文档视界 最新最全的文档下载
当前位置:文档视界 › 实验十一 控制系统极点的任意配置

实验十一 控制系统极点的任意配置

实验十一  控制系统极点的任意配置
实验十一  控制系统极点的任意配置

实验十一 控制系统极点的任意配置

一、实验目的

1. 掌握用全状态反馈的设计方法实现控制系统极点的任意配置;

2. 用电路模拟的方法,研究参数的变化对系统性能的影响。

二、实验设备

同实验一。

三、实验内容

1. 用全状态反馈实现二阶系统极点的任意配置,并用电路模拟的方法予予以实现;

2. 用全状态反馈实现三阶系统极点的任意配置,并通过电路模拟的方法予以实现。

四、实验原理

由于控制系统的动态性能主要取决于它的闭环极点在S 平面上的位置,因而人们常把对系统动态性能的要求转化为一组希望的闭环极点。一个单输入单输出的N 阶系统,如果仅靠系统的输出量进行反馈,显然不能使系统的n 个极点位于所希望的位置。基于一个N 阶系统有N 个状态变量,如果把它们作为系统的反馈信号,则在满足一定的条件下就能实现对系统极点任意配置,这个条件就是系统能控。理论证明,通过状态反馈的系统,其动态性能一定会优于只有输出反馈的系统。

设系统受控系统的动态方程为

bu Ax x

+= cx y =

图11-1为其状态变量图。

图11-1 状态变量图

令Kx r u -=,其中]...[21n k k k K =,r 为系统的给定量,x 为1?n 系统状态变量,u 为11?控制量。则引入状态反馈后系统的状态方程变为

bu x bK A x

+-=)( 相应的特征多项式为

)](det[bK A SI --,调节状态反馈阵K 的元素]...[21

n k k k ,就能实现闭环系统极点的任意配置。图11-2为引入状态反馈后系统的方框图。

图11-2 引入状态变量后系统的方框图

1. 典型二阶系统全状态反馈的极点配置

二阶系统方框图如11-3所示。

图11-3 二阶系统的方框图

1.1 由图得

)

15.0(10)(+=S S S G ,然后求得:223.0=ξ,%48≈p δ 同时由框图可得:

211

5.01)(X S X R =+- ,2110X X = 所以:R X X X 2222

12+--= R X X ??

????+??????--=2022100 []X X y 01

1== 1.2 系统能控性

[]242200=??

????-=r a n k Ab b rank 所以系统完全能控,即能实现极点任意配置。

1.3 由性能指标确定希望的闭环极点

令性能指标: 20.0≤p δ,s 5.0Tp ≤

由 20.021≤--ξξπ

δe p =,选择707.021

==ξ (%3.4=p δ)

s n 5.01Tp 2≤-=ξωπ

,选择10=n ω 1/S

于是求得希望的闭环极点为

07.707.721j S ±=-,

)07.707.72

111007.71(221j j j S n n ±=-

±-=-±-=?-ξωξω 希望的闭环特征多项式为 10014.14)07.707.7)(07.707.7()(*2++=++-+=S S j S j S S ? (11-1)

1.4 确定状态反馈系数K1和K2

引入状态反馈后系统的方框图如图11-4所示。

图11-4 引入状态反馈后的二阶系统方框图

其特征方程式为

21222210)(K S K S

bK A SI +++-=--

2020)22(122++++=K S K S (11-2)

由式(11-1)、 (11-2)解得

1.6,421==K K

根据以上计算可知,二阶系统在引入状态反馈前后的理论曲线如图11-5的a)、b)所示。

a) 引入状态反馈前 b) 引入状态反馈后

图11-5 引入状态反馈前后二阶系统的单位阶跃响应曲线

2. 典型三阶系统全状态反馈的极点配置

2.1 系统的方框图

三阶系统方框图如11-6所示。

图11-6 三阶系统的方框图

2.2 状态方程

由图得: 21X X = [11===X y C 0 ]0X 3

2222X X X +-= R X X X 5553

13+--= 其动态方程为: ?????-=5

00

X 021

- ?????-520X+??????????500R 2.3能控性 由动态方程可得: Rank[b Ab A 2b]=Rank ?????500 25100- ????

