文档视界 最新最全的文档下载
当前位置:文档视界 › 硫脲提取金、银工艺

硫脲提取金、银工艺

硫脲提取金、银工艺
硫脲提取金、银工艺

硫脲提取金、银工艺

加布拉对硫脲法和氛化法做了对比试验,两种方法同是处理含碳砷黄铁矿金精矿500g,在25℃、液固比为2时,采用空气作氧化剂(1L/min)且各取其最佳浸出参数:硫脲法用1000mL含质量浓度为0.175moVL H2SO4,0.197mL/L(15g/L)的TU溶液;氰化法用1000mL 去离子水加4g NaCN,并加Ca(OH)2保持pH=l0。图1表明,硫脲法浸出30min后金回收率近90%,此时氰化法金的回收率仅35%,欲达94%的提取率,氰化法需24h,而硫脲只须

1h。

哥罗尼沃尔德对未经预处理的或酸洗的矿石用硫酸-硫脲溶液作浸出金的研究,当溶液含浓度为1.0mol/L的H2SO4,1.2mol/L的硫脲和0.1mol/L的过氧化氢时,溶金速度很快,经1h便可回收98.5%的金,硫脲的消耗是1.4 kg/t矿石。

陈登文从难处理的含碳泥质矿石中浸出金,经焙烧和硫酸预处理后的矿石,酸性硫脲浸出金回收率达95%,硫脲与硫酸消耗分别为每吨矿石1.5-2 kg和70 kg。

就地浸出有限责任公司(Insitu Inc.)1981年在澳大利亚维多利亚进行了就地浸出试验。据报道,硫脲、硫代硫酸盐和铁氰化物的混合物溶液首次被用于“压入-抽出(push-pull)”试验,借以从一种深覆盖的冲积型矿床中提取金。

根据实验室计算,1000kg干料和100kg湿料(含金35g),在加H2SO4 5kg、SO2 0.5kg、H2O2(30%)0.75kg、硫脲1.05kg的条件下,金的提取率可达98%(其中浸出段提取80%,硫脲洗涤段提取10%),经3段炭吸附,金的回收率为97.86%(3段分别为80%、16.37%和1.49%),金的总回收率在95%以上。

总之,近年来国外对硫脲法提取金表现出极大的兴趣,但又持较谨慎的态度。较普遍地认为与氰化法相比,硫脲法具有减轻环境污染,加快溶金速度、降低铜、锌、砷、锑干扰程度,工艺流程短、投资省、操作较简便等优点;但药剂消耗高,设备费用较多等涉及经济效益的问题还有待进一步解决。

苏联学者B.B.罗捷希可夫对大量的理论和实验研究工作进行综合分析后,制定出了以硫脲浸出为基础的湿法处理金矿石的原则工艺流程,该流程包括以下四个主要工序:

①采用再生的、净化除杂后的酸性硫脲溶液进行金的搅拌浸出。

②含金的浸出液与浸渣通过浓密过滤的方法进行分离。

③从溶液中回收金,以获得相应的符合精炼厂要求的产品。

④回收金后的硫脲溶液作进一步处理,以再生硫脲和除去溶液中的杂质。

对于从溶液中回收金,可采用下述几种方法:金属(锌、铅、铝)置换沉淀,碱液(NaOH 等)破坏络合物,电解沉积,吸附在活性炭和阳离子交换树脂上。

回收方法的选择,主要取决于溶液中的金属含量。①对于金和银含量较高、质量浓度大于500 mg/L的溶液,宜采用电解法,它能同时使硫脲得到再生;②对金质量浓度小于50mg/L、银质量浓度在200-400 mg/L的溶液,吸附法最有前途,并且贵金属既可以吸附在活性炭上,又可以吸附在阳离子交换树脂上;③对金质量浓度大于50 mg/L、银质量浓度大于20 mg/L 的溶液,当使用吸附法不太有效,即金属的富集程度较低时,可用金属置换沉淀法,在这种情况下采用电解法在经济上是不太合适的。

目前研究过的硫脲提金工艺主要有:常规硫脲浸出法、向浸出液中通入SO2的SKW法、加金属铁板进行浸置的铁浆法、加活性炭或阳离子交换树脂进行吸附的炭浆或树脂浆法,以及向浸出槽中插入阴、阳极板进行电解的电积法等。

现今供硫脲法提金的原料大多使用含金高的金精矿或焙砂,作业技术几乎与用压缩空气进行搅拌浸出的氰化法一样,只是需要采用耐酸设备。从浸出矿浆中回收金的方法多采用铁浆法和炭浆法等。

1.常规硫脲漫出法

此法是向硫酸酸性(pH1.5-2.5)硫脉矿浆中鼓风搅拌进行金、银浸出的常规方法。矿浆中的已溶金通常采用过滤和多次洗涤,并从滤液和洗液中用置换、吸附或电解法回收金。它与氰化法的CCD工艺相似。但由于矿浆是强酸性硫脉介质,铜、铅、锌、铁等贱金属会和金、银一道溶解生成硫脉络离子,它不但使矿浆中的离子浓度过高,也会消耗大量硫脉。特别是用来处理硫精矿时,硫进入溶液会生成H2S、S、SO42-、HSO4-等硫化物。它们的相互转化又可使矿浆中H2S(液)的平衡浓度约达0.1mol,它会使金属离子大量生成硫化物沉淀。其中特别是金、银被硫化而沉淀于矿浆中,或者硫粘附于矿粒表面而产生钝化,都会降低金、银的浸出率,使硫脉浸出作业终点过早出现,浸渣中含金过高而造成损失。但由于硫脉对银的浸出率比氰化法高得多,故1982年以来墨西哥科罗拉多金银矿山就采用硫脉法代替氰化法从含银尾矿中浸出银,获得了很好的效果。

1)从辉锑矿精矿中浸出裸露金

澳大利亚新南威尔士的希尔格罗夫(Hillgrove)锑矿是一个早期开采的矿床,现存锑矿带平均宽300-400m。1969年,新东澳大利亚矿业公司(NEAM)又在这里经营一个小矿山和选厂。

该矿为石英脉型含金辉锑矿床,主要共生矿物为黄铁矿、磁黄铁矿、毒砂、白钨矿和绿泥石等,矿石含Sb 4.5%、Au 9g/t。采出的矿石经磨矿、重选和浮选,产出锑精矿售给冶炼厂。精矿中含金30-40g/t、冶炼厂不付给任何报酬。为了提取其中的金,选厂曾用氰化法试验,效果不好,后在试验其他溶剂时,发现硫脲能快速地浸出精矿中的裸露金。而于1982年3月建立一座1t/h的小型分批作业硫脲浸出车间。

该车间处理锑精矿只是回收其中的单体解离金,并不企求更高的金回收率。故采用较高的硫脲和Fe3+浓度,并将浸液与精矿预先混合制浆,可使每批精矿的纯浸出时间缩短至巧min

以内。浸出贵液中的金用活性炭吸附,产出含金6-8kg/t的载金炭直接出售。吸附金后的硫脲液加H2O2调整氧化还原电位后返回浸出过程循环使用。

采用硫脲浸出的最初几个月,曾出现已溶金沉淀损失,经查明,它是由金吸附在精矿中的绿泥石矿物表面而造成的,故又在浮选时添加空气抑制剂633以抑制绿泥石,并在浸出前向矿浆中加入少量柴油。采取这些措施后,裸露金得以浸出,精矿中金回收率达50%-80%,硫脲消耗通常在2 kg/t以下。

该公司还发现,浮选尾矿中的毒砂含有大量金,故又增加了毒砂浮选回路,产出的砷精矿含As15%~20%,Sb 5%,Au 150-200g/t,尾矿中金的回收率为70%。为此,又于1983年建成一座600 t/d的早期尾矿再处理工厂,可从每吨尾矿中回收金1-2.5g。

2)含银原料制取纯银

为了探索用含银原料制取纯银的新工艺,张箭等进行了含银原料的硫脲浸出、络合物结晶和灼烧结晶体制取纯银的新工艺研究。试验结果,银的回收率91%以上,产品银纯度达99.84%。

实验所用原料组分为(%):Ag 0.91,AgCl 0.29,SiO261.00,CaO 15.76,MgO 0.78,Fe2O3 1.81,Al2O3 1.75,K2O3 1.16,Na2O 0.47,H2O 3.30,挥发物11.05,其他1.72。

小型试验将原料磨细至-2mm,称样100g置于500mL烧杯中,加入二次蒸馏水和试剂纯药剂配制的浸出液300mL进行各条件单因子实验,并根据单因子实验结果进行综合条件实验,选定的最佳条件为:SCN2 HQ的物质的量浓度为0.52mol/L, H2SO4为1.18mol/L,Fe2(SO4)3为0.004mol/L、温度60℃、搅拌速度700r/min,浸出时间2.5h,经过滤、洗涤,洗液和滤液合并,渣弃去。银的浸出率为98.50%。

扩大实验在上述条件下,改用自来水和工业纯药剂进行扩大10倍的实验。结果,银的浸出率分别为97.23%-98.91%,重现了使用二次蒸馏水和试剂纯药剂小试的结果。

硫脲浸出液中银呈Ag(SCN2H4)3+络离子状态。络合物的结晶经单因子实验结果显示:温度由15℃降至2℃,结晶率由70%上升至95%以上;pH在0.5-3之间,结晶率都在80%以上,pH上升,结晶率只略有增加。当pH>3.5时则出现黑色沉淀。溶液含银质量浓度为

0.6~3.6g/L时,结晶率都略高于80%。随着银浓度的升高,结晶率略有下降趋势,但无明显影响。在此基础上选定的结晶条件为温度2℃、pH=3、原液含银质量浓度为0.78g/L,银的结晶率达93%。在三因素中,经方差分析表明,影响结晶率的主要因素是温度。

产出的结晶于100℃左右干燥后,升温至1100℃灼烧产出99.84%的纯银。若将母液中分离的结晶用低温水洗涤除去可溶杂质,产品纯度还可提高。分离结晶后的母液,可返回再用于浸出银。

