文档视界 最新最全的文档下载
当前位置:文档视界 › 金银花中黄酮类物质最佳提取工艺的研究

金银花中黄酮类物质最佳提取工艺的研究

金银花中黄酮类物质最佳提取工艺的研究
金银花中黄酮类物质最佳提取工艺的研究

维普资讯 https://www.docsj.com/doc/c313297848.html,

植物提取物抗氧化成分及研究进展

植物提取物抗氧化原理及成分研究 抗氧化是抗氧化自由基的简称。因为人体常与外界接触,平时的呼吸、外界污染、放射线照射等因素会导致人体内产生自由基,过量的自由基会导致人体癌症、衰老和其它疾病,而抗氧化自由基(以下简称“抗氧化”)可以有效克服这些危害。因此,抗氧化已成为保健品和化妆品市场的主要研究课题之一。 本文从多种类植物提取物抗氧化成分及其原理出发,阐述了各界近年来利用植物对抗自由基的研究进展。 一、植物提取物抗氧化原理 不同的植物提取的有效成分不尽相同,同样,抗氧化作用的植物提取物也有很多不同成分,其作用机理也有所区别,西安源森生物从以下几方面进行了总结阐述: (一)作用于与自由基有关的酶 与自由基有关的酶类分为氧化酶与抗氧化酶两类,植物提取物的抗氧化作用体现在抑制相关氧化酶的活性和增强抗氧化酶活性两方面。 1. 抑制氧化酶的活性 生物体内许多氧化酶,如P-450 酶、黄嘌呤氧化酶(XOD)、脂氧化酶、髓过氧化酶(MPO)和环氧酶等,与自由基的生成有关,能诱发大量的自由基。 另外,诱导型一氧化氮合成酶(iNOS)在缺血再灌注时活性增加,产生大量NO而导致氧化损伤。 研究表明,许多植物提取物对上述各种氧化酶有抑制作用,从源头抑制自由基生成。黄酮类化合物中的槲皮素、姜黄素在缺血再灌注损伤时可抑制iNOS 的活性,从而起到抗氧化作用;绞股蓝皂苷可以降低异常增高的XOD 和MPO 的活性,改善糖尿病大鼠肾脏的氧化应激,延缓肾脏损害的进展。 2. 增强抗氧化酶活性 机体存在具有防护、清除和修复过量自由基伤害的抗氧化酶类,如过氧化氢酶(CAT)、谷胱甘肽过氧化物酶(GSH-Px)、超氧化物歧化酶(SOD)和过氧化物酶等。SOD 是体内超氧阴离子的主要清除者,将其催化分解为H2O2,但H2O2也具有氧化损伤作用,CAT 将其转化为O2和H2O。同时H2O2也可通过GSH-Px 的催化和还原型谷胱甘肽(GSH)反应生成H2O,同时生成氧化型谷胱甘肽。 许多研究表明,植物提取抗氧化成分不仅能防护体内抗氧化酶,还能增强机体内抗氧化酶活性,如黄酮类中的槲皮素能减少胰岛β细胞的氧化损伤,同时还能恢复Fe2+致肾细胞损伤动物的SOD、GSH-Px 和CAT 的活力;皂苷类物质对氧自由基本身影响较少,但大多能提高体内SOD、CAT 等抗氧化酶的活性,从而增强机体抗氧化系统功能。 此外,一些天然物质可在基因与转录水平上诱导体内抗氧化酶如SOD 的表达,发挥其抗氧化作用。 (二)抗氧化成分之间互补和协同作用 植物提取物抗氧化成分之间存在相互补充、相互协调的关系,在体内通过电子和/ 或质子转移、作用于氧化酶和抗氧化酶、螯合钝化过渡金属离子、影响基因表达等途径联合发挥抗氧化作用。 研究发现不同浓度的茶多酚和西洋参之间均存在明显的协同增效作用,并且随着浓度上升,协同增效作用也相应增强。VE 和VC对鹰嘴豆抗氧化多肽的还原能力有显著的增效作用,且VC与鹰嘴豆抗氧化多肽的协同作用较VE更强,所有的协同作用随添加量和作用时间的增加而增强。 (三)直接清除或抑制自由基 植物提取物能够作为氢质子或电子的供给体,直接猝灭或抑制自由基,终止自由基的连

