文档视界 最新最全的文档下载
当前位置:文档视界 › 重庆跨座式单轨交通高架轨道梁桥设计

重庆跨座式单轨交通高架轨道梁桥设计

重庆跨座式单轨交通高架轨道梁桥设计
重庆跨座式单轨交通高架轨道梁桥设计

重庆跨座式单轨交通高架轨道梁桥设计

摘要重庆轻轨工程是我国第一条跨座式单轨交通系统。介绍了该跨座式单轨交通的技术标准,并对高架轨道梁桥的孔跨布置、轨道梁设计和制造工艺、墩柱设计形式以及相关技术作了阐述。

关键词独轨铁路,跨座式,轨道梁,轻轨交通桥梁设计

跨座式单轨交通具有噪音低、爬坡能力强、转弯半径小、快速便捷、占地少、造价低、利于环境保护等优点,是现代化城市快速轨道立体交通的一种新形式。但跨座式轻轨也有缺点,能耗大、运能小, 且无法与常规的地铁、轻轨接轨。应用跨座式单轨铁路最多的国家是日本。1964 年,日本东京修建了从市中心到羽田机场的跨座式单轨铁路,全线实现计算机集中高度控制。该线成为旅客出入羽田机场的重要通道。后来,日本又建了大阪线、北九州线等跨座式单轨铁路。另外,法国、美国、澳大利亚和英国也都修建了自己的跨座式单轨铁路。本文介绍的是我国第一条跨座式单轨交通重庆轻轨。

1 工程简介

重庆是山城,为丘陵地理特点,故选择噪声低、爬坡能力强、转变半径小的跨座式单轨交通系统, 这在我国尚属首次。重庆市轻轨工程东起重庆市区商业中心较场口,西至大渡口区钢铁基地新山村,途经临江门、大溪沟、牛角沱、李子坝、大坪、杨家坪等地段,全线长17. 54 km ,共设17 座车站。全线分两期建设实施,其中一期工程由较场口至大堰村长13. 98 km ,14 座车站,2 座变电站,6 座牵引变电站,一座车场,一座控制中心,初期配车84 辆,建设工期为4 年半。全线建成后可达到高峰小时运送3 万人次的客运能力,初期年客运量1. 5 亿人次,远期年客运量3 亿人次。线路分左右线双向行驶。高架轨道梁桥贯穿全线,高架桥占83.

2 %。工程总投资45 亿元左右,每公里造价约为2. 2 亿元。于2000 年开工建设,计划2004 年6 月建成通车。

2 主要技术标准

由于我国目前尚没有跨座式单轨的设计规范和标准,针对重庆轻轨工程,借鉴日本规范《单轨构造设计指南》,并参考我国公路、铁路桥规、《地下铁道设计规范》,结合重庆轻轨工程的具体特点,重庆市轨道交通总公司专门制定了详细具体的设计技术要求和技术标准。

(1) 线路性质:城市快速轨道交通线,正线数目为双线。

(2) 行车速度:列车最高运行速度80 km/ h ,曲线段根据曲线半径限速行驶。

(3) 设计荷载轴重:110 kN (车辆设计荷载图示见图1)

(4) 平曲线最小半径:正线100 m ,车站300 m , 车辆段及道岔附带曲线50 m。

(5) 纵断面最大坡度:正线6 % ,地下车站5 % , 高架车站0 %。

(6) 曲线超高:正线圆曲线上设不大于12 %的超高率,允许欠超高率5 % ,允许过超高率3 % ,超高过渡在缓和曲线范围内完成。

(7) 桥下净空:跨越城市一般路段不小于5. 2 m ,大件路段一般不小于7 m。

(8) 双线线间距:直线段3. 7 m ,曲线段根据曲线半径及行车速度计算进行加宽。

(9) 建筑限界:区间直线段单线建筑限界宽度3. 87 m , 轨顶面以上4. 0 m ; 双线桥梁限界宽度为7. 57 m

, 高度为轨顶面以上4. 0 m 。

(10) 标准轨道形式:采用预制钢筋混凝土轨道梁,断面尺寸为1. 5 m(高) ×0. 85 m(宽)

(11) 标准预制PC 轨道梁跨度:平面曲线半径大于700 m 时采用22 m 跨;平面曲线半径小于等于700 m 时采用20 m 跨。

(12) 支座及伸缩缝:采用特殊设计的跨座式单轨专用铸钢拉力支座和指形板伸缩缝。

图1 跨座式单轨车辆设计荷载图示

3 轨道梁设计与制造

3. 1 轨道梁设计

PC 轨道梁既是承载的梁,又是轻轨列车运行的轨道;既要满足结构承载要求,又要在制造和架设过程中按照线路设计要求形成轨道线形。轨道梁作为轻轨车辆的走行轨道,直接关系到列车运行时的安全及平稳,因此对其设计精度及制造精度要求非常高。轨道梁的设计必须要确保轨道的整体线型要求以及较高的结构强度、刚度、竖向挠度、横向抗扭转变形要求。另外,轨道梁的设计不仅要考虑牵引供变电、接触网、通信信号控制、避雷器、自动监控、综合接地等电气设施装置的要求,同时要考虑敷设于轨道梁体上的电缆、内部管道等附属物的接口安装和维护条件,以及支座、伸缩缝等的安装。各种复杂的接口关系和高精度要求导致了设计的高难度。

标准跨度轨道采用预制预应力钢筋混凝土结构(PC 梁),其跨中的标准断面尺寸(见图2) 设为1. 5 m(高)×0. 85 m(宽) 。两片轨道梁之间的梁缝宽度采用30 mm , 梁缝中心至支座中心的距离采用400 mm 。两片梁缝之间通过安装指形板进行连接,以满足伸缩要求。标准预制轨道梁均采用跨座式轻轨专用PC 轨道梁铸钢支座,按使用要求并兼顾标准化生产,分别按曲线半径100 m 、500 m 及直线共分3 种类型。各类支座均有固定支座和活动支座之分。轨道梁在两侧中部设有刚性滑触式导电轨,在梁内两顶角处设有信号系统A RP/ TD 感应环线,梁体底部设有供电和通信、信号系统电缆托架,梁下托架在桥墩处设支架绕过支座。

图2 标准轨道梁跨中断面(单位:mm)

根据轨道梁具体结构尺寸进行结构计算分析, 按分析数据进行体内预应力钢束配置。鉴于轨道梁构造及受力模式的特殊性,梁体内预应力宜采用小孔钢束。标准跨度的轨道梁体内共设10~12 束3 -7Φ5 和4 -7Φ5 两种类型的预应力钢绞性,用内径Φ50 的波纹管成孔,采用AM 或HVN 系列锚具锚固。预应力钢绞线标准强度为1 860 MPa , 锚外张拉控制应力为1 395 MPa 。为减少混凝土收缩徐变对轨道梁的影响,钢束共分两次张拉,第一次张拉4 束,第二次张拉其余钢束。设计时按第4 天第一次张拉,第14 天第二次张拉,第104 天架设轨道梁,计算梁体变形。轨道梁内普通钢筋均采用Ⅱ级钢筋,主筋和箍筋采用Φ16 , 辅助筋采用Φ12 。梁体混凝土采用C 60 号,梁端采用无收缩混凝土封锚。

预应力计算相关参数取值如下:

(1) 混凝土弹性模量初张拉时为34. 5 GPa , 终张拉时为37. 5 GPa ;

(2) 锚口损失按张拉应力的7 % 计算;

(3) 钢束与管道壁之间摩擦系数为0. 26 , 管道偏差系数为0. 003 ;

(4) 收缩徐变终极值为2. 368(τ= 4), 2. 116 (τ = 14), 1. 544 (τ= 104);

(5) 收缩应变终极值为2. 2 ×10-4;

