由八面体?→?四方锥 NH +4 Lp =

2

1

[(5-1)-(4×1)] = 0 正四面体 PO -34 Lp =

2

1

[(5+3)-(4×2)] = 0 正四面体 SO -24 Lp =

2

1

[(6+2)-(4×2)] = 0 正四面体 NO 2 Lp =

21[5-(2×2)] = 21?→? 1 构型由三角形?→?V 形 SO -23 Lp =

2

1

[(6+2)-(3×2)] = 1 构型由四面体?→?三角锥 表5-2 价层电子对数与分子空间构型

杂化 类型

键对电 子对数

孤对电 子对数

分子 类型

分子空 间构型 实例

2 sp 2 O AB 2 直线形 BeCl 2,CO 2,HgCl 2 3

sp 2

3 O AB 3 平面三角 BF 3,BCl 3,SO 3,CO 32 ̄,NO 3 ̄

2 1 AB 2 V 形 SO 2,SnCl 2,NO 2 ̄

4 sp 3

4 O AB 4 正四面体 CH 4,CHCl 3,CCl 4,NH 4+,SO 42 ̄,PO 43 ̄

3 1 AB 3 三角锥 NH 3,NF 3,SO 32 ̄ 2 2 AB 2 V 形 H 2O ,SCl 2,ClO 2 ̄ 5 sp 3d

5 O AB 5 双三角锥 PCl 5,AsF 5 4 1 AB 4 变形四面体

TeCl 4,SF 4 3 2 AB 3 T 形 ClF 3 2 3 AB 2 直线形 XeF 2,I 3 ̄ 6 sp 3d 2

6

0 AB 6 正八面体 SF 6,[SiF 6]2 ̄ 5 1 AB 5 四方锥 IF 5,[SbF 5]2 ̄

4

2

AB 4

平面四方形

XeF 4

价层电子对互斥理论局限性:①对于复杂的多元化合物无法处理;②无法说明键的形成原理和键的相对稳定性。

五、离域π键(大π键)

1、定义:在多原子分子中如有相互平行的p轨道,它们连贯重叠在一起构成一个整体,p电子在多个原子间运动形成π型化学键,这种不局限在两个原子之间的π键称为离域π键,或大π键。以∏m

n

表示。n为参与大π键的原子数,m为大π键的电子数。

∏m

n

中m = n时,称正常离域π键,如苯分子中含∏66;m>n时形成多电子离域π

键,如苯胺分子中含∏8

7;m<n时,缺电子离域大π键,如乙硼烷分子中含∏2

3

2、形成大π键的条件

①这些原子都在同一平面上;②这些原子有相互平行的p轨道;③p轨道上的电子总数小于p轨道数的2倍。

3、化合物分子中的离域π键

(1)苯C6H6分子中,每个C原子均采用sp2杂化,在生成的3个sp2杂化轨道中,2个与相邻的C原子形成sp2-sp2 C—Cσ键,生成C的六元环,还有1个sp2杂化轨道与H原子的s轨道生成sp2—s C—H σ键,C、H原子都在同一平面上,每个C原子上未杂化的p轨道与分子平面垂直相互重叠,形成一个大π键,记作∏6

6

(2)在CO-2

3

离子中,中心C原子用sp2杂化轨道与3个O原子结合,四个原子在

同一平面上,C的另一个p轨道与分子平面垂直,其余三个O原子也各有一个与分子平

面垂直的p轨道,这四个互相平行的p轨道上共有四个p电子,再加上CO-2

3

离子中的两

个离子电荷共有6个电子,生成的大π键记为∏6

4

(3)CO2分子中,C原子用sp杂化轨道与两个氧原子结合,剩下的p y和p z轨道分别与两个氧原子的p y和p z轨道形成两个包含三个原子、四个电子的大π键,记作∏y43和

∏z4

3

其他化合物的分子中,有许多也含有大π键,如O3分子中含∏4

3

,ClO2分子中含

∏5

3,NO-

3

、SO3、BF3中都含∏6

4

。还有一些化合物分子中存在多个大π键,如BeCl2

和NO+

2中都含二个∏4

3

,乙硼烷B2H6分子中含二个∏23。

六、等电子原理—经验总结

早在1919年,人们在研究一些双原子分子时,发现结构相同的分子具有许多相似的物理性质,如CO和N2分子具有14个电子(10个价电子),它们的物理性质比较见下表:

表5-3 CO和N2的物理性质

相对分子质量熔点/℃沸点/℃T临界/ ℃

P临界/

**×10Pa

V临界/

mL·mol-1

ρ/g·L-1

CO 28 -199 -191.5 -140 **

93

**

N228

-209.0 -195.8 -46.8

**

90

**

我们把像CO和N2分子这种结构相同、物理性质相似的现象称做等电子原理。这种物质如CO和N2互称为等电子体,在等电子体的分子轨道中,电子排布和成键情况是相似的。等电子体的结构虽相同,但物理性质不一定相似,根据等电子原理,我们可以根据已知一些分子结构推测出另一些与它等电子的分子空间构型,如已知O3(18电子)为角形结构,分子中含有一个∏4

3

,中间的O与相邻两个O以σ键连结,可以推知与它互为等电

子体的SO2、NO

-

2

也应是角形,分子中存在∏4

3

的大π键;如前所知CO-2

3

(24电子)

为平面三角形结构,有一个∏6

4,可以推知等电子体的NO-

3

、BO-3

3

、BF3,SO3也应是

平面三角形结构,且都存在一个∏6

4

的大π键。

七、分子轨道理论

1、理论要点

(1)分子轨道由原子轨道线性组合而成

分子轨道的数目与参与组合的原子轨道数目相等。H2中的两个H 有两个1s,可组合成两个分子轨道。

两个s轨道只能“头对头”组合成σ分子轨道,MO和*MO,能量总和与原来AO (2个)总和相等,σ*的能量比AO低,称为成键轨道,σ比AO高,称为反键轨道。成键轨道在核间无节面,反键轨道有节面。

当原子沿x轴接近时,p x与p x头对头组合成σP x和σP*x,同时p y和p y,p z和p z分别肩并肩组合成π*p y , πp y和π*p z , πp z分子轨道,π轨道有通过两核连线的节面,σ轨道没有。

(2)线性组合三原则

①对称性一致原则

对核间连线呈相同的对称性的轨道可组合,除上述讲的s-s,p-p之外,还有:

若s和p x沿y 轴接近,对称不一致,不能组成分子轨道

②能量相近原则

H 1s–1312 kJ·mol-1Na 3s– 496 kJ·mol-1

Cl 3p–1251 kJ·mol-1

O 2p–1314 kJ·mol-1(以上数据按I1值估算)

左面 3 个轨道能量相近,彼此间均可组合,形成分子,Na 3s比左面 3 个轨道能量高许多,不能组合(不形成共价键,只为离子键)。

③最大重叠原理

在对称性一致、能量相近的基础上,原子轨道重叠越大,越易形成分子轨道,或说共价键越强。

(3)分子轨道能级图

分子轨道的能量与组成它的原子轨道能量相关,能量由低到高组成分子轨道能级图。

(4)分子轨道中的电子排布

分子中的所有电子属于整个的分子,在分子轨道中依能量由低到高的次序排布,同样遵循能量最低原理,保里原理和洪特规则。

3、同核双原子分子

(1)分子轨道能级图

A图适用于O2,F2分子,B图适用于N2,B2,C2等分子。

对于N,B,C原子,2s和2p轨道间能量差小,相互间排斥作用大,形成分子轨道后,σ2s和σ2Px之间的排斥也大,结果,出现B图中σ2Px的能级反比π2Py,π2Pz的能级高的现象。

(2)电子在分子轨道中的排布

电子只填充在成键轨道中,能量比在原子轨道中低。这个能量差,就是分子轨道理论中化学键的本质。可用键级表示分子中键的个数:

键级=(成键电子数-反键电子数)/ 2

H2分子中,键级= (2 – 0)/ 2 = 1,单键。

由于填充满了一对成键轨道和反键轨道,故分子的能量与原子单独存在时能量相等。故He2不存在,键级为零,He之间无化学键。

He2+的存在用价键理论不好解释,无两个单电子的成对问题。但用分子轨道理论则认为有半键。这是分子轨道理论较现代价键理论的成功之处。

(3)分子磁学性质

电子自旋产生磁场,分子中有不成对电子时,各单电子平行自旋,磁场加强。这时物质呈顺磁性。若分子中无成单电子时,电子自旋磁场抵消,物质显抗磁性(逆磁性或反磁性)。

实验表明,单质O2是顺磁性的。用分子轨道理论解释,见O2的分子轨道图和分子轨道式:(σ1s)2(σ*2s)2(σ2s)2(σ*2s)2(σ2p z)2(π2p x)2 (π2p y)2(π*2p x)1 (π*2p y)1其中:(π*2p x)1 (π*2p y)1,各有一个单电子,故显顺磁性。

按路易斯理论,氧气分子电子构型为:

O O

用路易斯理论,不能解释氧气分子无单电子。用现代价键理论也解释不通,p x –p x 成σ键,p y –p y成π键,单电子全部成对,形成共价键,无单电子。

分子轨道理论在解释O2的磁性上非常成功。同理可推出N2是抗磁性的。

4、异核双原子分子

CO为异核双原子,CO与N2是等电子体,其分子轨道能级图与N2相似:

值得注意的是C和O相应的AO能量并不相等(同类轨道,Z大的能量低)。分子轨道式:[Be2] (σ2px)2(π2py)2(π2pz)2;键级=(6-0)/ 2 = 3,分子中含三键(一个σ键,两个π键)无单电子,显抗磁性。

说明:无对应的(能量相近,对称性匹配)的原子轨道直接形成的分子轨道称非键轨道。

非键轨道是分子轨道,不再属于提供的原子。如:H 的1s与F的1s,2s能量差大,不能形成有效分子轨道。所以F 的1s,2s仍保持原子轨道的能量,对HF 的形成不起作用,称非键轨道,分别为1σ和2σ。

当H 和F 沿x 轴接近时,H的1s和F 的2p x对称性相同,能量相近(F 的I1比H 的I1大,故能量高),组成一对分子轨道3σ和4σ(反键),而2p y和2p z由于对称性不符合,也形成非键轨道,即1π和2 π。

【典型例题】

例1、写出POCl3的路易斯结构式。

分析:应当明确在POCl3里,P是中心原子。一般而言,配位的氧和氯应当满足八偶律。

氧是二价元素,因此,氧原子和磷原子之间的键是双键,氯是1价元素,因此,氯原子和磷原子之间的键是单键。然而使配位原子满足八偶律,即画出它们的孤对电子。

解:

Cl

O==p—Cl

Cl

例2、给出POCl3的立体构型。

分析:应用VSEPR模型,先明确中心原子是磷,然后计算中心原子的孤对电子数:n = 5 -2 -3 ×1 = 0

所以,POCl3属于AX4E0 = AY4型。

AY4型的理性模型是正四面体。

由于氧和磷的键是双键,氯和磷的键是单键,所以∠POCl>109°28’,而∠ClPCl<109°28’。

解:POCl3,呈三维的四面体构型,而且,∠POCl>109°28’,而∠ClPCl<109°28’。

例3、给出POCl3的中心原子的杂化类型。

分析:先根据VSEPR模型确定,POCl3属于AY4型(注意:不能只考虑磷原子周围有四个配位原子,杂化类型的确定必须把中心原子的孤对电子考虑在内。本题恰好AX n+ m

= AY n(m = 0),如果不写解题经过,可能不会发现未考虑孤对电子的错误。)AY4的VSEPR模型是正四面体。因此,POCl3属于三维的不正的四面体构型。

解:POCl3是四配位的分子,中心原子上没有孤对电子,所以磷原子取sp3杂化类型,但由于配位原子有两种,是不等性杂化(∠POCl>109°28’,而∠ClPCl<109°28’)。

例4、BF3分子有没有p–p大π键?

分析:先根据VSEPR模型确定BF3分子是立体构型。然后根据立体构型确定BF3分子的B原子的杂化轨道类型。再画出BF3分子里的所有轨道的图形,确定有没有平行的p轨道。最后统计BF3分子里的价电子总数,用价电子总数减去σ键的电子和孤对电子的电子数,剩下的就是在平行p轨道中有几个电子。

解:BF3分子的B原子取sp2杂化轨道,并用它跟F原子形成3个σ键,分子的所有原子处在同一个平面上,B原子有一个2p轨道没有参加杂化,这个轨道是和分子平面垂直的。F原子有7个电子,分居于2s轨道和2p轨道,其中的一个p轨道和B原子的sp2杂化轨道形成σ键,另外3个轨道是2s,两个2p轨道。这2个p轨道中,只可能有一个轨道取垂直于分子平面的方向。这时,另一个p轨道就位于分子平面,而且,3个F原子的这3个位于分子平面上的p轨道是不平行的。它们和F的2s轨道都是孤对电子的轨道。

BF3分子里的价电子总数为3 + 3 ×7 = 24。24 -3 ×2(3个σ键)-4 ×3(每个F原子有2对孤对电子)= 6。所以,BF3分子里有∏64型大π键。

例5、以下粒子哪些属于等电子体?BF3、CO-23、BF-4、PO-34

分析:一般而言,等电子体具有相同的通式和相等的价电子总数。等电子体具有相同的电子结构和空间结构。

解:BF3和CO-23的价电子总数都是24,而且都有AX3的通式,因此,它们是等电

子体。他们的中心原子都取sp2杂化轨道,它们都是一个∏6

4型大π键。BF-

4

和PO-3

4

管有相同的空间构型、相同的sp3杂化中心原子,但是它们不是等电子体,因此,它们的

电子结构是不同的。BF-

4里只有σ键,而PO-3

4

里除了有σ键外,还有d—p大π键。

例6、BF3的几何构型为平面正三角形,而NF3却是三角锥形,试用杂化轨道理论加以说明。

分析:用sp2杂化轨道、sp3杂化轨道的空间构型及等性杂化和不等性杂化轨道加以说明。

解:在BF3中B原子以三个sp2杂化轨道分别与三个F原子的2P轨道形成3个sp2 –pσ键,B原子的三个sp2杂化轨道是等性杂化轨道,其空间构型为平面正三角形,所以BF3的几何构型亦为正三角形。

而在NF3中,N原子形成4个sp3杂化轨道,其中有一个杂化轨道已排布2个电子(孤电子对),能量稍低,另外3个杂化轨道仅排1个电子,能量稍高。N原子用这三个能量相等的、各排布有1个电子的sp3杂化轨道分别与3个F原子的2p轨道形成3个sp3 –pσ键。由于孤电子对对成键电子对的排斥作用,致使sp3 –pσ键间的夹角小于109 28’(实为102.5 )NF3分子的几何构型为三角锥形。

例7、试用价层电子对互斥理论判断ClF3的分子构型。

分析:Cl原子有7个价电子,3个F原子共提供3个电子,使Cl原子的价电子总数为10,即有5对电子。这5对电子将分别占据一个三角双锥的5个顶角,其中有2个顶角为孤电子对所占据,3个顶角为成键电子对占据,因此配上3个F原子时,共有3种可能的结构,如图所示:

在上述结构中最小角度为90 所以把90 角的排斥列表,对上述三种结构进行分析如下:ClF3的结构 a b c

90 孤电子对一孤电子对排斥作用数0 1 0

90 孤电子对一成键电子对排斥作用数 6 3 4

90 成键电子对一成键电子对排斥作用数0 2 2

从上表中的对比,可见(a)、(c)中没有90 孤电子对一孤电子对排斥,其中(c)中又有较少的孤电子对一成键电子对排斥,因而结构(c)中静电斥力最小,它是一种比较稳定的结构。

解:ClF3的分子构型为T形结构。

例8、试分别用价键理论和分子轨道理论说明稀有气体不能形成双原子分子的理由。

分析:从稀有气体原子间的电子不能配对成键和它们的键级为零分别加以说明。

解稀有气体外层电子结构为ns2np6(He除外),是稳定的8电子构型,现以Ne为

例加以说明。

价键理论认为:

氖的外层电子结构为2s2 2p6,所有电子都已互相成对,当两个Ne原子接近时,不能再相互配对(原子中无未成对电子),所以Ne不能形Ne2分子。

分子轨道理论认为,若能形成Ne2分子,则其分子轨道排布式为:

[KK (σ2s)2(σ*2s)2(σ2px)2(π2py)2(π2pz)2(π*2py)2(π*2pz)2(π*2px)2]

其键级=

2反键电子数

成键电子数-

=

28

8-

= 0 所以Ne不能形成双原子分子。

例9、用符合八偶律的路易斯结构式能不能解释氧分子里有未成对电子的客观事实(氧气有顺磁性,实验证明,顺磁性是分子里有未成对电子的宏观表现)。怎样用分子轨道理论来解释氧气的顺磁性?