准噶尔山楂叶总黄酮的超声波提取及抗氧化研究_任艳利

准噶尔山楂叶总黄酮的超声波提取及抗氧化研究 任艳利,张维,刘影 (伊犁师范学院化学与生物科学学院,新疆伊宁835000) 摘要[目的]为准噶尔山楂叶的综合利用和深度开发提供一定的参考。[方法]利用超声波法提取准噶尔山楂叶中的总黄酮,用总黄 酮提取率作为衡量提取工艺的指标,对影响超声波提取的多个因子进行单因素、正交试验分析。[结果]准噶尔山楂叶中的总黄酮的超声波提取最佳条件为:乙醇浓度80%,提取温度50?,提取时间50min ,提取功率75W ,总黄酮的得率高达84.50%;影响总黄酮得率的主次因素依次为:乙醇浓度>提取时间>提取功率>提取温度。[结论]准噶尔山楂叶总黄酮有较强的清除自由基能力,表现出明显的抗氧化性。 关键词超声波;准噶尔山楂叶;总黄酮;提取;抗氧化性中图分类号S122文献标识码A 文章编号0517-6611(2012)15-08710-03Study on the Ultrasonic Extraction and Antioxidative Activity of Total Flavonoids from Crataegus songorica K.Koch.Leaves REN Yan-li et al (College of Chemistry and Biological Science ,Yili Normal University ,Yining ,Xinjiang 835000) Abstract [Objective ]To provide references for the comprehensive utilization and deep processing of Crataegus songorica K.Koch leaves.[Method ]The total flavonoids were extracted from Crataegus songorica K.Koch leaves by ultrasonic wave ,and the impact factors were ana-lyzed by single factor and orthogonal experiments.[Result ]The best ultrasonic extraction conditions were 80%ethanol concentration ,50?extraction temperature ,50min extraction time and 75W extraction power ,under the conditions ,the yield of total flavonoids could reach up to 84.50%,and the influential degree of each impact factor decreased in the order of ethanol concentration >ultrasonic time >ultrasound power >ultrasonic temperature.[ Conclusion ]The total flavonoids from Crataegus songorica K.Koch leaves had strong radical scavenging ability and significant antioxidative activity. Key words Ultrasonic extraction ;Crataegus songorica K.Koch leaves ;Total flavonoids ;Extraction ;Antioxidative activity 作者简介 任艳利(1978-),女,河南偃师人,讲师,硕士,从事生物化 学与分子生物学研究, E-mail :ryl2003@126.com 。收稿日期2012-02-22黄酮类化合物是一类广泛存在于自然界的具有C -C 基本母核的一大类化合物 [1-2] ,总黄酮作为一种天然的植物提 取物,不仅有广泛的药理作用,还具有低毒安全的特性。现代研究表明, 黄酮类化合物有明显的抗氧化、抗炎、抑菌、抗癌及降血脂等生物活性,已广泛应用于食品和医药行业[3-4] 。准噶尔山楂(Crataegus songorica K.Koch.)是蔷薇科蔷薇属的植物, 在新疆伊犁州霍城县大、小西沟有大量分布 [5-6] 。笔者采用超声波法提取准噶尔山楂叶中的总黄酮, 探讨了准噶尔山楂叶中总黄酮提取工艺的影响因素,通过单因素和正交试验法得出超声波提取的优化条件,并对总黄酮的抗氧化性进行了探讨,为准噶尔山楂叶的综合利用和深度开发提供一定的参考[7-9] 。 1材料与方法1.1 材料 以采自霍城县大、小西沟的准噶尔山楂叶为材 料,自然避光干燥,用粉碎机粉碎为粉末后备用。722型紫外可见分光光度计,上海光谱仪器有限公司;HHS 型电热恒温水浴锅, 上海博远实业有限公司医疗设备厂;FA1004.MAX100g 电子天平,上海天平仪器厂;TGL-18M ,台式高速冷冻离心机,上海安亭科学仪器公司;DILON99-IID 型超声波细胞粉碎机,西安比朗仪器公司;RE-52AA 旋转蒸发器,上海亚荣生化仪器厂;DZF-6020真空干燥箱,上海和呈仪器制造有限公司。1.2方法 1.2.1 准噶尔山楂叶总黄酮的提取。称取一定质量的准噶 尔山楂叶粉, 用不同体积分数的乙醇作溶剂,在超声波细胞粉碎机中提取,抽滤。将抽滤液用旋转蒸发仪浓缩,浓缩液 再经氯仿萃取、 醇沉、过滤后,将滤液浓缩成膏状,置于真空干燥箱中干燥,得到准噶尔山楂叶总黄酮测试样品。1.2.2 标准曲线的绘制。先用甲醇将烘干的标准品芦丁配 制成浓度1.128、0.940、0.752、0.564、0.376、0.188mg /ml 的标准溶液 [10] ,依次移取不同浓度的标准液1ml 分别置于带 刻度的10ml 试管中,各加甲醇至5ml ,分别加入5%NaNO 2溶液0.5ml ,摇匀,室温放置6min ,再加10%Al (NO 3)3溶液0.5ml ,摇匀,室温放置6min ,加4%NaOH 溶液4.0ml ,摇匀,室温放置15min ,在波长500nm 测定吸光度,绘标准曲线(图1)。其回归方程为:A =1.0228X +0.0457(R 2=0.9986) 。 图1 总黄酮标准曲线 1.2.3 单因素试验。以准噶尔山楂叶总黄酮提取率为指 标,分别研究乙醇浓度、提取时间、料液比、提取温度、提取功率对准噶尔山楂叶总黄酮提取率的影响。1.2.4 正交试验。在单因素试验的基础上,对提取时间、料 液比、提取温度、提取功率进行4因素3水平正交试验设计分析各因素影响主次,确定其最优提取工艺。1.2.5 DPPH 法测定总黄酮对总自由基的清除作用[11]。 DPPH ·溶液的配制:准确称取0.1984g DPPH ·,用无水乙 责任编辑李菲菲责任校对李岩 安徽农业科学,Journal of Anhui Agri.Sci.2012,40(15):8710-8712

金银花有效成分提取技术研究

金银花有效成分提取技术研究 金银花(Lonicera japonica Thunb.)是忍冬科植物忍冬的干燥花蕾,具有清热解毒、通经活络、广谱抗菌抗病毒等功效,目前70%以上的消炎、感冒中成药中都含有金银花。随着对金银花研究的深入,人们逐渐认识到金银花浑身都是宝,其用途也越来越广泛,在医药产业、饮料食品产业、保健品产业及日用化工产业都有应用。 目前,对金银花有效成分的提取分离及应用还没有进入规模化生产阶段,因此有必要对其有效成分进行提取分离与应用,并进行深入产业化研究。为此,根据技术的成熟度、投入产出比、工业化可行性等因素,本研究筛选了挥发油、活性成分提取工艺进行优化比较研究。 采用共水蒸馏、超临界萃取、水提醇沉、超声辅助乙醇提取实验小试、中试及气相色谱-质谱联用、高效液相色谱法等多种现代技术手段,对金银花有效成分进行了提取、工艺优化与测定比较分析,获得最优工艺条件和评价指标体系。1.采用共水蒸馏法对金银花挥发油进行提取,原料使用量250 g,在5 L圆底烧瓶中进行提取,通过单因素试验和正交试验得到最佳提取工艺为:金银花粉碎度20目,5%盐溶液浸泡28 h,料液比1:10(g:mL),提取时间42 h,挥发油得率0.171%,产物为淡黄色蜡状固体,脂腊味较重;产物经过GC-MS分析,检测到金银花挥发油成分79种,其中脂肪酸类成分9种(占69.1%)、脂类成分17种(占16.83%)和烷烃类成分15种(占5.37%)最多,占总成分的91.3%。 2.采用超临界CO2萃取金银花挥发油,通过单因素试验和正交试验得到最佳萃取工艺为:萃取压力45 MPa,萃取温度45℃,静态萃取0.5 h,动态萃取1 h,CO2流量4 L/min,萃取得率2.0687%,产物为淡黄色至淡