(6) 设计温度为18 ℃。

轨道梁允许的动荷载(不包括冲击荷载) 最大竖向挠度不应大于计算跨度的1/ 600 。轨道梁预制时设置反拱度。反拱度的大小是把静荷载产生的挠度与动荷载产生挠度的1/ 2 相加,并考虑预应力、干燥收缩及徐变的影响来计算。

3. 2 轨道梁制造和架设

由于线路纵坡、平面曲线、竖曲线、横向曲线超高的影响,几乎每一片轨道梁的线形都不相同。为保证轨道梁的整体线形高精度要求和确保PC 轨道梁的质量,除车辆段基地现浇RC 梁外,轨道梁一般为工厂预制。采用能适应各种平、竖曲线的可调活动模板制梁,经过严格的养护和质量管理。

由于影响PC 轨道梁变形的因素很多,预应力张拉、混凝土收缩徐变等均会引起的梁体外形偏差。为控制轨道梁的制造精度,每一片梁都必须编制《PC 轨道梁作工法指导书》作为制梁的依据。制作工法指导书是在PC 轨道梁施工图、线形构造图、预埋件布置图的基础上,结合制梁模板编制的, 用来控制PC 轨道梁初始形状的技术文件。其内容包括:设计条件、活动制梁模板千斤顶压拉量、反拱度设置、端模的倾斜角和转角、端模和支座的平面位置关系、轨道梁制作时的弧长和弦长、相关的略图、钢筋布置方式、预应力钢束布置、中模反拱度设置、施工检测数据设计值等。其中变形控制设计的相关参数按规范及观测梁的观测结果取值。

PC 轨道梁的预制工艺流程控制非常严格,包括制梁台车、内外模板安装、线型调整、预应力管道安装、预埋电缆管道、支座预埋件安装、混凝土浇注、梁体养护、预应力张拉、梁体检测等步骤。对每一步骤的制作安装精度都作有详细的规定,技术难度很高、工艺复杂。

PC 轨道梁的预制精度要求:长度±10 mm , 宽度±2 mm(端部) 、±4 mm(中间) 。预制轨道梁采用特殊

研制的跨座式单轨专用PC 轨道梁架桥机进行单线架设;在墩高较小的特殊地段也可采用大吨位汽车运输到目的地,然后以汽车吊起吊架设。

4 桥跨布置及墩柱、基础设计

4. 1 桥跨布置

高架桥孔跨布置应符合城市总体规划,考虑水文、地形、地质、周围景观等条件,以及对邻近建筑、公用设施、道路、地下管线及构筑物的影响来确定。考虑到轨道梁使用功能的特殊性和结构的复杂性, 轨道梁需设计标准化、制造工厂化、施工机械化,并从城市整体的景观角度出发,其桥型结构应优先采用标准跨度的预制PC 简支梁布置方案。当线路平面曲线半径大于700 m 时采用22 m 标准跨度; 当平面曲线半径小于或等于700 m 时采用20 m 标准跨度;当受其它条件制约时才可采用非标准跨度。非标准跨度简支梁必须大于6 m 、小于25 m 。标准跨和非标准跨度的PC 轨道梁均采用统一的标准断面尺寸。当采用大于25 m 的大跨轨道梁时,须经特殊设计。

在受地形地质、立体景观、城市道路立交等条件的制约时,可根据具体情况采用大跨度高架桥。大跨结构可采用主梁之上叠合标准轨道梁或两者结合成整体受力的方式,也可采用大跨度钢制轨道梁。大跨结构可以选择PC 箱梁、PC 连续梁、连续刚构、V 形撑、T 构等结构形式。在重庆轻轨工程的实际设计中,根据实际情况,特殊地段分别采用了V 形撑、连续刚构、T 构、倒T 梁等大跨高架结构形式。

4. 2 墩柱及基础设计

轻轨穿越于城市中,大部分墩柱位于道路的中央分隔带上,对墩柱的整体景观要求较高。一般普通墩柱应优先采用钢筋混凝土T 形独柱式矩形或方形桥墩,特殊受地形限制地段可采倒L 形墩和门式刚架墩等形式,地面之上墩柱均应加设圆弧形倒角。墩柱结构的强度、刚度、稳定性,以及构造要求、裂缝计算宽度、配筋率等均应满足相关技术要求。针对跨座式轻轨交通的结构特点,一般应遵循以下设计原则:

(1) 墩柱一般采用矩形(包含方形) 带圆倒角形式,截面边长以10 cm 进级,墩身最小配筋率为0. 6 % , 最大配筋率一般不超过2. 5 % 。

(2) 墩顶位移一般情况小于或等于5 ( L —梁跨长度,m) ,个别对景观要求高及其它特殊地段可按不大于40 mm 控制。

(3) 桥墩基础根据地层情况可选用矩形或圆形挖孔桩、钻孔桩、明挖扩大等基础形式。桩身配筋率控制在0.

4 %~2 %以内,嵌岩桩的深度应满足受力要求。

(4) 为了保证混凝土的耐久性,桥墩基础一般采用C30 混凝土,墩柱身采用C35 混凝土,盖梁采用C40 混凝土,预应力结构采用C50 混凝土。墩柱及盖梁主筋净保护层一般采用5 cm ,柱基主筋净保护层采用7 cm。

(5) 跨越道路而采用门式墩时,设计轴线优先考虑顺道路法线方向。

重庆跨座式单轨交通线中采用的典型墩柱形式有下面的几种:

(1) T 形独柱墩这是重庆轻轨工程中应用最多的墩柱形式。应根据结构分析计算结果和各项控制标准确定墩柱截面尺寸,同时根据上部轨道梁支座的构造尺寸及预埋件构造要求确定盖梁的构造尺寸。一般墩高小于1. 5 m 位于半径大于等于1 000 m 曲线及直线上的桥墩采用1. 6 m ×1. 6 m 方形截面,位于半径小于1 000 m 曲线的桥墩采用1. 7 m ×1. 7 m 方形截面,墩高15~25 m 时采用1. 8 m ×1. 8 m~2. 2 m ×2.

2 m 方形截面,盖梁高度均采用1. 4 m。见图3。

(2) 倒L 形独柱墩—由于受平面位置限制, 当线路中心与墩柱中心有偏距且偏距较小时,设置倒L 形独柱墩。其墩柱与线路中心线的偏心距离为0. 5~1. 2 m。墩身截面尺寸根据墩高计算确定,盖梁高度一般采用1. 7 m。见图4。

图3 T 形独柱墩

(3) 大偏心预应力拉杆式倒L 形墩为避免轻轨线路在跨越较窄道路时设置门式刚架墩,可在道路两侧采用大偏心预应力拉杆式倒L 形墩。桥墩最大净偏心距离为2. 75 m。盖梁和拉杆均加设预应力,墩柱采用2. 2 m ×1. 5 m 矩形截面,拉杆采用2. 2 m ×0. 8 m 矩形截面,盖梁高度采用2. 0 m。见图5。

(4) 门式刚架墩

当轻轨线路跨越较宽的城市道路又不能在道路中间设置桥墩时,可设置门式刚架墩。刚架跨度在15 m 以下时可采用钢筋混凝土结构,刚架跨度大于15 m 时可采用预应力钢筋混凝土结构。见图6。

墩柱设计时除了要考虑本身的构造外,还要考虑其它附属结构物的设计,如墩柱内避雷器系统预埋管道及信号接地极的安装、PVC 排水管道,广告灯箱电线预埋管、馈线上网装置预埋件等。盖梁内则需要考虑支座锚箱及固定支架的安装、支座锚箱排水管道安装、通信信号系统预埋件、供电环网电缆预埋件、避雷器预埋件等。