?-1257010

=3

所以系统能控,其极点能任意配置。

设一组理想的极点为: P 1=-10,P 2,3=-2±j2

则由它们组成希望的特征多项式为

804814)22)(22)(10(23+++=++-++=*S S S j s j S S ? (11-3)

2.4 确定状态反馈矩阵K

引入状态反馈后的三阶系统方框图如11-7所示。

图11-7 引入状态反馈后的三阶系统方框图

由图11-7可得

det[SI-(A-Bk)]=S(S+2)(S+5+5K 3)+2(S+5K 1)+10SK 2

1322331010)101010()57(K S K K S K S +++++++= (11-4)

由式(11-3)、(11-4)得

7+5K 3=14 K 3=1.4

10+10K 2+10K 3=48 K 2=2.4

10+10K 1=80 K 1=7

图11-7对应的模拟电路图如图11-12所示。图中电阻R X1、R X2、R X3按下列关系式确定。

72001=Rx k ,4.22002=Rx k ,4.12003

=Rx k 根据以上计算可知,三阶系统在引入状态反馈前后的理论曲线如图11-8的a)、b)所示。

a) 引入状态反馈前 b) 引入状态反馈后

图11-8 引入状态反馈前后三阶系统的单位阶跃响应曲线

五、实验步骤

1. 典型二阶系统

1.1 引入状态反馈前

根据图11-1二阶系统的方框图,设计并组建该系统相应的模拟电路,如图11-9所示。

图11-9 引入状态反馈前的二阶系统模拟电路图

电路参考单元为:U 3、U 5、U 4、反相器单元

在系统输入端输入一单位阶跃信号,用上位机软件观测c(t)输出点并记录相应的实验曲线。

1.1 引入状态反馈后

根据图11-3二阶系统的方框图,设计并组建该系统相应的模拟电路,如图11-10所示。

图11-10 状态反馈后的二阶系统模拟电路图

电路参考单元为:U 3、U 5、U 4、反相器单元

根据式(11-2)可知,1.6,421==K K ,于是可求得

Rx 1=200K/K 1=50K Rx 2=200K/K 2=32.7K

在系统输入端输入一单位阶跃信号,用上位机软件观测c(t)输出点并记录相应的实验曲线(若测量值太小,可在示波器上进行放大后观测或增大输入的阶跃信号,如取2倍),然后分析其性能指标。

调节可调电位器Rx 1或Rx 2值的大小,然后观测系统输出的曲线有什么变化,并分析其性能指标。

2. 典型三阶系统

2.1 引入状态反馈前

根据图11-5三阶系统的方框图,设计并组建该系统相应的模拟电路,如图11-11所示。

图11-11 三阶系统的模拟电路图

电路参考单元为:U 3、U 6、U 5、U 4、反相器单元

在系统输入端输入一单位阶跃信号,用上位机软件观测c(t)输出点并记录相应的实验曲线,

然后分析其性能指标。

2.2 引入状态反馈后

根据图11-4三阶系统的方框图,设计并组建该系统的模拟电路,如图11-12所示。

图11-12 引入状态反馈后的三阶系统模拟电路图

电路参考单元为:U3、U6、U5、U4、反相器单元及电位器组。

根据式(4)可知,K1=7,K2=2.4,K3=1.4于是可求得

Rx1=200K/K1=28.5k Rx2=200K/K2=83k Rx3=200K/K3=142k

在系统输入端输入一单位阶跃信号,用上位机软件观测c(t)输出点并记录相应的实验曲线(若测量值太小,可在示波器上进行放大后观测或增大输入的阶跃信号,如:2V),然后分析其性能指标。

调节可调电位器Rx1或Rx2或Rx3值的大小,然后观测输出曲线有什么变化,并分析其性能指标。

注:由于实验电路中含积分环节,故每次实验前都必须对积分电容进行放电(具体请参阅实验台上锁零按钮的使用说明)

六、实验报告要求

1. 画出二阶和三阶系统的模拟电路图,实测它们的阶跃响应曲线和动态性能,并与计

算所

得的各种性能指标进行比较和分析;

2. 根据系统要求的性能指标,确定系统希望的特征多项式,并计算出状态反馈增益矩阵;

4. 画出引入状态反馈后的二阶和三阶系统的电路图,由实验测得它们的阶跃响应曲线的特征量,并分析是否满足系统的设计要求。

七、实验思考题

1. 系统极点能任意配置的充要条件是什么?

2. 为什么引入状态反馈后的系统,其瞬态响应一定会优于输出反馈的系统?

3. 图11-3所示的系统引入状态反馈后,能不能使输出的稳态值等于给定值?

现代控制理论实验报告

实验报告 ( 2016-2017年度第二学期) 名称:《现代控制理论基础》 题目:状态空间模型分析 院系:控制科学与工程学院 班级: ___ 学号: __ 学生姓名: ______ 指导教师: _______ 成绩: 日期: 2017年 4月 15日

线控实验报告 一、实验目的: l.加强对现代控制理论相关知识的理解; 2.掌握用 matlab 进行系统李雅普诺夫稳定性分析、能控能观性分析; 二、实验内容 1 第一题:已知某系统的传递函数为G (s) S23S2 求解下列问题: (1)用 matlab 表示系统传递函数 num=[1]; den=[1 3 2]; sys=tf(num,den); sys1=zpk([],[-1 -2],1); 结果: sys = 1 ------------- s^2 + 3 s + 2 sys1 = 1 ----------- (s+1) (s+2) (2)求该系统状态空间表达式: [A1,B1,C1,D1]=tf2ss(num,den); A = -3-2 10 B = 1 C = 0 1

