文档视界 最新最全的文档下载
当前位置:文档视界 › 机械优化设计复习总结

机械优化设计复习总结

机械优化设计复习总结
机械优化设计复习总结

1. 优化设计问题的求解方法:解析解法和数值近似解法。解析解法是指优化对象用数学方程(数学模型)描述,用

数学解析方法的求解方法。解析法的局限性:数学描述复杂,不便于或不可能用解析方法求解。数值解法:优化对象无法用数学方程描述,只能通过大量的试验数据或拟合方法构造近似函数式,求其优化解;以数学原理为指导,通过试验逐步改进得到优化解。数值解法可用于复杂函数的优化解,也可用于没有数学解析表达式的优化问题。但不能把所有设计参数都完全考虑并表达,只是一个近似的数学描述。数值解法的基本思路:先确定极小点所在的搜索区间,然后根据区间消去原理不断缩小此区间,从而获得极小点的数值近似解。

2. 优化的数学模型包含的三个基本要素:设计变量、约束条件(等式约束和不等式约束)、目标函数(一般使得目

标函数达到极小值)。

3. 机械优化设计中,两类设计方法:优化准则法和数学规划法。

优化准则法:1k k k x

c x +=(为一对角矩阵) 数学规划法:1k k k k x x

d α+=+(\k k d α分别为适当步长\某一搜索方向——数学规划法的核心)

4. 机械优化设计问题一般是非线性规划问题,实质上是多元非线性函数的极小化问题。重点知识点:等式约束优

化问题的极值问题和不等式约束优化问题的极值条件。

5. 对于二元以上的函数,方向导数为某一方向的偏导数。

函数沿某一方向的方向导数等于函数在该点处的梯度与这一方向单位向量的内积。梯度方向是函数值变化最快的方向(最速上升方向),建议用单位向量表示,而梯度的模是函数变化率的最大值。

6. 多元函数的泰勒展开。

海赛矩阵:()0G x =222

112222122f f x x x f f x x x ??????????????????????

(对称方阵) 7. 极值条件是指目标函数取得极小值时极值点应满足的条件。某点取得极值,在此点函数的一阶导数为零,极值

点的必要条件:极值点必在驻点处取得。用函数的二阶倒数来检验驻点是否为极值点。二阶倒数大于零,取得极小值。二阶导数等于零时,判断开始不为零的导数阶数如果是偶次,则为极值点,奇次则为拐点。二元函数在某点取得极值的充分条件是在该点出的海赛矩阵正定。极值点反映函数在某点附近的局部性质。

8. 凸集、凸函数、凸规划。凸规划问题的任何局部最优解也就是全局最优点。凸集是指一个点集或一个区域内,

连接其中任意两点的线段上的所有元素都包含在该集合内。性质:凸集乘上某实数、两凸集相加、两凸集的交集仍是凸集。凸函数:连接凸集定义域内任意两点的线段上,函数值总小于或等于用任意两点函数值做线性内插所得的值。数学表达: ()()()()12121101f ax a x f x f x ααα+-≤+-≤≤????,若两式均去掉等号,

则()f x 称作严格凸函数。凸函数同样满足倍乘,加法和倍乘加仍为凸函数的三条基本性质。凸规划针对目标函数和约束条件均为凸函数是的约束优化问题。

9. 等式约束优化问题的极值条件。两种处理方法:消元法和拉格朗日乘子法。也分别称作降维法和升维法。消元

法:将等式约束条件的一个变量表示成另一个变量的函数。减少了变量的个数。拉格朗日乘子法是通过增加变量λ将等式约束优化问题变成无约束优化问题,增加了变量的个数。

10. 不等式约束优化问题的极值条件。不等式约束的多元函数极值的必要条件为库恩塔克条件。库恩塔克条件:

()()()**1*000m j j j i i j j j

f x

g x x x g x μμμ=????+=????=????≥?∑,几何意义:在约束极小值处,函数的负梯度一定能表示成所有起作用约束在该点梯度的非负线性组合。对于含有等式约束的优化问题的拉格朗日乘子,并没有非负的要求。

11. 一维搜索是指一元函数的极值问题。搜索区间的外推法(进退法):假设函数在搜索区间具有单谷性,使函数在

搜索区间形成“高低高”趋势来确定极小点所在的区间。分别对应搜索的起点,中间点和终点。再利用区间消去法原理比较函数值的大小以确定极小值所在的搜索区间。

12. 一维搜索方法。试探法:常用的一维搜索的方法是黄金分割法(0.618法)。适用于任何单谷函数求极小值问题。

黄金分割法要求插入点的位置相对于区间的两端点对称。所以插入点的位置为:()

()12a b b a a a b a λλ=--=+-,区间缩短

率为λ;插值法(函数逼近法):利用试验点的函数值建立函数近似表达式来求函数的极小点。两种用二次函数

逼近原来函数的方法:牛顿法(切线法)和抛物线法(二次插值法)。牛顿法迭代公式:()()

'1''k k k k f f αααα+=-,牛顿法的计算步骤:计算()()'''

k k f f αα;求()()'1''k k k k f f αααα+=-,若1k k ααε+-≤则求得近似解*1k αα+=;二次插值法:21131

21112133123312p y y c y y c c c c ααααααααα--??--===+- ?--??

,p α对应的极值点,对应的函数值为极小值。

13. 无约束优化问题。常用的数值计算方法为搜索方法。基本思想:从给定的初始点,沿某一搜索方向进行搜索,

确定最佳步长使函数值沿搜索方向下降最大。各种无约束优化方法的区别在于确定其搜索方向的方法不同,所以,搜索方向的构成问题是无约束优化方法的关键。无约束优化方法可以分为两类:一类是利用目标函数的一阶或二阶导数的无约束优化方法,如最速下降法,共轭梯度法,牛顿法和变尺度法;另一类只利用目标函数值的无约束优化方法,如坐标轮换法,单形替换法,和鲍威尔法。

14. 最速下降法(梯度法)。从某点出发,搜索方向去该点的负梯度方向。为了使目标函数获得最大下降值。其步长

因子去一维最佳步长:()()()()1min min k k k k k k k f x f x f x f x f x αα?α+????=-?=-?=????

,在最速下降法中,相邻两个迭代点上的函数梯度相互垂直。最速下降法迭代行进的距离缩短,收敛速度减慢。梯度反映的是函数的局部性质。最速下降法的收敛速度和变量的尺度关系很大。最速下降方向的每一次搜索方向与前一次的搜索方向互相垂直,形成“之”字形的锯齿现象。

15. 牛顿型方法。多元函数求极值的牛顿法迭代公式:()()1

12k k k k x x f x f x -+??=-????。若某一迭代方法能使二次函数在有限次迭代内达到极小点,则称此迭代方法是二次收敛的。牛顿方法时二次收敛的。牛顿法和阻尼牛顿法统称为牛顿型方法。主要缺点是计算函数的二阶导数矩阵,并对该矩阵求逆。

16. 共轭方向法。对于二元函数,为避免锯齿现象,在第二次的迭代搜索方向上取到极小点。所必须满足的条件:

()010T d Gd =,满足条件的两个向量01\d d 称之为共轭向量,或称之为对G 是共轭方向。多维函数当中,共轭向量互相正交且线性无关;n 维空间互相共轭的非零向量的个数不超过n ;共轭方向法具有二次收敛性。格拉姆-斯密特向量共轭化方法:选定线性无关向量组:01n v v v ??????(例如他们是n 个坐标轴上的单位向量)首