图5 大偏心预应力拉杆式倒L 形墩

5 结语

跨座式单轨技术复杂,对高架轨道梁桥的设计和施工精度要求都很高,结构设计需要很多控制点的精确平面座标、高程及方位角来保证精度,因此应该充分认识到设计的复杂性。另外,高架轨道梁图4 倒L 形独柱墩桥的设计与线路、排水、照明、牵引供变电、通信各

专业接口关系也较为复杂,需要全面统筹考虑。

图6 门式刚架墩

参考文献

1 张波,孙章. 大力发展现代化轻轨交通. 城市轨道交通研究,2001 , (4) :51

2 铁道第一勘察设计院. 重庆轻轨较新线一期工程施工图设计. 2001

3 王根芳. 关于重庆市轨道交通规划和近期重点建设项目的研考. 重庆建设,2002 , (12)

跨座式单轨交通简介

跨座式单轨交通简介

跨座式单轨交通简介 组员:郭太宇周延张杰李彦君 跨座式单轨交通系统简介 目录 第一章跨座式单轨铁 路 (1) 第二章跨座式单轨交通的特

点 (3) 第三章重庆跨座式单轨交通系统实例讲 解 .. 4 工程简介 (4) 主要技术标准 (5) 转向架 (7) 轨道梁桥系统 (8) 道岔 (12) 供电接触网 (12) 再生制动吸收装置 (13) 控制中心及车辆段 (14) 信号 (15) 参考文

献 (16) 跨座式单轨交通系统简介 第一章跨座式单轨铁路 跨座式单轨铁路(Straddle-beam Monorail),就是通过单根轨道梁来支承、稳定和导向,车体骑跨在轨道梁上运行的铁路。它能有效利用城市道路空间,爬坡和曲线通过能力强,噪声和景观影响小,是一种独特的中等运量城市轨道交通系统。单轨铁路通常为高架,高架单轨具有成本低、工期短的优点。而相对于高架的钢轨地铁而言,高架单轨占地少、污染小、能有效利用道路中央隔离带,适于建筑物密度大的狭窄街区的优点。此外,单轨列车和轨道容易检查和维修养护。因而单轨不失为大城市客流中等的交通线路和中等城市主要交通线路的较 好选择。特别是在地形条件复杂,利用其他交通工具比较困难的情况下,能体现其优越性。单轨铁路按照走行模式和结构,主要分成两类——悬挂式单轨和跨坐式单轨。悬挂

式单轨铁路(也称空中轨道列车)的列车悬挂在轨道之下。另一种较为常见的是跨座式单轨铁路,列车跨座在路轨之上,两旁盖过路轨。 1 跨座式单轨交通系统简介 跨座式单轨铁路的起源,最早可以追溯到第二次科技革命,但真正达到实用还是在二战以后,相关机电技术成熟的前提下。1953年,瑞典工业巨头Axel Lennart Wenner-Gren 在德国科隆创立了一家名叫 ALWEG-Forschung, GmbH的子公司(ALWEG 正是Axel Lennart WEnner-Gren姓名的缩写),从事跨座式单轨的设计,1957年建成科隆-菲林根试验线。开通于1959年的加州迪斯尼单轨线(Disneyland Monorail System)、开通于1962年的西雅图中央线(Seattle Center Monorail),都是ALWEG的早期作品,这两条线路至今仍在运营。应用跨座式单轨铁路最多的国家是日本。1964 年,日本东京修建

关于重庆轻轨轨道建设的造价及详细信息

关于重庆轻轨轨道建设的造价及详细信息 集团文件发布号:(9816-UATWW-MWUB-WUNN-INNUL-DQQTY-

关于重庆轻轨轨道建设的报告 重庆市轨道交通(集团)有限公司是重庆市唯一承担城市轨道交通的建设、运营和沿线资源开发的市属国有大型企业。重庆轻轨公司是国有独资的轨道交通客运企业,经市政府授权,负责城市轨道交通的建设、运营和沿线资源开发工作。 公司于1992年经重庆市政府批准成立,在2009年6月改制为重庆市轨道交通(集团)有限公司。 重庆轨道交通开放的第一对象是国家铁路部门。铁道部是中国铁路的主管部门,也是国家铁路的投资方、建设方、运营方。在国外,广义城市轨道交通包括铁路。 其次是向社会投资者的开放。一是对于已经制定的九线一环规划,可以拿出某一条线或一段线路,对社会投资者开放,可以采用合资、独资办法,政府给予指导和支持。二是在现有规划线路以外,借鉴日本私铁经验可让社会投资者另辟新线路。 再次是针对外资投资者开放。 重庆的轨道项目的概况: “地铁”:单向高峰小时能运送3.0万人次以上乘客的轨道交通系统,称为“地铁”,它是一种大运量的客运交通系统。它可以埋于地下,也可高架。但由于钢轮钢轨运行的振动噪音大,故一般埋于地下,仅在人口较少的郊区,才敷设于地面或高架,但需采取声屏障措施。 “轻轨”:单向高峰小时能运送1.0~3.5万人次的轨道交通系统,称为“轻轨”,它主要敷设于地面或高架。它是一种中运量的客运交通系统,跨座

式单轨、直线电机、低速磁悬浮、现代化有轨电车等,均属于中运量的轻轨系统。 地铁和轻轨的主要区别在运能、线路的技术标准、列车的最大长度和经济指标等四个方面 地铁和轻轨主要区别点一览表 以下是重庆主要轻轨线路的介绍: 重庆轻轨一号线工程? ? 信息类别:VIP项目 所属行业:交通运输,水利桥梁 所属地区:重庆? 主要设备: 轨道衡、机车车辆、通信系统、信号系统、监控系统。 最新进展阶段:2007年6月8号开工建设,预计2011年开通运营 项目简介:轨道交通一号线,线路长47km主要分三期; 一期和二期:

城市轨道交通系统高架线综述

城市轨道交通系统高架线综述 城市轨道交通系统按线路敷设方式划分,可以分为地下线、地面线和高架线。高架线是轨道交通的一种重要形式,发展至今已得到人们的认可。 1.1高架线简介 1)高架线定义 高架线即轨道交通车辆运行在连续的、带状的高架桥上的轨道交通系统。 图1-1 高架线 2)高架线组成 高架线包括高架区间和高架车站两部分,是永久城市建筑。其中,高架车站又分为站厅层、站台层、出入口等部分,高架区间则由上部结构(桥面系、梁)和下部结构(基础、墩柱)组成。

3)高架线要求 高架线除必须满足安全、经济、使用功能、施工便捷、养护维修方便等要求外,还需满足一些特殊要求:高架线要与城市景观相协调,并尽量降低列车运行产生的振动噪音对沿线居民的影响。 (原来的两幅高架站图片都太难看了,台湾那张甚至看不出是高架站来)1.2高架线的优势及存在的问题 高架线的优势显著,可以节约大量的建设投资,避免不良地质的影响,但也存在振动、噪声、景观等问题。下面就对高架线路的优势及存在的问题进行详细分析。 1.2.1高架线的优势 1)建设成本低 城市轨道交通的建设费用耗资巨大,尤其是地下部分,工程复杂、工程量大,投资较高。相对地下线的巨额建设费用,高架线的工程建设成本较低,据统计,地下线路和高架线路的土建工程造价之比一般约为6:2.5。 2)建设速度快 由于高架线是在地面上建设,建设条件好,工程量小,加之承重梁等主体构件可以工厂模块化建造,因此同漫长的地下隧道施工相比,其建造速度要快得多,据初步估算,在拆迁不制约工程实施的前提下,高架线比地下线节省约一半的工 程建设时间,更适应大城市发展的迫切需要。