黄酮类化合物提取方法的研究

黄酮类化合物提取方法的研究 发表时间:2019-07-23T09:36:27.620Z 来源:《医师在线(学术版)》2019年第10期作者:鲍兴隆[导读] 旨在研究黄酮类化合物的提取分离工艺,为选择合适的方法提供参考依据。 浙江大学校医院浙江杭州310000 摘要:近年来,随着对黄酮研究的深入,国内外对黄酮的研究也越来越重视,本文旨在研究黄酮类化合物的提取分离工艺,为选择合适的方法提供参考依据。通过对比黄酮类化合物传统及新型方法的总黄酮提取率发现,新型提取方法相对于传统提取法而言提取率具有明显优势,但新型提取技术对原料、设备、处理要求也相应提高,目前国内外研究相对偏少。 关键词:黄酮类化合物;微波提取;超临界流体萃取法 黄酮类化合物是一类存在于自然界的、具有2-苯基色原酮结构的化合物,泛指两个苯环通过三个碳原子或一个吡喃环或吡喃环连接而成的化合物,主要包括:黄酮和黄酮醇类、二氢黄酮和二氢黄酮醇、异黄酮类及二氢异黄酮类、查尔酮和二氢查耳酮类及花青素类等[1]。黄酮类化合物属植物次生代谢产物,在植物体内大部分与糖结合成苷类,小部分以苷元的形式存在,具有多种生物活性,有抗炎、抗氧化、抗肿瘤、抗衰老等药理活性,在医药、保健食品等行业中均有广泛的开发利用。对黄酮类化合物的提取有传统的超声波提取法等;以及新型的:微波提取法、超临界流体萃取法、双水相萃取法等。 1传统提取方法 1.1超声波提取法 超声波空化作用使植物细胞壁及整个生物体破裂,这样有利于黄酮类化合物的释放和溶出,另一方面可加速提取液的分子运动,使得提取液和苎麻叶中的黄酮类化合物快速接触,相互溶合、混合,此外超声波热效应也有利于水溶作用,有效缩短了提取时间。贺波[2]以“华苎4号”苎麻叶为原料,采用超声辅助提取法,通过单因素及正交实验,得出最佳的提取工艺条件是:液固比30:1,乙醇浓度70%,超声功率60W,超声时间30min,超声温度60℃,提取一次。在此工艺条件下苎麻叶中黄酮类化合物得率为4.94%。2新型提取方法 2.1微波提取法 微波提取法是微波转化成热能使细胞内部温度上升,当细胞内部压力超过细胞壁的承受能力,细胞破裂,其有效成分流出,在较低的温度条件下萃取介质捕获并溶解。此外,微波产生的电磁场还能加速被萃取部分成分向萃取溶剂界面扩散速率,缩短萃取组成的分子由物料内部扩散到萃取溶剂界面的时间。张海慧等[3]以黑穗醋栗为试材,进行单因素实验,在此基础上设计了四因素三水平正交试验。最后确定了微波辅助法提取黑穗醋栗黄酮的最佳条件为:以95%乙醇为溶剂,微波功率500W,微波65℃,提取8min,液料比10:1,此时提取率可达到0.738mg/g。张鹏等[4]通过实验得出银杏黄酮微波提取的最佳条件为乙醇浓度50%,料液比1:25,回流温度70℃,微波时间120s,在此条件下总黄酮提取率为11.02%。与传统方法相比,微波提取法具有省时、节约溶剂、提取率高等优点,有较大的推广价值。 2.2超临界流体萃取法 超临界流体萃取分离过程的原理是利用超临界流体的溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的。在超临界状态下,将超临界流体与待分离的物质接触,使其有选择性地把极性大小、沸点高低和分子量大小的成分依次萃取出来。余青等[5]采用单因素与正交试验对超临界CO2萃取具乌饭树叶总黄酮的工艺进行了研究,结果表明,最佳提取条件为:萃取压力18MPa,萃取时间1.5h,萃取温度50℃,夹带剂乙醇浓度75%,CO2流量20kg/h,夹带剂添加量5mL/g在此条件下乌饭树叶总黄酮平均提取率为73.10%(n=3,RSD=3.58%)。谢建华等[6]利用响应面发优化超临界CO2萃取苦瓜总黄酮的工艺参数,在实验的基础上,确定最佳工艺条件:以无水乙醇为夹带剂1.0mL/g,萃取压力33.4MPa,萃取温度46℃,萃取时间53.2min。此条件下苦瓜总黄酮提取率达到84.3%。超临界流体萃取技术萃取速度快,提取率高,流程简单,且对生物活性保留较好,具有一定的应用价值。 除以上的提取方法外,还有双水相萃取分离、双水相—超声耦合、超声—酶法耦合、酶法—高压脉冲电场耦合等技术。总的来说,传统提取方法的总黄酮提取率基本在5%左右,而新型提取方法的提取率在10%以上(有的甚至可达80%-90%),相对于传统提取法而言,新型提取方法的提取率具有明显优势,但对新型提取技术对原料、设备、处理要求也相应提高,目前国内外研究相对偏少。3展望 黄酮类化合物分布范围广、种类多,黄酮类化合物的保健品也早在二十世纪八十年代末就引起国际医药界的注意,而且大部分毒理学研究提示其一般无毒,近年来此类化合物一直是生化制药、保健品生产方面的热门之一,在最近上市的保健产品中也有很大一部分其主要功效成分就属于黄酮类化合物,其涉及的功能食品也很多。最近由于心血管疾病、癌症等疾病死亡人数呈快速增长,而黄酮对心血管系统及防癌抗癌有一定的作用,许多国家和地区正在开发相关的产品,前景较好。由于黄酮类化合物可能存在几种不同的作用机制与合成途径,有些实验结果的解释可能依然存在不足之处。因此今后黄酮类化合物的研究还需要关注的是生物利用度、代谢动力学、体内的氧化损伤及长期服用产生的慢性后果等方面[7]。开发出更加可靠、令人信服的模型或系统,以此来精确评估黄酮类化合物在人体内的代谢作用是非常必要的。 参考文献 [1] TAYLOR L P,GROTEWOLD E. Flavonoids as developmental regulatoes [J].Current Opinion in Plant Biology,2005,3(8):317-323. [2] 贺波.苎麻叶中黄酮的提取、分离纯化、结构及抗氧化活性研究[D].武汉:华中农业大学硕士学位论文,2010. [3] 张海慧.微波辅助法提取黑穗醋栗中黄酮类物质的研究[J].东北农业大学学报,2008.39(9):32-35. [4] 张鹏.银杏叶黄酮的微波提取及抗氧化性研究[J].安徽农业科学,2009,37(12):5496-5497,5730. [5] 余青,郑小严,黄红霞,等.超临界CO2萃取乌饭树叶总黄酮的工艺[J].2009,38(01):97-102. [6] 谢建华,单斌,彭云.超临界CO2流体萃取苦瓜总黄酮工艺及其抗氧化活性[J].2010,08(1):66-71. [7] 佟永薇.黄酮类化合物提取方法的研究及展望[J].食品研究与开发,2008,29(7):188-190.