先,取00d v =,令10110d v d β=+,根据共轭条件确定()()()01

1000

T

T d Gv d G d β=-,同样地,根据()()()11,T

j k k j T j j d Gv d G d β++=-确定1k d +共轭方向的搜索方向可由梯度法和鲍威尔法提供。

17. 共轭梯度法(旋转梯度法)。共轭方向与梯度之间的关系:()()10T

j k k d g g +-=,表明沿方向k d 搜索,其终点

1k x +与始点k x 的梯度之差()1k k g g +-与k d 的共轭方向j d 正交。计算过程:第一个搜索方向取0x 的负梯度0g -,

则00d g =-;求0d 的共轭方向1d 作为下一次的搜索方向1010d g d β=-+,其中1

00g g β=-,共轭方向的递推公式:21

112k k k k k g d g d g +++=-+,第一个方向取作负梯度方向,其余各步的搜索方向将负梯度偏转一个角度,

对负梯度进行修正,共轭方向法是对最速下降法的一种改进。

18. 变尺度法:放大或缩小各个坐标,改善函数的偏心程度。Qx x →,

1122T T T x Q GQx x Gx →,若矩阵G 是正定的,那么总存在矩阵是使T Q GQ I =,将偏心程度变为零。尺度变换后牛顿方向:

()()1k k T k d G f x QQ f x -=-?=-?,牛顿迭代公式:()1k k k k T k k k x x d x QQ f x αα+=+=-?,T H QQ =是在x 空间内测量距离大小的度量,称作尺度矩阵。变尺度法中利用尺度矩阵代替海赛矩阵的逆阵进行求解。1k k k k k k k k x x H g d H g α+=-=-,拟牛顿条件:()111k k k k k H g g x x +++-=-,变尺度法的一般步骤:选定初始点0x 和收敛精度ε;计算初始点的梯度0g ,选取初始对称正定矩阵0H (例如0H I =),置0k →;计算搜

索方向k k k d H g =-;沿k d 方向进行一维搜索1k k k k x x d α+=+,计算

()1111,,k k k k k k k k g f x s x x y g g ++++=?=-=-,判断是否满足迭代终止准则,若满足,则*1k x x +=,若迭代n

次后仍没找到极小点,重置k H 为单位矩阵,并以当前设计点为初始点10k x x +→,返回到计算

()1111,,k k k k k k k k g f x s x x y g g ++++=?=-=-进行下一轮的迭代或者计算矩阵1k k k H H E +=+,置1k k

+→返回到计算k k k d H g =-

19. DFP 算法。选取不同的形式的矫正矩阵k E 就构成不同的变尺度法。DFP 算法的k E 形式:

T T k k k k k k k

E u u u u αβ=+经过推到后DFP 的校正公式:1T T k k k k k k k k T T k k k K k s s H y y H H H s y y H y +=+- 20. 坐标轮换法(变量轮换法):每次搜索只允许一个变量变化,其余变量保持不变,沿坐标方向轮流进行搜索的寻

优方法。这种方法的收敛效果和目标函数等值线的形状有很大关系。

21. 鲍威尔方法。直接利用函数值来构造共轭方向的一种共轭方向法。任选一初始点0x ,再选两个线性无关的向量,

如坐标轴单位向量[]110T e =和[]201T e =作为初始搜素方向;从0

x 出发,顺次沿12\e e 作一维搜索得到点0012\x x ,两点的连线得到一新方向1002d x x =-,用1d 代替1e 形成两个线性无关向量12\e d ,作为下一轮迭代的搜索方向。再从02x 出发,沿1d 方向作一维搜索得点1

0x 作为下一轮迭代的初始点。在进行两轮的迭代后目标

函数取得极小值。改进的鲍威尔方法中,判断原向量组的“好坏”来界定原向量组是否需要替换。改进鲍威尔法的具体步骤:给定初始点0

x ,沿n 个线性无关的向量(n 个坐标轴单位向量)0k →;作一维搜索后沿

10k k k n n d x x +=-移动一个距离得到:102k k k n n x x x +=-(反射点坐标)再求得三点的目标函数值()()()00231=k k k n n F f x F f x F f x +==,根据判别条件30F F ?和

()()()

2023020320.5m m F F F F F F F -+--???-确定是否要对原方向进行替换。若不满足判别条件,仍用原方向组,并以1k k n n x x +函数值中的较小者作为下一轮迭代的始点。若满足上述判别条件,则将1k n d +补充到原方向

组中,下轮的始点是沿1k n d +方向进行进行一维搜素的极小点10k x +

22. 单形替换法。单纯性是指在n 维空间中有1k n =+个顶点的多面体。区别于线性规划中的单纯型法。通过反射、

扩张、收缩、和缩边等方式得到新的单纯型,其中至少有一个顶点的函数值比原单纯型要小。计算步骤:构造初始单纯型,计算各顶点的函数值。比较顶点函数值的大小,判断是否满足收敛准则:min max i H L L i

f f f f f ε-=?;不满足收敛准则,计算除H x 外其他各点的“重心”1n x +,101n n i H i x x x n +=??=- ???

∑,反射点2n x +,212n n H x x x ++=-,()22n n f f x ++=;反射:当2L n c f f f +≤?时,以2n x +代替H x ,2n f +代替H f ,构成一新单纯型。扩张(收缩)

:当2n L f f +?时,取扩张点()()3121n n n n x x x x αβ++++=+-并计算其函数值()33n n f f x ++=,若32n n f f ++?则以3n x +代替H x ,3n f +代替H f ,构成一新单纯型。否则以2n x +代替H x ,2n f +代替H f ,构成一新单纯型;缩边:可将各向量i L x x -的长度都缩小一半,即:()12

i i L x x x =

+。单形替代法当问题维数n 较高时,需要经过很多次迭代,因此一般用于10n ?的情形。

23. 目标函数和约束条件都为线性的优化问题称之为线性规划问题。线性规划标准形式中约束条件包含两个部分:

一是等式约束;而是变量的非负要求。如果约束条件中含有不等式约束,可引入松弛变量将不等式约束转化为等式约束。如果原来问题中一些变量并不要求是非负的,那么可以写成两个非负变量之差。在目标函数中不会出现松弛变量,但新的非负变量需要写入目标函数当中。

24. 基本解:当变量数大于方程数,若使其中(变量数-方程数)个变量取零值,则当方程有解时,其唯一解。基本

可行解:满足非负要求的基本解,其中取正值的变量称为基本变量,取零值的变量称为非基本变量,基本变量所对应的系数列向量称作基底向量。可行解:凸多边形内各点满足全部约束条件的点。目标函数达到极小值的可行解就是最优解,它处在凸多边形的顶点上,只要在有限个顶点中寻找(基本可行解)。

25. 基本可行解的转换。进行转轴运算(高斯消元)。选定不同的轴元素,得到不同基本可行解。将非基本变量变成

基本变量,实现一份基本解到另一个基本解的转换。基本可行解到另一个基本可行解的转换。若右端i b 都是非负的,则必须选定为正值的轴元素进行转轴运算。引入松弛因子将不等式约束转换为等式约束可以发现,这些松弛变量就可以作为初始基本可行解中的一部分基本变量。当时,当右端i b 为负值时,对应的松弛变量就不可以作为基本可行解的基本变量。

26. 单纯型方法(精读)解决从一组基本可行解转换到另一组可行解时,判断哪一组可行解时最优解问题。单纯型

方法围绕两个规则进行:一是θ规则,二是最速变化规则(目标函数变化最大规则)。

27. 约束优化方法,根据求解方式的不同,可分为直接解法和间接解法。直接解法通常使用与仅含不等式约束的问

题。基本思路:在m 个不等式约束条件所确定的可行域内,选择一个初始点0x ,然后决定可行搜索方向d ,以适当的步长α,沿d 方向进行搜索,使目标函数值下降的可行的新点1x 完成一次迭代,重复迭代过程直至满足收敛条件。间接法的基本思路:将约束优化问题中的约束函数进行特殊的加权处理,和目标函数结合起来,构成一个新的目标函数,即将原约束优化问题转化为一个或一系列的无约束优化问题,再对新的目标函数进行无约束优化计算,得到原约束问题的最优解。直接解法包括随机方向法、复合型法、可行方向法、广义节约梯度法,属于间接解法的惩罚函数法和增广乘子法。