解:路易斯结构式、VSEPR模型和杂化理论都属于价键理论的范畴,基本出发点都是:化学键里的电子都是成对的。按照价键理论,氧气分子的路易斯结构式是:,其中所有的电子都是成对的,没有未成对电子。因此,价键理论不能解释氧气有顺磁性的客观事实。

氧的分子轨道可按下面的步骤建立:①写出氧原子的占有电子的原子轨道:1s,2s,2s,2p x,2p y,2p z(不必写出各轨道里的电子数,事实上也很难正确判断某些轨道里的电子数(例如2p的3个轨道总共有3个电子,我们不能确定哪个轨道里有2个电子)。如果要研究激发态,还要写出空轨道。②由于氧分子是同种原子形成分子轨道,应当是能量相同的,而且对称匹配的轨道按最大重叠的方向形成分子轨道。1s是内层轨道,不是价层轨道,可以看成非键,即两个原子的各一个1s轨道,共两个1s轨道是非键轨道(可用n表示非键,两个1s非键轨道的能量是相同的,可以不加区分)。2s和2s构成一个σ成键轨道,一个σ*反键轨道(上标*表示反键轨道)。设两个原子是以z轴方向相互靠拢的,则2个原子的各自的2p z构成一个σ成键,一个σ*反键轨道,另外两个2p轨道是双双平行的,可以形成π成键和π*反键轨道。由于2p x和2p y的对称性相同,能量也相同,因此,它们的π成键轨道和π*反键轨道分别都是简并的。

根据量子力学理论的计算结果,得出以上分子轨道的能量的高低的顺序是:σ(1s)σ*(1s)σ(2s)σ*(2s)σ(2p z)π(2p x,2p y)π*(2p x,2p y)σ*(2p z)。

再按各个能级的轨道数,填入氧分子的总共16个电子。电子的填入要符合填入原子轨道相同的规则(能量最低、保里原理、洪特规则)。所以,氧的分子轨道表示式为:σ(1s)2σ*(2s)2σ(2s)2σ*(2s)2σ(2p z)2π(2p x,2p y)4π*(2p x,2p y)2σ*(2p z)。由于在π*反键能级里有2个电子,有两个简并轨道,因此,按照洪特规则,每个轨道里只有一个电子,而且,两个轨道里的单电子的自旋方向相同。这就是说,氧分子里有两个未成对电子,这就解释了氧气的顺磁性。

O O

2019—2020学年第一学期高中化学竞赛知识点化学竞赛大纲 初赛基本要求

高中化学竞赛知识点 有机是大头,命名结构性质都可以出题,还可以和配合物晶体结合,《有机化学》(北大出的)要求的都要掌握,再做做关于合成、性质的题,推荐丁漪出的《化学竞赛教程》(最好用解答的那本),好好研究一下。 结构式重点和难点。有多做一些分子结构配合物结构的题,基本的知识掌握了,这两块应该没太大问题。晶体很难,即使做很多题也不一定可以掌握,但基本的份不可以丢。原子结构已经很多年没有考了,如果再考肯定考分析信息的能力,应该不会很难。滴定每年会有一道大题。而且越来越重视,如果运气好只是一道高中就会的计算,但运气不好的化就会遇到《分析化学》里的内容。化学平衡考的比较简单,但要有备无患。电化学可能会出难题,多看一下《无机化学》,会有启发。有效数字不可以不注意,大学和高中的要求不同,改卷老师都遵循大学的标准,只有规范才能不丢无谓的分。物理化学和溶液已经多年未考,但热力学的内容是决赛里的难点,看自己有没有必要学这个了。作为一个过来人,还有几个建议:如果你是分析型的。就多做一些题,做题可以让水平提高很多,如果是记忆型的,就多看看书,尤其是有机无机,虽然每年都出一些新信息,但它的模型在书上都能找到。最后祝你取得好成绩。 附化学竞赛大纲(一般不会改动) 说明: 1. 本基本要求旨在明确全国高中学生化学竞赛初赛及决赛试题的知识水平,作为试题命题的依据。本基本要求不包括国家代表队选手选拔赛的要求。 2. 现行中学化学教学大纲、普通高中化学课程标准及高考说明规定的内容均属初赛要求。高中数学、物理、生物、地理与环境科学等学科的基本内容(包括与化学相关的我国基本国情、宇宙、地球的基本知识等)也是本化学竞赛的内容。初赛基本要求对某些化学原理的定量关系、物质结构、立体化学和有机化学作适当补充,一般说来,补充的内容是中学化学内容的自然生长点。 3. 决赛基本要求在初赛基本要求的基础上作适当补充和提高。 4. 全国高中学生化学竞赛是学生在教师指导下的研究性学习,是一种课外活动。针对竞赛的课外活动的总时数是制定竞赛基本要求的重要制约因素。本基本要求估计初赛基本要求需40单元(每单元3小时)的课外活动(注:40单元是按高一、高二两年约40周,每周一单元计算的);决赛基本要求需追加30单元课外活动(其中实验至少10单元)(注:30单元是按10、11和12月共三个月约14周,每周2~3个单元计算的)。 5. 最近三年同一级别竞赛试题所涉及的符合本基本要求的知识自动成为下届竞赛的要求。 6. 本基本要求若有必要做出调整,在竞赛前4个月发出通知。新基本要求启用后,原基本要求自动失效。 初赛基本要求 1. 有效数字在化学计算和化学实验中正确使用有效数字。定量仪器(天平、量筒、移液管、滴定管、容量瓶等等)测量数据的有效数字。数字运算的约化规则和运算结果的有效数字。实验方法对有效数字的制约。 2. 气体理想气体标准状况(态)。理想气体状态方程。气体常量R。体系标准压力。分压定律。气体相对分子质量测定原理。气体溶解度(亨利定律)。 3. 溶液溶液浓度。溶解度。浓度和溶解度的单位与换算。溶液配制(仪器的选择)。重结晶方法以及溶质/溶剂相对量的估算。过滤与洗涤(洗涤液选择、洗涤方式选择)。重结晶和洗涤

全国高中学生化学竞赛决赛(冬令营)理论试题及答案

2004 年全国高中学生化学竞赛决赛理论试题及答案 第一题 ( 6分)选取表 1 中的合适物质的字母代号( A ~ H )填人相应标题(① 一⑧)后的括号中(单选),并按要求填空。 表 1 字母所代表的物质 A B C D E F G H + NO + NO N 2O 3 N 2H 4 NH 3 N 2O 4 H 2N 2O 2 NH 2OH ① ( )不是平面分子,其衍生物用作高能燃料。 ② ( )存在两种异构体,其中一种异构体的结构为。 ③ ( )具有线型结构, Lewis 结构式中每个键的键级为 2.0 。 ④ ( )是无色的,平面分子,它的一种等电子体是。 ⑤ ( )既有酸性,又有碱性,可作制冷剂。 ⑥ ( )既有酸性,又有碱性;既是氧化剂,又是还原剂,主要做剂。 ⑦ ( )是顺磁性分子。 ⑧ ( )水溶液会分解生成 N 20, 反应式为。 第二题 (6分)图 1是元素的△ f G m /F 一 Z 图,它是以元素的不同氧化态 Z 与对应物 图中各物种的△ f G m /F 的数值如表 2 所示。 f m A X - X 2 HXO HXO 2 XO 3- XO 4- F -3.06 0 / / / / 种的△ f G m /F 在热力学标准态 p H =0 或 pH == 14 的对画图。图中任何两种物种联 线的斜率在数值上等于相应电对的标准电极电势 ψA 或 ψB ,A 、 B 分别表示 pH = 0 (实线)和 pH = 14(虚线)。

