文档视界 最新最全的文档下载
当前位置:文档视界 › 高中物理选修3-3知识点整理复习过程

高中物理选修3-3知识点整理复习过程

高中物理选修3-3知识点整理复习过程
高中物理选修3-3知识点整理复习过程

选修3—3期末复习知识点汇总

1、物质是由大量分子组成的

(1)单分子油膜法测量分子直径-V=Sd V 是滴入浅水盘中纯油酸的体积,等于油酸溶液的体积乘以浓度。S 是单分子油膜在水面上形成的面积。

(2)1mol 任何物质含有的微粒数相同2316.0210A N mol -=?

(3)对微观量的估算

①分子的两种模型:球形和立方体(固体液体通常看成球形,空气分子占据的空间看成立方体)

②利用阿伏伽德罗常数联系宏观量与微观量

a.分子质量:mol A

M m N = b.分子体积:mol A V v N =【固体和液体-分子体积,气体--分子平均占有空间体积】 c.分子数量:A A A A mol mol mol mol M v M v n N N N N M M V V ρρ=

===【M-任意质量;v--任意体积】 2、分子永不停息的做无规则的热运动(布朗运动 扩散现象)

(1)扩散现象:不同物质能够彼此进入对方的现象,说明了物质分子在不停地运动,同

时还说明分子间有间隙,温度越高扩散越快

(2)布朗运动:它是悬浮在液体中的固体颗粒的无规则运动,不是分子热运动,但颗粒很小,是在显微镜下才能观察到的。

①布朗运动的三个主要特点:永不停息地无规则运动;颗粒越小,布朗运动越明

显;温度越高,布朗运动越明显。

②产生布朗运动的原因:它是由于液体分子无规则运动对固体微小颗粒各个方向

撞击的不均匀性造成的。

③布朗运动间接地反映了液体分子的无规则运动,扩散现象的产生原因是物体分

子做无规则热运动。两者都有力地说明分子在永不停息地做无规则运动。

(3)热运动:分子的无规则运动与温度有关,简称热运动,温度越高,运动越剧烈。 布朗运动不是分子热运动,扩散现象是分子热运动。

3、分子间的相互作用力

分子之间的引力和斥力都随分子间距离增大而减小。但是分子间

斥力随分子间距离加大而减小得更快些,如图1中两条虚线所示。

分子间同时存在引力和斥力,两种力的合力又叫做分子力,随距

离的增加,分子力先减小,后增加,再减小。。在图1图象中实

线曲线表示引力和斥力的合力(即分子力)随距离变化的情况。当

两个分子间距在图象横坐标0r 距离时,分子间的引力与斥力平

衡,分子间作用力为零,0r 的数量级为1010-m ,相当于0r 位置叫

做平衡位置。当分子距离的数量级大于

m 时,分子间的作用力变得十分微弱,可以

忽略不计了

4、温度 宏观上的温度表示物体的冷热程度,微观上的温度是物体大量分子热运动平均动能的标志,不同分子温度相同,平均速率不一定相同。热力学温度与摄氏温度的关系:

273.15T t K =+。热力学温度是国际单位制中的基本单位。

5、分子势能

分子间存在着相互作用力,因此分子间具有由它们的相对位置决定的势能,这就是分子势能。分子势能的大小与分子间距离有关,分子势能的大小变化可通过宏观量体积来反映。(0r r =时分子势能最小)固体分子和液体内部分子通常处于平衡位置,势能最小。分子势能随距离增加,先减小,再增加。

当0r r >时,分子力为引力,当r 增大时,分子力做负功,分子势能增加

当0r r <时,分子力为斥力,当r 减少时,分子力做负功,分子是能增加

6、气体实验定律

①玻意耳定律:pV C =(C 为常量)→等温变化

微观解释:一定质量的理想气体,温度保持不变时,分子的

平均动能是一定的,在这种情况下,体积减少时,分子的密集程度增大,气体的压强就增大。 适用条件:压强不太大,温度不太低

图象表达:1p V -

P-V

②查理定律:p C T

=(C 为常量)→等容变化 微观解释:一定质量的气体,体积保持不变时,分子的密集程度保持不变,在这

种情况下,温度升高时,分子的平均动能增大,气体的压强就增大。 适用条件:温度不太低,压强不太大

图象表达:P-T

③盖吕萨克定律:V C T =(C 为常量)→等压变化 微观解释:一定质量的气体,温度升高时,分子的平均动能增大,只有气体的体

积同时增大,使分子的密集程度减少,才能保持压强不变

适用条件:压强不太大,温度不太低

图象表达:V T -

7、理想气体

宏观上:严格遵守三个实验定律的气体,在常温常压下实验

气体可以看成理想气体

微观上:分子间的作用力可以忽略不计,故一定质量的理想 气体的内能只与温度有关,与体积无关

理想气体的方程:pV

C T

8、气体压强的微观解释

【1】封闭容器内气体压强--是大量分子频繁的撞击器壁的结果;

【2】影响气体压强的因素:①气体的平均分子动能(温度)②分子的密集程度即单位体积内的分子数(体积);

【3】温度升高,分子撞击器壁的平均作用力增加

【4】器壁单位面积上单位时间内受到分子的碰撞数N与nv成正比.单位面积上受到的力与温度有关,温度越高,单位面积上受到的作用力越大。

9、晶体和非晶体

①判断物质是晶体还是非晶体的主要依据--是有无固定的熔点【理解熔化过程温度--时间图像】。

②晶体与非晶体并不是绝对的,有些晶体在一定的条件下可以转化为非晶体(石英→玻璃)

10、单晶体多晶体

如果一个物体就是一个完整的晶体,如食盐小颗粒,这样的晶体就是单晶体(单晶硅、单晶锗),有天然的规则的几何外形,一些物理性质表现为各向异性。

如果整个物体是由许多杂乱无章的小晶体排列而成,这样的物体叫做多晶体,多晶体通常没有天然规则的几何外形,物理性质表现为各项同性。但同单晶体一样,仍有确定的熔点。

同一种物质微粒可以生成结构不同的晶体。例如金刚石、石墨都是碳原子组成的原子晶体,物理性质差别很大。

晶体的分子排列具有周期性或规律性.但是如果说晶体的微观结构具有周期性就是错误的.因为单

晶的微观结构可以说是分子按空间点阵周期性排列;可是多晶体的微观结构可能指的排列[无规律],也可以指多晶体的分子排列按空间点阵排列[周期性].

11、表面张力

当表面层的分子比液体内部稀疏时,分子间距比内部大,表面层的分子表现为引力。如露珠、熔化的金属凝固时会变成近似球形、昆虫在水面上运动。

12、液晶-介于晶体和液体之间的流体。

分子排列有序,各向异性;位置无序,可自由移动,具有流动性

光学各向异性:分子的排列从某个方向上看液晶分子排列是整齐的,从另一方向看去则是杂乱无章的。在温度、压力、电磁作用下,会改变液晶分子排列,从而影响液晶的性质。

13、浸润与不浸润毛细现象

【1】液体和固体接触时会出现浸润和不浸润现象。如果附着层中的液体分子比液体内部稀疏,跟固体接触的液体表面积有缩小的趋势,细管中液面是凸形,形成不浸润现象;如果附着层中的液体分子比液体内密集,跟固体接触的液体表面积有扩展的趋势,细管中液面是凹形弯月,形成浸润现象;浸润的应用:毛巾浸润水、洗涤剂浸润油污。不浸润的应用:雨伞布不浸润水【如果强调伞布缝隙不漏水用表面张力解释,如果强调伞布材料用不浸润解释。实际上雨伞不漏水与两者都有关系,做选择题时只要选择项中涉及其中一个原因就算正确】

【2】毛细现象:浸润液体在细管里上升和不浸润液体在细管里下降的现象。应用:纸张吸水、压紧土壤。防止:油毡布防潮。液体上升和下降的高度和表面张力、固体、液体种类、细管粗细等因素有关。

14、内能和改变内能的方式

B=

p

ps

X100%

【1】内能---物体中所有分子【物质的量决定】热运动的动能和分子势能的总和,叫做物体的内能。一切物体都是由不停地做无规则热运动并且相互作用着的分子组成,因此任何物体都是有内能的。(一定质量理想气体的内能只取决于温度)

【2】改变系统内能的两种方式:做功和热传递

①热传递有三种不同的方式:热传导、热对流和热辐射

②这两种方式改变系统的内能是等效的

③区别:做功是系统内能和其他形式能之间发生转化;热传递是不同物体(或物体的不同部分)之间内能的转移

15、热力学第一定律

①表达式u W Q

?=+

16、能量守恒定律

能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到另一物体,在转化和转移的过程中其总量不变

第一类永动机不可制成是因为其违背了热力学第一定律

第二类永动机不可制成是没有违反能量守恒,但是违背了热力学第二定律(一切自然过程总是沿着分子热运动的无序性增大的方向进行)。满足能量守恒的物理过程不一定发生。

17、能量耗散

系统的内能流散到周围的环境中,没有办法把这些内能收集起来加以利用。所以,气体形式的能量转化为内能后,能量的品质降低,不好利用,所以尽管能量守恒,仍然要节约能源。

18、饱和汽体湿度

【1】饱和汽:在密闭容器中的液体不断的蒸发,液面上的蒸气也不断地凝结,当这两个同时存在的过程达到动态平衡时,宏观的蒸发也停止了,这种与液体处于动态平衡的蒸气叫做饱和汽。

【2】饱和汽压:在一定温度下,饱和汽的分子数密度是一定的,因而饱和汽的压强也是一定的,这个压强叫做这种液体的饱和汽压。

【3】把未饱和汽变为饱和汽体的方法:减少体积,降低温度,增加压强【增加压强的方法只有临界温度以下才能使用】。

【4】空气的湿度包含相对湿度和绝对湿度。绝对湿度用空气里所含水汽的压强表示。相对湿度是在某一温度下,水蒸汽的压强与同温度下饱和汽压的比,称为空气的相对湿度。

两者区别:含义、单位;影响人们对干爽与潮湿感受的因素,不是空气中水蒸气的绝对数量,而是空气中水蒸气的压强与同一温度下水的饱和汽压的差距.水蒸气的压强离饱和汽压越远,即相对湿度越小,越有利于水的蒸发,人们感觉干爽.