黄酮类化合物的提取纯化方法

黄酮类化合物的提取、药用价值和产品开发应用前景 任红丽2009090141 摘要:对黄酮类化合物的药用价值、提取工艺、分离方法等方面进行综述。在 药用价值方面,讨论了其抗抑郁作用、抗氧化与自由基消除活性作用、对化学性肝损伤的保护作用、抗肿瘤作用、抗骨质疏松作用、抗心肌缺血作用;在提取工艺方面,讨论了溶剂提取法、超声提取法、酶法、微波法等;及其开发应用,为今后黄酮类化合物的深入研究提供理论基础。 关键词:黄酮类化合物提取工艺药用价值 黄酮类物质是一类低分子天然植物成分,是自然界中存在的酚类物质[14],又称生物黄酮或植物黄酮,属植物次级代谢产物,广泛存在于各种植物的各个部位,尤其是花、叶,主要存在于芸香科、唇形科、豆科、伞形科、银杏科与菊科中。迄今,已有数百种不同类型的黄酮类化合物在植物中被发现,人工合成的黄酮类化合物也不断问世。最初这类物质仅用于染料方面,自20世纪20年代,槲皮素、芦丁等黄酮类物质用于临床后,才开始引起人们的关注,研究发现其中相当一部分具有显著的生理及药理活性,例如抗氧化、抗病毒、抗炎、调节血管渗透性,改善记忆,抗抑郁、抗焦虑、中枢抑制、神经保护等功能[2,12]诸多生理和药理特性使其广泛应用于食品、医药等领域。 1.提取纯化方法 1.1 传统提取方法 1.1.1 热水提取法 水是最廉价的提取溶剂,是地球最丰富的物质,无色无味无毒,对人体和环境无害,挥发性不大,具有真正的绿色环保意义。但用水作为提取溶剂时,从中药材中提取的黄酮类化合物中杂质含量较多,往往因泡沫或粘液很多,给进一步分离带来许多麻烦,而且浓缩也会很困难。此外,水提取物容易发霉发酵[22]。1.1.2 碱性水、碱性稀醇浸提法 中草药中黄酮类成分多为多酚类化合物,因其结构中具有酚羟基[7],故可用碱性水或碱性稀醇液来提取中草药中的黄酮类化合物。黄酮母核的多样性主要是由黄酮本身骨架、环系的变化、氧化程度和数量而定,当碱的浓度过高,加热时便破坏黄酮类化合物的母核。 1.1.3 有机溶剂热回流及冷浸提取法 根据杂质极性不同,可选用不同的有机溶剂(如石油醚、乙酸乙酯、氯仿、乙醇、甲醇、丙酮等),一般采取乙醇为提取溶剂[15]。

槐花中黄酮类化合物提取、分离和鉴定教学文案

槐花中黄酮类化合物分离和鉴定[适用对象] 中药国际交流、中药知识产权、中药制药工程、中药资源专业 [实验学时]9 一、实验目的要求 学习黄酮类化合物的提取、分离和检识,通过实验要求: (1)了解沸水提取黄酮类化合物的原理和操作。 (2)了解由芸香苷水解制取槲皮素的方法。 (3)掌握黄酮类化合物的主要性质及黄酮苷、苷元和糖部分的检识方法。 二、实验原理 由槐花中提取芸香苷的方法很多,本实验是根据芸香苷在冷水和热水中的溶解度差异的特性进行提取和精制。纸色谱的分离原理是利用各种化合物在流动相和固定相中分配系数的不同而达到分离目的。 三、仪器设备 烘箱、水浴锅、铁架台,烧杯,三角烧瓶,滤纸,试管,层析槽,毛细管等。 四、相关知识点 槐花为豆科植物槐Sophora japonica L.的干燥花及花蕾,主要含芸香苷(芦丁),含量高达12~20%,水解生成槲皮素、葡萄糖及鼠李糖。 芸香苷(rutoside),分子式C27 H30 O16,分子量610.51,淡黄色针状结晶,mp.177~178℃。难溶于冷水(1﹕8000),略溶于热水(1﹕200),溶于热甲醇(1﹕7),冷甲醇(1﹕100),热乙醇(1﹕30),