本实验虽为0.1-1.0kg规模小型探索性试验,但生产流程短、工艺简单、设备投资少、产品纯度高,且可用来处理不纯金属银、氯化银、硫化银、辉银矿、角银矿及其混合原料,具有工业应用前景。

2.SKW法(又称SO2还原法)

此法是前联帮德国南德意志氰氨基化钙公司(SKW)组织研究的,在常规硫脲浸出法基础上向硫脲浸金体系中通入还原剂SO2的方法。

此法是鉴于硫脲稳定性能差,易于氧化,在含Fe3+较高(质量浓度3~6g/L)的溶液中,硫脲会由于下列反应而失效:

以上反应是分三步进行的。第一步是可逆反应,硫脲能氧化生成二硫甲脒,在有还原剂时生成的二硫甲脒又可还原为硫脲。第二步是不可逆反应,二硫甲脒受歧化作用部分还原为硫脲,部分生成组分不明的亚磺化物。第三步也是不可逆反应,它们被最终分解为氨基氰和单质硫。氨基氰还可进一步分解为尿素。由于这一反应,使硫脲在浸金过程中的氧化损耗量常高于作为溶金药剂的纯消耗量许多倍。且最终分解生成的单质硫具有粘性,它会覆盖在所有固态物料的表面使它们发生钝化,使金等的浸出率降低。

为克服这些困难,应避免上述反应中二硫甲脒的不可逆分解,即防止二硫甲脒在溶液中浓度过高,或者加人还原剂使二硫甲脒通过可逆反应部分还原成硫脲。这个设想就是SKW

法研究的基本指导思想。

二氧化硫是一种高效的还原剂,在硫脲浸金的特定条件下,研究者发现只要有二硫甲脒存在,它就不会去还原其他氧化剂。

在用0.2-0.7mm银粒进行硫脲浸出试验中,当不加SO2时银粒表面覆盖有一层暗色膜,银的浸出率约25%,这显然是Fe3+的存在和起始浓度较低(0.5g/L)的缘故。若向浸液中供入过量SO2,银粒表面呈现明亮的金属状态,银的溶解率可达100%。当过程中SO2供入量不足,银的浸出率又会下降。

当采用相同的方法浸出金粒时,则发生了预想不到的现象,即当SO2供入量不足时,金粒表面明亮,金的溶解率几近100%;而供入过量SO2时,金的溶解速度反而下降。虽如此,但这种现象是可用化学动力学解释的。

通过试验证明:在硫脲浸金的实际应用中,将矿浆温度提高至40℃,以加速硫脲氧化生成二硫甲脒;并以适当速度向矿浆中供入SO2来还原矿浆中过量的二硫甲脒。控制SO2的供入速度以使矿浆中硫脲总量的50%保持二硫甲脒的氧化状态,就能实现金、银的高速浸出和降低硫脲消耗。这一措施就是SKW法成功的关键。

表1是对含Pb 50%、Zn6.8%、Fe 26.5%、Ag 315g/t, Au 10.6g/t的一种难处理氧化矿,分别采用氰化法、常规硫脲法和SKW法进行对比试验的结果。从表中看出,SKW法往硫脲浸出矿浆中供入SO2 6.5kg/t,在5.5h内金、银的浸出率比氰化法和常规硫脲法高得多,实现了金、银的高速浸出,并可使硫脲的消耗量降至0.57kg/t。由于SKW法的硫脲消耗已降至如此低的水平,且浸出时间大大缩短,它不但用来处理高品位的金精矿是经济的,就是用来处理低品位的金矿石也可能是经济有效的。

浸出液中的金、银可以采用活性炭、强酸性阳离子交换树脂或硫醇树脂吸附,再用热酸或硫脲液进行解吸。由于硫脲用量如此之少,可不必考虑再回收它。

SKW法小试结果表明:

①提高作业温度至40℃,可加速硫脲氧化生成二硫甲脒;

②控制SO2的供入速度,通过SO2的还原作用将过量的二硫甲脒还原为硫脲,使矿浆中硫脲总量的50%保持二硫甲脒状态,可防止给料的钝化,以获得最高的金、银溶解速度;

③供入适量SO2,使过量的二硫甲脒还原为硫脲,防止矿浆中二硫甲脒浓度过高而发生不可逆化学氧化降解损失,以提高硫脲的再生和利用,降低硫脲消耗。

根据小试结果,R.G.舒尔策采用图2的工艺试验流程。试验给料1.1t(其中含水100kg),浸出用硫脲来自再循环液,新添硫脲1.05kg加入硫脲洗涤段,氧化剂使用H2O2。作业过程中硫脲TU(g/L)和Au(mg/L)的质量浓度和溶液流量(L)的平衡数值亦示于图中,其作业技术要点和指标为:

①供入原料为含水10%的湿料,不论采用硫化矿的浮选精矿或经预先酸洗处理的氧化矿,都脱除了较多的杂质,减少了矿石处理量;

②每吨矿SO2总耗为6.5kg,浸出后将剩余SO2通入矿浆中,使二硫甲脒进一步还原为硫脲,并使氧化生成的硫完全沉淀,为后继作业提供性能稳定的溶液;

③浸出作业用的氧化剂Fe3+,由原料自身所含铁经酸溶解和H2O2氧化而得;

④硫脲浸出后的矿浆,经一次过滤后贵液送一次吸附。滤饼中所含的Au、Ag使用含硫脲质量浓度为15g/L的热(50℃)溶液进行简短洗涤后进行二次过滤,滤液送二次吸附和作二次洗液用。滤渣再用贫液进行三次洗涤,洗液送三次吸附。最终滤饼和废液加石灰或碱性研石中和后排入尾矿坝;

⑤试验给料的1t干料中含金总量为35g,浸出液中金的回收率88%,两次洗涤回收率

10%,总浸出回收率98%。最终滤饼中渣含金0.7g,液含金0.05g,合计损失金0.705g,损失率2%。其中渣中损失较大。若要再提高回收率,可在过滤设备B中加水再洗涤最终滤饼一次,并进行第四次吸附(如图中虚线所示)后排放;

⑥贵液中Au、Ag的回收,若采用活性炭吸附,载金容量高达100kg/t,可经缎烧后熔炼或进行解吸处理;若采用离子交换树脂吸附,树脂的载金容量虽比炭小,但可用少量浓硫脲液解吸产出富金贵液,送电解或置换回收。本试验使用活性炭吸附,金的吸附回收率第一次为80%,第二次16.37%,第三次1.49%,总吸附回收率97.86%。

经上述1t规模的工艺试验后,R.G.舒尔策给出的硫脲炭浆法工业生产流程如图3。此工艺与氰化炭浆法工艺流程极为相似。但由于硫脲浸出金的作业时间比氰化法短得多,故采用先浸出后吸附的无过滤炭浆法。其他条件则与上述的工艺试验流程条件相近。

3.铁浆法(“浸-置”一步法)

铁浆法是在硫脲浸出金时向浸出槽的矿浆中插入一定面积(试验中常为3m2·m3·槽-1)的铁板,使已溶金、银及铜、铅等电位比铁正的金属离子呈微米粒级硫化物牢固地沉积于铁

板上。由于沉积速度较快,一般每2h要提出铁板刮洗一次金泥,然后再插入槽中继续使用。

此法属于无过滤作业,设备和操作都较简单,金的沉积回收率也可稳定在99%或以上。它已在我国的一些矿山推广应用。

金泥的沉积仍属负电性金属置换范畴。即矿浆中的H2S会吸附在铁板表面,并随着铁的溶解而电离出H+,故铁板上H2S的电离速度远大于矿浆中H2S的自然离解,因而使铁板表面S2-浓度远高于矿浆内部,因此已溶金等金属离子在铁板表面发生硫化反应并沉积的速度也远大于矿浆内部,在较短时间内就能在铁板表面覆盖一厚层硫化沉淀物。只要铁的溶解不发生钝化,金、银、铜、铅等金属离子的硫化沉淀就能正常地快速进行。故产出的“金泥”中,含金品位主要决定于原料中电位比铁高的各种金属的溶解量。在通常情况下,产出的金泥含金只有1%-5%。且金、银等硫化物在铁表面的沉积是以铁的溶解进行置换的,故铁浆法使用的铁板溶蚀很快(每吨精矿消耗普通钢板15kg或低碳钢板5kg),硫酸消耗量也很大,需经常向矿浆中补加酸,以保持介质处于适宜的酸性状态。

1)铁浆法工艺试验

在早期的试验中,由于硫脲浸出硫精矿的金的浸出指标远低于氰化法,故多年来许多研究者认为:硫脲法只适用于处理组分简单的原料。自从长春黄金研究院和北京有色冶金设计研究总院等向硫脲浸出体系中引人固相铁(钢板)进行“铁浸置”后,大幅度地提高了金的浸出率和回收率,而成为硫脲提金的一项重大措施。在适宜的条件下,它可取得与氰化法处理同类原料相同的浸出指标,且浸出时间比氰化法短。

在含有氧化剂的酸性硫脲液中,不单金、银会溶解,铜、铅、锌等贱金属氧化物和硫化物也会发生溶解:

MeO+2H+→Me2++H2O

MeS+2H+→Me2++H2S

硫化物溶解生成的H2S在氧化剂和酸的作用下还可发生一系列反应生成S, S2-,HSO4-, SO42-等。它们在不同电位和pH条件下还可互相转换。在酸性条件下又可通过可逆反应再生成H2S,使溶液中的硫化物之间实现平衡。此时H2S的平衡浓度约0.1mol/L,这些H2S在溶液