期末预测题

一\选择题 [16题,每题4分]

1、下列四幅图中,能正确反映分子间作用力f 和分子势能E p

随分子间距离r 变化关系的图线是( ).

2、一滴油酸酒精溶液含质量为m 的纯油酸,滴在液面上扩散后形成的最大面积为S .已知纯油酸的摩尔质量为M 、密度为ρ,阿伏加德罗常数为N A ,下列表达式中正确的有( ).

A .油酸分子的直径d =M ρS

B .油酸分子的直径d =m ρS

C .油酸所含的分子数N =m M N A

D .油酸所含的分子数N =M m N A

3.已知铜的摩尔质量为M (kg/mol),铜的密度为ρ(kg/m 3),阿伏加德罗常数为N A (mol -1).下列判断错误的是( ).

A .1 kg 铜所含的原子数为N A M

B .1 m 3铜所含的原子数为MN A ρ

C .1个铜原子的质量为M N A (kg)

D .1个铜原子的体积为M ρN A

(m 3) 4.如图为两分子系统的势能E p 与两分子间距离r 的关系曲线.下列说法正确的是( )

A .当r 大于r 1时,分子间的作用力表现为引力

B .当r 小于r 1时,分子间的作用力表现为斥力

C .当r 等于r 2时,分子间的作用力为零

D .在r 由r

1变到r 2的过程中,分子间的作用力做负功

5.甲分子固定在坐标原点O ,乙分子位于x 轴上,甲分子对乙分

子的作用力与两分子间距离的关系如图中曲线所示,F >0为斥力,F <0

为引力,a 、b 、c 、d 为x 轴上四个特定的位置.现把乙分子从a 处由静

止释放,

则( ).

A .乙分子由a 到b 做加速运动,由b 到c 做减速运动

B .乙分子由a 到c 做加速运动,到达c 时速度最大

C .乙分子由a 到b 的过程中,两分子间的分子势能一直增大

D.乙分子由b到d的过程中,两分子间的分子势能一直增加

6\关于饱和汽,下面说法正确的是().

A.达饱和汽时液面上的气体分子的密度不断增大

B.达饱和汽时液面上的气体分子的密度不变

C.将未饱和汽转化成饱和汽可以保持温度不变,减小体积

D.将未饱和汽转化成饱和汽可以保持体积不变,降低温度

7\关于一定量的气体,下列说法正确的是_______.

A.气体在等压膨胀过程中温度一定升高

B.只要能减弱气体分子热运动的剧烈程度,气体的温度就可以降低

C.在完全失重的情况下,气体对容器壁的压强为零

D.气体从外界吸收热量,其内能一定增加

8\一定质量理想气体的状态经历了如图所示的ab、bc、cd、da四个过程,其中bc的延长线通过原点,cd垂直于ab且与水平轴平行,da与bc平行,则气体体积在().

A.ab过程中不断减小B.bc过程中保持不变

C.cd过程中不断增加D.da过程中保持不变

9\,曲线M、N分别表示晶体和非晶体在一定压强下的熔化过程,图中

横轴表示时间t,纵轴表示温度T.从图中可以确定的是______

A.晶体和非晶体均存在固定的熔点T0

B.曲线M的bc段表示固液共存状态

C.曲线M的ab段、曲线N的ef段均表示固态

D.曲线M的cd段、曲线N的fg段均表示液态

10\关于空气湿度,下列说法正确的是().

A.当人们感到潮湿时,空气的绝对湿度一定较大

B.当人们感到干燥时,空气的相对湿度一定较小

C.空气的绝对湿度用空气中所含水蒸汽的压强表示

D.空气的相对湿度定义为水的饱和汽压与相同温度时空气中所含水蒸汽的压强之比

11\下列关于湿度的说法中,正确的是().

A.绝对湿度大,相对湿度一定大

B.相对湿度是100%,表明在当时温度下,空气中水汽已达饱和状态

C.相同温度下绝对湿度越大,表明空气中水汽越接近饱和

D.露水总是出现在夜间和清晨,是因为气温的变化使空气中原来饱和的水蒸气液化的缘故12\一定质量的理想气体(分子力不计),体积由V膨胀到V′.如果通过压强不变的过程实现,对外做功大小为W1,传递热量的值为Q1,内能变化为ΔU1;如果通过温度不变的过程来实现,对外做功大小为W2,传递热量的值为Q2,内能变化为ΔU2,则().

A.W1>W2,Q1ΔU2 B.W1>W2,Q1>Q2,ΔU1>ΔU2

C.W1ΔU2 D.W1=W2,Q1>Q2,ΔU1>ΔU2

13\关于热力学定律,下列说法正确的是().

A.功转变为热的实际宏观过程是不可逆过程

B.对某物体做功,必定会使该物体的内能增加

C.可以从单一热源吸收热量,使之完全变为功

D.不可能使热量从低温物体传向高温物体

14\关于两类永动机和热力学的两个定律,下列说法正确的是().

A.第二类永动机不可能制成是因为违反了热力学第一定律

B.第一类永动机不可能制成是因为违反了热力学第二定律

C.由热力学第一定律可知做功不一定改变内能,热传递也不一定改变内能,但同时做功和热传递一定会改变内能

D.由热力学第二定律可知热量从低温物体传向高温物体是可能的,从单一热源吸收热量,完全变成功也是可能的

15\某同学利用DIS实验系统研究一定量理想气体的状态变化,实验后

计算机屏幕显示如图1的p-t图象.已知在状态B时气体的体积为

V B=3 L,则下列说法正确的是().

A.状态A到状态B气体的体积越来越大B.状态B到状态C

气内能增加

C.状态A的压强是0.5 atm D.状态C体积是2 L

16\ 在如图所示的气缸中,上下活塞面积分别为S A、S B,且S A

活塞A上方的容器内装满小铁球时活塞处于静止状态,现从容器中取

出几个铁球,保持温度不变,在活塞重新稳定的过程中().

A.活塞向上移动了一段距离B.气体从外界不断吸收热量

C.气体对外界做功D.密闭气体压强增大

KEY----B/BC/B/BC/B BCD/AB/B/B/BC BCD/B/AC/D/D AD

二\实验题[每空3分,共12分]

17\在“用油膜法估测分子大小”的实验中,所用的油酸酒精溶液的浓度为每

1000 mL溶液中有纯油酸0.6 mL,用注射器测得l mL上述溶液有80滴,

把1滴该溶液滴入盛水的浅盘内,让油膜在水面上尽可能散开,得到油

酸薄膜的轮廓形状和尺寸如图所示,图中正方形格的边长为1 cm,则可

求得:

(1)油酸薄膜的面积是cm2.

(2)油酸分子的直径是m.(结果保留两位有效数字)

(3)利用单分子油膜法可以粗测分子的大小和阿伏加德罗常数.如果已

知体积为V的一滴油在水面上散开形成的单分子油膜的面积为S,这种油的密度为 ,摩尔质量为M,则阿伏加德罗常数的表达式为。

(4)用油膜法测出油酸分子的直径后,要测定阿伏加德罗常数,还需要知道油滴的

___B_____.

A.摩尔质B.摩尔体积C.质量D.体积

二、计算题[共4题,44分]

1、[10]如图所示,一竖直放置、粗细均匀且足够长的U形玻璃管与容积为V0=90 cm3的金属球形容器连通,用U形玻璃管中的水银柱封闭一定质量的理想气体,当环境温度为27 ℃时,U形玻璃管右侧水银面比左侧水银面高出h1=16 cm,水银柱上方空气柱长h0=20 cm.现在对金属球形容器缓慢加热(已知大气压p0=76 cmHg,U形玻璃管的横截面积为S=0.5 cm2).求:当加热到多少摄氏度时,两边水银柱高度在同一水平面上

2、[14]如图,一根两端开口、横截面积为S=2 cm2足够长的玻璃管竖直插入水

银槽中并固定(插入水银槽中的部分足够深).管中有一个质量不计的光滑

活塞,活塞下封闭着长L=21 cm的理想气柱,气体的温度为t1=7 ℃,外界大气压取p0=1.0×105 Pa(相当于75 cm高的汞柱压强).