28. 随机方向法。基本思路:在可行域内选择一个初始点,利用随机数的概率特性,产生若干个随机方向,并从中

选择一个能使目标函数值下降最快的随机方向作为可行的搜索方向。优点:对目标函数的性态无特殊要求,程序设计简单,使用方便,收敛速度比较快。按照一定的数学模型得到的随机数称为伪随机数。初始点0x 必须是一个可行点。产生k 个n 维随机单位向量,找到k 个随机点中使目标函数最小的点L x ,得到可行搜索方向0L d x x =-,进行迭代计算,直到搜索到一个满足全部约束条件且目标函数值不再下降的新点x 。

29. 复合型法。基本思路:在可行域内构造具有k (12n k n +≤≤)个顶点(k 个顶点都必须是可行点)的初始复

合型。比较各顶点目标函数值,找到目标函数最大值的顶点(最坏点),找到一个使目标函数下降的新点代替最坏点,构成新的复合型,重复迭代。根据不同的方法生成初始复合型。复合型的搜索方法:反射——计算复合型顶点目标函数值,找出最好点L x 、最坏点H x 及次坏点G x ,计算除最坏点H x 外其他1k -个顶点的重中心C x ,最坏点和中心点的连线方向为目标函数下降的方向,得反射点坐标:()R C C H x x x x α=+-;扩张——求得反射点为可行点,且目标函数下降较多,沿反射方向继续移动,找到更好的新点E x ,得扩张点坐标:

()E R R C x x x x γ=+-;收缩——中心店C x 以外找不到好的反射点,在C x 以内采用收缩的方法,收缩点坐标:

()k H C H x x x x β=+-;

压缩——采取将复合型各顶点向最好点L x 靠拢,采用压缩的方法来改变复合型的形状,压缩顶点坐标:()0.5j L L j x x x x =--。

30. 可行方向法。基本思路是在可行域内选择一个初始点o x ,确定一个可行方向d 和适当步长后,按1k k k

x x d α+=+进行迭代计算。根据约束函数和目标函数的不同形状,分为以下三种不同的搜索策略。一是在约束面的迭代点k x

处,产生一个可行方向k d ,沿此方向作一维最优化搜索,得到可行域内的新点1k x +,再沿1k x +点的负梯度方向()11k k d f x ++=-?继续搜索;二是在约束面的迭代点k x 处,产生一个可行方向k d ,沿此方向作一维最优化搜索,得到可行域外的新点1k x +,再设法将x 点移动到约束面上,即取k d 与约束面的交点作为新的迭代点1k x +;三是沿约束面搜索,适用于只具有线性约束条件的非线性规划问题。可行方向的两个条件:可行条件——()0T k k j g x d ???≤??;下降条件——()0T k k f x d ?????

。可行反向的产生方法:优选方向法和梯度投影法。优选方向法为满足两个条件内的可行方向的优选;梯度投影法为当负梯度方向()k f x -?不满足可行条件时,将

机械优化设计试卷期末考试及答案(补充版)

4、最优点、最优值和最优解 答:选取适当优化方法,对优化设计数学模型进行求解,可解得一组设计变量,记作: x * = [x1* , x2* , x3* , . . . , x n *]T 使该设计点的目标函数F (x*)为最小,点x*称为最优点(极小点)。相应的目标函数值F (x*) 称为最优值(极小值)。一个优化问题的最优解包着最优点(极小点)和最优值(极小值) 。把最优点和最优值的总和通称为最优解。 或: 优化设计就是求解n个设计变量在满足约束条件下使目标函数达到最小值,即 min f(x)=f(x*) x €R n s.t. g u (x)w 0,u= 1,2,... ,m; h v (x) = 0,v= 1,2,... ,p

机械优化设计论文(基于MATLAB工具箱的机械优化设计)

基于MATLAB工具箱的机械优化设计 长江大学机械工程学院机械11005班刘刚 摘要:机械优化设计是一种非常重要的现代设计方法,能从众多的设计方案中找出最佳方案,从而大大提高设计效率和质量。本文系统介绍了机械优化设计的研究内容及常规数学模型建立的方法,同时本文通过应用实例列举出了MATLAB 在工程上的应用。 关键词:机械优化设计;应用实例;MATLAB工具箱;优化目标 优化设计是20世纪60年代随计算机技术发展起来的一门新学科, 是构成和推进现代设计方法产生与发展的重要内容。机械优化设计是综合性和实用性都很强的理论和技术, 为机械设计提供了一种可靠、高效的科学设计方法, 使设计者由被动地分析、校核进入主动设计, 能节约原材料, 降低成本, 缩短设计周期, 提高设计效率和水平, 提升企业竞争力、经济效益与社会效益。国内外相关学者和科研人员对优化设计理论方法及其应用研究十分重视, 并开展了大量工作, 其基本理论和求解手段已逐渐成熟。 国内优化设计起步较晚, 但在众多学者和科研人员的不懈努力下, 机械优化设计发展迅猛, 在理论上和工程应用中都取得了很大进步和丰硕成果, 但与国外先进优化技术相比还存在一定差距, 在实际工程中发挥效益的优化设计方案或设计结果所占比例不大。计算机等辅助设备性能的提高、科技与市场的双重驱动, 使得优化技术在机械设计和制造中的应用得到了长足发展, 遗传算法、神经网络、粒子群法等智能优化方法也在优化设计中得到了成功应用。目前, 优化设计已成为航空航天、汽车制造等很多行业生产过程的一个必须且至关重要的环节。 一、机械优化设计研究内容概述 机械优化设计是一种现代、科学的设计方法, 集思考、绘图、计算、实验于一体, 其结果不仅“可行”, 而且“最优”。该“最优”是相对的, 随着科技的发展以及设计条件的改变, 最优标准也将发生变化。优化设计反映了人们对客观世界认识的深化, 要求人们根据事物的客观规律, 在一定的物质基和技术条件下充分发挥人的主观能动性, 得出最优的设计方案。 优化设计的思想是最优设计, 利用数学手段建立满足设计要求优化模型; 方法是优化方法, 使方案参数沿着方案更好的方向自动调整, 以从众多可行设计方案中选出最优方案; 手段是计算机, 计算机运算速度极快, 能够从大量方案中选出“最优方案“。尽管建模时需作适当简化, 可能使结果不一定完全可行或实际最优, 但其基于客观规律和数据, 又不需要太多费用, 因此具有经验类比或试验手段无可比拟的优点, 如果再辅之以适当经验和试验, 就能得到一个较圆满的优化设计结果。 传统设计也追求最优结果, 通常在调查分析基础上, 根据设计要求和实践

实验优化设计考试答案

第一题 考察温度对烧碱产品得率的影响,选了四种不同温度进行试验,在同一温度下进行了5次试验(三数据见下表)。希望在显着性水平为。 1.SSE的公式 2.SSA的公式 3.将表格粘贴进Excel,然后进行数据分析,勾选标于第一行,显示在下面 P=,远小于,所以是显着的 “方差分析” “响应C1C2C3C4” “选单因素未重叠” 4.打开Minitab,复制表格, “统计” 点击“比较”勾选第一个,确定 结果:工作表3 单因子方差分析:60度,65度,70度,75度 来源自由度SSMSFP 因子误差合计 S==%R-Sq(调整)=% 平均值(基于合并标准差)的单组95%置信区间 水平N平均值标准差------+---------+---------+---------+--- 60度度度度合并标准差= Tukey95%同时置信区间 所有配对比较 单组置信水平=% 60度减自: 下限中心上限------+---------+---------+---------+--- 65度度度度减自: 下限中心上限------+---------+---------+---------+--- 70度度度减自: 下限中心上限------+---------+---------+---------+--- 75度获得结果,区间相交包含的不明显,反之明显 第二题 为研究线路板焊点拉拔力与烘烤温度、烘烤时间和焊剂量之间关系。从生产过程中收集20批数据,见下表: 1.将表格粘贴进Minitab,然后“统计”“回归”“回归”“响应,变量”“图形,四 合一” 2.P小于,显着 4.残差分析 第三题 钢片在镀锌前需要用酸洗方法除锈, 为提高除锈效率,缩短酸洗时间,需 要寻找好的工艺参数。现在试验中考 察如下因子与水平:

机械优化设计试卷及答案.doc

百度文库 《机械优化设计》复习题及答案 一、填空题 、用最速下降法求 2 2 2 2 的最优解时,设X (0)T ,第一步迭代 1 1 =[,] 1 f(X)=100(x - x ) +(1- x ) 的搜索方向为 [-47;-50] 。 2、机械优化设计采用数学规划法,其核心一是建立搜索方向二是计算最佳步长因子。 3、当优化问题是 __凸规划 ______的情况下,任何局部最优解就是全域最优解。 4、应用进退法来确定搜索区间时,最后得到的三点,即为搜索区间的始点、中间点和 终点,它们的函数值形成高-低-高趋势。 5、包含 n 个设计变量的优化问题,称为n 维优化问题。 、函数 1 X T HX B T X C 的梯度为HX+B 。 6 2 7、设 G 为 n×n 对称正定矩阵,若 n 维空间中有两个非零向量0,d1,满足 (d0 T1 ,d ) Gd =0 则 d0、d1之间存在 _共轭_____关系。 8、设计变量、约束条件、目标函数是优化设计问题数学模型的基本要素。 9、对于无约束二元函数 f (x1 , x2 ) ,若在 x 0 ( x10 , x20 ) 点处取得极小值,其必要条件是梯 度为零,充分条件是海塞矩阵正定。 10、库恩-塔克条件可以叙述为在极值点处目标函数的梯度为起作 用的各约束函数梯度的非负线性组合。 11 、用黄金分割法求一元函数 f ( x) x2 10 x 36的极小点,初始搜索区间 [ a,b] [ 10,10] ,经第一次区间消去后得到的新区间为[,] 。 12、优化设计问题的数学模型的基本要素有设计变量、约束条件目标函数、 13、牛顿法的搜索方向 d k= ,其计算量大,且要求初始点在极小点逼近位置。 14、将函数f(X)=x 2 2 表示成 1 X T HX T X C 的形 1 +x2 -x1x2-10x1-4x2+60 2 B 式。 15、存在矩阵 H,向量 d ,向量 d ,当满足(d1)TGd2=0 ,向量 d 和向量 d 1 2 1 2 是关于 H 共轭。 16、采用外点法求解约束优化问题时,将约束优化问题转化为外点形式时引入的惩罚因 子 r 数列,具有由小到大趋于无穷特点。 17、采用数学规划法求解多元函数极值点时,根据迭代公式需要进行一维搜索,即

机械优化设计方法论文

浅析机械优化设计方法基本理论 【摘要】在机械优化设计的实践中,机械优化设计是一种非常重要的现代设计方法,能从众多的设计方案中找出最佳方案,从而大大提高设计的效率和质量。每一种优化方法都是针对某一种问题而产生的,都有各自的特点和各自的应用领城。在综合大量文献的基础上,总结机械优化设计的特点,着重分析常用的机械优化设计方法,包括无约束优化设计方法、约束优化设计方法、基因遗传算方法等并提出评判的主 要性能指标。 【关键词】机械;优化设计;方法特点;评价指标 一、机械优化概述 机械优化设计是适应生产现代化要求发展起来的一门科学,它包括机械优化设计、机械零部件优化设计、机械结构参数和形状的优化设计等诸多内容。该领域的研究和应用进展非常迅速,并且取得了可观的经济效益,在科技发达国家已将优化设计列为科技人员的基本职业训练项目。随着科技的发展,现代化机械优化设计方法主要以数学规划为核心,以计算机为工具,向着多变量、多目标、高效率、高精度方向发展。]1[ 优化设计方法的分类优化设计的类别很多,从不同的角度出发,可以做出各种不同的分类。按目标函数的多少,可分为单目标优化设计方法和多目标优化设计方法按维数,可分为一维优化设计方法和多维优化设计方法按约束情况,可分为无约束优化设计方法和约束优化设计方法按寻优途径,可分为数值法、解析法、图解法、实验法和情况研究法按优化设计问题能否用数学模型表达,可分为能用数学模型表达的优化设计问题其寻优途径为数学方法,如数学规划法、最优控制法等。 1.1 设计变量 设计变量是指在设计过程中进行选择并最终必须确定的各项独立参数,在优化过程中,这些参数就是自变量,一旦设计变量全部确定,设计方案也就完全确定了。设计变量的数目确定优化设计的维数,设计变量数目越多,设计空间的维数越大。优化设计工作越复杂,同时效益也越显著,因此在选择设计变量时。必须兼顾优化效果的显著性和优化过程的复杂性。

机械优化设计实验指导书

机械优化设计实验指导 书 Document number【AA80KGB-AA98YT-AAT8CB-2A6UT-A18GG】

《机械优化设计》 实验指导书 武秋敏编写 院系:印刷包装工程学院 专业:印刷机械 西安理工大学 二00七年九月 上机实验说明 【实验环境】 操作系统: Microsoft Windows XP 应用软件:Visual C++或TC。 【实验要求】 1、每次实验前,熟悉实验目的、实验内容及相关的基本理论知识。 2、无特殊要求,原则上实验为1人1组,必须独立完成。 3、实验所用机器最好固定,以便更好地实现实验之间的延续性和相关性,并便于检查。 4、按要求认真做好实验过程及结果记录。 【实验项目及学时分配】 【实验报告和考核】 1、实验报告必需采用统一的实验报告纸,撰写符合一定的规范,详见实验报告撰写格式及规范。

(一)预习准备部分 1. 预习本次实验指导书中一、二、三部分内容。 2. 按照程序框图试写出汇编程序。 (二)实验过程部分 1. 写出经过上机调试后正确的程序,并说明程序的功能、结构。 2. 记录4000~40FFH内容在执行程序前后的数据结果。 3. 调试说明,包括上机调试的情况、上机调试步骤、调试所遇到的问题是如何解决的,并对调试过程中的问题进行分析,对执行结果进行分析。 (三)实验总结部分

实验(一) 【实验题目】 一维搜索方法 【实验目的】 1.熟悉一维搜索的方法-黄金分割法,掌握其基本原理和迭代过程; 2.利用计算语言(C语言)编制优化迭代程序,并用给定实例进行迭代验证。 【实验内容】 1.根据黄金分割算法的原理,画出计算框图; 2.应用黄金分割算法,计算:函数F(x)=x2+2x,在搜索区间-3≤x≤5时,求解其极小点X*。 【思考题】 说明两种常用的一维搜索方法,并简要说明其算法的基本思想。 【实验报告要求】 1.预习准备部分:给出实验目的、实验内容,并绘制程序框图; 2.实验过程部分:编写上机程序并将重点语句进行注释;详细描述程序的调过程(包括上机调试的情况、上机调试步骤、调试所遇到的问题是如何解决的,并对调试过程中的问题进行分析。 3.实验总结部分:对本次实验进行归纳总结,给出求解结果。要求给出6重迭代中a、x1、x2、b、y1和y2的值,并将结果与手工计算结果进行比较。 4.回答思考题。