冷乙醇(1﹕650),难溶于乙酸乙酯、丙酮,不溶于苯、氯仿、乙醚、石油醚等,易溶于吡啶及稀碱液中。 槲皮素(quercetin ),分子式C 15 H 10 O 7,分子量302.23,黄色针状结晶,mp.314℃(分解)。溶于热乙醇(1﹕23),冷乙醇(1﹕300),可溶于甲醇、丙酮、乙酸乙酯、冰醋酸、吡啶等,不溶于石油醚、苯、氯仿、乙醚中,几不溶于水。 O O O H OH OH OH OR 五、实验步骤 (一)芸香苷、槲皮素和糖的纸色谱鉴定 1、点样:取新华一号色谱滤纸,规格20 cm ×20 cm ,在滤纸下端约2 cm 处用铅笔画一直线,间隔2 cm 分别点上下列样品或标准溶液: (1)糖样品溶液 (2)标准葡萄糖溶液 (3)标准鼠李糖溶液 (4)芸香苷样品甲醇溶液 (5)芸香苷标准品溶液 (6) 槲皮素样品甲醇溶液 (7)槲皮素标准品溶液 2、展开剂:正丁醇-醋酸-水(4﹕1﹕5)上层上行展开。 3、显色:展开完毕,将滤纸取出,记录溶剂前沿位置。待溶剂挥尽后,在(3)与(4)点之间剪开,分别显色。 (1)糖的显色:喷苯胺-邻苯二甲酸试剂,在105℃烘10分钟,

山楂中总黄酮的提取工艺的研究【开题报告】

毕业设计开题报告 应用化学 山楂中总黄酮的提取工艺的研究 一、选题的背景和意义 总黄酮是指黄酮类化合物,是一大类天然产物,广泛存在于植物界,是许多中草药的有效成分。在自然界中最常见的是黄酮和黄酮醇,其它包括双氢黄(醇)、异黄酮、双黄酮、黄烷醇、查尔酮、橙酮、花色苷及新黄酮类等。 山楂为蔷薇科植物山里红或山楂干燥成熟果实。主要功能为消食健胃,行气散瘀,用于肉食积滞,胃脘胀满,泻痢腹痛,瘀血经闭,产后瘀阻,心腹刺痛,高血脂症等。对山楂的研究发现其具有丰富的化学成分而且具有重要的药理活性。主要含有机酸和黄酮类化合物 , 随着药理学的发展,对山楂的药理活性研究发现其中有机酸为山楂消食 化积的主要有效成份,黄酮类化合物能扩张冠状动脉,改善微循环,抗动脉粥样硬化,且 可调节血脂、降低胆固醇,预防心血管疾病,临床试验证明其疗效显著且安全无毒副作用。山楂果肉及山楂叶中含有丰富的黄酮类化合物,由于其对心脑血管疾病有显著疗效而被受人们的关注。 山楂在全国各地均有栽培,为药食同源植物。其资源丰富,将其做为保健食品和治疗药品开发有着广阔的前景。 总黄酮的提取方法有很多,包括传统的乙醇提取方法和新型提取技术如超声提取、微波提取、超临界流体提取、酶法提取、半仿生提取法等。不同的提取方法所提取的总黄酮的量会有所不同。 近年来国内外对茶多酚、银杏类黄酮等的药理和营养性的广泛深入的研究和临床试验,证实类黄酮既是药理因子,又是重要的营养因子为一种新发现的营养素,对人体具有重要的生理保健功效。目前,很多著名的抗氧化剂和自由基清除剂都是类黄酮。例如,茶叶提取物和银杏提取物。葛根总黄酮在国内外研究和应用也已有多年,其防治动脉硬化、治偏瘫、防止大脑萎缩、降血脂、降血压、防治糖尿病、突发性耳聋乃至醒酒等不乏数例较多的临床报告。 随着对生物总黄酮与人类营养关系研究的深入,不远的将来可能证明黄酮类化合物

银杏叶黄酮类化合物的提取研究进展

银杏叶黄酮类化合物的提取研究进展 银杏树Ginkgo biloba L.又称白果树、公孙树,是我国古老的树种之一,具有“活化石”的美称。由于其生长规律特殊,抗病能力强而受到国内外的重视。有关银杏叶的有效成分及疗效的研究日益受到重视,已开发出保健品、化妆品、药品等多达100多种,形成国际市场上销售额20多亿美元的新兴产业。银杏叶的化学成分有黄酮类、萜类、内酯类、酚酸类以及生物碱、聚异戊二烯等化合物。黄酮类为银杏叶的主要有效成分之一,含量随品种、产地、树龄、不同的采摘时间而不同。黄酮类化合物优异的抗氧化、抗病毒、防治心血管疾病、增强免疫力等作用而受世人瞩目。 药学研究表明,有38种银杏黄酮类化合物从银杏叶中分离出来,其中黄酮类化合物主要有3类:黄酮(醇)及其昔28种:如槲皮黄酮等;黄烷醇类:如儿茶素等4种;双黄酮:如白果双黄酮等6种(儿茶素)。 1 银杏叶黄酮的提取分离 1.1 溶剂提取法目前国内外掀起了研究开发银杏叶热。国内银杏叶常用溶剂例如乙醇、丙酮、醋酸乙酯、水以及某些极性较大的混合溶剂浸泡银杏叶进行提取,溶剂提取方法一般有:煎煮、冷浸、回流、渗施等经典方法。 1.1.1 水提取树脂分离法有关水浸提银杏黄酮苷的文献报道不多。肖顺昌等报道了用l 6倍量沸水分3次浸提银杏叶,得到的水溶液,经冷藏、分离杂质得溶液,然后用D101型吸附树脂吸附得到浓度达38%的黄酮苷。胡敏等研究水浸提银杏叶黄酮苷并用树脂精制的工艺,探讨了影响黄酮苷浸出的主要因素以及最适的精制方法,结果表明:水为提取剂,在9 0℃水溶回流浸提银杏叶2次,4h/次,经沉淀,过滤,浓缩后,用树脂精制、冷冻干燥后,制得总黄酮苷含量高的提取物、产品得率为银杏叶干重的 1.2%-1.5%。 水提取成本低,没有任何环境污染,产品安全性高,但是水对有效成分的选择性差,提取率低。