中可与已溶的Au+、Ag+、Cu2+、Pb2+、Zn2+等反应而生成硫化物沉淀。

这种情况,在不向矿浆中加固相铁的硫脲浸出金前期,由于矿浆中离子浓度小,H2S的生成量也很少,且精矿表面暴露的金粒数量多面积大,硫脲的浓度也大,在氧化剂的作用下,金的浸出率较快,已溶金含量不断上升。但随着浸出时间的延长,矿浆中金属离子浓度不断增高,同时H2S浓度也随之上升,游离硫脲浓度不断下降。H2S的浓度升高则自然解离出更多的S2-,并与已溶金(和其他金属)离子反应生成硫化物沉淀。随着硫化物沉淀作用的加强,浸出液中金含量上升速度递减,并逐步发展到金的浸出与硫化物沉淀两者之间发生平衡而达到“终点”。这一终点比原料中金的真实浸出终点早很多,故金的浸出率只90%多一点,比氰化法约低6%(见图4)。当向矿浆中加人固相铁后,已溶金及其他高电位金属离子便迅速地在铁板上与S2-反应生成硫化物沉积而得到回收。图中金的浸出沉淀率,随铁板加人时间的早晚而呈直线上升,当在矿浆浸出作业的同时加铁时,金的浸出沉淀回收率基本与氰化浸出率相同。如峪耳崖硫金精矿,氰化法浸出率为96.10%,硫脲铁浆法浸出率为96.06%;金洞岔硫金精矿,氰化法浸出率为89.63%,硫脲铁浆法浸出率为87.49%。二者的指标相当接近。金等金属离子在铁板上迅速发生硫化沉淀,不但降低了矿浆中的离子浓度,防止它们的浓度过高而硫化沉入渣中造成金的损失,还因络阳离子中金属离子的离解而释放出大量硫脲,使矿浆中游离硫脲浓度增加。

图5是硫脲法与氰化法在不同浸出时间金浸出率的对比曲线。从图中看出,不加铁的硫脲法由于金的硫化沉淀,经浸出16h金的浸出率最高只达52%左右,随着时间延长由于金的硫化沉淀加强还略有下降。而在浸出同时加铁的硫脲法,金的浸出率随时间的延长不断上升,最终的浸出率与氰化法相当接近。表2是硫脲铁浆法浸出硫金精矿原料的主要组分和浸出、回收指标一例。

表2 硫脲铁浆法作业指标

注:①表中Fe的增加是插入铁板溶解生成的;②品位除Au为g/t

外,其余为%

2)碳泥质氧化矿的焙烧和铁装法浸出研究

张家口金矿自然金主要赋存于褐铁矿、黄铁矿、白铅矿、方铅矿、黄铜矿和石英中,经浮选产出含碳、泥质和碱性矿物较高的难处理金精矿。对与此类似的矿石,国内外在氰化前都采取各种工艺措施来消除碳和有害杂质的影响,但氰化浸出率仍不高于85%-90%,而直接或在脱碳后进行硫脲浸置,金的浸出率也只80%左右,且每吨精矿耗硫酸135-180kg,硫脲大于5kg。为了提高此精矿的金浸出率,经试验后,预先对精矿进行氧化焙烧,实现了除碳、分解碳酸盐和驱除褐铁矿中结晶水的作用,再用硫脲铁浆法浸置,获得了比氰化法CCD工艺还好一些的经济技术指标。

图6是将含金100g/t左右的浮选精矿,在680℃左右的温度下焙烧20min左右,再经细磨至94%-0.043mm(-325目),经加硫酸调浆至pH=1.5-2后再添加硫脲,于六台浸出槽中进行连续硫脲铁浆法浸置。经3个批次44个班的试验表明,金的浸出率为95.07%~96.40%,平均95.79%。铁板上金泥的金沉积回收率98.45%-99.69%,平均为98.99%。总回收率平均94.82%。每吨精矿耗硫酸70kg,硫脲1.5-2.2kg,主要材料消耗42.42-52.48元/t,比国内氰化CCD工艺处理同类矿石的成本98.66元降低57%-47%。

本工艺矿浆不需过滤,设备和基建投资低,占地面积小,操作简便,节省劳力,流程也短。它是我国硫脲法从难处理矿石中提金,从研究走向工业应用的首次突破,早已成功应用于张家口金矿的工业生产。为硫脲铁浆法在我国的研究和推广应用奠定了基础。

3)铁浆法的工业试验和推广应用

硫脲铁浆法的工业试验用的原料为硫金精矿,其中含有少量氧化矿物。其主要矿物为黄铁矿、黄铜矿、方铅矿、闪锌矿、褐铁矿、孔雀石、自然金及脲石矿物石英、绢云母、绿泥石、高岭土和碳酸盐类等。精矿组分(金、银为g/t,其他为%)为Au 80.77,Ag 50,Cu 0.71,Pb 0.6,Zn 0.18,Fe 25.09,S 26.55,As 0.046,Bi 0.0063,Ni 0.038,SiO2 22.44,CaO 4.08, MgO 11.80, Al2O3 3.60。自然金粒度-0.038mm(400目)占80%以上,其中

0.0067-0.0033mm的约占50%。

试验采用连续浸置作业,规模为1.5t/d。给料方式一为机械连续给料,二为入工定量

给料。浮选精矿经浓密机脱水后进行调浆,再入旋流器和分级机组成的闭路循环中磨矿,溢流送浸出。浸出金的回收是在槽中挂入铁板,在浸出的同时沉积金。

试验在七只槽中连续进行,磨矿粒度80%-85%-0.043mm(325目),固液比1:2硫脲初始质量分数为0.3%,pH 1-1.5,液温25℃,插入铁板3m2·m3·槽-1,浸置时间35-40h,并按每2h由天车定时吊出铁板自动刮洗金泥一次。

经过12d分别对两个方案进行对比试验表明:金的浸出率分别为94.50%和95.21%,沉积回收率99.35%和99.64%,总回收率93.89%和94.86%。金泥(一例)组分(%)为:Au 3.05,Ag 1.73,Cu 13.57,Fe 15.66,S 20.36,SiO2 19.42,CaO 0.33,MgO 0.35,A12O3 2.95。其中(Au+Ag)4.78%。为了提高金泥中的Au、Ag品位,曾在刮洗前先用高压水冲洗除去铁板表面附着的黄铁矿和细粒矿泥,金泥含金可提高至5%。

以上工业试验表明:

①硫脲铁浆法与氰化逆流倾析洗涤工艺相比,各项经济技术指标相当或略好(如表3),主要是硫脲法所用精矿含金品位比氰化法低造成的。若硫脲铁浆法与氰化炭浆法相比,则硫脲法成本要高些。

表3 硫脲法与氰化法经济技术指标比较

②硫脲浸金的初始浸出速度很快,当矿浆在向硫脲槽加硫脲调浆后,金的溶解率已达50%以上,以后进入各浸出槽溶解速度逐渐下降。表4是精矿在各槽中的浸出、置换作业指标。由于矿浆中金的浸出和铁的置换沉积是同步进行的,矿浆中金属离子浓度和Au溶解的电位都较稳定,因此,金的浸出率和置换率均呈稳步上升趋势。

表4 硫脲铁浆法的浸出和回收指标

③本试验是在高酸(pH 1-1.5)和高浓度硫脲(质量分数0.3%)条件下进行的,精矿中各杂质组分的总溶解率平均达25%。表5是精矿和最终浸渣(取自7#槽)的主要组分及它们的溶解率(一例)。从表中看出,这些杂质大量溶解进入溶液中,不单加大了药剂消耗,还使大量杂质离子或化合物硫化沉淀或混入金泥中,致使金泥的含金品位降低。在这些杂质离子和化合物浓度如此高的矿浆中,若不在浸出的同时采用铁浆法置换,金粒的表面就易发生钝化而降低浸出率,且会使已溶金的大量硫化物沉淀于渣中而降低回收率。

表5 硫脲铁浆法浸出精矿时各组分的溶解率

④本试验在初始矿浆pH为1-1.5,H2SO4的质量浓度为8.96g/L,硫脲浓度为4.49g/L的条件下浸出,由于上述各种杂质的大量溶解,每吨精矿消耗硫酸100.5kg,硫脲6kg。经作业消耗,贫液中含H2SO4浓度4.11g/L、SCN2H4浓度2.14g/L,作业过程中的药剂消耗占50%以上。

⑤本次使用的精矿,金呈极细粒分布于精矿中,磨矿粒度原则上虽以细为好。实际作业中磨矿粒度已达80%-85% -0.043mm(-325目)。若再行细磨,不但增大磨矿成本,还将增大杂质的溶出量,可能会引起金浸出指标的恶化。

⑥试验证明:硫脲铁浆法工艺简单、操作方便。长春黄金研究院为工业试验而设计的设备已实现了机械化和程序自动控制,可节省劳力,减轻劳动强度,故该工艺和设备在完成试验后已应用于工业生产。生产实践证明,它能满足生产需要。

4)金泥的处理

硫脲铁浆法金泥的产出率通常为精矿的1%左右,金泥含金常为1%-5%,富集比小。鉴于金泥含金品位低,给下一步的提纯带来困难,故多采用火法熔炼或湿法冶金处理。

金泥的火法熔炼可以采用坩埚炉、小型电炉、转炉或灰吹炉处理,由于金泥含金低、组分复杂,特别是铅、铜、铋等金属的存在,需要进行长时间的氧化熔炼才能除去,给火法熔炼带来困难。为此,可依据金泥的实际组分,预先采用氧化或硫酸盐化焙烧和酸或高铁盐浸出等常规工艺将S、Cu、Fe等除去,使金、银富集后再进行火法熔炼,并加熔剂造渣产出合质金,然后用常规工艺分离提纯。