最优化课程设计--共轭梯度法算法分析与实现

最优化课程设计--共轭梯度法算法分析与实现(设计程序) 题目共轭梯度法算法分析与实现 班级 / 学号 14140101/2011041401011 学生姓名黄中武指导教师王吉波王微微 课程设计任务书 课程名称最优化方法课程设计院(系) 理学院专业信息与计算科学 课程设计题目共轭梯度法算法分析与实现课程设计时间: 2014 年 6月 16日至 2014 年 6月 27日 课程设计的要求及内容: [要求] 1. 学习态度要认真,要积极参与课程设计,锻炼独立思考能力; 2. 严格遵守上机时间安排; 3. 按照MATLAB编程训练的任务要求来编写程序; 4. 根据任务书来完成课程设计论文; 5. 报告书写格式要求按照沈阳航空航天大学“课程设计报告撰写规范”; 6. 报告上交时间:课程设计结束时上交报告; 7. 严禁抄袭行为,一旦发现,课程设计成绩为不及格。 一、运用共轭梯度法求解无约束最优化问题 要求:1)了解求解无约束最优化问题的共轭梯度法; 2)绘出程序流程图; 3)编写求解无约束最优化问题的共轭梯度法MATLAB程序; 4)利用编写文件求解某无约束最优化问题;

5)给出程序注释。 指导教师年月日 负责教师年月日 学生签字年月日 沈阳航空航天大学 课程设计成绩评定单 课程名称最优化理论与算法课程设计院(系) 理学院专业信息与计算科学课程设计题目共轭梯度法算法分析与实现学号 2011041401011 姓名黄中武指导教师评语: 课程设计成绩 指导教师签字 年月日 最优化方法课程设计沈阳航空航天大学课程设计用纸目录 目录 一、正 文 (1) 二、总结 ............................................................... 8 参考文 献 ............................................................... 9 附录 .. (10) 第 I 页 最优化方法课程设计沈阳航空航天大学课程设计用纸正文 一、正文 一无约束最优化问题的共轭梯度法

机械优化设计试卷期末考试及答案(补充版)

.. 第一、填空题 1.组成优化设计数学模型的三要素是 设计变量 、 目标函数 、 约束条件 。 2.函数()22121212,45f x x x x x x =+-+在024X ??=????点处的梯度为120-?? ? ??? ,海赛矩阵 为2442-?? ? ?-?? 3.目标函数是一项设计所追求的指标的数学反映,因此对它最基本的要能用 来评价设计的优劣,,同时必须是设计变量的可计算函数 。 4.建立优化设计数学模型的基本原则是确切反映 工程实际问题,的基础上力求简洁 。 5.约束条件的尺度变换常称 规格化,这是为改善数学模型性态常用的一种方法。 6.随机方向法所用的步长一般按 加速步长 法来确定,此法是指依次迭代的步 长按一定的比例 递增的方法。 7.最速下降法以 负梯度 方向作为搜索方向,因此最速下降法又称为 梯度法,其收 敛速度较 慢 。 8.二元函数在某点处取得极值的充分条件是()00f X ?=必要条件是该点处的海赛矩阵正定 9.拉格朗日乘子法的基本思想是通过增加变量将等式约束 优化问题变成 无 约束优化问题,这种方法又被称为 升维 法。 10改变复合形形状的搜索方法主要有反射,扩,收缩,压缩 11坐标轮换法的基本思想是把多变量 的优化问题转化为 单变量 的优化问题 12.在选择约束条件时应特别注意避免出现 相互矛盾的约束, ,另外应当尽量减少不必要的约束 。 13.目标函数是n 维变量的函数,它的函数图像只能在n+1, 空间中描述出来,为了在n 维空间中反映目标函数的变化情况,常采用 目标函数等值面 的方法。 14.数学规划法的迭代公式是 1 k k k k X X d α+=+ ,其核心是 建立搜索方向, 和 计算最佳步长 15协调曲线法是用来解决 设计目标互相矛盾 的多目标优化设计问题的。 16.机械优化设计的一般过程中, 建立优化设计数学模型 是首要和关键的一步,它是取得正确结果的前提。

(完整版)机械优化设计试卷期末考试及答案

第一、填空题 1.组成优化设计的数学模型的三要素是 设计变量 、目标函数 和 约束条件 。 2.可靠性定量要求的制定,即对定量描述产品可靠性的 参数的选择 及其 指标的确定 。 3.多数产品的故障率随时间的变化规律,都要经过浴盆曲线的 早期故障阶段 、 偶然故障阶段 和 耗损故障阶段 。 4.各种产品的可靠度函数曲线随时间的增加都呈 下降趋势 。 5.建立优化设计数学模型的基本原则是在准确反映 工程实际问题 的基础上力求简洁 。 6.系统的可靠性模型主要包括 串联模型 、 并联模型 、 混联模型 、 储备模型 、 复杂系统模型 等可靠性模型。 7. 函数f(x 1,x 2)=2x 12 +3x 22-4x 1x 2+7在X 0=[2 3]T 点处的梯度为 ,Hession 矩阵为 。 (2.)函数()22121212,45f x x x x x x =+-+在024X ??=????点处的梯度为120-?? ????,海赛矩阵为2442-???? -?? 8.传统机械设计是 确定设计 ;机械可靠性设计则为 概率设计 。 9.串联系统的可靠度将因其组成单元数的增加而 降低 ,且其值要比可靠 度 最低 的那个单元的可靠度还低。 10.与电子产品相比,机械产品的失效主要是 耗损型失效 。 11. 机械可靠性设计 揭示了概率设计的本质。 12. 二元函数在某点处取得极值的充分条件是()00f X ?=必要条件是该点处的海赛矩阵正定。 13.对数正态分布常用于零件的 寿命疲劳强度 等情况。 14.加工尺寸、各种误差、材料的强度、磨损寿命都近似服从 正态分布 。 15.数学规划法的迭代公式是 1k k k k X X d α+=+ ,其核心是 建立搜索方向, 模型求解 两方面的内容。 17.无约束优化问题的关键是 确定搜索方向 。 18.多目标优化问题只有当求得的解是 非劣解 时才有意义,而绝对最优解存在的可能性很小。 19.可靠性设计中的设计变量应具有统计特征,因而认为设计手册中给出的数据

机械优化设计实验指导书

前言 机械优化设计是一门实践性很强的课程,必须通过实际上机操作运用各种优化方法程序来达到: 1、加深对机械优化设计方法的基本理论和算法步骤的理解; 2、培养独立编制计算机程序的能力; 3、掌握常用优化方法程序的使用; 4、培养灵活运用优化方法解决工程设计问题的能力。 因此,本课程在课堂教学过程中安排适当的时间上计算机运算。本书作为上机实验的指导书,旨在对每次实验目的内容提出具体要求,并加以考核。 实验报告内容 每次上机实验后,学生要做一份完整的实验报告,实验报告内容应包括: 1、优化方法的基本原理简述; 2、自编优化方法源程序。 3、考核题的优化结果及其分析; 4、具体工程设计问题的数学模型、优化设计结果及其分析。

实验一 一维搜索方法(黄金分割法或二次插值法) 1、 目的:加深对一维搜索方法的确定区间的进退法和缩短区间的黄金分割法或二次插值法基本原理的理解 2、 内容:按所给程序框图编制上机程序,上机输入、调试并运行程序,或调试并运行已给程序,用所给考核题进行检验。 3、 考核题(α0=0,h 0=0.1, ε=0.001) (1) 36102+-=t t )t (f min (2) 60645234+-+-=t t t t )t (f min (3) 221)t )(t ()t (f min -+= (4) x e x )x (f min -+=22 (5) 求函数4321322123141x x x x x x x x x x )X (f +--=自点T k ),,,(X 3210---=出发,沿方向T ),,,(4321=d 的最优步长因子α× 和在d 方向的极小点X *和极小值f(X *)。