(1)若在活塞上放一个质量为m=0.1 kg的砝码,保持气体的温度t1不变,则平衡后气柱为多长?(g=10 m/s2)并分析此过程是吸热还是放热?

(2)若保持砝码的质量不变,对气体加热,使其温度升高到t2=77 ℃,此时

气柱为多长?

解析(1)被封闭气体的初状态为p1=p0=1.0×105 Pa

V1=LS=42 cm3,T1=280 K

末状态压强p 2=p 0+mg S =1.05×105 Pa

V 2=L 2S ,T 2=T 1=280 K

根据玻意耳定律,有p 1V 1=p 2V 2,即p 1L =p 2L 2

得L 2=p 1p 2

L =20 cm. (2)对气体加热后,气体的压强不变,p 3=p 2,V 3=L 3S ,T 3=350 K

根据盖—吕萨克定律,有V 2T 2=V 3T 3,即L 2T 2=L 3T 3

得L 3=T 3T 2

L 2=25 cm. (3)气体对外做的功W =p 2Sh =p 2S (L 3-L 2)=1.05 J

根据热力学第一定律得

ΔU =W +Q =-1.05 J +10 J =8.95 J

即气体的内能增加8.95 J.

3、[12]为均匀薄壁U 形管,左管上端封闭,右管开口且足够长,管的截面积为S ,内装有密

度为ρ的液体.右管内有一质量为m 的活塞搁在固定卡口上,卡口与左管上端等高,活塞与管壁间无摩擦且不漏气.温度为T 0时,左、右管内液面等高,两管内空气柱长度均为L ,压强均为大气压强p

0,重力加速度为g .现使左右两管温度同时缓慢升高,

在活塞离开卡口上升前,左右两管液面保持不动,试求:

(1)右管活塞刚离开卡口上升时,右管封闭气体的压强p 1;

(2)温度升高到T 1为多少时,右管活塞开始离开卡口上升;

(3)温度升高到T 2为多少时,两管液面高度差为L .

(1)活塞刚离开卡口时,对活塞受力分析有

mg +p 0S =p 1S ,得p 1=p 0+mg S

(2)两侧气体体积不变,由查理定律,右管内气体,p 0T 0=p 1T 1

得T 1=T 0(1+mg p 0S ) (3)左管内气体,V 2=L 2S ,L 2=L +L 2=32L

p 2=p 0+mg S +ρgL 应用理想气体状态方程p 0·LS T 0=p 2·L 2S T 2

得T 2=3T 02p 0

(p 0+mg S +ρgL ) 4\[8]如图所示,内径均匀的导热性能良好的“U ”形玻璃管竖直放置,横截面积S =5 cm 2,右侧管上端封闭,左侧管上端开口,内有用细线拴住的活塞,两管中均封入长L =11 cm 的空气柱A 和B ,活塞上、下表面处的气体压强均为p =76 cm 水银柱产生的压强,这时两管内的水银面的高度差h =6 cm.环境温度恒定,现用细线缓慢地将活塞向上拉,使两管内水银面相平,则:

①此过程中活塞向上移动的距离h ′是多少?

②此过程中空气柱B 内的气体对外界做________(填“正功”或“负功”),气体将________(填“吸

热”或“放热”).

[熟题回做]

1\如图为伽利略设计的一种测温装置示意图,玻璃管的上端与导热良好的玻璃泡

连通,下端插入水中,玻璃泡中封闭有一定量的空气若玻璃管内水柱上升,则

外界大气的变化可能是( A ).

A .温度降低,压强增大

B .温度升高,压强不变

C .温度升高,压强减小

D .温度不变,压强减小

2\对于一定量的理想气体,下列四个论述中正确的是( ).

A .当分子热运动变剧烈时,压强必变大

B .当分子热运动变剧烈时,压强可以不变

C .当分子间的平均距离变大时,压强必变小

D .当分子间的平均距离变大时,压强必变大 (2000·全国)

[答案](B )

3\一定质量的气体放在体积为V 0的导热容器中,一体积不计的光滑活塞C 将容器分成A 、B

两室,B 室的体积是A 室的两倍,A 室连接一“U”形细管,细管两边水银柱高度差为76 cm.B 室连接有一阀门K ,可与大气相通(外界大气压等于76 cmHg ,细管内气体体积忽略不计).现将阀门K 打开,求[1]最终A 室内气体的体积[2]A 室内气体吸热还是放热

[1] A 室气体等温变化.

p A 0=2×76 cmHg ,V A 0=V 03,p A =76 cmHg ,最终体积设为V A ,

由玻意耳定律得p A 0V A 0=p A V A 解得V A =2V 03

[2]吸热.容器导热,A 室内气体温度不变,内能不变,由热力学第一定律知,体积增大,气体对外做功,则A 室内气体吸收热量.

4\ 的气缸水平放置,固定不动.气缸壁是导热的,两个活塞A 和B 将气缸分隔为1、2两气室,达到平衡时1、2两气室体积之比为3:2,如图9-3所示.在室温不变的条件下,缓慢推动活塞A ,使之向右移动一段距离d .求活塞B 向右移动的距离.不计活塞与气缸壁之间的磨擦. (2000·全国)

[解析] 因气缸水平放置,又不计活塞的摩擦,故平衡时两气室内的压强必相等,设

初态时气室内压强为p 0,气室1、2的体积分别为V 1和V 2;在活塞A 向右移动d 的过程中活塞B

向右移动

的距离为x ;最后气缸压强为ρ.因温度不变,分别对气室1和2的气体运用玻意耳定律,得

气室1 p 0V 1=P (V 1-S d +S x ) (1)

气室2 p 0V 2=p (V 2-S x ) (2)

由(1)、(2)两式解得

由题意, 得

5、一横截面积为S 一上端开口、下端封闭的细长玻璃管竖直放置.玻璃管的下

部封有长l 1=25.0 cm 的空气柱,中间有一段长l 2=25.0 cm 的水银柱,上部

空气柱的长度l 3=40.0 cm.已知大气压强为p 0=75.0 cmHg.现将一活塞(图中未画出)从玻璃

管开口处缓缓往下推,使管下部空气柱长度变为l1′=20.0 cm.假设活塞下推过程中没有漏气,求活塞下推的距离.

在活塞下推前,玻璃管下部空气柱的压强为p1=p0+l2①

设活塞下推后,下部空气柱的压强为p1′,由玻意耳定律得p1l1=p1′l1′②

设活塞下推距离为Δl,则此时玻璃管上部空气柱的长度为l3′=l3+l1-l1′-Δl③

设此时玻璃管上部空气柱的压强为p3′,则

p3′=p1′-l2④

由玻意耳定律得p0l3=p3′l3′⑤

由①~⑤式及题给数据解得Δl=15.0 cm

高中物理必修2知识点归纳重点

新课标高中物理必修Ⅱ知识点总结 在学习物理的过程中,希望你能养成解题的好习惯,这一点很重要。 1、看题目的时候,很容易会看着头晕转向,这是心理问题,是自己逃避的 表现。因此再看题目的过程中,要手拿笔,画出重要的解题关键点。比 如:物体的开始与结束的状态、平衡状态等等;(这是一个积累过程,习 惯了就会事半功倍,不要不要在乎纸的清洁。); 2、画图;物理解题应该是想象思维、图形结合,再到推理的过程。画图真 的是必不可少的,不能懒而省了这一步。一定要画图,而且要整洁,不 可马虎; 3、辅导书是第二个老师;你若自学辅导书的每一章节前面的是总结梳理, 认真的记忆梳理,你课都可以不听了(不骗人,前提是你真的用功了)。 自习的时候,不要直接做辅导书的题那么快,认真看前面的知识点和例 题,消化好了,绝对受益匪浅。(任何一门理科都可以这么学的) 第一模块:曲线运动、运动的合成和分解 <一> 曲线运动 1、定义:运动轨迹为曲线的运动。 2、物体做曲线运动的方向:做曲线运动的物体,速度方向始终在轨迹的切线方向上。 3、曲线运动的性质:曲线运动一定是变速运动。(选择题) 由于曲线运动速度一定是变化的,至少其方向总是不断变化的,所以,做曲线运动的物体的加速度必不为零,所受到的合外力必不为零。(选择题) 4、物体做曲线运动的条件 物体所受合外力(加速度)的方向与物体的速度方向不在一条直线上。 总之,做曲线运动的物体所受的合外力一定指向曲线的凹侧。(选择题) 5、分类 ⑴匀变速曲线运动:物体在恒力作用下所做的曲线运动,如平抛运动。 ⑵非匀变速曲线运动:物体在变力(大小变、方向变或两者均变)作用下所做的曲线运动,如圆周运动。 <二> 运动的合成与分解(小船渡河是重点) 1、运动的合成:从已知的分运动来求合运动,叫做运动的合成,包括位移、速度和加速度的合成,由于它们都是矢量,所以遵循平行四边形定则。运动合成重点是判断合运动和分运动,一般地,物体的实际运动就是合运动。(做题依据) 2、运动的分解:求一个已知运动的分运动,叫运动的分解,解题时应按实际“效果”分解,或正交分解。 3、合运动与分运动的关系: ⑴运动的等效性⑵等时性⑶独立性⑷运动的矢量性 4、运动的性质和轨迹