金泥的湿法冶金,可用酸浸(煮)法、氰化法、硫脲法、液氯化法、王水法等,但在大多数情况下,最好预先进行氧化或硫酸盐化焙烧和浸出以除去杂质,使金富集后再处理。

在上述湿法冶金中,氰化法和硫脲法所得产品金纯度不高,还需提纯处理。王水溶金再用SO2、亚铁盐或亚硫酸钠等还原剂还原的方法,使产品金纯度提高,但必须预先除去金泥中的杂质,使金泥中的金含量提高至50%以上才便于采用。而液氯化法则不受金泥含金品位高低和杂质多少的限制。由于王水能溶解的物质液氯化法也能溶解,浸出液中各种离子的浓度虽相当高,但使用SO2、亚铁盐、亚硫酸钠等还原剂均能选择性还原金,并产出纯度高的金粉,再经氧化熔铸可产出纯度大于99%的金锭。但采用王水法或液氯化法,金泥中的Ag 会生成AgCl进入渣中,需采用氨浸法或亚硫酸钠浸出法及其他适宜工艺从浸渣中回收银,或者将含AgCl的浸渣进行还原熔炼,经造渣后产出铜、银等的合金,再用常规方法从中分离银并综合回收有价金属。若采用硫酸浸出除杂质,硝酸分银和王水(或氯化浸出)分金的分步湿法分离提纯工艺,效果也很好。

4.炭浆或树脂浆法

从硫脲浸出矿浆中吸附金、银的炭浆法或树脂浆法,其作业方法和氰化浸出的炭浆法或树脂浆法一样,所用的活性炭也一样。若采用树脂浆法则因硫脲金络离子为阳离子,而应使用强酸性阳离子交换树脂或硫醇树脂等。如不使用粒状吸附剂,而使用阳离子交换树脂纤维布或活性炭纤维布,还可免去从矿浆中筛分回收载金粒状吸附剂的作业,只需定时从矿浆中

提出载金纤维布送解吸金,并向槽中加入另一批备用纤维布继续进行吸附。

由于硫脲金是带正电荷的络阳离子,金在吸附剂上的吸附性能与带负电荷的氰金络阴离子是不同的,其解吸方法也简单些。只要通过热(约50℃)酸或热硫脲液洗涤,吸附剂上的金、银就可完全洗脱下来。

活性炭吸附金时也吸附了一些硫脲,这些硫脲在有氧(空气)条件下解吸金时,会因炭表面的催化作用使硫脲快速氧化分解,鉴于同样的原因,若要从贫液或尾液中回收硫脲,可先用活性炭吸附,然后在无氧条件下用少量温热水洗涤,就可获得纯净的浓硫脲液。由于此法具有一定的难度,通常是将尾液或贫液进行适度中和,使过量Fe3+水解沉淀后返回使用。它既可节省硫脲,又可实现无排污作业。

广西龙水金矿是含碳质页岩、石墨的硫化矿床。自然金粒度较粗,大部分为0.01-0.1mm,少数大于0.3mm,-0.01mm的只占15%。金粒主要赋存于黄铁矿的裂隙中,少量为黄铁矿所包裹。鉴于矿石的特性,经试验后,多年来一直采用矿石浮选、精矿焙烧和硫脲铁浆法提金工艺。由于矿浆pH在1.5左右,铁板消耗量每吨精矿约10kg,铁板上酸蚀形成的孔洞中夹带大量矿泥,金泥含金品位只0.1%-0.2%,并有部分金残存于铁板蜂窝状孔隙中得不到回收,且银的浸出率很低,造成资源浪费。

为此,龙水金矿又进行了硫脲炭浆法小型探索性试验。实验规模为1kg级,限于矿山设备条件,试验只采用单因素对比法,没有进行多因素最佳条件选择试验。本次试验共进行两批计七个样品,矿样均为浮选精矿的焙砂。第一批三个样为高品位焙砂,未再磨矿,粒度较粗,用于铁浆法与炭浆法对比试验。试验条件是在室温下,按每吨焙砂加硫酸50kg,硫脲4kg,铁浆法浸出36h,在浸出的同时按3m2·m3·槽-1加入铁板进行浸置;炭浆法浸出24h,在浸出12h后按吨焙砂加活性炭15-20kg。第二批4个样为不同含金量的低品位焙砂,经再磨矿至90%~95%-0.043mm(-325目),全采用炭浆法浸出,其条件除加酸和硫脲与上述相同外,另添加高价铁盐2kg/t,浸出时间24h,在浸出12h后加活性炭15-20kg/t,试验方法及结果列于表6。从表中看出,采用硫脲炭浆法和铁浆法,金的浸出和回收指标相近,银的浸出率二者都不高。如何提高银的浸出指标等问题有待进一步探索。

表6 硫脲浸出炭浆法与铁浆法结果比较

5.矿浆电解沉积法

硫脲浸出矿浆中金的电解沉积采用外加电源的不溶阳极电解法。此法于1979年首先由平桂矿务局进行了试验,后来广东矿冶学院分别采用铁、铅、铜作极板进行了较系统的小型探索性研究,其方法和结果如下:

试验是在矿浆固液比1:2,硫酸10kg/t,硫脲3g/t,室温25-30℃,槽电压7V条件下浸出-电解4h。由于时间短,金的浸出率虽不到50%,但已溶金的电积回收率高达99%左右。

后经条件试验,初步认为以矿浆pH1.0-1.3、槽电压3~5V较好。槽电压的监控使用饱和甘汞电极测量阴极氧化还原电位,当阴极电位为-5mV时,金能满意地沉积于阴极上回收。若槽电压过高,阴极电极电位和电流密度将明显上升,尤以阳极电位升高最大,导致矿浆酸度和温度升高,硫脲热分解加快,阳极氧的析出速度也加大。由于试验用的金精矿含碳

2.65%~

3.12%,阳极析氧速度加快会使碳的氧化加剧,生成一层粘稠的碳质泡沫浮于矿浆面上,不利于操作。

试验还证明,分别采用铁、铅、铜板作阴极,尽管这些金属的电位不同,但在通入电源后它们的电极电位几乎相同,由于阳极在电解时不断析出氧,矿浆中的氧浓度可保持恒定。矿浆中既有足够的氧,作业的搅拌速度也可低些。这些氧还可使精矿溶出的Fe2+不断氧化生成Fe3+,而不必另加氧化剂。

2氨基硫脲的合成

化学通报990311
Page 1 of 4
化学通报
CHEMISTRY 1999年 第3期 No.3 1999
1,3-二氨基硫脲的合成研究
孙晓红 关键词 二氨基硫脲 合成 催化 刘源发
1,3-二氨基硫脲(简称TCH)是一种重要的有机合成中间体,在一些杂环类医药、 农药的合成中有广泛的用途,同时它的一些金属衍生物也具有较大的应用价值。关于 其合成方法文献已有报道[1],且一直受到研究工作者的重视。在几种不同的合成方 法中,通常采用的是以二硫化碳和水合肼为原料,经两步反应制得TCH,以反应式表示 如下:
从原料来源及工艺条件来看,这是一条合理的工艺路线,二硫化碳与水合肼在较 低温度下反应,先生成二硫代肼基甲酸钅 井(简称HDTC),后者经加热分解,放出硫 化氢,冷却后过滤,即可得到TCH。但此种方法早期文献报道收率一般低于70%[2,3], 如加热温度控制不当,反应剧烈,难以控制,TCH的收率会更低,且不安全,目前国内 有关生产厂家仍采用此工艺路线。后有一些文献报道了有关此方法的改进研究,发现 过量的水合肼存在可提高收率[4],加入水及一些低烷基醇有利于反应进行,但并不 增加反应收率;一些胺或强碱如四亚甲基二胺、氢氧化钠存在下可增加TCH的收率 [5];在巯基乙醇存在下,二硫化碳与过量水合肼反应不仅可提高收率,同时可减少 副产物生成,可使水合肼循环套用次数增加,TCH的平均收率~90%[6]。但是以上方 法存在反应时间过长,一般需20h左右及催化剂巯基乙醇价格贵,来源困难的问题。 我们在文献[6]的基础上,对此方法进行了改进研究,研究成功以氯乙醇等卤代 醇代替巯基乙醇,并适当提高脱硫化氢的反应温度,使反应时间大为缩短,在10h以内 即可完成反应,过量的水合肼可循环套用的工艺条件,TCH的收率一般均在90%以上。
1 实验部分
1.1 主要原料及规格 二硫化碳,化学纯; 80%水合肼,化学纯; 2-氯乙醇,分析纯; 1,3-氯-2丙醇,自制; 巯基乙醇,化学纯。 1.2 实验步骤 1.2.1 操作方法 在装有搅拌器、温度计、滴液漏斗及冷凝器(上口连有尾气导出管) 的四口烧瓶中加入80%水合肼3mol及适量水,2-氯乙醇12g,冰水浴冷却至15℃左右, 搅拌下滴加二硫化碳1mol,约1h加完,然后在室温下搅拌30min,此时有黄色结晶HDTC 析出。加入6g氢氧化钠,加热升温并控制反应温度在75~85℃之间反应10h,所放出的 硫化氢气体经导气管用稀氢氧化钠吸收。冷却至室温,过滤析出的白色颗粒状TCH。用 150mL甲醇洗涤,干燥,得产物重97.5g,收率92%。 将过滤所得母液及甲醇洗涤液合并,加入反应瓶,搅拌下于15℃左右,30min之 内,滴加0.52mol二硫化碳,继续在此温度下反应1h。冷却至0℃,30min后,过滤析出 https://www.docsj.com/doc/c31166673.html,/web/chemistry/2000/https://www.docsj.com/doc/c31166673.html,/col/1999/hxtb/hxtb9903/... 2011-10-27

硫脲合成工序工艺操作规程及安全规定标准版本

文件编号:RHD-QB-K5166 (管理制度范本系列) 编辑:XXXXXX 查核:XXXXXX 时间:XXXXXX 硫脲合成工序工艺操作规程及安全规定标准版 本