红薯叶黄酮类化合物的提取及其抗氧化活性的测定

万方数据

万方数据

万方数据

万方数据

红薯叶黄酮类化合物的提取及其抗氧化活性的测定 作者:王小华, 邓斌, 张晓军, 龙石红, WANG Xiao-hua, DENG Bin, ZHANG Xiao-jun,LONG Shi-hong 作者单位:王小华,WANG Xiao-hua(湘南学院化学与生命科学系,湖南,郴州,423000), 邓斌,DENG Bin(湘南学院化学与生命科学系,湖南,郴州,423000;中国科技大学,合肥微尺度物质科学国 家实验室,安徽,合肥,230026), 张晓军,ZHANG Xiao-jun(中国科技大学,合肥微尺度物质科 学国家实验室,安徽,合肥,230026), 龙石红,LONG Shi-hong(永州职业技术学院,湖南,永州 ,425000) 刊名: 化学与生物工程 英文刊名:CHEMISTRY & BIOENGINEERING 年,卷(期):2009,26(2) 被引用次数:2次 参考文献(9条) 1.邵红论红薯的营养价值与药用价值[期刊论文]-食品工业科技 2002(05) 2.胡立明.高荫榆.陈才水甘薯叶研究进展[期刊论文]-郑州工程学院学报 2002(01) 3.卢新建.吕美琴甘薯茎叶菜用及栽培技术 2000(04) 4.邹耀洪国产甘薯叶黄酮类成分研究[期刊论文]-分析测试学报 1996(01) 5.孙艳梅.徐雅琴.杨林天然物质类黄酮的抗氧化活性的研究[期刊论文]-中国油脂 2003(03) 6.夏维木.陈杞.张利民几种黄酮类化合物清除活性氧的实验研究[期刊论文]-第二军医大学学报 1997(04) 7.高愿军黄酮化合物结构鉴定技术 2002 8.石锦芹.黄绍华测定过氧化值 1999(05) 9.方素英.赵亚军.李琳食品抗氧化剂 1998 引证文献(2条) 1.薛长晖.端允双波长法测定山丹叶中总黄酮含量[期刊论文]-粮油加工 2009(10) 2.冯雷.吴冬青.王永生.安红钢.王军霞.任雪峰黄芩总黄酮的提取及羟基自由基清除方法比较[期刊论文]-中兽医医药杂志 2010(5) 本文链接:https://www.docsj.com/doc/c313297848.html,/Periodical_hbhg200902009.aspx

山楂中黄酮的提取

1仪器与药品 台式超声波清洗器;紫外-可见分光光度计;可见分光光度计;SHZ-D循环水式真空泵;万分之一电子分析天平;抽滤瓶等。芦丁标准品(中国药品生物制定检定所);95%乙醇;亚硝酸钠、硝酸铝、氢氧化钠等试剂,所用试剂均为分析纯;山楂。 2 实验部分 2.1对照品及供试品溶液的制备 2.1.1 对照品溶液的制备 精确称取芦丁对照品0.005g,置于小烧杯中,用体积分数70%的乙醇溶解并定量转移至25mL容量瓶中定容,摇匀,即得浓度为0.200mg/mL的芦丁标准品溶液。 2.1.2 供试品溶液的制备 称取干燥至恒重的山楂5.0g,置于100ml带塞锥形瓶中,按实验设计条件进行超声提取,提取液减压抽滤,取其滤液。将滤液定量转移至50ml容量瓶中,加相同浓度的乙醇定容至刻度,摇匀即得。 2.2 山楂中总黄酮含量测定方法的建立 2.2.1 测定波长的选择精密量取芦丁对照品溶液1.50ml,置于10ml容量瓶中,加入体积分数70%乙醇至5ml。加5%亚硝酸钠溶液0.30ml,摇匀,放置6min;再加入10%硝酸铝溶液0.30ml,摇匀,放置6min;加入1.0mol/L的氢氧化钠溶液4.00ml,加水至刻度,摇匀,放置15min。以不加芦丁对照品溶液作为空白。选择于紫外分光光度计在 400nm-600nm波长范围内扫描。 2.2.2 线性实验 精密量取芦丁对照品溶液0.00mL、1.00mL、2.00mL、3.00mL、4.00mL、5.00mL、6.00mL,分别置于25mL容量瓶中,各加入体积分数70%乙醇至10ml。加5%亚硝酸钠溶液1.00mL,摇匀,放置6min;加10%硝酸铝溶液1.00mL,摇匀,放置6min;加4%氢氧化钠溶液10.00mL,用蒸馏水稀释至刻度,摇匀,放置15min。以不加芦丁对照品溶液为空白,采用分光光度法在510nm波长处测定吸光度,以芦丁浓度(mg/ml)为横坐标,吸光度(A)为纵坐标,绘制标准曲线。 2.2.3 精密度实验 准确吸取芦丁对照品溶液2.00ml,置于10ml的容量瓶中,加入一定量体积分数70%乙醇使成5mL。先加入5%的亚硝酸钠溶液0.30mL,摇匀,放置6min;再加入10%的硝酸铝溶液0.30mL,摇匀,再放置6min;加1.0mol/L的氢氧化钠溶液4.00mL,用蒸馏水稀释至刻度,摇匀,放置15min。按以上方法连续测六次。 2.3 山楂中总黄酮的超声提取工艺研究 2.3.1 提取中主要影响因素的确定 用水浸提,提取物杂质多,后处理比较麻烦。甲醇、丙酮等作为提取剂,虽然效果不错,但二者有毒。乙醇浸提的选择性好,渗透性强,浸出率较高。本试验选择一定体积分数的乙醇溶液作为提取剂。为了提高有效成分的浸出,同时克服加热提取时产生水解产物的缺 1仪器与药品 台式超声波清洗器;紫外-可见分光光度计;可见分光光度计;SHZ-D循环水式真空泵;万分之一电子分析天平;抽滤瓶等。芦丁标准品(中国药品生物制定检定所);95%乙醇;亚硝酸钠、硝酸铝、氢氧化钠等试剂,所用试剂均为分析纯;山楂。 2 实验部分 2.1对照品及供试品溶液的制备 2.1.1 对照品溶液的制备