高中物理重要知识点详细全总结(史上最全)

完整的知识网络构建,让复习备考变得轻松简单! (注意:全篇带★需要牢记!) 物 理 重 要 知 识 点 总 结 (史上最全) 高中物理知识点总结 (注意:全篇带★需要牢记!) 一、力物体的平衡

1.力是物体对物体的作用,是物体发生形变和改变物体的运动状态(即产生加速度)的原因. 力是矢量。 2.重力(1)重力是因为地球对物体的吸引而产生的. [注意]重力是因为地球的吸引而产生,但不能说重力就是地球的吸引力,重力是万有引力的一个分力. 但在地球表面附近,能够认为重力近似等于万有引力 (2)重力的大小:地球表面G=mg,离地面高h处G/=mg/,其中g/=[R/(R+h)]2g (3)重力的方向:竖直向下(不一定指向地心)。 (4)重心:物体的各部分所受重力合力的作用点,物体的重心不一定在物体上. 3.弹力(1)产生原因:因为发生弹性形变的物体有恢复形变的趋势而产生的. (2)产生条件:①直接接触;②有弹性形变. (3)弹力的方向:与物体形变的方向相反,弹力的受力物体是引起形变的物体,施力物体是发生形变的物体.在点面接触的情况下,垂直于面; 在两个曲面接触(相当于点接触)的情况下,垂直于过接触点的公切面. ①绳的拉力方向总是沿着绳且指向绳收缩的方向,且一根轻绳上的张力大小处处相等. ②轻杆既可产生压力,又可产生拉力,且方向不一定沿杆. (4)弹力的大小:一般情况下应根据物体的运动状态,利用平衡条件或牛顿定律来求解.弹簧弹力可由胡克定律来求解. ★胡克定律:在弹性限度内,弹簧弹力的大小和弹簧的形变量成正比,即F=kx.k为弹簧的劲度系数,它只与弹簧本身因素相关,单位是N/m. 4.摩擦力 (1)产生的条件:①相互接触的物体间存有压力;③接触面不光滑;③接触的物体之间有相对运动(滑动摩擦力)或相对运动的趋势(静摩擦力),这三点缺一不可. (2)摩擦力的方向:沿接触面切线方向,与物体相对运动或相对运动趋势的方向相反,与物体运动的方向能够相同也能够相反. (3)判断静摩擦力方向的方法: ①假设法:首先假设两物体接触面光滑,这时若两物体不发生相对运动,则说明它们原来没有相对运动趋势,也没有静摩擦力;若两物体发生相对运动,则说明它们原来有相对运动趋势,并且原来相对运动趋势的方向跟假设接触面光滑时相对运动的方向相同.然后根据静摩擦力的方向跟物体相对运动趋势的方向相反确定静摩擦力方向. ②平衡法:根据二力平衡条件能够判断静摩擦力的方向. (4)大小:先判明是何种摩擦力,然后再根据各自的规律去分析求解. ①滑动摩擦力大小:利用公式f=μF N实行计算,其中F N是物体的正压力,不一

高中物理选修3-3知识点整理

选修3—3考点汇编 1、物质是由大量分子组成的 (1)单分子油膜法测量分子直径 (2)1mol 任何物质含有的微粒数相同2316.0210A N mol -=? (3)对微观量的估算 ①分子的两种模型:球形和立方体(固体液体通常看成球形,空气分子占据的空间看成立方体) ②利用阿伏伽德罗常数联系宏观量与微观量 a.分子质量:mol A M m N = b.分子体积:mol A V v N = c.分子数量:A A A A mol mol mol mol M v M v n N N N N M M V V ρρ= === 2、分子永不停息的做无规则的热运动(布朗运动 扩散现象) (1)扩散现象:不同物质能够彼此进入对方的现象,说明了物质分子在不停地运动,同时还说明分子 间有间隙,温度越高扩散越快 (2)布朗运动:它是悬浮在液体中的固体微粒的无规则运动,是在显微镜下观察到的。 ①布朗运动的三个主要特点: 永不停息地无规则运动;颗粒越小,布朗运动越明显;温度越高,布朗运动越明显。 ②产生布朗运动的原因:它是由于液体分子无规则运动对 固体微小颗粒各个方向撞击的不均匀性造成的。 ③布朗运动间接地反映了液体分子的无规则运动,布朗运 动、扩散现象都有力地说明物体内大量的分子都在永不停息地

做无规则运动。 (3)热运动:分子的无规则运动与温度有关,简称热运动,温度越高,运动越剧烈 3、分子间的相互作用力 分子之间的引力和斥力都随分子间距离增大而减小。但是分子间斥力随分子间距离加大而减小得更快些,如图1中两条虚线所示。分子间同时存在引力和斥力,两种力的合力又叫做分子力。在图1图象中实线曲线表示引力和斥力的合力(即分子力)随距离变化的情况。当两个分子间距在图象横坐标0r 距离时,分子间的引力与斥力平衡,分子间作用力为零,0r 的数量级为1010 -m ,相当于0r 位置叫做平衡位置。当分子距离的数量级大于 m 时,分子间的作用力变得十分微弱,可以忽略不 计了 4、温度 宏观上的温度表示物体的冷热程度,微观上的温度是物体大量分子热运动平均动能的标志。热力学温度与摄氏温度的关系:273.15T t K =+ 5、内能 ①分子势能 分子间存在着相互作用力,因此分子间具有由它们的相对位置决定的势能,这就是分子势能。分子势能的大小与分子间距离有关,分子势能的大小变化可通过宏观量体积来反映。(0r r =时分子势能最小) 当0r r >时,分子力为引力,当r 增大时,分子力做负功,分子势能增加 当0r r <时,分子力为斥力,当r 减少时,分子力做负功,分子是能增加 ②物体的内能 物体中所有分子热运动的动能和分子势能的总和,叫做物体的内能。一切物体都是由不停地做无规则热运动并且相互作用着的分子组成,因此任何物体都是有内能的。(理想气体的内能只取决于温度) ③改变内能的方式

高中物理知识点总结大全

高考总复习知识网络一览表物理

高中物理知识点总结大全 一、质点的运动(1)------直线运动 1)匀变速直线运动 1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as 3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at 5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t 7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则aF2) 2.互成角度力的合成: F=(F12+F22+2F1F2cosα)1/2(余弦定理)F1⊥F2时:F=(F12+F22)1/2 3.合力大小范围:|F1-F2|≤F≤|F1+F2| 4.力的正交分Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx) 注: (1)力(矢量)的合成与分解遵循平行四边形定则; (2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立; (3)除公式法外,也可用作图法求解,此时要选择标度,严格作图; (4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小; (5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算. 四、动力学(运动和力) 1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止 2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致} 3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动} 4.共点力的平衡F合=0,推广{正交分解法、三力汇交原理} 5.超重:FN>G,失重:FNr} 3.受迫振动频率特点:f=f驱动力 4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕 5.机械波、横波、纵波〔见第二册P2〕 6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定} 7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波) 8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大 9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同) 10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册P21〕} 注: (1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;

高中物理知识点归纳分享

高中物理知识点归纳分享 高中物理知识点归纳分享 1.光本性学说的发展简史 (1)牛顿的微粒说:认为光是高速粒子流.它能解释光的直进现象,光的反射现象. (2)惠更斯的波动说:认为光是某种振动,以波的形式向周围传播.它能解释光的干涉和衍射现象. 2、光的干涉 光的干涉的条件是:有两个振动情况总是相同的波源,即相干波源。(相干波源的频率必须相同)。形成相干波源的.方法有两种:⑴利用激光(因为激光发出的是单色性极好的光)。⑵设法将同一束光 分为两束(这样两束光都来源于同一个光源,因此频率必然相等)。 下面4个图分别是利用双缝、利用楔形薄膜、利用空气膜、利用平 面镜形成相干光源的示意图。 2.干涉区域内产生的亮、暗纹 ⑴亮纹:屏上某点到双缝的光程差等于波长的整数倍,即 δ=nλ(n=0,1,2,……) ⑵暗纹:屏上某点到双缝的光程差等于半波长的奇数倍,即 δ=(n=0,1,2,……) 相邻亮纹(暗纹)间的距离。用此公式可以测定单色光的波长。用白光作双缝干涉实验时,由于白光内各种色光的波长不同,干涉条 纹间距不同,所以屏的中央是白色亮纹,两边出现彩色条纹。 3.衍射----光通过很小的孔、缝或障碍物时,会在屏上出现明暗相间的条纹,且中央条纹很亮,越向边缘越暗。