硫脲合成工序工艺操作规程及安全 规定标准版本 操作指导:该管理制度文件为日常单位或公司为保证的工作、生产能够安全稳定地有效运转而制定的,并由相关人员在办理业务或操作时必须遵循的程序或步骤。,其中条款可根据自己现实基础上调整,请仔细浏览后进行编辑与保存。 一、工艺操作规程式 1、开车前准备 (1)接碳化工序准备开车通知后(一般提前半小时通知),班长通知合成工、投料工做好开车前准备,检查各自使用的设备处于良好状态。 (2)检查硫化氢总管阀门、合成罐、气体进气阀、母液进液阀、夹套进水、进气、退水、退气阀、合成罐放液阀、石灰氮投料孔盖均处于关闭状态。 (3)投料工根据班长要求准备投小成石灰氮原料,并检查提升机是否工作正常,等待合成工进一步

投料通知。 (4)合成工检查母液池母液是否达规定量及一次渣水是否抽入并准备好。 2、开车操作 (1)合成罐打二次母液:合成工先将二次吸收液地槽泵出口管头放入合成罐人孔口内,然后将二次吸收罐底阀打开,放液至二次吸收液地槽,同时开启地槽杆式移动泵,将二次吸收液全部批入合成罐内。关闭二次吸收罐底阀,关闭地槽杆式移动打液泵,将打液胶管从合成罐人孔口取出。二次吸收液打液操作结束。 (2)合成罐打循环液:打开合成罐上循环母液进液阀,开启循环母液打液泵(潜水泵),补充循环母液,使合成罐内混合液量达8.5M3。然后关闭循环母液泵,关闭合成罐上循环母液进液阀。

(3)小成投料 合成工操作:合成工将提升机二层石灰氮出料口移动出料口接好,并对准合成罐石灰氮进料口,确认牢靠后,开启合成罐搅拌器,确定小成投料数量,并通知投料工准备投石灰氮。 投料工操作:开启提升机,待运转正常后,将规定量石灰氮投入提升机进料口内。 投料完毕后,投料工通知合成工,合成工将合成罐上投料孔盖盖好,并把移动出料口收回原来位置。 (4)二次吸收罐投料:在投小成过程中,合成工可打开二次吸收罐上循环母液进液阀,然后开启循环母液泵,往二次吸收罐内打母液2.5—3M3。然后合成工将二次吸收罐上投料孔盖盖好。 (5)依次打开硫化氢管进口管总阀,投小成后

边缘提取不同算子方法的分析比较

目录 摘要....................................................................... I 1简介. (1) 1.1MATLAB 简介 (1) 1.2数字图像处理简介 (1) 2边缘检测 (3) 2.1边缘的含义 (3) 2.2边缘检测的含义 (3) 2.3边缘检测的步骤 (3) 3常用的边缘检测算子 (5) 3.1微分算子 (5) 3.1.1 Sobel算子 (5) 3.1.2 robert算子 (6) 3.1.3 prewitt算子 (6) 3.2 Laplacian算子 (6) 3.3 Log算法 (7) 3.4 Canny边缘检测法 (7) 4程序设计 (8) 5运行结果 (10) 6边缘检测结果比较 (12) 7心得体会 (13) 参考文献 (14)

摘要 边缘检测是利用边缘增强算子,突出图像中的局部边缘,然后定义象素的“边缘强度”,通过设置阈值的方法提取边缘点集。本设计利用MATLAB软件分析几种应用于数字图像处理中的边缘检测算子,根据它们在实践中的应用结果进行研究,主要包括:Robert 边缘算子、Prewitt 边缘算子、Sobel 边缘算子、LoG边缘算子以及Laplacian 算子等对图像边缘检测,根据实验处理结果对几种算子进行比较。 关键词:Matlab边缘检测算子

1简介 1.1MATLAB简介 Matlab是国际上最流行的科学与工程计算的软件工具,它起源于矩阵运算,已经发展成一种高度集成的计算机语言。有人称它为“第四代”计算机语言,它提供了强大的科学运算、灵活的程序设计流程、高质量的图形可视化界面设计、便捷的与其它程序和语言接口的功能。随着Matlab语言功能越来越强大,不断适应新的要求并提出新的解决方法,可以预见,在科学运算,自动控制与科学绘图领域,Matlab语言将长期保持其独一无二的地位。 Matlab 的特点如下: (1) 高效的数值计算及符号计算功能,能使用户从繁杂的数学运算分析中解脱出来; (2) 具有完备的图形处理功能,实现计算结果和编程的可视化; (3) 友好的用户界面及接近数学表达式的自然化语言,使学者易于学习和掌握; (4) 功能丰富的应用工具箱(如信号处理工具箱、通信工具箱等) ,为用户提供了大量方便实用的处理工具. Matlab的优势如下: (1)友好的工作平台和编程环境 (2)简单易用的程序语言 (3)强大的科学计算机数据处理能力 (4)出色的图形处理功能 (5)应用广泛的模块集合工具箱 (6)实用的程序接口和发布平台 (7)应用软件开发(包括用户界面) 1.2数字图像处理简介 数字图像处理又称为计算机图像处理,它是指将图像信号转换成数字信号并利用计算机对其进行处理的过程,以提高图像的实用性,达到人们所要求的预期结果。从处理的目的来讲主要有:

废料白银提取方法

废料白银提取方法 一、用“三废”提取白银。所谓“三废”即指:废照像定影液,废镀银液,半导体生产管 出的处理废液、废半导体元件,电器接头、镀银边角料、制镜行业等废弃物。 原料:到各地照像馆、医院放射室、印刷厂、电镀厂、无线电厂、电器开关厂、半导体元件厂、制镜厂、废品回收站等单位联系购买。破镜及热水瓶胆等镀银边角料先打成碎片。用硝酸溶液浸泡2—3小时,直至玻璃上已无银壳,再过滤取滤液。用法与废定影液相同。提取方法; (一)置换法:用化学活动性较大的金属,如锌、铁、铝等。从废定影液中置换出银。用法较简单,用金属粉、金属块和金属条直接加入或插入废定液中,银便被置换附着在金属表面,但置换后的产品不纯,尚需进一步提纯。 (二)沉淀法:用硫化钠使定影液中的银,以硫化银为形式沉淀出来,再把硫化银沉淀物加入热的盐酸中.并加入过量铁粉,使可得到白银。但产品再需提纯。有关反应式如下: 2[Ag(S2O3)2]3-+S-→Ag2S↓+4S2O32- Ag2S+Fe+2HCI→Ag↓+FeCI+H2S↑ 因硫化氢有毒,操作应在通风处进行。 (三)电解法:直接提取白银,可1次性处理,制得白银质量很纯。电解法中两个电极的正确使用非常重要。当通电后,阳离子即银离子移动,得到电子被还原成银原子在阴极表面堆积;阴离子向阳离子移动,失去电子被氧化,如果电极使用不当,则会造成电极腐蚀,污染溶液。因此应将石墨棒(即干电池的中心碳棒)接在直流电源的正级作为阳级;用银棒或不锈钢板接在直流电源的负极作为阳极,一起插入废定影液中进行电解。溶液pH一般调节在2—4(滴加硝酸调节),电压为1伏特,电流密度为0.3A/cms。这样,在电解过程中.阴极上的银条便由于银的堆积而由小变大,颜色纯自。如果电流大,银沉淀太快,则呈黑色。当电解产物出现棕色时,说明溶液中含银量已经很少了(每公斤含银量少于1克),不宜再电解。 测定废淀影液含银量多少,能否电解,也可以拿1条干净的铜丝,插入溶液中,2分钟后尚不见铜丝变为银白色,说明溶液中的银难提取了。 提取白银,可送给各地人民银行收购。 二、从镀银废液玻璃中提取。镜子背面,热水瓶胆内套都涂有银层,提取方法如下: (一)操作过程 1.脱去红丹:将碎镜片浸入浓度8%~10%的烧碱液中,1—2小时后红丹脱落,脱去红丹后的银光玻璃(还可加入热水瓶胆玻璃片),用清水冲洗干净至无碱性。 2.溶解银层:将洗净的银光玻璃,浸入浓度为10%的稀硝酸溶液中,银与硝酸反应生成硝酸银。300公斤这种稀硝酸溶液能处理4000公斤银光玻璃,而成为硝酸银溶液。 3.沉淀氯化银:按所得硝酸银溶液的体积,再按体积比加入l%左右浓度为16%的盐酸,即生产乳白色的氯化银沉淀物。待澄清后,抽捧清液,将沉淀用清水洗涤2—3次,使其达到中性。 4.还原银粉:将等量的无锈铁片与所得氯化银紧紧交替迭放在容器内.又按体积加入1%浓度为16%的盐酸,经8—12小时后.金属银全部被置换出来,呈灰褐色。再用清水洗涤3—4次至无酸性。 5.剔除铁屑:将置换出来的银放在铁锅内炒干,最好炒到银粉成褐色,微红,并结成块状或粒状。冷却后,用吸铁石(磁铁)吸去混入的铁屑。 6.熔炉铸锭:将炒干去铁后的银粉放入石墨坩埚内。在1000--1200℃的温度下熔炼.同

1,3,4-噻二唑类化合物的合成解析

本科毕业论文 学 院 化学化工学院 专 业 化 学 年 级 2009 级 姓 名 罗红辰 论文(设计)题目 1,3,4-噻二唑类化合物的合成 指导教师 张玉霞 职称 教授 2013 年 5月 16日 学号:

信阳师范学院本科学生毕业论文(设计)开题报告

信阳师范学院本科学生毕业论文(设计)中期检查表

目录 摘要 (1) Abstract (1) 前言 (3) 1试验部分 (3) 1.1 主要仪器和实验试剂 (3) 1.2 1,3,4-噻二唑类化合物的合成 (3) 1.3 产物的结构与性能分析 (4) 2结果和讨论 (4) 2.1溶解性及熔点 (4) 2.2红外光谱 (5) 2.3 紫外光谱 (7) 2.4荧光光谱 (9) 3结语 (10) 参考文献 (11)