⒈用上表提供的数据计算: ψA (IO 3/I ) ψB (IO 3/I ) ψA (ClO 4/HClO 2) ⒉由上述信息回答:对同一氧化态的卤素,其含氧酸的氧化能力是大于、等于 还是小于其含氧酸盐的氧化性。 ⒊溴在自然界中主要存在于海水中,每吨海水约含 0.14 kg 溴。 Br 2 的沸点为 58.78 ℃;溴在水中的溶解度 3.58 g/100 g H 20( 20 ℃)。利用本题的信息说明如何 从海水中提取 Br 2,写出相应的化学方程式,并用方框图表达流程。 第三题 (6 分)过氧乙酸是一种广谱消毒剂,可用过氧化氢与乙酸反应制取,调 节乙酸和过氧化氢的浓度可得到不同浓度的过氧乙酸。 过氧乙酸含量的分析方法如下: 准确称取 0.5027 g 过氧乙酸试样,置于预先盛有 H 2SO 4溶液和 2~3 滴 1 mol/L MnSO 4溶液并已冷却至 0.02366 mol/L KMnO 4 标准溶液滴定至溶液呈浅粉色( mol/LNa 2S 2O 3标准溶液滴定, 接近终点时加人 3 mL 0.5 %淀粉指示剂, 继续滴定至 蓝色消失,并保持 30s 不重新显色,为终点,消耗了 Na 2S 2O 3 23.61 mL 。 ⒈写出与测定有关的化学方程式。 ⒉计算过氧乙酸的质量分数 (要求 3 位有效数字; 过氧乙酸的摩尔质量为 76 .05 g/mol )。 ⒊本法的 KMnO 4 滴定不同于常规方法,为什么? ⒋简述为什么此法实验结果只能达到 3 位有效数字。 ⒌过氧乙酸不稳定,易受热分解。写出热分解反应方程式。 第四题 ( 8分)日本的白川英树等于 1977 年首先合成出带有金属光泽的聚乙炔薄 膜,发现它具有导电性。这是世界上第一个导电高分子聚合物。研究者为此获得了 2000 年诺贝尔化学奖。 ⒈写出聚乙炔分子的顺式和反式两种构型。 ⒉ . 若把聚乙炔分子看成一维晶体,指出该晶体的结构基元。 ⒊假设有一种聚 40 mLH 20、 5 mol 3 mol/L 5℃的碘量瓶中,摇匀,用 30 s 不退色),消耗了 12.49 mL; 随即加人 10 mL 20 % KI 溶液和 2~ 3 滴( NH 4) 2 MoO 4 溶液(起催化作用并减 轻溶液的颜色),轻轻摇匀,加塞,在暗处放置 5 min ~ 10 min ,用 0.1018

高中化学竞赛之分子结构

高中化学竞赛之分子结构 一、选择题 1、下列分子结构中各原子的最外层电子都满足8电子稳定结构的是 A.SF6B.XeF2C.CS2D.CH4 2、下列温室气体中,和CO2一样,既是非极性分子,所有的原子又都达到8电子稳定结构的是 A.N2O B.CF2=CF2C.CCl2F2D.SF6 3、NH3、H2S等是极性分子,CO2、BF3、CCl4等是极性键构成的非极性分子。根据上述实例可推出AB n型分子是非极性分子的经验规律是: A.分子中不能含有氢原子 B.在A B n分子中A原子无孤对电子 C.在AB n分子中A的相对原子质量应小于B的相对质量 D.分子中每个共价键的键长应相等 4、电子总数相等的微粒称等电子体,下列各组微粒不属于等电子体的是 A.Mg2+和Al3+B.NO和CO C.Ca2+和S2-D.H2O和NH4+ 5、近年来,科学家合成了一种具有“二重结构”的球形分子。它是把足球型分子C60,容纳在足球型分子Si60中,外层的Si与里面的C以共价键结合。下列关于这种物质的叙述中正确的是A.是化合物B.是混合物C.不含极性键D.含有离子键 6、AB n型分子中,若A原子的最外层未达到稳定结构,则该分子被称为缺电子分子。下列分子属于缺电子分子的是 A.CO2B.BeCl2C.BF3D.PCl5 7、最新研究表明生命起源于火山爆发,是因为火山爆发产生的气体中含有1%的羧基硫(COS),已知羧基硫分子中所有原子均满足八电子结构,结合周期表知识,有关说法正确的是 A.羰基硫的属于非极性分子B.羰基硫沸点比CO2低 C.羰基硫的电子式为:D.羰基硫分子中三个原子处于同一直线上 8、近年来科学家发现有100个碳原子构成一个具有完美对称性的C100原子团,其中每个碳原子仍可形成4个化学键。最内层是由20个碳原子构成的正十二面体(即每个碳与其它三个碳相连)。外层的60个碳原子形成12个分立的正五边形(即每个碳原子与其它2个碳相连)。处于中间层次的碳原子连接内外层碳原子。当它与氢或氟形成分子时,其分子式为 A.C100H20和C100F20B.C100H60和C100F60 C.C100H12和C100F12D.C100H40和C100F40 9、根据等电子原理:由短周期元素组成的微粒,只要其原子数相同,各原子最外层电子数之和相同,可互称为等电子体,它们具有相似的结构特征。以下各组微粒结构不相似的是 A.CO和N2B.O3和NO2-C.CO2和N2O D.N2H4和C2H4 10、S8分子的空间几何构型呈皇冠型(。下列分子中,与S8分子具有相同的几何构型 的是 A.Se n S8-n B.(S NH)4C.(NSH)4D.S4N4 11、通常把原子数和电子数均相等的分子或离子称为等电子体。人们发现等电子体间的结构和性质相似,下列有关说法中正确的是 A.B3N3H6是由极性键组成的非极性分子 B.B3N3H6能发生加成反应和取代反应 C.B3N3H6具有碱性 D.B3N3H6各原子不在同一平面上 12、已知PCl5是三角双锥几何构型,若Cl元素有两种稳定的同位素,则PCl5的不同分子种数(包括

高中化学竞赛题-分子的结构

中学化学竞赛试题资源库——分子的结构 A组 1.下列分子中所有原子都满足最外层为8电子结构的是 A BeCl2 B PCl3 C PCl5 D N2O 2.下列分子结构中各原子的最外层电子都满足8电子稳定结构的是 A SF6 B XeF2 C CS2 D CH4 3.下列分子中,所有原子的最外层均为8电子结的是 A BeCl2 B H2S C NCl3 D SF6 4.下列分子中所有原子都满足最外层为8电子结构的是 A SiCl4 B H2O C BF3 D PCl5 5.下列分子中,所有原子都满足最外层为8电子结构的是 A BF3 B PCl5 C HCl D CF2Cl2 6.下列各分子中所有原子都满足最外层为8电子结构的是 A C2H4 B BeCl2 C PCl5 D CCl4 7.下列各分子中,所有原子都满足最外层为8电子结构的是 A H2O B BF3 C CCl4 D PCl5 8.下列分子中所有的原子都满足最外层8电子结构的是 A 次氯酸 B 二氟化硫 C 三氟化硼 D 氯化硫(S2Cl2) 9.下列温室气体中,和CO2一样,既是非极性分子,所有的原子又都达到8电子稳定结构的是 A N2O B CF2=CF2 C CCl2F2 D SF6 10.下列微粒中碳原子都满足最外层为8电子结构的是 A 甲基(—CH3) B 碳正离子(CH3+) C 碳负离子(CH3-) D 碳烯(∶CH2) 11.下列分子中所有原子都满足最外层8电子结构的是 A 六氟化氙(XeF6) B 次氯酸(HClO) C 二硫化碳(CS2) D 三氟化硼(BF3) 12.六氧化四磷的分子结构中只含有单键,且每个原子的最外层都满足8电子结构,则该分子中含有的共价键的数目是 A 10 B 12 C 24 D 28 13.具有极性键的非极性分子是 A CS2 B H2S C Cl2 D NH3 14.下列分子中,具有极性键而不是极性分子的是 A H2O B HF C CO D CO2 15.下列分子有极性的是 A CH≡CH B C CH3Cl D N2 16.只含极性键的非极性分子是 ①BF3(平面正三角型分子)②CCl4(正四面体型分子)③NH3