⑴各种不同形状的障碍物都能使光发生衍射。 ⑵发生明显衍射的条件是:障碍物(或孔)的尺寸可以跟波长相比,甚至比波长还小。(当障碍物或孔的尺寸小于0.5mm时,有明显衍射 现象。) ⑶在发生明显衍射的条件下当窄缝变窄时亮斑的范围变大条纹间距离变大,而亮度变暗。 4、光的偏振现象:通过偏振片的光波,在垂直于传播方向的平 面上,只沿着一个特定的方向振动,称为偏振光。光的偏振说明光 是横波。 5.光的电磁说 ⑴光是电磁波(麦克斯韦预言、赫兹用实验证明了正确性。) ⑵电磁波谱。波长从大到小排列顺序为:无线电波、红外线、可见光、紫外线、X射线、γ射线。各种电磁波中,除可见光以外, 相邻两个波段间都有重叠。 各种电磁波的产生机理分别是:无线电波是振荡电路中自由电子的周期性运动产生的;红外线、可见光、紫外线是原子的外层电子受 到激发后产生的;伦琴射线是原子的内层电子受到激发后产生的;γ 射线是原子核受到激发后产生的。 ⑶红外线、紫外线、X射线的主要性质及其应用举例。 种类产生主要性质应用举例 红外线一切物体都能发出热效应遥感、遥控、加热 紫外线一切高温物体能发出化学效应荧光、杀菌、合成VD2 X射线阴极射线射到固体表面穿透能力强人体透视、金属探伤 以上就是新编高中物理知识点归纳之光的波动性和微粒性的全部内容,希望能够对大家有所帮助!

最详细的高中物理知识点总结(最全版)

高中物理知识点总结(经典版)

第一章、力 一、力F:物体对物体的作用。 1、单位:牛(N) 2、力的三要素:大小、方向、作用点。 3、物体间力的作用是相互的。即作用力与反作用力,但它们不在同一物体上,不是平衡力。作用力与 反作用力是同性质的力,有同时性。 二、力的分类: 1、按按性质分:重力G、弹力N、摩擦力f 按效果分:压力、支持力、动力、阻力、向心力、回复力。 按研究对象分:外力、内力。 2、重力G:由于受地球吸引而产生,竖直向下。G=mg 重心的位置与物体的质量分布与形状有关。质量均匀、形状规则的物体重心在几何中心上,不一定在物体上。 弹力:由于接触形变而产生,与形变方向相反或垂直接触面。F=k×Δx 摩擦力f:阻碍相对运动的力,方向与相对运动方向相反。 滑动摩擦力:f=μN(N不是G,μ表示接触面的粗糙程度,只与材料有关,与重力、压力无关。) 相同条件下,滚动摩擦<滑动摩擦。 静摩擦力:用二力平衡来计算。 用一水平力推一静止的物体并使它匀速直线运动,推力F与摩擦力f的关系如图所示。 力的合成与分解:遵循平行四边形定则。以分力F1、F2为邻边作平行四边形,合力F的大小和方向可用这两个邻边之间的对角线表示。 |F1-F2|≤F合≤F1+F2 F合2=F12+F22+ 2F1F2cosQ 平动平衡:共点力使物体保持匀速直线运动状态或静止状态。 解题方法:先受力分析,然后根据题意建立坐标 系,将不在坐标系上的力分解。如受力在三个以 内,可用力的合成。 利用平衡力来解题。 F x合力=0 F y合力=0 注:已知一个合力的大小与方向,当一个分力的 方向确定,另一个分力与这个分力垂直是最小 值。 转动平衡:物体保持静止或匀速转动状态。 解题方法:先受力分析,然后作出对应力的力臂(最长力臂是指转轴到力的作用点的直线距离)。分析正、负力矩。 利用力矩来解题:M合力矩=FL合力矩=0 或M正力矩= M负力矩 第二章、直线运动

高中物理总复习各章知识点的总结

高中物理复习题纲(南通市第三中学江宁) 第一章、力 一、力F:物体对物体的作用。 1、单位:牛(N) 2、力的三要素:大小、方向、作用点。 3、物体间力的作用是相互的。即作用力与反作用力,但它们不在同一物体上,不是平衡力。作用力与反作用力是同 性质的力,有同时性。 二、力的分类: 1、按按性质分:重力G、弹力N、摩擦力f 按效果分:压力、支持力、动力、阻力、向心力、回复力。 按研究对象分:外力、内力。 2、重力G:由于受地球吸引而产生,竖直向下。G=mg 重心的位置与物体的质量分布与形状有关。质量均匀、形状规则的物体 重心在几何中心上,不一定在物体上。 弹力:由于接触形变而产生,与形变方向相反或垂直接触面。F=k×Δx 摩擦力f:阻碍相对运动的力,方向与相对运动方向相反。 滑动摩擦力:f=μN(N不是G,μ表示接触面的粗糙程度,只与材料有关,与重力、压力 无关。) 相同条件下,滚动摩擦<滑动摩擦。 静摩擦力:用二力平衡来计算。 用一水平力推一静止的物体并使它匀速直线运动,推力F与摩擦力f的关系如图所示。 力的合成与分解:遵循平行四边形定则。以分力F1、F2为邻边作平行四边形,合力F的大小和方向可用 这两个邻边之间的对角线表示。 |F1-F2|≤F合≤F1+F2 F合2=F12+F22+ 2F1F2cosQ 平动平衡:共点力使物体保持匀速直线运动状态或静止状态。 解题方法:先受力分析,然后根据题意建立坐标系,将不在坐标系 上的力分解。如受力在三个以内,可用力的合成。 利用平衡力来解题。 F x合力=0 F y合力=0 注:已知一个合力的大小与方向,当一个分力的方向确定,另一个 分力与这个分力垂直时是最小值。 转动平衡:物体保持静止或匀速转动状态。 解题方法:先受力分析,然后作出对应力的力臂(最长力臂是指转轴到力的作用点的直线距离)。分析正、负力矩。 利用力矩来解题:M合力矩=FL合力矩=0 或M正力矩= M负力矩 第二章、直线运动

高一物理知识点归纳大全

高一物理知识点归纳大全 从初中进入高中以后,就会慢慢觉得物理公式比以前更难学习了,其实学透物理公式并不是难的事情,以下是我整理的物理公式内容,希望可以给大家提供作为参考借鉴。 基本符号 Δ代表'变化的 t代表'时间等,依情况定,你应该知道' T代表'时间' a代表'加速度' v。代表'初速度' v代表'末速度' x代表'位移' k代表'进度系数' 注意,写在字母前面的数字代表几倍的量,写在字母后面的数字代表几次方. 运动学公式 v=v。+at无需x时 v2=2ax+v。2无需t时 x=v。+0.5at2无需v时 x=((v。+v)/2)t无需a时 x=vt-0.5at2无需v。时 一段时间的中间时刻速度(匀加速)=(v。+v)/2

一段时间的中间位移速度(匀加速)=根号下((v。2+v2)/2) 重力加速度的相关公式,只要把v。当成0就可以了.g一般取10 相互作用力公式 F=kx 两个弹簧串联,进度系数为两个弹簧进度系数的倒数相加的倒数 两个弹簧并联,进度系数连个弹簧进度系数的和 运动学: 匀变速直线运动 ①v=v(初速度)+at ②x=v(初速度)t+?at平方=v+v(初速度)/2×t ③v的平方-v(初速度)的平方=2ax ④x(末位置)-x(初位置)=a×t的平方 自由落体运动(初速度为0)套前面的公式,初速度为0 重力:G=mg(重力加速度)弹力:F=kx摩擦力:F=μF(正压力)引申:物体的滑动摩擦力小于等于物体的最大静摩擦 匀变速直线运动 1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as 3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at 5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t 7.加速度a=(Vt-Vo)/t{以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0} 8.实验用推论Δs=aT2{Δs为连续相邻相等时间(T)内位移之差} 9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;