1,3,4-噻二唑类化合物的合成 学生姓名:罗红辰学号:20095051109 化学化工学院化学专业 指导教师:张玉霞职称:教授 摘要:乙酸在浓盐酸的催化下与氨基硫脲反应生成脂肪族类2,5-二取代-1,3,4-噻二唑,取代苯甲醛与氨基硫脲在六水合氯化铁的催化下关环生成芳香族类2,5-二取代-1,3,4-噻二唑类化合物,并对其进行了结构表征和荧光分析。 关键词:噻二唑;取代苯甲醛;氨基硫脲;合成 Abstract:Under the catalysis of concentrated hydrochloric, acetic acid react with thiosemicarbazide and generate an aliphatic 2,5 - disubstituted -1,3,4 – thiadiazole.under the catalysis of ferric chloride hexahydrate,the product of substituted benzaldehyde reacting with thiosemicarbazide synthesize Aromatic 2,5- disubstituted-1,3,4- thiadiazole compounds.And,Their structural characterization and fluorescence analysis were done after synthesis. Keywords:thiadiazole;substituted benzaldehyde;thiosemicarbazide;synthesize 前言 20世纪末以来,化学工作者发现l,3,4-噻二唑在许多领域都有重要应用。在工业方面,1,3,4-噻二唑类化合物主要被用作润滑油脂抗磨极压剂,也用作钼、石墨等矿石的浮选剂[2]。在农业方面,1,3,4-噻二唑类化合物主要用作除莠剂、灭草剂、杀菌、抑菌剂、植物生长调节剂等,用来防治水稻百叶枯病、柑橘溃疡病、蕃茄青枯病等[3]。在医药方面,l,3,4-噻二唑是一类具有较高生物活性的杂环化合物,常作为药物中间体主要用来合成具有抗菌,抗焦虑,抗癌活性的药物[4-12]。噻二唑化合物的“碳氮硫”结构作为活性中心已引起广泛关[13-17],含有3个杂原子的1,3,4-噻二唑衍生物是一类重要的杂环化合物,因该类化合物具N-C-S毒性基而具有广谱生物活性,其应用广泛,发展前景广阔。 以下是脂肪族1,3,4-噻二唑类化合物和芳香族1,3,4-噻二唑类化合物的合成路线:化合物(Ⅰ)的合成路线:

尿素制硫脲

尿素制硫脲 目前,我国硫}}1:生产主要是利用各种含硫化氢的尾气,生产规模都在5000t/a以下。现有硫眠生产厂家约30多家,年产量约为50000吨,其中生产规模较大的厂家有: 江苏昆山化工厂、 湖南衡南县化工农药厂、 山东临体县化工厂、 山西运城鸿运化工集团公司、 天津跃进化工厂、 宁夏大荣实业集团有限公司、 湖南衡阳宏湘化工有限公司等 传统工艺过程为:生石灰和水经消化反应生成的石灰乳进入吸收釜,在吸收釜中石灰乳吸收硫化氢气体生成硫氢化钙溶液。该溶液与固体粉末状石灰氮反应生成硫}}1:溶液。此溶液过滤后,将清液进行减压蒸发浓缩,浓缩液经冷却结晶、

离心分离、烘干即得成品硫眠。其工艺流程示意图如图1-1所示 目前改进的工艺方法是直接把工业生产过程中产生的废气硫化氢与石灰氮水溶液一步法直接反应,减少了石灰的消耗,工业废渣量也减少了。 具体的流程为:将石灰氮与水(回流母液或洗液)在合成反应釜中混合均匀,边搅拌边通入硫化氢气体进行合成反应生成硫}}1:溶液。此溶液过滤后,进入冷却结晶器进行冷冻结晶,结晶液离心分离,将晶体烘干即得成品。其工艺流程示意图如图1-2所示 该工艺是由石灰氮溶液直接吸收硫化氢气体生成硫}}1:,硫}}1:溶液中产品的析出则由原来的蒸发浓缩、冷却结晶改为冷冻结品。该工艺减少一种原料生石灰,省去石灰乳的配制、硫氢化钙溶液的制备、硫}}1:溶液的蒸发浓缩三个工序。该工艺与老工艺比较主要有以下优缺点。一是少用一种原料生石灰,同时,硫化氢和氰氨化钙的消耗定额都有所降低,降低了原料成本。二是传统工艺需用蒸汽加热蒸发硫}}1:溶液中的部分水份,蒸汽耗量很大;该工艺需要冷冻盐水进行冷冻结晶,电的消耗量有所增加。但从整个水、电、汽的消耗定额来看,该工艺比传统工艺每吨产品的费用降低了37.6。三是该工艺由于工艺流程缩短、操作人员减少、设备投资降低,因此,整个硫眠生产成本下降。 氰胺一硫化氢合成法是目前国外生产硫}}1:的主要工艺方法。该法是将氰胺溶于乙酸乙酷制得氰胺的乙酸乙酷溶液,加入浓氨水溶液中,同时通入过量硫化氢气体并充分搅拌,即得到大量硫}}1:晶体,过滤晶体并用无水乙醇洗涤,再经重结晶得到产品,纯度可达99%以上。上层滤液可作为母液循环利用,硫眠总

边缘提取

图像边缘提取的经典算法及展望 摘要:该文对现有图像边缘提取的经典边缘检测算子方法进行了介绍,对比、分析了各自的优缺点,为了更清楚地看出各种算法的效果,给出了一些常用算法对同一幅标准测试图像的原图像进行边缘提取的实验结果。最后,对图像边缘提取技术所面临的问题和发展方向阐述了自己的观点。 关键词:图像处理,边缘提取,边缘检测算子 中图分类号:TP 314.7 文献标识码:A The Algorithm for I m age Edge Detection and Prospect Abstract:The representative algorithms in these days for image edge detection have been presented in this paper.After contrasting and analyzing the advantages and the disadvantages of every algorithm.In order to have a much clearer look at the effect of every algorithm,we give the results of the experiments in which the common algorithms are used to detect image edge of the same standard testing image.At last,we bring forward our viewpoint about the problems the image edge detection technology is facing and where is its developmental direction . Key words:Image manipulation ;Edge recognition ;Edge recognition arithmetic operators 1 选题背景与研究意义 图像是人们从客观世界获取信息的重要来源,也是人类视觉延伸的重要手段。随着计算机和各个相关研究领域的迅速发展,科学计算的可视化、多媒体技术等研究与应用的兴起,数字图像处理从一个专门领域的学科,发展成为了一种新型的科学研究和人机界面的工具。通过对人类视觉系统的研究表明,图像中的边界特别重要,往往仅凭一些粗略的轮廓线就能够识别出一个物体,而轮廓线就是图像的边缘。图像的边缘是图像区域属性(像素灰度)发生明显变化的地方,也是图像信息最集中的地方,包含了图像的大部分特征信息,这些信息足图像识别中抽取特征的蕈要属性,能勾画出目标物体,是人类判别物体的重要依据。因此,图像的边缘是图像的最基本特征,被应用到较高层次的特征描述、图像识别、图像分割、图像增强以及图像压缩等图像处理和分析技术中,同时边缘提取也作为图像分析与模式识别的主要特征提取手段,应用于计算机视觉、模式识别等研究领域中IlJ。图像的边缘广泛存在于物体与背景之问、物体与物体之间,边缘检测的实质是采用某种算法提取出图像中对象与背景之间的交界线。通过边缘检测,提取出边缘才能将目标和背景区分开来,简化图像分析,突出图像的重要特征,降低后继图像分析处理的数据量,使图像理解及识别更加容易和深刻。因此,边缘提取算法是图像处理问题中经典技术之一,其优劣直接影响整个计算机视觉系统性能的好坏,它的解决对于我们进行高层次的图像特征描述、识别和理解等有着重大的影响。在数字图像处理的研究过程中,图像的边缘提取一直以来都是图像处理与分析领域的研究热点,也一直是机器视觉研究领域中最活跃的课题之一,在工程应用中占有十分重要的地位。因此,研究图像边缘提取方法具有重要的理论意义和现实意义。具有重要的意义。 2 研究现状及发展趋势 图像边缘提取的方法多种多样,但由于其本所具有的难度和深度,研究没有很大的突破性进展,至目前还没有提出一种方法或是理论,能完美地解决边缘提取问题,这也促使研究人员对此问题不断深入研究。 同时,由于目前的边缘提取评价方法都存在很大的局限性,所以对图像边缘提取评价系统的研究得到越来越多的关注。目前,用得较多的还是通过人眼进行主观判断,评价边缘提取方法的优劣。 总之,边缘提取算法主要存在两个问题:一是没有一种可以普遍使用的图像边缘提取算法;二是没有一个较好的通用的边缘提取的评价标准。因此,这两个问题也将成为今后研究解决的重点和研究趋