高中化学竞赛专题考试—分子结构(含答案)

高中化学竞赛专题考试——分子结构1 (路易斯结构式、共振式、VSPER 理论) 1.008 Zr Nb Mo Tc Ru Rh P d Ag Cd In Sn Sb Te I Hf Ta W Re Os Ir P t Au Hg Tl P b Bi P o At Ac-Lr H Li Be B C N O F Na Mg Al Si P Cl S K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn Ga Ge As Se Br Rb Cs Fr Sr Ba Ra Y La Lu -6.9419.01222.9924.31 39.1040.0885.4787.62132.9137.3[223][226]44.9647.8850.9452.0054.9455.8558.9363.5558.6965.3910.8126.9869.7212.0128.0972.61114.8204.4118.7207.2112.4200.6107.9197.0 106.4195.1102.9192.2101.1190.298.91186.295.94183.992.91180.991.22178.588.9114.0116.0019.0030.9774.92121.8209.032.0778.96127.6[210][210][210]126.979.9035.454.003 20.18 39.9583.80 131.3 [222]He Ne Ar Kr Xe Rn 相对原子质量 Rf Db Sg Bh Hs Mt 一. 选择题(每题只有一个正确选项,每题2分,共50分) 1. 根据鲍林近似能级图,在多电子原子中,基态时,下列电子均处于一定的能级,其中占据能级最高轨道的电子是: ( ) A 2,1,,+1/2 B 3,1,,+1/2 C 3,2,,+1/2 D 4,0,0, 2. 下列离子的电子构型可以用[Ar]3d 6表示的是 ( ) A Mn 2+ B Fe 3+ C Co 3+ D Ni 2+ 3. 下列离子半径变小的顺序正确的是 ( ) A F ->Na +>Mg 2+Al 3+ B Na +>Mg 2+>Al 3+>F - C Al 3+>Mg 2+>Na +>F - D F ->Al 3+>Mg 2+>Na + 4. 下列元素的原子中,第一电离能最大的是 ( ) A Be B B C C D N 5. 下列物质中,含极性键的非极性分子是 ( ) A H 2O B HCl C SO 3 D NO 2 6. 下列分子中,没有配位键的是 ( ) A CO B (BeCl 2)2 C CH 3OBF 3 D N 2H 4 7. NO 3— 合理的共振式总数为 ( ) A 1 B 2 C 3 D 4 8.下列分子中,键级等于零的是 ( ) A .O 2 B. F 2 C. N 2 D. Ne 2 9.原子轨道沿两核连线以“肩并肩”方式进行重叠的是 ( ) A. б键 B. 氢键 C. π键 D. 离子键 10. 下列物种中,键长最短的是 ( ) A O 2 B O 2+ C O 2— D O 22— 11. 下列化合物中,极性最大的是 ( ) A CS 2 B H 2O C SO 3 D SnCl 4 12. 下列物种中,既是路易斯酸,也是路易斯碱的是 ( ) ACCl 4 B SOCl 2 C NH 2— D Hg 2+ 13. 估计下列分子中,键角最小的是 ( ) ( ) A NH 3 B PH 3 C AsH 3 D SbH 3 14.估计下列分子或离子中,键角最小的是 ( ) A NH 3 B NO 3— C NF 3 D NCl 3

2007年全国高中学生化学竞赛试题及详解

2007年全国高中学生化学竞赛(省级赛区)试题 (时间:3小时满分:100分) 第1题(12分) 通常,硅不与水反应,然而,弱碱性水溶液能使一定量的硅溶解,生成Si(OH)4。 1-1已知反应分两步进行,试用化学方程式表示上述溶解过程。 早在上世纪50年代就发现了CH5+的存在,人们曾提出该离子结构的多种假设,然而,直至1999年,才在低温下获得该离子的振动-转动光谱,并由此提出该离子的如下结构模型:氢原子围绕着碳原子快速转动;所有C-H键的键长相等。 1-2该离子的结构能否用经典的共价键理论说明?简述理由。 1-3该离子是()。 A.质子酸 B.路易斯酸 C.自由基 D.亲核试剂 2003年5月报道,在石油中发现了一种新的烷烃分子,因其结构类似于金刚石,被称为“分子钻石”,若能合成,有可能用做合成纳米材料的理想模板。该分子的结构简图如下: 1-4该分子的分子式为; 1-5该分子有无对称中心? 1-6该分子有几种不同级的碳原子? 1-7该分子有无手性碳原子? 1-8该分子有无手性? 第2题(5分) 羟胺和用同位素标记氮原子(N﹡)的亚硝酸在不同介质中发生反应,方程式如下: NH2OH+HN﹡O2→ A+H2O NH2OH+HN﹡O2→ B+H2O A、B脱水都能形成N2O,由A得到N﹡NO和NN﹡O,而由B只得到NN﹡O。 请分别写出A和B的路易斯结构式。 第3题(8分)

3-1 以“”表示空层,A、B、C表示Cl-离子层,a、b、c表示Mg2+离子层,给出三方层型结构的堆积方式。 3-2计算一个六方晶胞中“MgCl2”的单元数。 3-3 假定将该晶体中所有八面体空隙皆填满Mg2+离子,将是哪种晶体结构类型? 第4题(7分) 化合物A是一种热稳定性较差的无水的弱酸钠盐。用如下方法对其进行分析:将A与惰性填料混合均匀制成样品,加热至400℃,记录含A量不同的样品的质量损失(%),结果列于下表: 利用上述信息,通过作图,推断化合物A的化学式,并给出计算过程。 第5题(10分) 甲苯与干燥氯气在光照下反应生成氯化苄,用下列方法分析粗产品的纯度:称取0.255g样品,与25 mL 4mol·L-1氢氧化钠水溶液在100 mL圆底烧瓶中混合,加热回流1小时;冷至室温,加入50 mL20%硝酸后,用25.00mL 0.1000mol·L-1硝酸银水溶液处理,再用0.1000mol·L-1NH4SCN水溶液滴定剩余的硝酸银,以硫酸铁铵为指示剂,消耗了6.75 mL。 5-1 写出分析过程的反应方程式。 5-2 计算样品中氯化苄的质量分数(%)。 5-3 通常,上述测定结果高于样品中氯化苄的实际含量,指出原因。 5-4 上述分析方法是否适用于氯苯的纯度分析?请说明理由。