机械优化设计复习总结.doc

1. 优化设计问题的求解方法:解析解法和数值近似解法。解析解法是指优化对象用数学方程(数学模型)描述,用 数学 解析方法的求解方法。解析法的局限性:数学描述复杂,不便于或不可能用解析方法求解。数值解法:优 化对象无法用数学方程描述,只能通过大量的试验数据或拟合方法构造近似函数式,求其优化解;以数学原理 为指导,通过试验逐步改进得到优化解。数值解法可用于复杂函数的优化解,也可用于没有数学解析表达式的 优化问题。但不能把所有设计参数都完全考虑并表达,只是一个近似的数学描述。数值解法的基本思路:先确 定极小点所在的搜索区间,然后根据区间消去原理不断缩小此区间,从而获得极小点的数值近似解。 2. 优化的数学模型包含的三个基本要素:设计变量、约束条件(等式约束和不等式约束)、目标函数(一般使得目 标 函数达到极小值)。 3. 机械优化设计中,两类设计方法:优化准则法和数学规划法。 优化准则法:x ;+, = c k x k (为一对角矩阵) 数学规划法:X k+x =x k a k d k {a k \d k 分别为适当步长\某一搜索方向一一数学规划法的核心) 4. 机械优化设计问题一般是非线性规划问题,实质上是多元非线性函数的极小化问题。重点知识点:等式约束优 化问 题的极值问题和不等式约束优化问题的极值条件。 5. 对于二元以上的函数,方向导数为某一方向的偏导数。 函数沿某一方向的方向导数等于函数在该点处的梯度与这一方向单位向量的内积。梯度方向是函数值变化最快的方 向(最速上升方向),建议用单位向暈表示,而梯度的模是函数变化率的最大值。 6. 多元函数的泰勒展开。 7. 极值条件是指目标函数取得极小值吋极值点应满足的条件。某点取得极值,在此点函数的一阶导数为零,极值 点的 必要条件:极值点必在驻点处取得。用函数的二阶倒数来检验驻点是否为极值点。二阶倒数大于冬,取得 极小值。二阶导数等于零时,判断开始不为零的导数阶数如果是偶次,则为极值点,奇次则为拐点。二元函数 在某点取得极值的充分条件是在该点岀的海赛矩阵正定。极值点反映函数在某点附近的局部性质。 8. 凸集、凸函数、凸规划。凸规划问题的任何局部最优解也就是全局最优点。凸集是指一个点集或一个区域内, 连接 英中任意两点的线段上的所有元素都包含在该集合内。性质:凸集乘上某实数、两凸集相加、两凸集的交 集仍是凸集。凸函数:连接凸集定义域内任意两点的线段上,函数值总小于或等于用任意两点函数值做线性内 插所得的值。数学表达:/[^+(l-a )x 2]

09-10机械优化设计试卷期末考试及答案

第一、填空题 1.组成优化设计数学模型的三要素是 设计变量 、 目标函数 、 约束条件 。 2.函数()2 2 121 212,45f x x x x x x =+-+在024X ??=????点处的梯度为120-?? ???? ,海赛矩阵 为2442-????-?? 3.目标函数是一项设计所追求的指标的数学反映,因此对它最基本的要求是能用 来评价设计的优劣,,同时必须是设计变量的可计算函数 。 4.建立优化设计数学模型的基本原则是确切反映 工程实际问题,的基础上力求简洁 。 5.约束条件的尺度变换常称 规格化,这是为改善数学模型性态常用的一种方法。 6.随机方向法所用的步长一般按 加速步长 法来确定,此法是指依次迭代的步 长按一定的比例 递增的方法。 7.最速下降法以 负梯度 方向作为搜索方向,因此最速下降法又称为 梯 度法,其收敛速度较 慢 。 8.二元函数在某点处取得极值的充分条件是()00f X ?=必要条件是该点处的海赛矩阵正定 9.拉格朗日乘子法的基本思想是通过增加变量将等式约束 优化问题变成 无 约束优化问题,这种方法又被称为 升维 法。 10改变复合形形状的搜索方法主要有反射,扩张,收缩,压缩 11坐标轮换法的基本思想是把多变量 的优化问题转化为 单变量 的优化问题 12.在选择约束条件时应特别注意避免出现 相互矛盾的约束, ,另外应当尽量减少不必要的约束 。 13.目标函数是n 维变量的函数,它的函数图像只能在n+1, 空间中描述出来,为了在n 维空间中反映目标函数的变化情况,常采用 目标函数等值面 的方法。 14.数学规划法的迭代公式是 1k k k k X X d α+=+ ,其核心是 建立搜索方向, 和 计算最佳步长 15协调曲线法是用来解决 设计目标互相矛盾 的多目标优化设计问题的。

机械优化设计方法基本理论

机械优化设计方法基本理论 一、机械优化概述 机械优化设计是适应生产现代化要求发展起来的一门科学,它包括机械优化设计、机械零部件优化设计、机械结构参数和形状的优化设计等诸多内容。该领域的研究和应用进展非常迅速,并且取得了可观的经济效益,在科技发达国家已将优化设计列为科技人员的基本职业训练项目。随着科技的发展,现代化机械优化设计方法主要以数学规划为核心,以计算机为工具,向着多变量、多目标、高效率、高精度方向发展。]1[ 优化设计方法的分类优化设计的类别很多,从不同的角度出发,可以做出各种不同的分类。按目标函数的多少,可分为单目标优化设计方法和多目标优化设计方法按维数,可分为一维优化设计方法和多维优化设计方法按约束情况,可分为无约束优化设计方法和约束优化设计方法按寻优途径,可分为数值法、解析法、图解法、实验法和情况研究法按优化设计问题能否用数学模型表达,可分为能用数学模型表达的优化设计问题其寻优途径为数学方法,如数学规划法、最优控制法等 1.1 设计变量 设计变量是指在设计过程中进行选择并最终必须确定的各项独立参数,在优化过程中,这些参数就是自变量,一旦设计变量全部确定,设计方案也就完全确定了。设计变量的数目确定优化设计的维数,设计变量数目越多,设计空间的维数越大。优化设计工作越复杂,同时效益也越显著,因此在选择设计变量时。必须兼顾优化效果的显著性和优化过程的复杂性。 1.2 约束条件 约束条件是设计变量间或设计变量本身应该遵循的限制条件,按表达方式可分为等式约束和不等式约束。按性质分为性能约束和边界约束,按作用可分为起作用约束和不起作用约束。针对优化设计设计数学模型要素的不同情况,可将优化设计方法分类如下。约束条件的形式有显约束和隐约束两种,前者是对某个或某组设计变量的直接限制,后者则是对某个或某组变量的间接限制。等式约束对设计变量的约束严格,起着降低设计变量自由度的作用。优化设计的过程就是在设计变量的允许范围内,找出一组优化的设计变量值,使得目标函数达到最优值。