高中物理选修3-5知识点梳理复习过程

高中物理选修3-5知识点梳理 一、动量 动量守恒定律 1、动量:可以从两个侧面对动量进行定义或解释:①物体的质量跟其速度的乘积,叫做物体的动量。②动量是物体机械运动的一种量度。 动量的表达式P = mv 。单位是s m kg .动量是矢量,其方向就是瞬时速度的方向。因为速度是相对的,所以动量也是相对的。 2、动量守恒定律:当系统不受外力作用或所受合外力为零,则系统的总动量守恒。动量守恒定律根据实际情况有多种表达式,一般常用等号左右分别表示系统作用前后的总动量。 运用动量守恒定律要注意以下几个问题: ①对于某些特定的问题, 例如碰撞、爆炸等,系统在一个非常短的时间内,系统内部各物体相互作用力,远比它们所受到外界作用力大,就可以把这些物体看作一个所受合外力为零的系统处理, 在这一短暂时间内遵循动量守恒定律。 ②计算动量时要涉及速度,这时一个物体系内各物体的速度必须是相对于同一惯性参照系的,一般取地面为参照物。 ③动量是矢量,因此“系统总动量”是指系统中所有物体动量的矢量和,而不是代数和。 ④动量守恒定律也可以应用于分动量守恒的情况。有时虽然系统所受合外力不等于零,但只要在某一方面上的合外力分量为零,那么在这个方向上系统总动量的分量是守恒的。 3、碰撞:两个物体相互作用时间极短,作用力又很大,其他作用相对很小,运动状态发生显著化的现象叫做碰撞。 ⑴完全弹性碰撞:在弹性力的作用下,系统内只发生机械能的转移,无机械能的损失,称完全弹性碰撞。 ⑵非弹性碰撞:非弹性碰撞:在非弹性力的作用下,部分机械能转化为物体的内能,机械能有了损失,称非弹性碰撞。 ⑶完全非弹性碰撞:在完全非弹性力的作用下,机械能损失最大(转化为内能等),称完全非弹性碰撞。碰撞物体粘合在一起,具有相同的速度。 二、验证动量守恒定律(实验、探究) Ⅰ 【实验目的】研究在弹性碰撞的过程中,相互作用的物体系统 动量守恒. 【实验原理】利用图2-1的装置验证碰撞中的动量守恒,让一 个质量较大的球从斜槽上滚下来,跟放在斜槽末端上的另一个 质量较小的球发生碰撞,两球均做平抛运动.由于下落高度相 同,从而导致飞行时间相等,我们用它们平抛射程的大小代替 其速度.小球的质量可以测出,速度也可间接地知道,如满足 动量守恒式m 1v 1=m 1v 1'+m 2v 2',则可验证动量守恒定律. 【实验器材】两个小球(大小相等,质量不等);斜槽;重锤线; 白纸;复写纸;天平;刻度尺;圆规. 【实验步骤】 1.用天平分别称出两个小球的质量m 1和m 2; 2.按图2-1安装好斜槽,注意使其末端切线水平,并在地面适当的位置放上白 纸和复写纸,并在白纸上记下重锤线所指的位置O 点. 3.首先在不放被碰小球的前提下, 让入射小球从斜槽上同一位置从静止滚下, 图2-1 图2-2 P

高中物理选修3-3-3-5知识点整理复习进程

选修3—3考点汇编 一、分子动理论 1、物质是由大量分子组成的 (1)单分子油膜法测量分子直径 (2)1mol 任何物质含有的微粒数相同2316.0210A N mol -=? (3)对微观量的估算 ①分子的两种模型:球形和立方体(固体液体通常看成球形,空气分子占据的空间看成立方体) ②利用阿伏伽德罗常数联系宏观量与微观量 a.分子质量:mol A M m N = b.分子体积:mol A V v N = c.分子数量:A A A A mol mol mol mol M v M v n N N N N M M V V ρρ= === 2、分子永不停息的做无规则的热运动(布朗运动 扩散现象) (1)扩散现象:不同物质能够彼此进入对方的现象,说明了物质分子在不停地运动,同时还说明分子间有间隙,温度越高扩散越快 (2)布朗运动:它是悬浮在液体中的固体微粒的无规则运动,是在显微镜下观察到的。 ①布朗运动的三个主要特点:永不停息地无规则运动;颗粒越小,布朗运动越明显;温度越高,布朗运动越明显。 ②产生布朗运动的原因:它是由于液体分子无规则运动对固体微小颗粒各个方向撞击的不均匀性造成的。 ③布朗运动间接地反映了液体分子的无规则运动,布朗运动、扩散现象都有力地说明物体内大量的分子都在永不停息地做无规则运动。 (3)热运动:分子的无规则运动与温度有关,简称热运动,温度越高,运动越剧烈 3、分子间的相互作用力 分子之间的引力和斥力都随分子间距离增大而减小。但是分子间斥力随分子间距离加大而减小得更快些,如图1中两条虚线所示。分子间同时存在引力和斥力,两种力的合力又叫做分子力。在图1图象中实线曲线表示引力和斥力的合力(即分子力)随距离变化的情况。当两个分子间距在图象横坐标0r 距离时,分子间的引力与斥力平衡,分子间作用力为零,0r 的数量级为 1010-m ,相当于0r 位置叫做平衡位置。当分子距离的数

高中物理知识点大全

高中物理知识点总结和公式大全 公式大全 高中物理知识点总结和公式大全 基本的力和运动 Ⅰ。力的种类:(13个性质力)这些性质力是受力分析不可少的“受力分析的基础”重力: G = mg (g随高度、纬度、不同星球上不同) 弹簧的弹力: F= Kx 滑动摩擦力: F 滑 = N 静摩擦力: O f 静 f m 万有引力: F 引 =G 电场力: F 电 =q E =q 库仑力: F=K (真空中、点电荷) 磁场力: (1)、安培力:磁场对电流的作用力。公式: F= BIL (B I)方向:左手定则 (2)、洛仑兹力:磁场对运动电荷的作用力。公式: f=BqV (B V) 方向:左手定则 分子力:分子间的引力和斥力同时存在,都随距离的增大而减小,随距离的减小而增大,但斥力变化得快。 核力:只有相邻的核子之间才有核力,是一种短程强力。 Ⅱ。运动分类:(各种运动产生的力学和运动学条件及运动规律)是高中物理的重点、难点 ① 匀速直线运动 F 合=0 V 0 ≠0 ② 匀变速直线运动:初速为零,初速不为零, ③ 匀变速直、曲线运动(决于F 合与V 0 的方向关系) 但 F 合 = 恒力

④ 只受重力作用下的几种运动:自由落体,竖直下抛,竖直上抛,平抛,斜抛等 ⑤ 圆周运动:竖直平面内的圆周运动(最低点和最高点);匀速圆周运动(关键搞清楚是向心力的来源) ⑥ 简谐运动:单摆运动,弹簧振子; ⑦ 波动及共振;分子热运动; ⑧ 类平抛运动; ⑨ 带电粒在电场力作用下的运动情况;带电粒子在f 洛作用下的匀速圆周运动Ⅲ。物理解题的依据:(1)力的公式 (2)各物理量的定义 (3)各种运动规律的公式 (4)物理中的定理、定律及数学几何关系 Ⅳ几类物理基础知识要点: 凡是性质力要知:施力物体和受力物体; 对于位移、速度、加速度、动量、动能要知参照物; 状态量要搞清那一个时刻(或那个位置)的物理量; 过程量要搞清那段时间或那个位侈或那个过程发生的;(如冲量、功等) 如何判断物体作直、曲线运动;如何判断加减速运动;如何判断超重、失重现象。Ⅴ。知识分类举要 1.力的合成与分解:求F 、F 2 两个共点力的合力的公式: F= 合力的方向与F 1 成角: tan = 注意:(1) 力的合成和分解都均遵从平行四边行法则。 (2) 两个力的合力范围: F 1 -F 2 F F 1 +F 2 (3) 合力大小可以大于分力、也可以小于分力、也可以等于分力。

高中物理选修3-3知识点与题型复习

热学知识点复习→制作人:湄江高级中学:吕天鸿 一、固、液、气共有性质 1、组成物质的分子永不停息、无规则运动。温度T越高,运动越激烈,分子平均动能。 注意:对于理想气体,温度T还决定其内能的变化。 扩散现象:相互渗透的反应 2、分子运动的表现 布朗运动:看不见的固体小颗粒被分子不平衡碰撞,颗粒越大,运动越 3、分子间同时存在引力与斥力,且都随着分子间距r的增加而。 (1)分子力的合力F表现:是为F引还是F斥?看间距与分界点r0关系,看下图 当r=r0时,F引=F斥,分子力为0; 当r>r0时,F引>F斥,分子力表现为 当r

非晶体:无确定的熔点。 → 物理性质:各向同性。原子排列:无规则 2,、同一种物质可能以晶体与非晶体两种不同形态出现。如碳形成的金刚石与石墨 3、有些晶体与非晶体可以相互转化。 4、常考晶体有:金刚石与石墨、石英、云母、食盐。常考非晶体有:玻璃、蜂蜡、松香。 三、热力学定律→研究高考对象为→主要还是理想气体 1、热力学第一定律:ΔU =W+Q 表达式中正、负号法则:如下图 2、气体实验定律与热力学第一定律的结合量是气体的体积和温度,当温度变化时,气体的内能变化,当体积变化时,气体将伴随着做功,解题时要掌握气体变化过程的特点: (1)等温过程:内能不变,即ΔU=0。温度T ↑,则内能增加,ΔU >0 (2)等容过程:W=0。若体积V ↑,则气体对外界做功,W 取“—”负号计算。反之亦然 (3)绝热过程:Q=0。 3、再次强调:温度T 决定分子平均动能的变化。也决定理想气体的内能变化 四、气体实验定律→ 理想气体→P 、V 、T=t 0c+273 三个物理量关系 1、三条特殊线 (等温线:P 1V 1=p 2V 2 ) 2、液体柱模型 (1)明确点:P 液=egh 一般不用。当液体为汞时,大气压以 为单位时,高为h cm 时,P 液=h .计算气