化学竞赛·原子结构分子结构专题检测

原子结构分子结构专题检测 姓名班级 H 1.008 相对原子质量He 4.003 Li 6.941 Be 9.012 B 10.81 C 12.01 N 14.01 O 16.00 F 19.00 Ne 20.18 Na 22.99 Mg 24.31 Al 26.98 Si 28.09 P 30.97 S 32.07 Cl 35.45 Ar 39.95 K 39.10 Ca 40.08 Sc 44.96 Ti 47.88 V 50.94 Cr 52.00 Mn 54.94 Fe 55.85 Co 58.93 Ni 58.69 Cu 63.55 Zn 65.39 Ga 69.72 Ge 72.61 As 74.92 Se 78.96 Br 79.90 Kr 83.80 Rb 85.47 Sr 87.62 Y 88.91 Zr 91.22 Nb 92.91 Mo 95.94 Tc [98] Ru 101.1 Rh 102.9 Pd 106.4 Ag 107.9 Cd 112.4 In 114.8 Sn 118.7 Sb 121.8 Te 127.6 I 126.9 Xe 131.3 Cs 132.9 Ba 137.3 La- Lu Hf 178.5 Ta 180.9 W 183.8 Re 186.2 Os 190.2 Ir 192.2 Pt 195.1 Au 197.0 Hg 200.6 Tl 204.4 Pb 207.2 Bi 209.0 Po [210] At [210] Rn [222] Fr [223] Ra [226] Ac- La Rf Db Sg Bh Hs Mt Ds La系 La 138.9 Ce 140.1 Pr 140.9 Nd 144.2 Pm 144.9 Sm 150.4 Eu 152.0 Gd 157.3 Tb 158.9 Dy 162.5 Ho 164.9 Er 167.3 Tm 168.9 Tb 173.0 Lu 175.0 一、(2009 (1)分别画出BF3和N(CH3)3的分子构型,指出中心原子的杂化轨道类型。 (2)分别画出F3B N(CH3)3 和F4Si N(CH3)3的分子构型,并指出分子中Si和B的杂化轨道类型。 (3)BeCl2是共价分子,可以以单体、二聚体和多聚体形式存在。分别画出它们的结构简式,并指出Be 的杂化轨道类型。 二、(2010年全国高中学生化学竞赛省级赛区1) (1)2009年10月合成了第117号元素,从此填满了周期表第七周期所有空格,是元素周期系发展的一个里程碑。117号元素是用249Bk轰击48Ca靶合成的,总共得到6个117号元素的原子,其中1个原子经p 次α衰变得到270Db后发生裂变;5个原子则经q次α衰变得到281Rg后发生裂变。用元素周期表上的117号元素符号,写出得到117号元素的核反应方程式(在元素符号的左上角和左下角分别标出质量数和原子序数)。 (2)写出下列结构的中心原子的杂化轨道类型:

版全国高中化学竞赛考纲

全国高中学生化学竞赛基本要求 1.本基本要求旨在明确全国高中学生化学竞赛初赛及决赛试题的知识水平,作为试题命题的依据。本基本要求不包括国家代表队选手选拔赛的要求。 2.现行中学化学教学大纲、普通高中化学课程标准及高考说明规定的内容均属初赛要求。高中数学、物理、生物、地理与环境科学等学科的基本内容(包括与化学相关的我国基本国情、宇宙、地球的基本知识等)也是化学竞赛的内容。初赛基本要求对某些化学原理的定量关系、物质结构、立体化学和有机化学作适当补充,一般说来,补充的内容是中学化学内容的自然生长点。 3.决赛基本要求是在初赛基本要求的基础上作适当补充和提高。 4.全国高中学生化学竞赛是学生在教师指导下的研究性学习,是一种课外活动。针对竞赛的课外活动的总时数是制定竞赛基本要求的重要制约因素。本基本要求估计初赛基本要求需40单元(每单元3小时)的课外活动(注:40单元是按高一、高二两年约40周,每周一单元计算的);决赛基本要求需追加30单元课外活动(其中实验至少10单元)(注:30单元是按10、11和12月共三个月约14周,每周2~3个单元计算的)。 5.最近三年同一级别竞赛试题涉及符合本基本要求的知识自动成为下届竞赛的要求。 6.本基本要求若有必要做出调整,在竞赛前4个月发出通知。新基本要求启用后,原基本要求自动失效。 初赛基本要求: 1.有效数字在化学计算和化学实验中正确使用有效数字。定量仪器(天平、量筒、移液管、滴定管、容量瓶等等)测量数据的有效数字。数字运算的约化规则和运算结果的有效数字。实验方法对有效数字的制约。 2.气体理想气体标准状况(态)。理想气体状态方程。气体常量R。体系标准压力。分压定律。气体相对分子质量测定原理。气体溶解度(亨利定律)。 3.溶液溶液浓度。溶解度。浓度与溶解度的单位与换算。溶液配制(仪器的选择)。重结晶的方法及溶质/溶剂相对量的估算。过滤与洗涤(洗涤液选择、洗涤方式选择)。重结晶和洗涤溶剂(包括混合溶剂)的选择。胶体。分散相和连续相。胶体的形成和破坏。胶体的分类。胶体的基本结构。 4.容量分析被测物、基准物质、标准溶液、指示剂、滴定反应等基本概念。酸碱滴定曲线(酸碱强度、浓度、溶剂极性对滴定突跃影响的定性关系)。酸碱滴定指示剂的选择。以高锰酸钾、重铬酸钾、硫代硫酸钠、EDTA为标准溶液的基本滴定反应。分析结果的计算。分析结果的准确度和精密度。 5.原子结构核外电子运动状态: 用s、p、d等来表示基态构型(包括中性原子、正离子和负离子)核外电子排布。电离能、电子亲合能、电负性。

高中化学竞赛培训讲义 分子结构

高中化学竞赛培训讲义分子结构 【高中知识】 一.化学键1.含义及其分类 通称为化学键,包括离子键和共价键。化学键的形成与有关,它主要通过原子的或来实现。 2.一个化学反应的过程,本质上是旧化学键断裂和新化学键的形成。 二、离子键: 1、离子键 称为离子键 ①成键微粒: ②成键本质: ③成键条件: 注意:1含有离子键的化合物均为离子化合物(如:大多数金属化合物、碱、盐类) 2 金属和非金属不一定形成离子键,例如:氯化铝 3非金属和非金属也能形成离子键,例如:氯化铵 例1.下列化合物中有离子键的是() (1)KI (2)HBr (3)Na 2 SO 4(4)NH 4 Cl (5)H 2 CO 3 三、电子式: 1、定义:在化学反应中,一般是原子的电子发生变化,我们可以在元素符 号周围用小黑点(·或X)来代表原子的最外层电子,这种式子叫电子式。 2、电子式的的书写 (1)原子的电子式 (2)离子的电子式 (3)离子化合物的电子式 (4)用电子式表示化合物的形成过程: 例2.用电子式表示氯化钠的形成过程: 注意:左边写原子的电子式,右边写化合物的电子式,中间用箭头连接,离子化合物还要

用箭头表示出电子的转移方向,不写反应条件。 例3用电子式表示下列化合物的形成过程 KBr: MgCl 2: Na2S: 四、共价键 1、共价键 叫做共价键 ①成键微粒: ②成键本质: ③成键条件: 注意:(1)只含有共价键的化合物属于共价化合物(即若存在离子键,一定为离子化合物)(2)共价键存在于非金属单质的双原子分子中,共价化合物和某些离子化合物 中(如NaOH、Na2O2)。 (3)稀有气体不存在任何化学键 2、共价键的表示方法 ①电子式: 单质: 化合物: ②结构式(用短线“-”表示一对共用电子):H2 N2 HCl H2O NH3 CO2 CH4 Cl2 ③用电子式表示共价化合物的形成过程: H2: HCl: 例1 用电子式表示下列化合物的形成过程 CO2: H2O: 3、共价键的分类: ①非极性键:在双原子单质分子中,同种原子形成的共价键,两原子吸引电子的能力,共用电子对任何一个原子,成键的原子都电性。这样的共价键叫做非极性

高中化学竞赛专题考试—分子结构(含答案)