黄酮类化合物的提取分离方法

一.黄酮类化合物的提取分离方法 按所用溶剂不同分类 (1)热水提取法(以水作溶剂)---------- 灵芝多糖热水提取 (2)有机溶剂萃取法-----------生产茶多酚工业试验、乳酸 (3)碱提取酸沉淀法.---------- 橙皮苷、黄芩苷、芦丁等都可用此法提取. 2.按提取条件不同分类 (1)回流提取法----------从苦楝树皮中提取苦楝素 (2)索式提取法----------柑橘属类黄酮 (3)微波辅助提取法----------采用微波辅助法从黎蒿中提取黄酮类化合物 (4)超声提取法----------提取山楂中黄酮类物质 (5)超滤法----------黄岑甙 (6)酶提取法----------采用纤维素酶对红景天进行酶解处理,可提高黄酮类物质的浸出率 (7)超临界流体提取法----------竹叶黄酮、从干姜片中提取挥发油 PH 梯度萃取法:石榴果皮褐变产物、葛花总异黄酮 高效液相色谱分析法:五味子、葛根 高速逆流色谱分离法:甘草、分离蜜环菌发酵液乙醇提取部位 柱色谱法 (1)硅胶柱色谱:姜黄素 (2)聚酰胺柱色谱:紫锥菊 (3)葡聚糖凝胶柱色谱:回心草、茵陈蒿 (4)大孔吸附树脂分离法:川草乌、三七总皂甙 二. 槐米中芸香苷(芦丁)的提取方法有哪些(设计) 方法:渗漉法、煎煮法、回流提取法 (1) 槐米粗粉20g 加约120ml 的%硼砂水溶液, 搅拌下加入石灰乳至pH8-9, 并保持该pH 值煮沸20分钟,四层纱布 趁热滤过,反复2次 提取液 药渣 浓盐酸调pH2~3 搅拌,静置放冷,滤过。 滤液 沉淀 热水或乙醇重结晶 芸香苷结晶 碱溶酸沉法提取分离槐米中芸香苷的流程图 (2)取30g 槐花米,置于250mL 烧杯中,加入%硼砂沸水200ml ,在搅拌下缓缓加入石灰乳调节pH=8~9,在此pH 下保持微沸20~30min ,趁热用棉花滤过,残渣再加水,同上法再煎一次,趁热抽滤。合并滤液,在60~70℃下用浓盐酸调至pH=4—5,静置。 提 碱 取 溶 分 酸 离 沉

黄酮类化合物的提取

一、溶剂提取法:国内外使用最广泛的方法,步骤多、周期长、产率低、产品中有机溶剂易残留。溶剂系统主要有乙醇,水溶液、丙酮-水溶液、NaOH-水溶液、NaOH-乙醇等。精提物常在粗提物制备基础上精制,常用液-液提取法、沉淀法和吸附.洗脱法。以60%丙酮为起始溶剂粗提取,再脱脂、去银杏酚酸等15道工艺制成提取物。NaOH-水溶液提取效果最好,NaOH-乙醇溶液次之,正丁醇萃取水溶液中银杏黄酮苷,获得最佳萃取条件为萃取5 min温度60℃4次,萃取物中黄酮苷含量为57%。V水:V正丙醇=1:25最佳。银杏叶精提物树脂吸附纯化法以石油醚回流提取,再以80%乙醇回流提取,减压浓缩,新型澄清剂沉降,树脂分级吸附,pH值为3—4酸水和酸性25%乙醇洗涤,75%乙醇洗脱,喷雾干燥将银杏叶洗净,于60℃烘干至恒重,粉碎,过50目筛。称取粉末25 g,置于索氏提取器中恒重,粉碎,过50目筛。称取粉末25 g,置于索氏提取器中加入60%乙醇至250.0 ml,80℃下回流提取3.0 h,蒸馏回收乙醇,并用活性炭脱色,得银杏叶黄酮提取物。乙醇浓度为50%一70%时,提取率随浓度增加提高,当浓度70%时提取率达最大。随水浴温度升高总黄酮提取率快速增加。当温度80℃时提取率达最大。提取时间为三小时为佳。 黄酮类化合物(英语:Flavonoid,又称类黄酮[1])是指基本母核为2-苯基色原酮类化合物,现在则泛指两个具有酚羟基的苯环通过中央三碳原子相互连接的一系列化合物。他们来自于水果、蔬菜、茶、葡萄酒、种子或是植物根。虽然他们不被认为是维生素,但是在生物体内的反应里,被认为有营养功能,曾被称为“维生素P”: 黄酮类(英语:Flavones)是一类基于2-苯基色原酮-4-酮(2-苯基-1-苯并吡喃-4-酮)骨架的黄酮类化合物,如右图所示。 银杏叶黄酮的研究程序 溶剂提取法:国内外使用最广泛的方法,步骤多、周期长、产率低、产品中有机

毕业论文:黄酮类提取物抗氧化研究进展

本科生毕业设计 题目:黄酮类提取物抗氧化研究进展 年月日

黄酮类提取物抗氧化研究进展 摘要 黄酮类化合物(Flavonoid)是广泛存在于植物界的一大类多酚类化合物,多以甙类形式存在,也有一部分以游离形式存在。这类化合物在食物中有广泛的来源,具有极多的生物学作用。据统计,目前已分离出的黄酮类类化合物已超过4000 种,为天然酚类化合物之首[1]。 关键词:黄酮类;抗氧化;进展 Research progress of flavonoid antioxidant Abstract Flavonoids (Flavonoid) are a class of polyphenolic compounds widely existing in plants, mostly exist in glycoside form, there is also a part of present in a free form. The compounds have a wide range of sources in the food, has a biological effect. According to statistics, flavonoid compounds have been isolated has more than 4000 species, is a natural phenolic compounds of the first [1]. Keywords: flavonoids; antioxidant; progress