(完整版)高一物理知识点归纳

质点参考系和坐标系

时间和位移

实验:用打点计时器测速度 知识点总结 了解打点计时器的构造;会用打点计时器研究物体速度随时间变化的规律;通过分析纸带测定匀变速直线运动的加速度及其某时刻的速度;学会用图像法、列表法处理实验数据。 一、实验目的 1.练习使用打点计时器,学会用打上的点的纸带研究物体的运动。 3.测定匀变速直线运动的加速度。 二、实验原理 ⑴电磁打点计时器 ①工作电压:4~6V的交流电源 ②打点周期:T=0.02s,f=50赫兹 ⑵电火花计时器 ①工作电压:220V的交流电源 ②打点周期:T=0.02s,f=50赫兹 ③打点原理:它利用火花放电在纸带上打出小孔而显示点迹的计时器,当接通220V的交流电源,按下脉冲输出开关时,计时器发出的脉冲电流经接正极的放电针、墨粉纸盘到接负极的纸盘轴,产生电火花,于是在纸带上就打下一系列的点迹。 ⑵由纸带判断物体做匀变速直线运动的方法 0、1、2…为时间间隔相等的各计数点,s1、s2、s3、…为相邻两计数点间的距离,若△s=s2-s1=s3-s2=…=恒量,即若连续相等的时间间隔内的位移之差为恒量,则与纸带相连的物体的运动为匀变速直线运动。 ⑶由纸带求物体运动加速度的方法

三、实验器材 小车,细绳,钩码,一端附有定滑轮的长木板,电火花打点计时器(或打点计时器),低压交流电源,导线两根,纸带,米尺。 四、实验步骤 1.把一端附有定滑轮的长木板平放在实验桌上,并使滑轮伸出桌面,把打点计时器固定在长木板上没有滑轮的一端,连接好电路,如图所示。 2.把一条细绳拴在小车上,细绳跨过滑轮,并在细绳的另一端挂上合适的钩码,试放手后,小车能在长木板上平稳地加速滑行一段距离,把纸带穿过打点计时器,并把它的一端固定在小车的后面。 3.把小车停在靠近打点计时器处,先接通电源,再放开小车,让小车运动,打点计时器就在纸带上打下一系列的点, 取下纸带, 换上新纸带, 重复实验三次。 4.选择一条比较理想的纸带,舍掉开头的比较密集的点子, 确定好计数始点0, 标明计数点,正确使用毫米刻度尺测量两点间的距离,用逐差法求出加速度值,最后求其平均值。也可求出各计数点对应的速度, 作v-t图线, 求得直线的斜率即为物体运动的加速度。 五、注意事项 1.纸带打完后及时断开电源。 2.小车的加速度应适当大一些,以能在纸带上长约50cm的范围内清楚地取7~8个计数点为宜。 3.应区别计时器打出的轨迹点与人为选取的计数点,通常每隔4个轨迹点选1个计数点,选取的记数点不少于6个。 4.不要分段测量各段位移,可统一量出各计数点到计数起点0之间的距离,读数时应估读到毫米的下一位。 常见考法 纸带处理时高中遇到的第一个实验,非常重要,在平时的练习中、月考、期中、期末考试均会高频率出现,以致在学业水平测试和高考中也做为重点考察内容,是选择、填空题的形式出现,同学们要引起重视。 误区提醒 要注意的就是会判断纸带的运动形式、会计算某点速度、会计算加速度,在运算的过

高中物理知识点汇总

高考物理基本知识点汇总 一. 教学内容: 知识点总结 1. 摩擦力方向:与相对运动方向相反,或与相对运动趋势方向相反 静摩擦力:0gR 注意:若到最高点速度从零开始增加,杆对球的作用力先减小后变大。 3. 传动装置中,特点是:同轴上各点ω相同,A ω=C ω,轮上边缘各点v 相同,v A =v B 4. 同步地球卫星特点是:①_______________,②______________ ①卫星的运行周期与地球的自转周期相同,角速度也相同; ②卫星轨道平面必定与地球赤道平面重合,卫星定点在赤道上空36000km 处,运行速度3.1km/s 。 5. 万有引力定律:万有引力常量首先由什么实验测出:F =G 2 2 1r m m ,卡文迪许扭秤实验。 6. 重力加速度随高度变化关系: 'g =GM/r 2

说明:为某位置到星体中心的距离。某星体表面的重力加速度。 r g G M R 02 = g g R R h R h ' () = +2 2 ——某星体半径为某位置到星体表面的距离 7. 地球表面物体受重力加速度随纬度变化关系:在赤道上重力加速度较小,在两极,重力加速度较大。 8. 人造地球卫星环绕运动的环绕速度、周期、向心加速度'g =2 r GM 、r mv r GMm 2 2 = 、v = r GM 、 r mv r GMm 2 2 = =m ω2R =m (2π/T )2R 当r 增大,v 变小;当r =R ,为第一宇宙速度v 1=r GM =gR gR 2 =GM 应用:地球同步通讯卫星、知道宇宙速度的概念 9. 平抛运动特点: ①水平方向______________ ②竖直方向____________________ ③合运动______________________ ④应用:闪光照 ⑤建立空间关系即两个矢量三角形的分解:速度分解、位移分解 相位,求?y t x y t gT v S T v x v t v v y gt v gt S v t g t v v g t tg gt v tg gt v tg tg == =====+=+== =2 0002 02 2 24 0222 00 1214 21 2αθα θ ⑥在任何两个时刻的速度变化量为△v =g △t ,△p =mgt ⑦v 的反向延长线交于x 轴上的x 2处,在电场中也有应用 10. 从倾角为α的斜面上A 点以速度v 0平抛的小球,落到了斜面上的B 点,求:S AB

高中物理知识点总结重点超详细

A B 物理重要知识点总结 学好物理要记住:最基本的知识、方法才是最重要的。 秘诀:“想” 学好物理重在理解........ (概念和规律的确切含义,能用不同的形式进行表达,理解其适用条件) A(成功)=X(艰苦的劳动)十Y(正确的方法)十Z(少说空话多干实事) (最基础的概念,公式,定理,定律最重要);每一题中要弄清楚(对象、条件、状态、过程)是解题关健 物理学习的核心在于思维,只要同学们在平常的复习和做题时注意思考、注意总结、善于归纳整理,对于课堂上老师所讲的例题做到触类旁通,举一反三,把老师的知识和解题能力变成自己的知识和解题能力,并养成规范答题的习惯,这样,同学们一定就能笑傲考场,考出理想的成绩! 对联: 概念、公式、定理、定律。 (学习物理必备基础知识) 对象、条件、状态、过程。(解答物理题必须明确的内容) 力学问题中的“过程”、“状态”的分析和建立及应用物理模型在物理学习中是至关重要的。 说明:凡矢量式中用“+”号都为合成符号,把矢量运算转化为代数运算的前提是先规定正方向。 答题技巧:“基础题,全做对;一般题,一分不浪费;尽力冲击较难题,即使做错不后悔”。“容易题不丢分,难题不得零 分。“该得的分一分不丢,难得的分每分必争”,“会做?做对?不扣分” 在学习物理概念和规律时不能只记结论,还须弄清其中的道理,知道物理概念和规律的由来。 Ⅰ。力的种类: 这些力是受力分析不可少的“是受力分析的基础” 力的种类:(13个力) 有18条定律、2条定理 1重力: G = mg (g 随高度、纬度、不同星球上不同) 2弹力:F= Kx 3滑动摩擦力:F 滑= ?N 4静摩擦力: O ? f 静? f m (由运动趋势和平衡方程去判断) 5浮力: F 浮= ?gV 排 6压力: F= PS = ?ghs 7万有引力: F 引 =G 2 2 1r m m 8库仑力: F=K 2 2 1r q q (真空中、点电荷) 9电场力: F 电=q E =q d u 10安培力:磁场对电流的作用力 F= BIL (B ?I) 方向:左手定则 11洛仑兹力:磁场对运动电荷的作用力 f=BqV (B ?V) 方向:左手定则 12分子力:分子间的引力和斥力同时存在,都随距离的增 大而减小,随距离的减小而增大,但斥力变化得快. 。 13核力:只有相邻的核子之间才有核力,是一种短程强力。 1万有引力定律B 2胡克定律B 3滑动摩擦定律B 4牛顿第一定律B 5牛顿第二定律B 力学 6牛顿第三定律B 7动量守恒定律B 8机械能守恒定律B 9能的转化守恒定律. 10电荷守恒定律 11真空中的库仑定律 12欧姆定律 13电阻定律B 电学 14闭合电路的欧姆定律B 15法拉第电磁感应定律 16楞次定律B 17反射定律 18折射定律B 定理: ①动量定理B ②动能定理B 做功跟动能改变的关系