重庆跨座式单轨交通高架轨道梁桥设计

重庆跨座式单轨交通高架轨道梁桥设计 摘 要 重庆轻轨工程是我国第一条跨座式单轨交通系统。介绍了该跨座式单轨交通的技术标准,并对高架轨道梁桥的孔跨布置、轨道梁设计和制造工艺、墩柱设计形式以及相关技术作了阐述。 关键词 独轨铁路,跨座式,轨道梁,轻轨交通桥梁设计 跨座式单轨交通具有噪音低、爬坡能力强、转弯半径小、快速便捷、占地少、造价低、利于环境保护等优点,是现代化城市快速轨道立体交通的一种新形式。但跨座式轻轨也有缺点,能耗大、运能小, 且无法与常规的地铁、轻轨接轨。应用跨座式单轨铁路最多的国家是日本。1964 年,日本东京修建了从市中心到羽田机场的跨座式单轨铁路,全线实现计算机集中高度控制。该线成为旅客出入羽田机场的重要通道。后来,日本又建了大阪线、北九州线等跨座式单轨铁路。另外,法国、美国、澳大利亚和英国也都修建了自己的跨座式单轨铁路。本文介绍的是我国第一条跨座式单轨交通重庆轻轨。 1 工程简介 重庆是山城,为丘陵地理特点,故选择噪声低、爬坡能力强、转变半径小的跨座式单轨交通系统, 这在我国尚属首次。重庆市轻轨工程东起重庆市区商业中心较场口,西至大渡口区钢铁基地新山村,途经临江门、大溪沟、牛角沱、李子坝、大坪、杨家坪等地段,全线长17. 54 km ,共设17座车站。全线分两期建设实施,其中一期工程由较场口至大堰村长13. 98 km ,14 座车站,2 座变电站,6 座牵引变电站,一座车场,一座控制中心,初期配车84 辆,建设工期为4 年半。全线建成后可达到高峰小时运送3 万人次的客运能力,初期年客运量1. 5 亿人次,远期年客运量3 亿人次。线路分左右线双向行驶。高架轨道梁桥贯穿全线,高架桥占83. 2 %。工程总投资45 亿元左右,每公里造价约为2. 2 亿元。于2000 年开工建设,计划2004 年6 月建成通车。 2 主要技术标准 由于我国目前尚没有跨座式单轨的设计规范和标准,针对重庆轻轨工程,借鉴日本规范《单轨构造设计指南》,并参考我国公路、铁路桥规、《地下铁道设计规范》,结合重庆轻轨工程的具体特点,重庆市轨道交通总公司专门制定了详细具体的设计技术要求和技术标准。 (1) 线路性质:城市快速轨道交通线,正线数目为双线。 (2) 行车速度:列车最高运行速度80 km/ h ,曲线段根据曲线半径限速行

跨座式单轨交通简介

跨座式单轨交通简介 组员:郭太宇 周延 张杰 李彦君

目录 第一章跨座式单轨铁路 (1) 第二章跨座式单轨交通的特点 (2) 第三章重庆跨座式单轨交通系统实例讲解 (2) 工程简介 (2) 主要技术标准 (3) 转向架 (3) 轨道梁桥系统 (4) 道岔 (6) 供电接触网 (6) 再生制动吸收装置 (7) 控制中心及车辆段 (7) 信号 (7) 参考文献 (8)

第一章跨座式单轨铁路 跨座式单轨铁路(Straddle-beam Monorail),就是通过单根轨道梁来支承、稳定和导向,车体骑跨在轨道梁上运行的铁路。它能有效利用城市道路空间,爬坡和曲线通过能力强,噪声和景观影响小,是一种独特的中等运量城市轨道交通系统。单轨铁路通常为高架,高架单轨具有成本低、工期短的优点。而相对于高架的钢轨地铁而言,高架单轨占地少、污染小、能有效利用道路中央隔离带,适于建筑物密度大的狭窄街区的优点。此外,单轨列车和轨道容易检查和维修养护。因而单轨不失为大城市客流中等的交通线路和中等城市主要交通线路的较好选择。特别是在地形条件复杂,利用其他交通工具比较困难的情况下,能体现其优越性。单轨铁路按照走行模式和结构,主要分成两类——悬挂式单轨和跨坐式单轨。悬挂式单轨铁路(也称空中轨道列车)的列车悬挂在轨道之下。另一种较为常见的是跨座式单轨铁路,列车跨座在路轨之上,两旁盖过路轨。 跨座式单轨铁路的起源,最早可以追溯到第二次科技革命,但真正达到实用还是在二战以后,相关机电技术成熟的前提下。1953年,瑞典工业巨头Axel Lennart Wenner-Gren在德国科隆创立了一家名叫ALWEG-Forschung, GmbH的子公司(ALWEG正是Axel Lennart WEnner-Gren姓名的缩写),从事跨座式单轨的设计,1957年建成科隆-菲林根试验线。开通于1959年的加州迪斯尼单轨线(Disneyland Monorail System)、开通于1962年的西雅图中央线(Seattle Center Monorail),都是ALWEG的早期作品,这两条线路至今仍在运营。应用跨座式单轨铁路最多的国家是日本。1964 年,日本东京修建了从市中心到羽田机场的跨座式单轨铁路,全线实现计算机集中高度控制。该线成为旅客出入羽田机场的重要通道。后来,日本又建了大阪线、北九州线等跨座式单轨铁路。另外,法国、美国、澳大利亚和英国也都修建了自己的跨座式单轨铁路(图1-1)。 图1-1 澳大利亚跨座式单轨铁路 1

重庆轨道交通规划

重庆轨道交通规划 2012前 轨道交通1号线东起朝天门,西至大学城,远期延伸至璧山,全长约46公里,采用地铁系统。该线路是轨道交通线网东西方向的主干线,也是贯穿渝中区和沙坪坝区的重要交通通道,其高峰小时断面流量和全日客流量在全市轨道交通线网客流预测中均为最大。1号线将与已开通运营的2号线和正在建设的3号线共同形成“大”字型的轨道交通骨架。 1号线分两阶段进行建设。第一阶段建设朝天门,沙坪坝段,线路长约16.5公里,设车站14座,于2007年动工建设,计划于2011年建成通车。第二阶段建设沙坪坝,大学城段,线路长约20.2公里,设车站9座,于2009年动工建设,计划于2012年建成通车。 重庆轨道交通2号线(较场口-新山村)较场口,动物园段长14公里,于2005年6月18日开通运营;2006年7月1日,动物园,新山村段开通,自此,2号线较场口,新山村段全线19.15公里贯通运营。 重庆轨道交通3号线采用跨座式单轨交通系统,为南北方向的轨道交通骨干线,线路连接2个火车站(菜园坝站和龙头寺新火车站)、4个长途汽车站(南坪、菜园坝、红旗河沟和江北客站)、2个城市商业副中心(南坪商业副中心、观音桥商业副中心),是缓解重庆交通难的重要轨道交通干线。3号线建成后,将充分发挥轨道交通容量大、速度快的优势,有效地缓解城市交通困难的矛盾。同时,3号线的建设将对提高轨道交通的运行效率、吸引客流、促进城市经济发展、改善公共交通环境、提高社会效益发挥重大作用。