机械优化设计试卷期末考试及答案教程文件

机械优化设计试卷期末考试及答案

第一、填空题 1.组成优化设计数学模型的三要素是 设计变量 、 目标函数 、 约束条件 。 2.函数()2 2 121 212,45f x x x x x x =+-+在024X ?? =???? 点处的梯度为120-??????,海赛矩阵 为2442-????-?? 3.目标函数是一项设计所追求的指标的数学反映,因此对它最基本的要求是能用 来评价设计的优劣,,同时必须是设计变量的可计算函数 。 4.建立优化设计数学模型的基本原则是确切反映 工程实际问题,的基础上力求简洁 。 5.约束条件的尺度变换常称 规格化,这是为改善数学模型性态常用的一种方法。 6.随机方向法所用的步长一般按 加速步长 法来确定,此法是指依次迭代的步 长按一定的比例 递增的方法。 7.最速下降法以 负梯度 方向作为搜索方向,因此最速下降法又称为 梯度 法,其收敛速度较 慢 。 8.二元函数在某点处取得极值的充分条件是()00f X ?=必要条件是该点处的海赛矩阵正定 9.拉格朗日乘子法的基本思想是通过增加变量将等式约束 优化问题变成 无 约束优化问题,这种方法又被称为 升维 法。 10改变复合形形状的搜索方法主要有反射,扩张,收缩,压缩 11坐标轮换法的基本思想是把多变量 的优化问题转化为 单变量 的优化问题 12.在选择约束条件时应特别注意避免出现 相互矛盾的约束, ,另外应当尽量减少不必要的约束 。 13.目标函数是n 维变量的函数,它的函数图像只能在n+1, 空间中描述出来,为了在n 维空间中反映目标函数的变化情况,常采用 目标函数等值面 的方法。

机械优化设计实例讲解学习

机械优化设计实例 压杆的最优化设计 压杆是一根足够细长的直杆,以学号为p值,自定义有设计变量的 尺寸限制值,求在p一定时d1、d2和l分别取何值时管状压杆的体积或重 量最小?(内外直径分别为d1、d2)两端承向轴向压力,并会因轴向压力 达到临界值时而突然弯曲,失去稳定性,所以,设计时,应使压应力不 超过材料的弹性极限,还必须使轴向压力小于压杆的临界载荷。 解:根据欧拉压杆公式,两端铰支的压杆,其临界载荷为:I——材料的惯性矩,EI为抗弯刚度 1、设计变量 现以管状压杆的内径d1、外径d2和长度l作为设计变量 2、目标函数 以其体积或重量作为目标函数 3、约束条件 以压杆不产生屈服和不破坏轴向稳定性,以及尺寸限制为约束条件,在外力为p的情况下建立优化模型: 1) 2)

3) 罚函数: 传递扭矩的等截面轴的优化设计解:1、设计变量: 2、目标函数

以轴的重量最轻作为目标函数: 3、约束条件: 1)要求扭矩应力小于许用扭转应力,即: 式中:——轴所传递的最大扭矩 ——抗扭截面系数。对实心轴 2)要求扭转变形小于许用变形。即: 扭转角: 式中:G——材料的剪切弹性模数 Jp——极惯性矩,对实心轴: 3)结构尺寸要求的约束条件: 若轴中间还要承受一个集中载荷,则约束条件中要考虑:根据弯矩联合作用得出的强度与扭转约束条件、弯曲刚度的约束条件、对于较重要的和转速较高可能引起疲劳损坏的轴,应采用疲劳强度校核的安全系数法,增加一项疲劳强度不低于许用值的约束条件。

二级齿轮减速器的传动比分配 二级齿轮减速器,总传动比i=4,求在中心距A最小下如何 分配传动比?设齿轮分度圆直径依次为d1、d2、d3、d4。第一、二 级减速比分别为i1、i2。假设d1=d3,则: 七辊矫直实验 罚函数法是一种对实际计算和理论研究都非常有价值的优化方法,广泛用来求解约束问题。其原理是将优化问题中的不等式约束和等式约束加权转换后,和原目标函数结合成新的目标函数,求解该新目标函数的无约束极小值,以期得到原问题的约束最优解。考虑到本优化程序要处理的是一个兼而有之的问题,故采用混合罚函数法。 一)、优化过程 (1)、设计变量 以试件通过各矫直辊时所受到的弯矩为设计变量: (2)、目标函数

机械优化设计期末考试试卷

2.函数 f (x 1, x 2 ) = x 12 + x 22 - 4x 1x 2 + 5 在 X 0 = ? ? 点处的梯度为 ? ? ,海赛矩阵 为 ? ? 机械优化设计期末复习题 一、填空题 1.组成优化设计数学模型的三要素是 设计变量 、 目标函数 、 约束条件 。 ?2? ?-12? ?4? ? 0 ? ? 2 ?-4 -4? 2 ? 3.目标函数是一项设计所追求的指标的数学反映,因此对它最基本的要 求是能用来评价设计的优劣,,同时必须是设计变量的可计算函数 。 4.建立优化设计数学模型的基本原则是确切反映 工程实际问题,的 基础上力求简洁 。 5.约束条件的尺度变换常称 规格化,这是为改善数学模型性态常用的一 种方法。 6.随机方向法所用的步长一般按 加速步长 法来确定,此法是指依次 迭代的步长按一定的比例 递增的方法。 7.最速下降法以 负梯度 方向作为搜索方向,因此最速下降法又称为 梯度法,其收敛速度较 慢 。 8.二元函数在某点处取得极值的必要条件是 ?f (X 0 ) = 0 , 充分条件是该 点处的海赛矩阵正定 9.拉格朗日乘子法的基本思想是通过增加变量将等式约束 优化问题 变成 无约束优化问题,这种方法又被称为 升维 法。 10 改变复合形形状的搜索方法主要有反射,扩张,收缩,压缩 11 坐标轮换法的基本思想是把多变量 的优化问题转化为 单变量 的优 化问题 12.在选择约束条件时应特别注意避免出现 相互矛盾的约束, ,另 外应当尽量减少不必要的约束 。 13.目标函数是 n 维变量的函数,它的函数图像只能在 n+1, 空间中描

《机械优化设计》试卷及答案

《机械优化设计》复习题及答案 、填空题 1、用最速下降法求f(X)=100(x2- X12) 2+(1- x i) 2的最优解时,设X (°)=[-0.5,0.5]T,第一 步迭代的搜索方向为[-47;-50]_________________ 。 2、机械优化设计采用数学规划法,其核心一是建立搜索方向二是计算最佳步长因 子 ________ 。 3、当优化问题是—凸规划______ 的情况下,任何局部最优解就是全域最优解。 4、应用进退法来确定搜索区间时,最后得到的三点,即为搜索区间的始点、中间点和 终点,它们的函数值形成高-低-高___________ 趋势。 5、包含n个设计变量的优化问题,称为__n _______ 维优化问题。 1 6、函数—X T HX B T X C的梯度为HX+B 。 2 7、设G为n>n对称正定矩阵,若n维空间中有两个非零向量d0,d1,满足(d°)T Gd—=0, 则d0、d1之间存在—共轭 ______ ■关系。 8、设计变量、约束条件______________ 、目标函数________________ 是优化设计问题数学模型的基本要素。 9、对于无约束二元函数f(X1,X2),若在X°(X10,X20)点处取得极小值,其必要条件是_梯度为 零,充分条件是海塞矩阵正定 ______________ 。 10、 ________________ 条件可以叙述为在极值点处目标函数的梯度为起作 用的各约束函数梯度的非负线性组合。 11、用黄金分割法求一元函数f (x) x2 10x 36的极小点,初始搜索区间 [a,b] [ 10,10],经第一次区间消去后得到的新区间为[-2.36236] 。 12、优化设计问题的数学模型的基本要素有设_________ 、 13、牛顿法的搜索方向d k= ______ ,其计算量大,且要求初始点在极小点逼近位置。 14、将函数f(X)=x 12+X22-X1X2-10x1-4x2+60 表示成-X T HX B T X C 的形 2 式 ________________________ 。 15、存在矩阵H,向量d1,向量d2,当满足(d1)TGd2=0 ,向量d1和向量d2是关于H共轭。 16、采用外点法求解约束优化问题时,将约束优化问题转化为外点形式时引入的惩罚因 子r数列,具有____________ 由小到大趋于无穷 ________________ 特点。 17、采用数学规划法求解多元函数极值点时,根据迭代公式需要进行一维搜索,即 求 _____________ 。