1黄酮类化合物的结构 黄酮类化合物主要是指基本母核为2-苯基色原酮(2-pheny l-chromone)类化合物,目前泛指两个具有酚羟基的芳香环(A环和B环)通过中央三碳链相互作用连接而成的一系列化合物, 其基本骨架具有C6-C3-C6。其中C3部分可以是脂链,或与C6部分形成六元或五元环,泛指2个苯环(A环与B环)通过中央三碳链相互连接而成的一系列化合物[2]。 2 黄酮类化合物分类 一般黄酮类化合物主要是以六元C环的氧化状况和B 环所连接的位置不同为依据进行分类,可以分为黄酮(flavone)及黄酮醇(flavonol)类,如芦丁、槲皮素;二氢黄酮(flavonone)及二氢黄酮醇(flavanonol)类,如陈皮苷;异黄酮(isoflavone)及异黄酮醇(isoflavonol)类,如葛根素;黄烷醇(flavanol)类,如儿茶素;花色素(anthocyanidins)类,如飞燕草素;双黄酮(biflavonoids)类, 如银杏素;查耳酮(chalcones)类,如红花苷。另外,还有一些其他类型的类黄酮,如香豆素(coumarins)等。类黄酮可以是配基和糖苷型(环上携有一个或多个糖基),也可以是甲脂衍生物。黄酮醇以及黄酮化合物是最为常见的类黄酮,而黄烷酮、黄烷醇类( 儿茶酚)、二氢黄酮以及二氢查尔酮类化合物被认为是一类微量类黄酮, 因为后者在自然界分布相对有限。其中,槲皮素(quercerin)是研究最为透彻的一种类黄酮[3]。 3黄酮类化合物的理化性质 黄酮类化合物多为结晶性固体,少数为无定型粉末。黄酮类化合物的颜色与分子中存在的交叉共轭体系及助色团(-OH、-CH3)等的类型、数目及取代位置有关。一般来说,黄酮、黄酮醇及其苷类多呈灰黄至黄色,查尔酮为黄色至橙黄色,而二氢黄酮、二氢黄酮醇、异黄酮类等因不存在共轭体系或共轭很少,故不显色。花色素及其苷元的颜色,因pH的不同而变,一般呈红(pH<7)、紫(7<8.5)、蓝(PH>8.5)等颜色。 黄酮苷元一般难溶或不溶于水,易溶于甲醇、乙醇、乙酸乙酯、乙醚等有机溶剂,易溶于稀碱液。黄酮类化合物的羟基糖苷化后,水溶性相应加大,而在有机溶剂中的溶解度相应减少。黄酮苷一般易溶于水、甲醇、乙醇、乙酸乙酯、吡啶等溶剂,难溶于乙醚、三氯甲烷、苯等有机溶剂。黄酮类化合物因分子中多有

金银花的有效成分及其提取工艺研究

金银花的有效成分及其提取工艺研究 赵奇 (山东华鲁制药有限公司,山东茌平252100) 摘要:本文通过对大量文献的总结,对金银花的分布、药用价值及化学成分作了详细的阐述;对金银花的有效成分绿原酸作了介绍,并对绿原酸的提取、分离、纯化方法作了描述和对比,为工业上绿原酸的制备提供了参考。 关键词:金银花提取工艺绿原酸药用价值 金银花为忍冬科植物忍冬(Lonicera japonica Thunb)、红腺忍冬(Lonicera Lypoglauca Miq)、山银花(Lonicera confusa DC)或毛花柱忍冬(Lonicera dasystyla Rehd) 的干燥花蕾或带初开的花。全世界忍冬植物大约200种,我国有98种,分布于全国各地,其中供药用的达47种。金银花为中医常用药,其味甘、寒,归肺、心、胃经,具有清热解毒、凉散风热之功效,主治痈肿疔疮、喉痹、丹毒、热毒血痢、风热感冒、温病发热等症,应用历史悠久。 1 理化成分 1.1 挥发油:挥发油是金银花的有效成分之一。目前在金银花挥发油中鉴定出的化学成分多达近70种。主要含芳樟醇、棕榈酸,其他化学成分为醇、醛、酯、酮、烷、烯、炔等有机化合物。 1.2 有机酸类:绿原酸类化合物也是金银花有效成分之一。包括绿原酸(Chlorogenic acid) 和异绿原酸(isochlorogenicacid),其他有机酸还有咖啡酸(coffeic acid)和棕榈酸(Palmiticacid)。 1.3 黄酮类化合物:1949年冲七太郎首先从金银花中分离出木犀草素(luteolin),后又得忍冬苷(lonicerin),1995年高玉敏等首次从金银花中分离出四个黄酮类化合物;1996年黄丽瑛 等首次分离出corymbosin和5- 羟- 3’- 4’- 7- 三甲基黄酮(5-hydroxy- 3’- 4’- 7- t rimethoxyflavone)。 1.4 三萜类:娄红祥等从金银花水溶性部分中分离得到3种具有保肝活性的三萜皂苷;陈昌祥从金银花花蕾中分离得到了6个化合物,其中有一新化合物,命名为新长春皂苷F。 1.5 无机元素:金银花含微量元素共有15种:Fe,Mn,Cu,Zn,Sr,Ti,Mo,Ba,Ni,Cr,Pb,V,Co,Li,Ca。 1.6 醇类:金银花中鉴定出的醇类主要包括:β- 谷甾醇,肌醇,二十九烷醇等。 2 金银花的有效成分———绿原酸 金银花的主要有效成分之一为绿原酸。绿原酸是咖啡酸与奎宁酸(1- 羟基六氢没食子酸)的酯,分子中具有羧基、酯键以及多元醇和多酚结构,是一种苯丙素类化合物,化学名为3-O- 咖啡酰奎宁酸,结构式如图1所示。

相关文档