(完整word版)银的冶炼方法

银的细菌冶金 银是一种化学元素,化学符号Ag,原子序数47,是一种过渡金属。 纯银是一种美丽的银白色的金属,它具有很好的延展性,其导电性和传热性在所有的金属中都是最高的。例如,若令汞的导电性为1,则铜的导电性为57,而银的导电性为59,占首位。因此,银常用来制作灵敏度极高的物理仪器元件,各种自动化装置、火箭、潜水艇、计算机、核装置以及通讯系统,所有这些设备中的大量的接触点都是用银制作的。在使用期间,每个接触点要工作上百万次,必须耐磨且性能可靠,能承受严格的工作要求,银完全能满足种种要求。如果在银中加入稀土元素,性能就更加优良。用这种加稀土元素的银制作的接触点,寿命可以延长好几倍。 元素用途:用于制合金、焊药、银箔、银盐、化学仪器等,并用于制银币和底银等方面。 银的最重要的化合物是硝酸银。在医疗上,常用硝酸银的水溶液作眼药水,因为银离子能强烈地杀死病菌。 银在地壳中的含量很少,仅占0.07ppm,在自然界中有单质的自然银[3]存在,但主要是化合物状态。 全国已探明有储量的产地有569处,分布在27个省、市、自治区。储量在万吨以上的省有江西、云南、广东;储量在10000~5000t的省(区)有内蒙古、广西、湖北、甘肃,这7个省(区)的储量占了全国总保有储量的60.7%,其余20个省、市、自治区的储量只占全国总储量的39.3%。。 近年来,在国家一系列优惠政策鼓励下,我国在共、伴生银矿的综合选矿回收方面得到了加强,许多矿山和炼厂重视了银的回收,但是总起来看,选矿技术设备没有重大发展,银的回收率不高,不同矿山尾矿中含银很高(10~30g/t),而未予回收。银矿石经选(或选冶)后,所得到的产品有银精矿、银泥和各种有色金属的含银精矿。目前对前两者通常采用火法熔离(反射炉、电炉、坩埚、鼓风炉、闪速炉),或者用湿法冶金分离提取,再行电解精炼;后者主要是在冶炼有色金属过程中,半银富集到阳极泥(主要是铜、铅阳极泥)中综合回收。在我国98%的白银是从各类有色金属矿的冶炼阳极泥中回收的。 为了提高独立银矿浮选的回收率,采取了三方面的措施:一是针对银矿物嵌布粒度的粗细特点,尽可能使银矿物充分解离,提高银的回收率;二是选择中性或弱碱性的浮选矿浆碱度和选用碳酸钠作浮选矿浆的调整剂,提高银的浮游性;三是搭配使用黄药与黑药,增强对银的捕收能力。 银在自然界的存在形态远比金复杂,银有较大的活性,银矿物和含银矿物共有二百多种,出自然银外,银还呈各种银矿物,如辉银矿、螺状硫银矿、淡红银矿、深红银矿、脆银矿、硫砷铜银矿、硒银矿、角银矿等。单质形态的自然银较少,常见的多是其硫化矿物(辉银矿),还有氯化矿物(角银矿),及于铅、锌、铁、锰等元素伴生的多金属矿物,影响浮现、氰化和回收过程。因此含银精矿(除自然界的角银矿外)直接氰化回收率都较低,主要原因是硫化物形态中的银在氰化过程中较稳定,难以与氰根络合溶解,此反应进行缓慢并且是可逆的,需消耗大量的氰化物。 焙烧氧化可使硫化物受到破坏,但同时也会造成银的分散损失,相比之下用细菌氧化工艺对此类银矿进行预处理,然后对所得氧化渣氰化提取,可获得理想的回收率。 近年来,随着市场银价的上涨,加之处理矿源的日渐缺乏,难处理银矿物资源开发利用成为白银工业生产的重要增长点。我国近年在河北、内蒙古、广西、吉林等省区相继发现储量可观的银矿资源,其中有些用常规氰化浸出法提银可获得较好的技术经济指标,但大部分浮选银精矿往往因矿物组成及银的赋存状态的复杂性而成为难处理银矿物。 银在矿石中的赋存形式大致有三种:

硫脲合成工序工艺操作规程及安全规定

硫脲合成工序工艺操作规程及安全规 一、工艺操作规程式 1、开车前准备 (1)接碳化工序准备开车通知后(一般提前半小时通知),班长通知合成工、投料工做好开车前准备,检查各自使用的设备处于良好状态。 (2)检查硫化氢总管阀门、合成罐、气体进气阀、母液进液阀、夹套进水、进气、退水、退气阀、合成罐放液阀、石灰氮投料孔盖均处于关闭状态。 (3)投料工根据班长要求准备投小成石灰氮原料,并检查提升机是否工作正常,等待合成工进一步投料通知。 4)合成工检查母液池母液是否达规定量及一次渣水是否抽入并准备好。 2、开车操作 (1)合成罐打二次母液:合成工先将二次吸收液地槽泵出口管头放入合成罐人孔口内,然后将二次吸收罐底阀打开,放液至二次吸收液地槽,同时开启地槽杆式移动泵,将二次吸收液全部批入合成罐内。关闭二次吸收罐底阀,关闭地槽杆式移动打液泵,将打液胶管从合成罐人孔口取出。二次吸收液打液操作结束。 (2)合成罐打循环液:打开合成罐上循环母液进液阀,开启循环母液打液泵(潜水泵),补充循环母液,使合成罐内混合液量达8.5M3 。然后关闭循环母液泵,关闭合成罐上循环母液进液阀。 3)小成投料

合成工操作:合成工将提升机二层石灰氮出料口移动出料口接好,并对准合成罐石灰氮进料口,确认牢靠后,开启合成罐搅拌器,确定小成投料数量,并通知投料工准备投石灰氮。 投料工操作:开启提升机,待运转正常后,将规定量石灰氮投入提升机进料口内 投料完毕后,投料工通知合成工,合成工将合成罐上投料孔盖盖好,并把移动出料口收回原来位置。 (4)二次吸收罐投料:在投小成过程中,合成工可打开二次吸收罐上循环母液进液阀,然后开启循环母液泵,往二次吸收罐内打母液2.5 —3M3 。然后合成工将二次吸收罐上投料孔盖盖好。 (5)依次打开硫化氢管进口管总阀,投小成后合成罐上的硫化氢进气阀,出气阀及对应二次吸收硫化氢尾气进气阀及该罐的排气阀,检查无误后可通知上工序碳化工开碳。 (6)开碳后开启进气管路上气体冷却水上水阀,使冷却器处于正常工作状态,同时观察二次吸收罐上排气管口是否有气体排出,同时检查合成罐上人孔、投料孔是否盖严、密封,若出现漏气现象,应及时停车,重新盖盖。均正常后,即可进入巡检工作状态。 (7)正常小成吸收硫化氢气体总量约4—5 塔(每塔钡水 6.5M3 硫化钡浓度约为110—120g/l )硫化氢气体 680—740kg。当吸收进入最后一塔时,为控制小成吸收温度,这时可根据气温,入塔母液温度情况,确定合成釜冷却水的通冷时间,确保吸收结束时,吸收液温度在60―― 70C之间。通冷却水操作,可由合成工打开 合成釜夹套冷却水进口阀及出口阀完成。 (8)在一个合成釜吸收至最后一塔时,与碳化工联系下一个合成能否正常连续吸收,如接通知可进行。此时即可按上述开车操作(1)—(4)条进行操作,使第二个合成釜处于吸收等待阶段。 (9)当第一个合成釜吸收结束时,即可先打开第二个合成釜硫化氢进气阀、排气阀,对应二次吸收的进气阀、 排气阀。然后依次关闭第一个合成釜的进气阀、排气阀及对应的二次吸收的进气阀、排气阀。观察第二个合成的二次吸收罐排气阀是 否正常。若正 常后,第二个吸收过程即可进入巡检操作阶段。

灰度图像边缘提取方法综述

内蒙古科技大学 本科毕业论文 题目:灰度图像边缘提取方法综述学生姓名: 学院:物理科学与技术学院 专业:应用物理学 学号:0809810054 班级:08级 指导教师: 二〇一二年 4 月

摘要 本文先介绍了一般边缘检测的步骤和灰度图像形态学的主要操作。着重讨论基于细胞神经网络的一般灰度图像的边缘提取和图像分割。先陈述了几种传统算法,并比较了各算法的优劣。通过例举介绍CNN 基本知识,详细描述了用CNN 提取图像边缘的过程,给出算法流程,阐述算法实现中的关键步骤。对二值图像和灰度图像,分别采用基于CNN 的算法和传统算子(prewitt、sobel、canny)进行边缘提取,给出提取效果图,定性比较两类算法在性能上的优劣。来直接的了解灰度图像边缘提取的方法。 关键字:灰度图像,边缘提取,分割,CNN算法,传统算子

Abstract This paper first introduces the general steps of gray image edge detection and morphology of the main operation. Focuses on the cellular neural network based general gray image edge extracting and image segmentation. Through the examples of introduction of basic knowledge of CNN, a detailed description of the CNN image edge extraction process, the algorithm process, the key step in the algorithm implementation. On two value image and the gray scale image, which are based on CNN algorithm and the traditional operator ( Prewitt, Sobel, canny ) edge extraction, given the extraction effect chart, qualitative comparison of two algorithms in performance on the quality of. To direct understanding of gray image edge extraction method. Keywords: image, edge detection, segmentation, CNN algorithm, the traditional operator

从废菲林片中提取银处理方法的综述

从废菲林片中提取银处理方法的综述 一、银的浸出步骤大致可分为以下三大类。 1.1机械法 机械法, 是指将废感光材料经过沸水浸泡软化后用机械的方法刮取银体让片子和银体分离开来, 银体风干后, 在1000℃ - 1200℃的温度下进行熔炼得到银锭, 或是利用破碎、高速搅拌的摩擦把银层从胶片表面剥落[2] 。优点是简单易行, 收率高, 没有二次污染, 缺点是设备投入大, 不适合大型生产, 运行费用高, 机械刮取的过程中会损坏部分胶片。 1.2生物法 生物法, 是指利用蛋白酶处理废感光材料破坏明胶从而使含银乳剂层与胶片分离开来的方法, 分离下来的含银乳剂层再采用电解法或是金属置换法等方法回收银[3] 。生物法的优点是能同时回收银和胶片, 回收率高, 不会照成二次污染, 生产环境好, 不需要防护措施; 缺点是工艺条件苛刻, 操作困难在没有专门设备的条件下难以实施。成本高, 反应速度慢, 有时需要对排放液进行处理。 1.3化学法 化学法, 是采用酸、碱、盐等化学试剂将胶片上的含