机械优化设计习题及答案

机械优化设计习题及参考答案 1-1.简述优化设计问题数学模型的表达形式。 答:优化问题的数学模型是实际优化设计问题的数学抽象。在明确设计变量、约束条件、目标函数之后,优化设计问题就可以表示成一般数学形式。求设计变量向量[]12T n x x x x =L 使 ()min f x → 且满足约束条件 ()0 (1,2,)k h x k l ==L ()0 (1,2,)j g x j m ≤=L 2-1.何谓函数的梯度?梯度对优化设计有何意义? 答:二元函数f(x 1,x 2)在x 0点处的方向导数的表达式可以改写成下面的形式:??? ?????????????=??+??= ??2cos 1cos 212cos 21cos 1θθθθxo x f x f xo x f xo x f xo d f ρ 令xo T x f x f x f x f x f ?? ????????=????=?21]21[)0(, 则称它为函数f (x 1,x 2)在x 0点处的梯度。 (1)梯度方向是函数值变化最快方向,梯度模是函数变化率的最大值。 (2)梯度与切线方向d 垂直,从而推得梯度方向为等值面的法线方向。梯度)0(x f ?方向为函数变化率最大方向,也就是最速上升方向。负梯度-)0(x f ?方向为函数变化率最小方向,即最速下降方向。 2-2.求二元函数f (x 1,x 2)=2x 12+x 22-2x 1+x 2在T x ]0,0[0=处函数变化率最 大的方向和数值。 解:由于函数变化率最大的方向就是梯度的方向,这里用单位向量p 表示,函数变化率最大和数值时梯度的模)0(x f ?。求f (x1,x2)在

机械优化设计实验指导书(114830)讲解学习

机械优化设计实验指导书 实验一用外推法求解一维优化问题的搜索区间 一、实验目的: 1、加深对外推法(进退法)的基本理论和算法步骤的理解。 2、培养学生独立编制、调试机械优化算法程序的能力。 3、培养学生灵活运用优化设计方法解决工程实际问题的能力。 二、主要设备及软件配置 硬件:计算机(1台/人) 软件:VC6.0(Turbo C) 三、算法程序框图及算法步骤 图1-1 外推法(进退法)程序框图

算法程序框图:如图1-1所示。 算法步骤:(1)选定初始点a1=0, 初始步长h=h0,计算 y1=f(a1), a2=a1+h,y2=f(a2)。 (2)比较y1和y2: (a)如y1≤y2, 向右前进;,转(3); (b)如y2>y1, 向左后退;h=-h,将a1与a2,y1与y2的 值互换。转(3)向后探测; (3)产生新的探测点a3=a2+h,y3=f(a3); (4) 比较函数值 y2和y3: (a)如y2>y3, 加大步长 h=2h ,a1=a2, a2=a3,转(3)继续 探测。 (b)如y2≤y3,则初始区间得到:a=min[a1,a3], b=max[a3,a1],函数最小值所在的区间为[a, b] 。 四、实验内容与结果分析 1、根据算法程序框图和算法步骤编写计算机程序; 2、求解函数f(x)=3x2-8x+9的搜索区间,初始点a1=0,初始步长h0=0.1; 3、如果初始点a1=1.8,初始步长h0=0.1,结果又如何? 4、试分析初始点和初始步长的选择对搜索计算的影响。

实验二用黄金分割法求解一维搜索问题 一、实验目的: 1、加深对黄金分割法的基本理论和算法步骤的理解。 2、培养学生独立编制、调试机械优化算法程序的能力。 3、培养学生灵活运用优化设计方法解决工程实际问题的能力。 二、主要设备及软件配置 硬件:计算机(1台/人) 软件:VC6.0(Turbo C) 三、算法程序框图及算法步骤 图1-2 黄金分割法程序框图 算法程序框图:如图1-2所示。 算法步骤: 1)给出初始搜索区间[a,b]及收敛精度ε,将λ赋以0.618。

机械优化设计复习总结

10. 1. 优化设计问题的求解方法:解析解法和数值近似解法。解析解法是指优化对象用数学方程(数学模型)描述,用数学解析 方法的求解方法。解析法的局限性:数学描述复杂,不便于或不可能用解析方法求解。数值解法:优化对象无法用数学 方程描述,只能通过大量的试验数据或拟合方法构造近似函数式,求其优化解;以数学原理为指导,通过试验逐步改进 得到优化解。数值解法可用于复 杂函数的优化解,也可用于没有数学解析表达式的优化问题。但不能把所有设计参数都 完全考虑并表达,只是一个近似的数学描述。数值解法的基本思路:先确定极小点所在的搜索区间,然后根据区间消去 原理不断缩小此区间,从而获得极小点的数值近似解。 2. 优化的数学模型包含的三个基本要素:设计变量、约束条件(等式约束和不等式约束)、目标函数(一般使得目标函 数达到极小值)。 3. 机械优化设计中, 两类设计方法:优化准则法和数学规划法。 k 1 k k 优化准则法:X c X (为一对角矩阵) k 1 数学规划法:X k 1 k k k X k d ( k d 分别为适当步长某一搜索方向一一数学规划法的核心) 4. 机械优化设计问题一般是非线性规划问题, 实质上是多元非线性函数的极小化问题。 的极值问题和不等式约束优化问题的极值条件。 5. 对于二元以上的函数,方向导数为某一方向的偏导数。 重点知识点:等式约束优化问题 f | X o *kCOS i d i 1 X i 函数沿某一方向的方向导数等于函数在该点处的梯度与这一方向单位向量的内积。 速上升方向),建议用 单位向量 表示,而梯度的模是函数变化率的最大值。 6. 梯度方向是函数值变化最快的方向 (最 7. 8. 9. 多元函数的泰勒展开。 f X f x 0 T f X o -X T G X o 2 f X o f X i f X 2 X , X 2 1 2 X1 X 2 2f 2f 为X 2 2 f X 1 X 2 X 1 2 f X 2 -- 2 X 2 海赛矩阵: x o 2 f ~2 X 1 2 f 2 f X l X 2 X 1 X 2 2 f 2 X 2 (对称方 阵) 极值条件是指目标函数取得极小值时极值点应满足的条件。 某点取得极值, 要条件:极值点必在驻点处取得。用函数的二阶倒数来检验驻点是否为极值点。 导数等于零时,判断开始不为零的导数阶数如果是偶次,则为极值点, 在此点函数的一阶导数为零, 极值点的必 二阶倒数大于零,取得极小值 。二阶 奇次 则为拐点。二元函数在某点取得极值的充 分条件是在该点岀的海赛矩阵正定。 极值点反映函数在某点附近的局部性质 凸集、凸函数、凸规划。 凸规划问题的任何局部最优解也就是全局最优点 中任意两点 的线段上的所有元素都包含在该集合内。 凸函数:连接凸集定义域内任意两点的线段上, 。凸集是指一个点集或一个区域内,连接其 性质: 凸集乘上某实数、两凸集相加、两凸集的交集仍是凸集。 函数值总小于或等于用任意两点函数值做线性内插所得的值。 数学表 达:f ax, 1 a x 2 f X i f X 2 0 1,若两式均去掉等号,则 f X 称作严格凸函数。凸 函数同样满足倍乘, 加法和倍乘加仍为凸函数的三条基本性质。 优化问题。 等式约束优化问题的极值条件。两种处理方法:消元法和拉格朗日乘子法。也分别称作降维法和升维法。消元法 等式约束条件的一个变量表示成另一个变量的函数。减少了变量的个数。拉格朗日乘子法是通过增加变量 约束优化问题变成无约束优化问题,增加了变量的个数。 不等式约束优化问题的极值条件。不等式约束的多元函数极值的必要条件为库恩塔克条件。库恩塔克条件: 凸规划针对目标函数和约束条件均为凸函数是的约束 :将 将等式

相关文档
相关文档 最新文档