高中物理知识点梳理

物理作为高考中非常重要的一门课,是一门以实验为基础的自然学科,下面是为大家整理的高中物理知识点。 高中物理知识点:物体平衡 知识要点: 基础知识 1、平衡状态:物体受到几个力的作用,仍保持静止状态,或匀速直线运动状态,或绕固定的转轴匀速转动状态,这时我们说物体处于平衡状态,简称平衡。 在力学中,平衡有两种情况,一种是在共点力作用下物体的平衡;另一种是在几个力矩作用下物体的平衡(既转动平衡)。 2、要区分平衡状态、平衡条件、平衡位置几个概念。 平衡状态指的是物体的运动状态,即静止匀速直线运动或匀速转动状态;而平衡条件是指要使物体保持平衡状态时作用在物体上的力和力矩要满足的条件。至于平衡位置这个概念是指往复运动的物体,当该物体静止不动的位置或物回复力为零的位置。它是研究物体振动规律时的重要概念,简谐振动的物体在平衡位置时其合力不一定零,所以也不一定是平衡状态。例如单摆振动到平衡位置时后合力是指向圆心的。 3、共点力的平衡 ⑴共点力:物体同时受几个共面力的作用,如果这几个力都作用在物体的同一点,或这几个力的作用线都相交于同一点,这几个力就叫做共点力。 ⑵共点力作用下物体的平衡条件是物体所受的合外力为零。

⑶三力平衡原理:物体在三个力作用下,处于平衡状态,如果三力不平行,它们的作用线必交于一点,例如图1所示,不均匀细杆AB长1米,用两根细绳悬挂起来,当AB在水平方向平衡时,二绳与AB夹角分别为30°和60°,求AB重心位置? 根据三力平衡原理,杆受三力平衡,TA、TB、G必交于点O只要过O作AB垂线,它与AB交点C 就是AB杆的重心。由三角函数关系可知重心C到A距离为0.25米。 ⑷具体问题的处理 ①二力平衡问题,一个物体只受两个力而平衡,这两个力必然大小相等,方向相反,作用在一条直线上,这也就是平常所说的平衡力。平衡力的这些特点就成为了解决力的平衡问题的基础,其他平衡问题最终要转化为这个基础问题。 ②三力平衡问题:往往先把两个加合成,这个合力与第三个力就转化成了二力平衡问题,即三力平衡中任意两个力的合力与第三个力的大小相等,方各相反,作用在一条直线上。 ③多力平衡问题:设立垂直坐标系,把多个力分解到X、Y方向上,求X和Y 方向的合力,最后再把两个方向的力求合。处理方法的思路还是转化成二力平衡问题。 ⑸要区别平衡力的作用与反作用力; 表面看平衡力、作用与反作用力都是大小相等,方向相反,作用在一条直线上,但它们有本质的区别。以作用点的角度看,平衡力作用点在同一物体上而作用力与反作用力分别作用在相互作用的两个物体上。从力的性质看,平衡力可以是性质相同的力,也可以是性质不同的力。比如重力可以和弹力平衡,弹力也可以和弹力平

物理选修35知识点归纳.pdf

物理选修3-5知识点总结 一、量子理论的建立黑体和黑体辐射、 1、黑体:如果某种物体能够完全吸收入射的各种波长电磁波而不发生反射,这种物体就是绝对黑体,简称黑体。 2、黑体辐射:黑体辐射的规律为:温度越高各种波长的辐射强度都增加,同时,辐射强度的极大值向波长较短的方向移动。(普朗克的能量子理论很好的解释了这一现象) 3、量子理论的建立:1900年德国物理学家普朗克提出振动着的带电微粒的能量只能是某个最小能量值ε的整数倍,这个不可再分的能量值ε叫做能量子ε= hνh为普朗克常数(6.63×10-34J.S) 二、光电效应光子说光电效应方程 1、光电效应(表明光子具有能量) (1)光的电磁说使光的波动理论发展到相当完美的地步,但是它并不能解释光电效应的现象。在光(包括不可见光)的照射下从物体发射出电子的现象叫做光电效应,发射出来的电子叫光电子。 (2)光电效应的研究结果: ①存在饱和电流,这表明入射光越强,单位时间内发射的光电子数越多;②存在遏止电压:当所加电压U为0时,电流I并不为0。只有施加反 向电压,也就是阴极接电源正极阳极接电源负极,在光电管两级形成使电子减速的电场,电流才可能为0。使光电流减小到0的反向电压Uc 称为遏止电压E k=eU c。遏止电压的存在意味着光电子具有一定的初速度;③截止频率:光电子的能量与入射光的频率有关,而与入射光的强弱无关,当入射光的频率高于截止频率时才能发生光电效应v c=w0/h;④光电效应具有瞬时性:光电子的发射几乎是瞬时的,一般不超过10-9s。 规律:①任何一种金属,都有一个极限频率,入射光的频率 ..........,才能产生光电效应;低于这个频率的光不能产生光电效应; ......必须大于这个极限频率 ②光电子的最大初动能与入射光的强度无关 ............,一般 ..;③入射光照到金属上时,光电子的发射几乎是瞬时的..................,只随着入射光频率的增大 ..而增大 不超过10-9s;④当入射光的频率大于极限频率时,光电流的强度与入射光的强度成正比。 (1)判断和描述时应理清三个关系: ①光电效应的实质(单个光子与单个电子间相互作用产生的). ②光电子的最大初动能的来源(金属表面的自由电子吸收光子后克服逸 出功逸出后具有的动能). ③入射光强度与光电流的关系(当入射光的频率大于极限频率时光电流 的强度与入射光的强度成正比). (2)定量分析时应抓住三个关系式: ①爱因斯坦光电效应方程:E k=hν-W0. ②最大初动能与遏止电压的关系:E k=eU c. ③逸出功与极限频率的关系:W0=hν 0. 2、光子说:光本身就是由一个个不可分割的能量子组成的, 频率为ν的光的能量子为hν。这些能量子被成为光子。 3、光电效应方程:E K = hυ- W O hυ截止= W O(E k是光电子的最大初动能 .... .....;W0是逸出功,即从金属表面 直接飞出的光电子克服电荷引力所做的功。) 三、康普顿效应(表明光子具有动量) 1、1918-1922年康普顿(美)在研究石墨对X射线的散射时发现:光子在介质中和物质微粒相互作用,可以使光的传播方向发生改变,这种现象 叫光的散射。 2、在光的散射过程中,有些散射光的波长比入射光的波长略大.,这种现象叫康普顿效应。 3、光子的动量: p=h/λ 四、光的波粒二象性物质波概率波不确定关系 1、光的波粒二象性:干涉、衍射和偏振 ..........又用无可辩驳的事实表明光是一种粒子,由于........以无可辩驳的事实表明光是一种波;光电效应和康普顿效应 光既有波动性,又有粒子性,只能认为光具有波粒二象性。但不可把光当成宏观观念中的波,也不可把光当成宏观观念中的粒子。少量的光子表现出粒子性,大量光子运动表现为波动性;光在传播时显示波动性,与物质发生作用时,往往显示粒子性;频率小波长大的波动性显著,频率大波长小的粒子性显著。 2、光子的能量E=hν,光子的动量p=h/λ表示式也可以看出,光的波动性和粒子性并不矛盾:表示粒子性的粒子能量和动量的计算式中都含有表 示波的特征的物理量——频率ν和波长λ。由以上两式和波速公式c=λν还可以得出:E = p c。 3、物质波:1924年德布罗意(法)提出,实物粒子和光子一样具有波动性,任何一个运动 ..着的物体都有一种与之对应的波,波长λ=h / p 这种波叫物质波,也叫德布罗意波。(电子的衍射图样;电子显微镜的分辨率为何远远高于光学显微镜) 4、概率波(了解):从光子的概念上看,光波是一种概率波。 5、不确定关系(了解):△x△p=h/4π,△x表示粒子位置的不确定量,△p表示粒子在x方向上的动量的不确定量。 五、原子核式模型机构 1、1897年汤姆 ........,提出原子的枣糕模型,揭开了研究原子结构的序幕(原子可再分)。(谁发现了阴极射线?是汤姆孙吗?)..孙.(英)发现了电子 2、1909年起英国物理学家卢瑟福做了α粒子轰击金箔的实验,即α粒子散射实验,得到出乎意料的结果:绝大多数α粒子穿过金箔后仍沿原来 的方向前进,少数α粒子却发生了较大的偏转,并且有极少数α粒子偏转角超过了90°,有的甚至被弹回,偏转角几乎达到180°。(P53图) 3、卢瑟福在1911年提出原子的核式结构学说:在原子的中心有一个很小的核,叫做原子核,原子的全部正电荷和几乎全部质量都集中在原子核

相关文档
相关文档 最新文档