3号线南起鱼洞,北至江北机场,全长约60公里,分三期实施建设。一期工程为二塘~龙头寺;二期工程为龙头寺~江北机场,并延伸到机场远期航站大楼、空港开发区;三期工程从二塘向南延伸至鱼洞。 一期工程(二塘~龙头寺)线路全长约21公里(包括铜元局、两路口、建新路、龙头寺四个隧道),途经南坪、菜园坝、两路口、牛角沱、观音桥、红旗河沟、新牌坊、江北客站等客流集散点,设18座车站,1座车辆维修基地、1座控制中心、2座主变电站、7座牵引变电所。线路于2007年开工建设,拟于2011年建成试运营。 二期工程起于龙头寺站,向北沿金渝大道、金开大道经过鸳鸯镇、凉井、两路镇至机场高速公路后接入江北机场站。线路长约18公里,设童家院子、尖山立交、经开园、鸳鸯、南山南、南山北、凉井、桐岩、两路、双龙东路、江北机场共12个车站。线路于2009年动工建设,计划于2011年建成通车。 三期工程起于二塘,向南延伸至鱼洞,线路长约14公里,设车站8座,计划于2012年建成通车。 重庆轨道交通6号线起于南岸茶园城市副中心,止于北碚城北新区,并设礼嘉至会展中心支线。线路贯穿了南岸区、渝中区、江北区、渝北区、北部新区、北碚区,联接茶园副中心、CBD(弹子石、解放碑、江北城)商圈、红旗河沟长途汽车站、冉家坝(未来的行政中心)、大竹林、礼嘉、蔡家组团、卫星城市北碚,是重庆市轨道交通线网中一条东南向西北的骨干线路,采用地铁系统。 6号线正线全长约60公里,设车站28座,设车辆段1处、停车场2处、主变电站4座,控制中心与轨道交通1、2、3号线合建于两路口。一期工程(上新街,礼嘉)线路长约23公里,设16座车站,于2009年开工建设,计划于2012年建成通车。

城市轨道交通高架桥工程施工的安全管理

第1期张立青:城市轨道交通高架桥工程施工的安全管理63 图1某桥起重机设备倾覆事故 Fig.1Accidentofcraneoverturning 图3某桥碗扣支架垮塌事故 Fig.3Accidentofcuplokscaffoldcollapse 的高架桥施工危险源和危害因素,即高架桥施工固有风险源和危害因素。 1.2高架桥工程施工风险管理和安全策划 高架桥工程施工风险管理和安全策划应满足以下基本要求: (1)编制并审批苇大危险源和危害冈素专项方案、应急预案。施工单位应根据高架桥不同施工阶段进行危险源和危害因素动态识别,对已知的、可预测的重大危险源和危害因素必须编制详细的专项施工方案;同时为r加强对危险源和危害因素的实时控制。还应全面统汁、整理危险源和危害因素的基本情况,积极做好各方面准备工作。 (2)做好对外协调工作。针对高架桥施]:霞大危险源和危害冈素的内容。应提前做好相关产权单位、交通、市政等部门的联系与协调,争取得到相关单位的理解与支持,做好必须的准备与配合工作。 (3)全员参与风险动态管理。建立重大危险源和危害因素动态管理的培训和交底机制。做到全员参与风险动态管理。 (4)对重大危险源和危害因素实施过程监控和 图2某桥连续梁悬浇挂篮脱落事故 Fig.2Accidentoftravellingcarriageabscission 图4某桥移动模架造桥机垮塌事故 Fig.4Accidentofmoveableformworkcollapse 信息反馈。在对包含蕈大危险源和危害因素的高架桥施,[过程中,应针对其工程特点及时调整方案和措施,并按照标准制定棚应预警值和警戒值,通过监控醴测数据,严格指导施工。 (5)建立危险源和危害因素动态管理档案。危险源和危害冈素动态管理档案应包含施I:重大危险源和危害因素预防控制方案、应急预案等内容,还应包括高架桥工程不同施l:阶段苇大危险源和危害因素的识别、专项预案、应急顶案,以及执行程序、组织机构、物资设备情况、相关单位及人员联系方式等。 2高架桥工程施工危险源和危害因素的识别及控制 2.1施工场所周围地段危险源和危害因素的识别及控制 高架桥施工场所周围地段危险源和危害因素是存在于高架桥工程施工过程中,并可能危害城市周边环境的活动,其主要与高架桥工程所在环境、工程 类型、工序、施工装置及物质有关。

城市轨道交通高架桥结构设计研究

城市轨道交通高架桥结构设计研究 发表时间:2019-07-29T13:56:21.077Z 来源:《基层建设》2019年第14期作者:赵剑波 [导读] 摘要:城市轨道交通在缓解城市交通拥堵、优化城市空间布局、提高城市土地集约化利用等方面具有重要意义,其中城市高架轨道交通相较于城市地下轨道交通,城市地面轨道交通而言具有建设周期短、投资少等优点,是未来城市轨道交通建设多元化发展的重要方向。 身份证号:13070219820101XXXX 摘要:城市轨道交通在缓解城市交通拥堵、优化城市空间布局、提高城市土地集约化利用等方面具有重要意义,其中城市高架轨道交通相较于城市地下轨道交通,城市地面轨道交通而言具有建设周期短、投资少等优点,是未来城市轨道交通建设多元化发展的重要方向。城市高架轨道交通具有大尺度、大体量、穿越城市等特征,会在城市内部产生大量的下部空间,合理对下部空间进行整合利用是提高城市高架轨道交通建设水平,适应未来城市高架轨道交通发展的重要方向。 关键词:城市轨道交通;高架桥;结构设计;研究 引言 国家政策的引导、城市轨道交通建设的快速发展,为城市高架轨道交通的繁荣带来了强大动力。然而,在实际工程建设中由于规划设计手法的单一,造成城市高架轨道交通下部空间的低效利用、沿线城市景观的破坏、沿线城市生态系统的破坏、城市消极空间的大量产生等弊端。 1高架轨道交通的优势与劣势分析 1.1优势分析 城市道路拥堵、城市环境恶化、居住品质下降,这是全球范围内典型的“城市病”,优先发展公共交通是今天世界各国解决“城市病”的共同选择,城市轨道交通具有运量大、安全、快捷等诸多优点,在破解“城市病”难题上作用显著。从轨道交通的建设成本来说,轨道交通若敷设在城市地下的话,每公里线路综合造价可达7亿~10亿元,而选择高架桥为主导修建方式,则仅为地下轨道交通建设造价的1/5-1/3;且各城市自然环境不同、地质条件不一、环境敏感因素较多,修建地下轨道交通的要求是相对较高的,而城市高架轨道交通则可有效避免因地下水位高、土质差所带来诸多工程限制。因此,对于急需通过修建轨道交通以缓解城市交通拥堵的城市而言,没有必要盲目地选择城市地下轨道交通,修建“立体式”、“空中一体化”的城市高架轨道交通体系,则是符合眼前和满足未来城市交通发展需要的理想模式。 1.2劣势分析 城市高架轨道交通具有大尺度、大体量、长距离等特征,不可避免的会对城市环境、城市生态景观、城市空间格局产生深刻影响。在实际建设中由于人们往往注重其交通功能的实现,而忽视对城市高架轨道交通主体结构(高架线、高架站房)与城市环境的合理整合规划设计,线路与沿线城市景观不协调,下部空间的低效率利用,城市环境破坏较大,大体量城市高架轨道交通给行人造成心理压抑等弊端。 1.3促进城市土地集约化使用 城市高架轨道交通是未来城市轨道交通建设的重要发展方向,高架轨道交通的修建会产生大量的下部空间,以往我们对城市高架轨道交通下部空间的整合利用模式多停留在停车场地、仓储用地、绿化改造等规划设计手法上,造成土地利用效率低下,部分线路段甚至成为城市的消极空间。提高城市高架轨道交通下部空间的整合利用效率、丰富城市开放空间、改善城市高架轨道交通建设与城市土地利用之间的关系,创造舒适宜人的城市居住环境是适应时代发展的重要方向。 2常规跨度桥梁结构设计研究 2.1多联现浇箱梁预应力张拉方案选择 贵阳市轨道交通1号线高架桥分布于6个区间,分布零散,总工程体量不大,部分桥梁位于小半径平面曲线上。若梁体采用预制架设施工的方式,则市区需要设置多个预制梁场,经济性低,而且曲线段梁体架设施工难度也较大。综合考虑以上因素,贵阳市轨道交通1号线上部结构采用现浇箱梁方案。高架桥多联现浇箱梁预应力张拉方式对上部结构、下部结构及施工工期都有较大影响。 2.2横向抗倾覆设计 城市轨道交通在城市间穿行,由于受地形、建筑物的影响,线路需要设置较小半径平面曲线以避让建筑物,因此出现了平面半径较小的高架桥。对于小半径的高架桥,结构的横向稳定性是设计中需要重点考虑的1个因素。斜腹式箱梁由于支座间距较小,更应该验算其结构的横向抗倾覆性能是否满足要求。 2.3曲线梁预应力防崩设计 对于平面位于曲线上的预应力箱梁,由于钢束在平面上曲线布置,预应力钢束张拉后会对曲线内侧形成径向力,作用于箱梁腹板。钢束径向力较大时会使腹板内侧混凝土产生崩裂。 3城市高架轨道交通下部空间整合利用要素分析 3.1附属性 城市高架轨道交通的下部空间是随着线路的修建而产生的,这就决定着下部空间整合利用前提,需基于交通使用功能的实现,整合利用不可造成对城市交通正常通勤的干扰。在进行城市轨道交通建设时,前期均需研究制定专项规划以确保工程的顺利实施,在高架线途径的地段均需划定高架线的控制保护地界,包括了规划控制区;线路用地、车站用地、设备用房等地市轨道交通设施用地,规划影响区;是高架轨道交通与城市设施、建筑的衔接和过渡区,各地市对轨道交通沿线空间的影响范围均作了相应规定。经过文献阅读、调研,我们可以得知城市轨道交通高架车站与高架线外边红线一般为30m,在对高架轨道交通进行沿线空间整合利用时要遵循相关的技术规定。 3.2公共性 伴随城市高架轨道交通的修建而产生的高架线下部空间数量较大,这也是城市空间的重要组成部分之一,当下城市土地资源日益紧缺,提高城市土地集约化利用水平已是大势所趋,数量巨大的高架轨道交通下部空间极具利用价值。下部空间的公共性体现在空间属于全体市民,空间的改造利用应满足沿线城市居民的生产生活,空间的改造必须要为广大的城市居民而服务。不论是将下部空间改造为停车场地还是市政设施用地,亦或是开放空间、商业用地,都要顾及到沿线居民,我们可以看到国外很多城市都将桥下空间整合改造为城市公园或是城市特色商业街,这不仅丰富了城市的开放空间也为沿线居民生活品质的提升创造了巨大条件。