高中化学竞赛专题考试——分子结构1 (路易斯结构式、共振式、VSPER 理 论) 1.008 Zr Nb Mo T c Ru Rh Pd Ag Cd In S n S b T e I Hf T a W Re Os Ir Pt Au Hg T l Pb Bi Po At Ac-Lr H Li Be B C N O F Na Mg Al S i P Cl S K Ca S c T i V Cr Mn Fe Co Ni Cu Zn G a G e As S e Br Rb Cs Fr S r Ba Ra Y La Lu -6.9419.01222.9924.3139.1040.0885.4787.62132.9137.3[223][226]44.9647.8850.9452.0054.9455.8558.9363.5558.6965.3910.8126.9869.7212.0128.0972.61114.8204.4118.7207.2112.4200.6107.9197.0106.4195.1102.9192.2101.1190.298.91186.295.94183.992.91180.991.22178.588.9114.0116.0019.0030.9774.92121.8209.032.07 78.96127.6[210][210] [210]126.979.9035.454.003 20.18 39.9583.80 131.3 [222]He Ne Ar Kr Xe Rn 相对原子质量 Rf Db Sg Bh Hs Mt 一. 选择题(每题只有一个正确选项,每题2分,共50分) 1、 根据鲍林近似能级图,在多电子原子中,基态时,下列电子均处于一定得能级,其中占据能级最高轨道得电子就是: ( )A 2,1,1,+1/2 B 3,1,1,+1/2 C 3,2,1,+1/2 D 4,0,0,1/2 2、 下列离子得电子构型可以用[Ar]3d 6 表示得就是 ( )A Mn 2+ B Fe 3+ C Co 3+ D Ni 2+ 3. 下列离子半径变小得顺序正确得就是 ( )A F ->Na +>Mg 2+Al 3+ B Na +>Mg 2+>Al 3+>F - C Al 3+>Mg 2+>Na +>F - D F ->Al 3+>Mg 2+>Na + 4、 下列元素得原子中,第一电离能最大得就是 ( )A Be B B C C D N 5、 下列物质中,含极性键得非极性分子就是 ( ) A H 2O B HCl C SO 3 D NO 2 6、 下列分子中,没有配位键得就是 ( ) A CO B (BeCl 2)2 C CH 3OBF 3 D N 2H 4 7、 NO 3— 合理得共振式总数为 ( )A 1 B 2 C 3 D 48.下列分子中,键级等于零得就是 ( )A.O 2 B 、 F 2 C 、 N 2 D 、 Ne 2 9.原子轨道沿两核连线以“肩并肩”方式进行重叠得就是 ( )A 、 б键 B 、 氢键 C 、 π键 D 、 离子键

全国高中化学竞赛大纲

全国高中化学竞赛大纲 说明: 1. 本基本要求旨在明确全国初赛和决赛试题的知识水平,作为试题命题的依据。本基本要求不涉及国家队选手选拔的要求。 2. 现行中学化学教学大纲、新近发布的普通高中化学课程标准实验教科书(A1-2,B1-6)及高考说明规定的内容均属初赛要求。具有高中文化程度的公民的常识以及高中数学、物理、生物、地理与环境科学等学科的基本内容(包括与化学相关的我国基本国情、宇宙、地球的基本知识等)也是化学竞赛的内容。初赛基本要求对某些化学原理的定量关系、物质结构、立体化学和有机化学作适当补充,一般说来,补充的内容是中学化学内容的自然生长点。 3. 决赛基本要求是在初赛基本要求的基础上作适当补充。 4. 全国高中学生化学竞赛是学生在教师指导下的研究性学习,是一种课外活动。课外活动的总时数是制定竞赛基本要求的重要制约因素。本基本要求估计初赛基本要求需40单元(每单元3小时)的课外活动(注:40单元是按高一、高二两年约40周,每周一单元计算的);决赛基本要求需追加30单元课外活动(其中实验至少10单元)(注:30单元是按10、11和12月共三个月约14周,每周2~3个单元计算的)。 5. 最近三年同一级别竞赛试题涉及符合本要求的知识自动成为下届竞赛的要求。 6. 本基本要求若有必要做出调整,在竞赛前三个月发出通知。新基本要求启用后,原基本要求自动失效。 初赛: 1. 有效数字。在化学计算和化学实验中正确使用有效数字。定量仪器(天平、量筒、移液管、滴定管、容量瓶等等)测量数据的有效数字。运算结果的有效数字。 2. 气体。理想气体标准状态。理想气体状态方程。气体密度。分压定律。气体相对分子质量测定原理。气体溶解度(亨利定律)。 3. 溶液。溶液浓度。溶解度。溶液配制(按浓度的精确度选择仪器)。重结晶及溶质/溶剂相对量的估算。过滤与洗涤(洗涤液选择、洗涤方式选择)。溶剂(包括混合溶剂)。胶体。 4. 容量分析。被测物、基准物质、标准溶液、指示剂、滴定反应等基本概念。酸碱滴定的滴定曲线(酸碱强度、浓度、溶剂极性对滴定突跃影响的定性关系)。酸碱滴定指示剂的选择。高锰酸钾、重铬酸钾、硫代硫酸钠、EDTA为标准溶液的基本滴定反应。分析结果的计

高中化学选修三——分子结构与性质

分子结构与性质 一、共价键 1.本质:原子间形成共用电子对 分类{非极性共价键:两个相同的非金属元素的原子间形成的共价键 极性共价键:两个不相同的非金属元素的原子间形成的共价键 、HCl的形成 思考:用电子式表示H 2 共价键特征: ①饱和性:每个原子形成共价键的数目是确定的 ②方向性:原子轨道沿一定方向重叠使成键的原子轨道最大程度地重叠 2.σ键和π键 ①σ键--原子轨道沿着连线方向以“头碰头”方式重叠形成的共价键 特点:以形成化学键的两个原子核的连线为轴旋转,σ键电子云的图形不变 电子云描述氢原子形成氢分子的过程(s-s σ键) ②π键--原子轨道沿着连线方向以“肩并肩”方式重叠形成的共价键 特点:(1)电子云为镜像,即是每个π键的电子云由两块组成,分别位于由两个原子核构成的平面的两侧 (2)不稳定,容易断裂 p-p π键的形成

N 2 分子中的N≡N 思考:分析CH 3CH 3 、CH 2 =CH 2 、CH≡CH、CO 2 分子中键的类别和个数 3.键参数--键能、键长与键角 ①键能:气态基态原子形成1 mol化学键释放的最低能量 键能越大,即形成化学键时放出的能量越多,化学键越稳定 应用--计算化学反应的反应热ΔH=反应物键能总和-生成物键能总和 ②键长:形成共价键的两个原子之间的核间距 键长是衡量共价稳定性的另一个参数 规律:键长越短,一般键能越大,共价键越稳定 一般地,形成的共价键的键能越大,键长越短,共价键越稳定,含有该键的分子越稳定,化学性质越稳定 ③键角:两个共价键之间的夹角 键角是描述分子立体结构的重要参数,分子的许多性质与键角有关 思考:N 2、O 2 、F 2 跟H 2 的反应能力依次增强,从键能的角度如何理解 4.等电子原理 等电子体:原子总数相同、价电子(最外层电子)总数相同的分子如N 2 和CO 是等电子体,但N 2和C 2 H 4 不是等电子体 等电子体原理:原子总数、价电子总数相同的分子具有相似的化学键特征,它们的物理性质是相近的。例如N 2 和CO的熔沸点、溶解性、分子解离能等都非常接近 5.用质谱测定分子的结构 原理:不同质核比的粒子在磁场中运动轨迹不同 eg:1.下列物质中能证明某化合物中一定有离子键的是() A.可溶于水 B.熔点较高 C.水溶液能导电 D.熔融状态能导电 2.下列关于化学键的叙述中,正确的是() A.离子化合物可以含共价键 B.共价化合物可能含离子键 C.离子化合物中只含离子键 D.只有活泼金属与活泼非金属间才能形成离子键

高中化学竞赛知识点大全

高中化学竞赛知识点大全 1. 有效数字在化学计算和化学实验中正确使用有效数字。定量仪器(天平、量筒、移液管、滴定管、容量瓶等等)测量数据的有效数字。数字运算的约化规则和运算结果的有效数字。实验方法对有效数字的制约。 2. 气体理想气体标准状况(态)。理想气体状态方程。气体常量R。体系标准压力。分压定律。气体相对分子质量测定原理。气体溶解度(亨利定律)。 3. 溶液溶液浓度。溶解度。浓度和溶解度的单位与换算。溶液配制(仪器的选择)。重结晶方法以及溶质/溶剂相对量的估算。过滤与洗涤(洗涤液选择、洗涤方式选择)。重结晶和洗涤溶剂(包括混合溶剂)的选择。胶体。分散相和连续相。胶体的形成和破坏。胶体的分类。胶粒的基本结构。 4. 容量分析被测物、基准物质、标准溶液、指示剂、滴定反