银乳剂层溶脱下来的方法。化学法是一种比较常用的较成熟的方法

使用不同的化学试剂会产生不同的效果。化学法可大致分为以下几种方法。 (1)用强酸强碱浸脱含银乳剂层 优点是来源广泛, 用料便宜, 操作简单; 缺点是具 有强腐蚀性会腐蚀损坏胶片, 硝酸会和银反应放出 氧化氮等有毒气体, 操作环境恶劣。 3Ag+4HNO3=3AgNO3+NO(g)=2H2O稀(硝酸) Ag+2HNO3=AgNO3+NO2(g)+H2O浓(硝酸) (2)用硝酸脲浸 脱乳剂层硝酸可以使明胶蛋白质分解成可溶性的氨基 酸, 尿素可以与 硝酸结合成硝酸脲, 减弱了硝酸的氧化性和腐蚀性, 使含银乳剂层脱离胶片而不腐蚀片基, 硝酸脲受热 又分解。但要注意尿素与浓硝酸的配比, 严格控制 加入量。 (NH2)2CO+HNO3=(NH2)2CO.HNO3 (NH2)2CO.HNO3=(NH2)2CO+HNO3 (3)用Fe3+- 乙二胺四乙酸二钠(EDTA)-Na2S2O3浸脱 乳剂层 原理是用氧化剂[Fe(EDTA)] 把银氧化成银离子, 然 后用 Na2S2O3作为配位剂使银呈配离子稳定地存在溶液

年产300吨含量40%甲基肼水溶液可行性研究报告

1总论 1.1项目建设的意义 近年来随着新生抗生素的广泛应用,头孢类抗生素的品种日益增多,需求也以每年20%的速度增长,目前仅临床应用的头孢类抗生素就有30多种,而头孢曲松用量列头孢类抗生素第一位。头孢曲松属第三代抗生素,它具有疗效高、抗菌谱广、抗菌性强、副作用小的优越疗效而被广泛应用于临床。该品种已被列为国家基本药物和基本保险用药。 生产头孢曲松的重要原料为三嗪酸,甲基肼是一种重要的医药中间体,广泛用于新生抗生素头孢曲松原料三嗪酸的合成。国内三嗪酸生产厂家均从青海购运低含量甲基肼合成甲基氨基硫脲来生产三嗪酸,由于运费较高,致使三嗪酸的生产成本居高不下。因此,石家庄市美斯特化工有限责任公司决定在赞皇县建设年产300吨甲基肼生产项目,来支持我国抗生素的发展,从而为头孢曲松的生产降低成本打下基础。 随着城乡医疗应用普及,头孢曲松的市场需求越来越大。随着头孢曲松药物生产的发展,甲基肼作为头孢曲松药物生产的源头原料也将出现旺盛市场。根据市场调查,国内外三嗪酸生产厂家均大量需求甲基肼,并且石家庄市美斯特化工有限责任公司已经和抚顺美强化工有限公司、河北金通医药化工有限责任公司两大三嗪酸生产厂达成协议,为这两家公司提供甲基肼。因此,该项目建成后,产品市场前景非常看好。 1.2编制依据 (1)《中华人民共和国环境影响评价法》,2003.9.1; (2) 《中华人民共和国水污染防治法》,1984.5.11; (3)《中华人民共和国大气污染防治法》,2000.4.29; (4)《中华人民共和国环境噪声污染防治法》,1996.10.29; (5)《中华人民共和国固体废物污染环境防治法》,1995.10.30; (6)《中华人民共和国清洁生产促进法》, 2002.6.9; (7)中华人民共和国国务院令第253号《建设项目环境保护管理条例》,1998.11.29; (8)河北省第八届人民代表大会常务委员会公告第80号《河北省建设项目环境保护管理条例》,1996.12.17; (9)中华人民共和国国务院国发(1996)31号《国务院关于环境保护若干问题的决

硫脲法提进金及其溶金原理

书山有路勤为径,学海无涯苦作舟 硫脲法提进金及其溶金原理 硫脲又名硫化尿素,白色有光泽的菱形面晶体,味苦,易溶于水,水溶 液呈中性。硫脲能够用来浸金,是由于在氧化剂存在的条件下,金可溶解于含 有硫脲的酸性溶液中: Au+2CS(NH2)2==== Au(SCN2H4)2++e 提金使用氰化物,由于其为剧毒品,不仅对人体有害,而且会污染环境, 因此人们都在寻求无毒的代用品,硫脲法便是在这种情况下应运而生的浸金工 艺方法。由于氰化法污染环境,多年来在寻找无毒微毒的浸金溶剂方面做了大 量的研究工作,各种非氰化法应运而生,值得注意的是硫脲法和氯化法,其中 认为最有前途的是硫脲法。在有氧化剂存在的条件下,使作酸性硫脲溶液直接 溶解金的方法称为硫脲法提金。其优点是硫脲毒性低,贵液易处理,硫脲可 再生重用;金矿石中的杂质不易被溶解;浸出速度快。缺点是硫脲价格高,耗 量大,因而成本高;消耗硫酸,且对设备腐蚀严重要在酸性溶液中浸出,不适 于处理碱性矿石。作业操作不稳定,而且从硫脲液中回收金的工艺还存在技术 上有待解决的问题。其溶金原理是:在含有高价铁离子的酸性稀硫脲溶液中,金被氧化并与硫脲络合生成阳离子络合物进入溶液。金被氧化和络合和反 应式为: 2Au+4CS(NH2)2+Fe2(SO4)3→{Au[CS(NH2)2]2}2SO4+2FeSO4 同时硫脲将继续被氧化,形成一些其他产物,其第一个氧化产品是甲脒化二硫。 2CS(NH2)2 ←→NH2(NH)CSSC(NH)NH2+2H++2e- 甲脒化二硫是活性很高的氧化剂,人们认为,它对于实际的金的溶解是必要的。甲脒化二硫又生 成硫脲和亚磺酸化合物,最后分解为氨基氰和元素硫。这些反应会引起硫脲的 损失。硫脲溶金时的浸出率主要取决于介质PH 值、氧化剂类型与用量、硫脲

图像边缘提取方法及展望

1引言 图像最基本的特征是边缘,边缘是图像性区域和另一个属性区域的交接处,是区域属性发生突变的地方,是图像中不确定性最大的地方,也是图像信息最集中的地方,图像的边缘包含着丰富的信息。因此,图像的边缘提取在计算机视觉系统的初级处理中具有关键作用,但目前仍是“瓶颈”问题。 边缘检测技术对于数字图像是非常重要的,提取出边缘才能将目标和背景区分开来。现有的图像边缘提取方法可以分为三大类:一类是基于某种固定的局部运算方法,如:微分法,拟合法等,它们属于经典的边缘提取方法;第二类则是以能量最小化为准则的全局提取方法,其特征是运用严格的数学方法对此问题进行分析,给出一维值代价函数作为最优提取依据,从全局最优的观点提取边缘,如松驰法,神经网络分析法等;第三类是以小波变换、数学形态学、分形理论等近年来发展起来的高新技术为代表的图像边缘提取方法,尤其是基于多尺度特性的小波变换提取图像边缘的方法是目前研究较多的课题。该文将较为详细地对各种图像边缘提取算法的原理进行阐述,对几种最常用的图像边缘提取算法给出实验结果,并进行结果对比与分析。 2经典的图像边缘提取方法 2.1微分算子法 边缘的检测可借助空域微分算子通过卷积完成,导数算子具有突出灰度变化的作用,对图像运用导数算子,灰度变化较大的点处算得的值较高,因此可将这些导数值作为相应点的边界强度,通过设置门限的方法,提取边界点集。 一阶导数 !f !x 与 !f !y 是最简单的导数算子,一个连续函数f(x,y)在位置(x,y)处方向导数的最大值是I G I=( !f !x )2+(!f !y )2 [I12,称为梯度模,相应地,取得最大值的方向为"=tan-1 !f !y !f !x T I I L T I I J 。 利用梯度模算子来检测边缘是一种很好的方法,它不仅具有位移不变性,还具有各向同性。在实际中,对于一幅数字图像采用了梯度模的近似形式,如常用的罗伯特交叉算子(Roberts Cross)和索贝尔算子(SobeI)的表达式分别为: Roberts算子表达式为: \G\=maX(I f(i,J)-f(i+1,J+1)I,I f(i+1,J)-f(i,J+1)I) SobeI算子表达式为: 121 000 -1-2- T I I L T I I J 1 10-1 20-2 10- T I I L T I I J 1 x方向卷积核y方向卷积核 图像边缘提取方法及展望 季虎孙即祥邵晓芳毛玲 (国防科技大学电子科学与工程学院,长沙410073) E-maiI:Iove63901@https://www.docsj.com/doc/c31166673.html, 摘要该文对现有代表性的各种图像边缘提取方法进行了介绍,对比、分析了各自的优缺点,重点对以小波变换为代表的现代信号处理技术提取图像边缘的方法进行了分析和阐述,为了更清楚地看出各种算法的效果,给出了一些常用算法对同一幅标准测试图像Lena进行边缘提取的实验结果。最后,对图像边缘提取技术所面临的问题和发展方向阐述了自己的观点。 关键词边缘提取小波变换多尺度分析图像边缘检测 文章编号1002-8331-(2004)14-0070-04文献标识码a中图分类号TP391 The Algorithm for Image Edge Detection and Prospect Ji Hu Sun Jixiang Shao Xiaofang Mao Ling (SchooI of EIectronic and Engineering,NationaI University of Defense TechnoIogy,Changsha410073)Abstract:The representative aIgorithms in these days for image edge detection have been presented in this paper.after contrasting and anaIyzing the advantages and the disadvantages of every aIgorithm,we pIace an emphasis on anaIyzing and iIIuminating waveIet transform,which is one of the modern signaI processing technigues for image edge detection.in order to have a much cIearer Iook at the effect of every aIgorithm,we give the resuIts of the eXperiments in which the common aIgorithms are used to detect image edge of the same standard testing image Lena.at Iast,we bring forward our viewpoint about the probIems the image edge detection technoIogy is facing and where is its deveIopmentaI direction. Keywords:edge detection,waveIet transform,muItiscaIe anaIysis,image edge detection 作者简介:季虎(1972-),男,工程师,博士研究生,主要研究方向为计算机视觉、图像处理、模式识别。孙即祥(1946-),男,教授,博士生导师,现已出版专著三部,并正在撰写另外一部专著,已发表论文十数篇。主要感兴趣的研究方向为计算机视觉、图像处理、模式识别等。 70 2004.14计算机工程与应用

相关文档