(组织设计)重庆轻轨二号线行车组织规则

(组织设计)重庆轻轨二号线行车组织规则

重庆轨道交通二号线行车组织规则 (修订版)

重庆市轨道交通总公司 二00七年三月 (交旅专业组樊坤) 目录 总则 (3) 第一章主要行车设备 (4) 第一节线路道岔 (4) 第二节车站 (5) 第三节信号设备 (6) 第四节列车运行自动控制系统 (7) 第五节通信设备 (8) 第六节供电设备 (9) 第七节列车车辆 (11) 第八节车辆段 (12) 第二章行车组织 (13) 第一节组织指挥原则 (13) 第二节列车运行 (16) 第三节列车到发 (21)

第四节列车出入段 (23) 第五节列车折返 (24) 第六节列车防护与救援 (25) 第七节车辆段调车作业 (28) 第八节工作车开行 (30) 第九节道岔管理 (31) 第十节列车运行及调车速度 (33) 第三章行车闭塞 (34) 第一节基本闭塞法 (34) 第二节电话闭塞解除法 (35) 第三节电话闭塞法 (36) 第四章信号显示 (39) 第一节基本要求 (39) 第二节视觉信号 (40) 第三节手信号 (41) 第四节听觉信号 (43) 第五节列车标志 (44) 用语意义 (45) 附件 (46)

总则 为保证重庆轨道交通二号线的正常运营,根据跨座式单轨运输的特点和三年实际运行的经验,参照国内外轨道交通的有关规定,在原有《重庆轻轨跨座式单轨行车组织规则》的基础上,特修订《重庆轨道交通二号线行车组织规则》(以下简称《行规》)。 这次修订的《行规》,着重在行车闭塞、列车运行、列车到发、列车出入段和车辆段调车作业等章节,进行了较大幅度的修改,使之能更好地实现安全、准点、高效、舒适的运输宗旨。 行车工作必须严格执行各项规章制度,坚持安全第一、集中领导、统一指挥的原则,使各工作环节紧密联系、协同动作。要求所有与行车有关的人员必须认真学习《行规》、严格执行《行规》。 与运营有关的各部门应根据《行规》的规定,结合本部门的实际情况,制定相应的工作细则。 在执行中如发生本规则未涉及的情况,各部门应在保证安全的原则上积极处理。 《重庆轨道交通二号线行车组织规则》自2007年5月1日起执行。 原渝轨道总司发[2004]167号文《重庆轻轨跨座式单轨行车组织规则(试行)》同时废止。

北京市轨道交通大兴线高架桥设计

桥粲 北京市轨道交通 士业 /\/、线高架桥设计王冰 (中铁五院集团有限公司桥梁设计院,北京102600) 摘要:北京轨道交通大兴线工程高架桥共3.167km,项目所处区段位于高烈度区,且沿线控制点较多,设计条件复杂。结合高烈度地震区城市高架桥设计特点,介绍项目概况及主要技术标准,对高架桥孔跨布置和桥式方案的设计原则进行总结.提出了高架桥标准粱型快速施工的具体措施,对墩身截面尺寸与墩型选择的确定因素进行分析探讨,阐述本工程抗震设计遵循的原则,地震反应谱分析及钢筋混凝土桥墩延性设计方法,并提出设计中一些关键问题的处理措施。 关键词:轨道交通;高架桥;设计 中图分类号:U448.28文献标识码:A文章编号:1004—2954(2012)02—0062一04 D e s i gn f or V i aduct of Li ne D axi ng i n B ei j i ng R ai l T r ans i t W a ng B i ng (C hi na R ai l w ay Fi f t h Survey an d D es i gn I ns t i t ut e G r o up Co.,L t d,B ei j i ng102600) A bs t r act:Locat ed i n hi gh s ei s m i c i nt ens i t y r egi on,t he vi a duct of L i ne D axi ng i n B ei j i ng R ai l T r an s i t has a t ot a l l engt h of3.167ki l om et e r s,w i t h m a ny cont r ol poi nt s l ea di ng t o com pl i cat ed des i gn condi t i ons.A cc or di ng t o ur ban vi a duct desi gn f eat ur es i n hi gh i nt ens i t y s ei s m i c r egi on,t hi s paper i nt r od uces t he pr oject profi l e and t he m ai n t echni cal s t a ndar ds.The n,t he de si gn pr i nci pl es of s pan a r r ange m e nt and br i dge s t yl e of t he vi a duct ar e s um m ar i zed,w hi l e t he r api d cons t r u ct i on m ea s ur es f or st a nda r d gi r der of t he vi a duct ar e pr opos e d.Thi s paper al so anal y zes t he key f act or s of s ect i on s i z es and t ypes of t he pi er s.Fi nal l y,t he paper de scr i bes t he s ei s m i c desi gn pr i nci pl es,sei sm i c r e spons e spec t r um,duc t i l e de si gn m et hods of t he r ei nf or ced co ncr et e pi er s of t he vi aduct,and t hen put s f or w ar d a num ber of m ea sur es t o de al w i t h i m p or t a nt i s s ues i n t he desi gn. K ey w or ds:r a i l t r a nsi t;vi aduct;desi gn 1工程概述 1.1大兴地铁项目总概况 北京轨道交通大兴线工程项目(简称大兴地铁)是北京周边区域长远规划发展的重要组成部分。该工程南起南兆路,北接地铁4号线的马家楼站,并与4号线实行贯通运营,是北京市轨道交通中的主干线、南北交通大动脉。该工程的建设将大幅度缩短大兴新城与市中心的时间、空间距离,对于整个大兴新城的建设具有十分重大的意义。 该项目线路全长约22.5l km,总投资80亿元,沿线共设l l座车站,其中西红门站为高架车站,新宫(南苑西)站至西红门站区间,高架区段长3167.12m,西红门站至高米店北(五环路)站区间,高架区段长 收穑E t期:201l—08一l l 作者简介:王冰(1983一),女,工程师,2004年毕业于中南大学土木T程专业。工学学士,E-m ai l:w angbi ng@LS y.cn。 62 338.86m。该高架桥区段为此次工程设计范围。 1.2桥梁工程概况 大兴地铁沿线高架桥共40联,包括115个墩台,结构类型主要有以下几种: (1)全线普遍采用的常规梁跨为双线3x30m预应力混凝土连续箱梁,部分区间跨径采用2x25m、2×27m、2x30m、3x25m、3x26m、3x28m、(25+30+25)m 预应力混凝土连续箱梁,共27处: (2)跨越主要道路采用(30+45+30)m预应力混凝土连续箱梁、(38+58+38)m及(40+“+40)m连续刚构,共7处; (3)在小角度跨越道路、重要管线或布跨困难时,采用框架式桥墩,共2处; (4)在施工条件受限时,采用3x30m钢混结合连续梁,1—45m钢混结合简支梁,共3处; (5)跨越京开高速公路采用了(52+85+52)m V 形支承钢混结合连续刚构桥。 铁道标准设计R A I LW A Y ST A N D A R D D E SI G N2012(2)