应等基本概念。酸碱滴定曲线(酸碱强度、浓度、溶剂极性对滴定突跃影响的定性关系)。酸碱滴定指示剂的选择。以高锰酸钾、重铬酸钾、硫代硫酸钠、EDTA为标准溶液的基本滴定反应。分析结果的计算。分析结果的准确度和精密度。 5. 原子结构核外电子的运动状态: 用s、p、d等表示基态构型(包括中性原子、正离子和负离子)核外电子排布。电离能、电子亲合能、电负性。 6. 元素周期律与元素周期系周期。1~18族。主族与副族。过渡元素。主、副族同族元素从上到下性质变化一般规律;同周期元素从左到右性质变化一般规律。原子半径和离子半径。s、p、d、ds、f区元素的基本化学性质和原子的电子构型。元素在周期表中的位置与核外电子结构(电子层数、价电子层与价电子数)的关系。最高氧化态与族序数的关系。对角线规则。金属与非金属在周期表中的位置。半金属(类金属)。主、副族的重要而常见元素的名称、符号及在周期表中的位置、常见氧化态及其主要形体。铂系元素的概念。 7. 分子结构路易斯结构式。价层电子对互斥模型。杂化轨道

高中化学竞赛全套资料

初赛基本要求 1.有效数字在化学计算和化学实验中正确使用有效数字。定量仪器(天平、量筒、移 液管、滴定管、容量瓶等等)测量数据的有效数字。数字运算的约化规则和运算结果的有效数字。实验方法对有效数字的制约。 2.气体理想气体标准状况(态)。理想气体状态方程。气体常量R。体系标准压力。 分压定律。气体相对分子质量测定原理。气体溶解度(亨利定律)。 3.溶液溶液浓度。溶解度。浓度与溶解度的单位与换算。溶液配制(仪器的选择)。 重结晶的方法及溶质/溶剂相对量的估算。过滤与洗涤(洗涤液选择、洗涤方式选择)。 重结晶和洗涤溶剂(包括混合溶剂)的选择。胶体。分散相和连续相。胶体的形成和破坏。胶体的分类。胶体的基本结构。 4.容量分析被测物、基准物质、标准溶液、指示剂、滴定反应等基本概念。酸碱滴定 曲线(酸碱强度、浓度、溶剂极性对滴定突跃影响的定性关系)。酸碱滴定指示剂的选择。以高锰酸钾、重铬酸钾、硫代硫酸钠、EDTA为标准溶液的基本滴定反应。分析结果的计算。分析结果的准确度和精密度。 5. 原子结构核外电子运动状态: 用s、p、d等来表示基态构型(包括中性原子、正离 子和负离子)核外电子排布。电离能、电子亲合能、电负性。 6.元素周期律与元素周期系周期。1—18族。主族与副族。过渡元素。主、副族同族 元素从上到下性质变化一般规律;同周期元素从左到右性质变化一般规律。原子半径和离子半径。s、p、d、ds区元素的基本化学性质和原子的电子构型。元素在周期表中的位置与核外电子结构(电子层数、价电子层与价电子数)的关系。最高氧化态与族序数的关系。对角线规则。金属与非金属在周期表中的位置。半金属(类金属)。主、副族的重要而常见元素的名称、符号及在周期表中的位置、常见氧化态及主要形态。铂系元素的概念。 7.分子结构路易斯结构式。价层电子对互斥模型。杂化轨道理论对简单分子(包括离 子)几何构型的解释。共价键。键长、键角、键能。σ键和π 键。离域π键。共轭(离域)体系的一般性质。等电子体的一般概念。键的极性和分子的极性。相似相溶规律。 对称性基础(限旋转和旋转轴、反映和镜面、反演和对称中心)。 8.配合物路易斯酸碱。配位键。重要而常见的配合物的中心离子(原子)和重要而常见的配体(水、羟离子、卤离子、拟卤离子、氨分子、酸根离子、不饱和烃等)。螯合物及螯合效应。重要而常见的配合反应。配合反应与酸碱反应、沉淀反应、氧化还原反应的关系(定性说明)。配合物几何构型和异构现象基本概念和基本事实。配合物的杂化轨道理论。用杂化轨道理论说明配合物的磁性和稳定性。用八面体配合物的晶体场理论说明Ti(H2O)63+的颜色。软硬酸碱的基本概念和重要的软酸软碱和硬酸硬碱。 9.分子间作用力范德华力、氢键以及其他分子间作用力的能量及与物质性质的关系。 10.晶体结构分子晶体、原子晶体、离子晶体和金属晶体。晶胞(定义、晶胞参数和原 子坐标及以晶胞为基础的计算)。点阵(晶格)能。配位数。晶体的堆积与填隙模型。 常见的晶体结构类型:NaCl、CsCl、闪锌矿(ZnS)、萤石(CaF2)、金刚石、石墨、硒、冰、干冰、金红石、二氧化硅、钙钛矿、钾、镁、铜等。 11.化学平衡平衡常数与转化率。弱酸、弱碱的电离常数。溶度积。利用平衡常数的计 算。熵(混乱度)的初步概念及与自发反应方向的关系。 12.离子方程式的正确书写。

对化学竞赛中几个分子结构的探讨

对化学竞赛中几个分子结构的探讨 刘梅,张红梅,陈国力,廖显威 (四川师范大学化学与材料科学学院,四川成都610068) 摘要:离域π键的分析、简单分子的键角比较以及常见分子的杂化类型的判断是化学竞赛中的学习要点。以N2O5的离域π键;NH3、NCl3、NF3键角的比较以及Xe的氟化物中Xe的杂化;SF4和SF6中S的杂化;ClF3中Cl的杂化和MnO4-中Mn的杂化方式为例对学生在化学竞赛的学习过程中所遇到的这几方面的知识点做了一个初步探讨。关键词:离域π键;键角;杂化方式 文章编号:1005-6629(2007)07-0053-03中图分类号:G632.479文献标识码:B 引言 根据2005年化学竞赛大纲来看,离域π键、共价键以及杂化轨道理论对简单分子(包括离子)几何构型的解释是初赛要求掌握的。这些知识都是在中学基础上的拔高,学生用中学所学的知识还不足以完全解决这些问题,但又不能纯粹地去学习大学化学知识。现有的很多奥赛培训资料也涉及到这几方面的内容,不过分析得太简单,不利于学生系统地掌握。因此,笔者就中学的实际情况以典型的例子对这几方面的知识作了一个初步探讨。希望在一定程度上帮助学生学习化学竞赛中与此有关的知识,也可给教师的化学竞赛培训工作提供一定的参考作用。 1离域π键 1.1形成离域π键的条件 具有共轭体系的一类化合物分子,它们的性质很难由单一的经典结构式描写,它们的化学活性及许多重要的物理化学性质都和其中部分键的离域化密切相关。 离域π键形成的条件有两个,即:(1)共轭原子必须同在一个平面上,且每个原子可以提供一个彼此平行的p轨道;(2)总的π电子数小于参与形成离域π键的p轨道数的二倍[1]。 1.2N2O5的离域π键 1.2.1固态N2O5的离域π键 N2O5是硝酸的酸酐,非常不稳定,易升华,其无色固体在280K和漫射光下稳定。固体的稳定形式是由NO2+NO3-组成,即硝酸硝鎓,其结构如图1。NO2+是直线型的对称结构,含有2个离域π键Π4 3 ,或表示为。 NO- 3 是平面结构,含有离域π键Π6 4 ,或表示为 。 图1固态N2O5结构示意图 1.2.2气态N2O5的离域π键 气态N2O5分子结构如图2。但有人认为气态 N2O5的离域π键是两个Π6 4 。其实导致这种错误判断的根本原因是误认为气态N2O5分子中N原子采取sp2杂化,氧原子为sp杂化,整个分子是平面构型。如果N2O5分子为平面构型,中间的氧原子必须提供两个p轨道,两对孤对电子,则要每三个氧原子与一 个氮原子共同构成两个Π6 4 ,如图3,这是不可能的。 事实上气态N2O5分子中N原子采取sp2杂化,氧原子为sp2不等性杂化,整个分子不是平面构型,(如图4)。O1、O2、O3与N1在一个平面,O3、O4、O5与N2在另一个平面,且这两个平面互相垂直。笔者采用Gaussian98程序,在b3lyp/6-31g水平上对N2O5进行理论计算,得出其相关键角和二面角,结果如下:∠N1-O3-N2=109.2°,∠O1-N1-O2=132.8°,∠O1-N1-O3=110.6°,∠O2-N1-O3= O N O

相关文档
相关文档 最新文档