DB34_T 3712-2020跨座式单轨交通运营管理规范

34 ICS 43.040 CCS P 51 安 徽 省 地 方 标 准 DB34/T 3712—2020 跨座式单轨交通运营管理规范 Specification for operation management of straddle monorail transit 2020-11-27 发布 2020-12-27 实施 安徽省市场监督管理局 发 布

前言 本文件按照 GB/T 1.1—2020《标准化工作导则第1部分:标准化文件的结构和起草规则》的规定起草。 请注意本文件的某些内容可能涉及专利。本文件的发布机构不承担识别专利的责任。 本文件由芜湖市轨道交通有限公司提出。 本文件由安徽省交通运输厅归口。 I

跨座式单轨交通运营管理规范 1范围 本文件规定了跨座式单轨交通运营管理的总体要求,以及行车组织、客运组织、车辆及车辆基地管理、设施设备管理、土建设施管理、人员管理和安全管理等方面的基本要求。 本文件适用于设计最高运行时速不超过 80 km/h 的跨座式单轨交通运营管理,其他可参照执行。2规范性引用文件 下列文件中的内容通过文中的规范性引用而构成本文件必不可少的条款。其中,注日期的引用文件,仅该日期对应的版本适用于本文件;不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB 7588 电梯制造与安装安全规范 GB/T 10060 电梯安装验收规范 GB/T 12758 城市轨道交通信号系统通用技术条件 GB/T 16275 城市轨道交通照明 GB 16899 自动扶梯和自动人行道的制造与安装安全规范 GB/T 18574 城市轨道交通客运服务标志 GB/T 20907 城市轨道交通自动售检票系统技术条件 GB/T 22239 信息安全技术网络安全等级保护基本要求 GB/T 30012-2013 城市轨道交通运营管理规范 GB 37488 公共场所卫生指标及限值要求 GB/T 38374 城市轨道交通运营指标体系 GB/T 38707 城市轨道交通运营技术规范 GB 50157 地铁设计规范 GB 50382 城市轨道交通通信工程质量验收规范 GB 50458-2008 跨座式单轨交通设计规范 GB 50490 城市轨道交通技术规范 WS 394 公共场所集中空调通风系统卫生规范 3术语和定义 GB/T 30012-2013、GB 50458-2008 界定的以及下列术语和定义适用于本文件。 3.1 跨座式单轨交通straddle monorail transit 为单轨交通的一种型式,车辆采用橡胶车轮跨行于梁轨合一的轨道梁上。车辆除走行轮外,在转向架的两侧尚有导向轮和稳定轮,夹行于轨道梁的两侧,保证车辆沿轨道安全平稳地行驶。 [来源:GB 50458-2008,2.0.2] 1

浅析城市轨道交通高架桥结构的选型

浅析城市轨道交通高架桥结构的选型 发表时间:2019-06-25T14:17:37.040Z 来源:《建筑学研究前沿》2019年4期作者:牛升 [导读] 伴随着我国城市化进程的迅速发展,和中央开发大西北战略的确定,城市交通系统等基础设施的建设已成为优先实施的基本任务之一。 西安市地下铁道有限责任公司运营分公司西安 710016 摘要:通过对城市轨道交通高架桥集中施工效果类型的分析比较,提出了城市轨道交通高架桥集中施工效果类型的选择意见。从高架桥稳定性的角度,从施工设计的角度提出了高架桥竖向挠度的控制措施。系统探讨了城市轨道交通高架桥在选型上应考虑的方面和因素,并结合具体工程项目,对高架桥的梁部结构及墩柱的各种型式做了详细介绍,给出了选型的参考性方案。 关键词:城市轨道交通;高架桥;选型;梁部结构;墩柱 引言:伴随着我国城市化进程的迅速发展,和中央开发大西北战略的确定,城市交通系统等基础设施的建设已成为优先实施的基本任务之一。城市交通系统中,除公共汽、电车外,主要有地铁和轻轨系统。我国许多大城市,除公共汽车、电车系统外,地铁和轻轨系统为数不多,亟待建设。 1.城市轨道交通高架桥特点 影响高架桥选型的主要因素高架桥选型主要包括梁部和墩柱的选型,基础虽受梁部和墩柱型式的一定影响,但主要还是由地质情况确定,比较单一;选型时主要考虑景观、经济、功能、施工、占地和工期等几方面。 高架桥应与周围城市景观保持一致鉴于高架桥作为城市的永久建筑,人们期望其会成为城市的一道美丽的景观。但由于高架桥长、窄、平的特点,要想达到此目标实际上非常困难,而且将城市的着眼点过多吸引在高架桥上也并不可取。笔者以为高架桥在造型上应以简洁为基本原则,采用融和法和消去法,使之从属于城市环境。如上海,道路用地范围窄,两侧高楼林立,宜使桥梁造型柔和,色彩暗淡,弱化视角效果;如西安和兰州,道路两侧视野比较开阔,宜采用有力度感和色彩鲜艳一些的造型,引起人们的注意。 高架桥应与当地人文景观相互和谐高架桥的造型,除了考虑与周围环境景观的一致外,还应重视当地人文景观的和谐。由于我国幅员辽阔,历史悠久,每个城市都积累了深厚的、富有地域性的人文文化特征,在高架桥的造型上选型上,必须充分注意这种差别,比如,对江南城市和西北城市的造型就不宜采用同一型式。对于江南城市,如上海,可采用斜腹板箱梁,配以独柱矩墩(采用大圆弧倒角)或双柱圆墩,以体现江南的轻巧柔和;而对于西北名城西安或兰州,则可采用直腹板箱梁,配以独柱矩墩(不倒角),以体现西北豪爽刚直的文化氛围。 高架桥在经济上应节约高效经济指标是确定高架桥型式的主要因素,它通常最主要是在纵向上限制桥梁跨长,这也是桥梁在美观上受到限制的一个主要因素,因为大跨度更易体现桥梁的轻盈。经济指标一般具体体现在以下几方面:1)经济跨度:经济跨度一般与地质情况和规模化生产有关。如采用箱梁梁型、支架现浇法施工,对于上海,经济跨度在30 m 左右;而西安则为25 m 左右。(2)结构体系:结合城市轨道长的特点,采用连续结构要比简支结构经济。如(3×30)m 连续箱梁结构(3)梁型:通常梁型越美观,造价也越高。如弧形外要比3 孔30 m 简支梁结构便宜约5~ 10% .当然,连腹板箱梁要比直斜腹板的造价高。续结构要比简支结构在设计和施工上都要复杂一些。 2 高架桥梁部结构选型研究 高架桥梁部结构型理论上可以采用和国外已经采用的梁部结构型式有:槽型梁、下承式脊梁、T梁、板梁和箱梁等。 槽形梁:桥梁建筑高度低,便于城市道路间立体交叉,压低线路标高,节约总投资;且两侧主梁可兼起防噪屏作用,景观程度很好。但需布置多向预应力钢筋。施工复杂,进度慢,造价较高,且设计、施工经验少。 板梁:桥梁建筑高度较低,每线采用两片或四片空心板梁,受力清晰,设计、施工经验相当成熟。但各片板梁间铰接,整体受力性差;经济跨度一般在16~ 20 m,较小,景观性差;梁高较低,相应刚度较小,梁部后期收缩徐变较大,不利于轨道交通线路轨道调高要求;按常规预制、吊装施工时,也只能用于20 m 以下的小跨度。 箱梁:桥梁建筑高度适中,工程量较省;适用性好,既可作为区间标准地段,也可用于曲线、变宽、出岔地段;整体受力性好;外观线型流畅、美观;设计、施工程数量为:混凝土,0151m立方米;预应力钢筋,31kg;钢筋,经验成熟,对的传统的现浇法施工积累有丰富的经验。、 综上,笔者推荐高架桥桥梁部采用箱梁型式,理由如下: (1)箱梁的闭合薄壁截面刚度大,整体受力性能好,对于斜弯桥尤为有利。箱梁顶、底板具有较大的面积,可有效地抵抗正负弯矩,并满足配筋要求。箱梁具有良好的动力性能,收缩变形数值小。 (2)箱梁截面外形简洁,底面平整光洁,线条流畅,景观效果优异。 (3)箱梁既适于中、大跨,也适于简支和连续结构,更适于各种地段,如直线段、曲线段、出岔段和变宽段等,便于同一条线路上减少桥梁类型。 (4)箱梁具有相当成熟的设计、施工水平和经验。当前的现浇法施工虽有不足,但尚可以克服,如使预应力钢束锚固于梁内而不锚固与梁端,从而可以同时开始多个工作面施工等,而不致影响整个工程的进度。 (5)从可持续发展角度看,箱梁只要解决了大吨位的运输、吊装设备的研制和相关施工工艺问题,即可实现工厂化、规模化生产,经济指标将会大幅下降。 3. 高架桥桥墩结构选型研究 高架桥墩柱型式墩台基础除应有足够的强度和稳定性,避免在荷载作用下的过大位移外,其造型应能使上下部结构协调一致,轻巧美观,与城市环境和谐、匀称。在墩台选型上,其一般服从梁部型式,此外,也受占地、道路、通视等的限制。通常有:T 形墩、倒T 形墩、Y 形墩、单柱墩、双柱墩等基本型式。 倒T 形墩:主要适于单箱单室箱梁和脊梁等梁部支承点相距稍远的梁型。特别是对于外腹板微斜的箱梁,如墩高适宜,则可使梁的腹

城市轨道交通高架桥的选型

城市轨道交通高架桥的选型 摘要:根据广州地铁四号线、五号线、六号线的设计及国内轨道交通高架桥设计的工程现状,探讨了城市轨道交通高架桥在选型上应考虑的因素、发展方向,给出了广州地铁六号线东延段投标桥梁选型的参考性方案。 关键词:轨道交通;高架桥;桥梁选型 高架桥作为地铁的一种线路敷设方式,由于工程造价较低、施工速度快、适应线路线型的能力强,因此在国内外的地铁建设中发展很快。在国外,如新加坡、荷兰、法国等地的地铁中都存在高架区段,国内北京、上海、天津、南京等城市也采用了部分高架线路。广州市正在实施的地铁二八号线、三号线、四号线、五号线、六号线也都有部分区段采用了高架桥。这充分说明了只要条件许可,设计处理得当,地铁高架桥也会象城市立交桥一样被人们所接受,认可。 1 轨道交通高架桥的特点 (1)长且平:短着几百米,长着二三十公里;处于城市之中,除与地下的交接的过渡段起伏较大外,其它区段相对比较平顺。 (2)窄:不象市政城市桥梁,动辄十几米二十几米宽,轨道交通高架桥单线桥5米左右宽,双线也不过9.5米宽。 (3)要求高:为了满足乘客舒适性的要求,大多都设计为无缝线路,桥墩要求的线刚度较大,使得桥墩体量上要比一般市政桥梁大。同时对基

础的沉降要求较高。 基于以上轨道交通高架桥的特点,能否把桥设计的简洁、明快、实用、大方、与周边和谐则成为轨道交通高架桥设计的难点。 2 国内城市轨道高架桥的现状 就标准段高架桥来说,根据国内北京、上海、南京、广州几座城市已建成和正在建设的轨道交通高架桥来看,跨度上从25米、30米、35米都有,以30米为多,体系上简支梁、连续梁、连续刚构,以简支梁居多,截面型式有整体箱梁、小箱梁、T梁、槽形梁、鱼腹梁、蝙蝠梁、脊梁等,以整体箱梁居多,施工方法上来说,有支架现浇、整孔吊装、节段拼装等。 3 城市轨道交通高架桥选型考虑的几个因素 3.1 景观因素 作为地面建筑,轨道交通高架桥不仅仅要满足轨道交通的各种功能,同时也影响着每一个穿行其下的人的视线和感官,处理得当,它就是一处静止中流动,流动中静止的风景线,受益着人们,也愉悦着人们;处理不好,它就是一堵墙,给人以沉重感、压抑感。城市轨道高架桥长、窄、平的特点,而且穿行在高楼林立的城市之中,笔者认为,在城区标准段,宜使桥梁造型柔和,色彩暗淡,弱化其视觉效果,使之从属于城市环境,

重庆轨道交通单轨车辆检修规程

- 1 -

目录 第一章总则 (1) 第二章列检 (2) 第一节列检流程 (4) 第二节车体及地板下部检查内容及标准 (5) 第三节车内、司机室内检查内容及标准 (11) 第三章月检 (18) 第一节月检流程 (19) 第二节车外、地板下部检查内容及标准 (20) 第三节客室、司机室检查内容及标准 (34) 第四节列车功能试验 (43) 第四章换轮 (52) 第一节换轮流程 (53) 第二节准备工作 (54) 第三节车体与转向架解体 (54) 第四节转向架部件的检查 (56)

第五节走行轮胎的更换和组装作业 (58) 第六节车体与转向架组装 (62) 第七节收尾作业 (63) 第五章重检 (67) 第一节重检流程 (67) 第二节走行驱动装置的检查项目及标准 (69) 第三节主回路及控制回路部件的检查项目及标准 (77) 第四节制动系统部件的检查项目及标准 (90) 第五节车体及其它部件的检查项目及标准 (98) 第六节编组后的功能检查 (116) 第七节试运行 (122) 第六章全检 (123) 第一节全检流程 (123) 第二节走行驱动装置的检修项目和标准 (125) 第三节主回路及控制回路部件的检修项目和标准 (133) 第四节制动系统部件的检修项目和标准 (148) - 3 -

第五节车体及其他部件的检修项目和标准 (158) 第六节编组后的功能检查 (178) 第七节试运行 (185) 附件1 (187) 附件2 (189) 附件3 (190) 附件4 (191) 附件5 (192) 附件6 (193) 附件7 (195) 附件8 (196) 附件9 (197) 附件10 (198) -- 4 --

相关文档
相关文档 最新文档