第二题:已知某系统的状态空间表达式为: 321 A ,B,C 01:10 求解下列问题: (1)求该系统的传递函数矩阵: (2)该系统的能观性和能空性: (3)求该系统的对角标准型: (4)求该系统能控标准型: (5)求该系统能观标准型: (6)求该系统的单位阶跃状态响应以及零输入响应:解题过程: 程序: A=[-3 -2;1 0];B=[1 0]';C=[0 1];D=0; [num,den]=ss2tf(A,B,C,D); co=ctrb(A,B); t1=rank(co); ob=obsv(A,C); t2=rank(ob); [At,Bt,Ct,Dt,T]=canon(A,B,C,D, 'modal' ); [Ac,Bc,Cc,Dc,Tc]=canon(A,B,C,D, 'companion' ); Ao=Ac'; Bo=Cc'; Co=Bc'; 结果: (1) num = 0 01 den = 1 32 (2)能控判别矩阵为: co = 1-3 0 1 能控判别矩阵的秩为: t1 = 2 故系统能控。 (3)能观判别矩阵为: ob = 0 1

控制器极点配置方法

控制器极点配置方法 如果已知系统的模型或传递函数,通过引入某种控制器,使得闭环系统的极点可以移动到指定的位置,从而使系统的动态性能得到改善。这种方法称为极点配置法。 例6-12 有一控制系统如图6-38,其中,要求设计一个控制器,使系统稳定。 图6-38 解:(1)校正前,闭环系统的极点: > 0 因而控制系统不稳定。 (2)在控制对象前串联一个一阶惯性环节,c>0,则闭环系统极点: 显然,当,时,系统可以稳定。但此对参数c 的选择依赖于 a 、b 。因而,可 选择控制器,c 、d ,则有特征方程: 当,时,系统稳定。 本例由于原开环系统不稳定,因而不能通过简单的零极点相消方式进行控制器的设计,其原因在于控制器的参数在具体实现中无法那么准确,从而可能导致校正后的系统仍不稳定。 例6-13 已知一单位反馈控制系统的开环传递函数:

要求设计一串联校正装置Gc(s) ,使校正后系统的静态速度误差系统,闭环主导极点在 处。 解:首先,通过校正前系统的根轨迹可以发现,如图6-39所示,其主导极点为: 。 图6-39 为使主导极点向左偏移,宜采用超前校正装置。 (2)令超前校正装置,可采用待定系数法确定相关参数: 又

其中、、、为待定系数。 进一步可得: 即 将代入式子可以得到:,,,。进一步可得超前校正装置的传递函数: 校正后系统的根轨迹如图6-39所示。 该校正装置与例6-7中由超前装置获取的校正装置结果基本相同,说明结果是正确的。 在matlab中,亦有相应的命令可进行极点配置,主要有三个算法可实现极点配置算法:Bass-Gura算法、Ackermann 算法和鲁棒极点配置算法。这些算法均以状态空间进行表征,通过设定期望极点位置,获取状态反馈矩阵K。下面通过示例介绍其中的一种算法。 例6-14 考虑给定的系统,其状态方程模型如下:

倒立摆状态空间极点配置控制实验实验报告

《现代控制理论》实验报告 状态空间极点配置控制实验 一、实验原理 经典控制理论的研究对象主要是单输入单输出的系统,控制器设计时一般需要有关被控对象的较精确模型,现代控制理论主要是依据现代数学工具,将经典控制理论的概念扩展到多输入多输出系统。极点配置法通过设计状态反馈控制器将多变量系统的闭环系统极点配置在期望的位置上,从而使系统满足瞬态和稳态性能指标。 1.状态空间分析 对于控制系统X = AX + Bu 选择控制信号为:u = ?KX 式中:X 为状态向量( n 维)u 控制向量(纯量) A n × n维常数矩阵 B n ×1维常数矩阵 求解上式,得到 x(t) = (A ? BK)x(t) 方程的解为: x(t) = e( A?BK )t x(0) 状态反馈闭环控制原理图如下所示: 从图中可以看出,如果系统状态完全可控,K 选择适当,对于任意的初始状态,当t趋于无穷时,都可以使x(t)趋于0。 2.极点配置的设计步骤 1) 检验系统的可控性条件。 2) 从矩阵 A 的特征多项式 来确定 a1, a2,……,an的值。 3) 确定使状态方程变为可控标准型的变换矩阵 T:T = MW 其中 M 为可控性矩阵, 4) 利用所期望的特征值,写出期望的多项式 5) 需要的状态反馈增益矩阵 K 由以下方程确定: 二、实验内容 针对直线型一级倒立摆系统应用极点配置法设计控制器,进行极点配置并用Matlab进行仿真实验。 三、实验步骤及结果 1.根据直线一级倒立摆的状态空间模型,以小车加速度作为输 入的系统状态方程为: 可以取1 l 。则得到系统的状态方程为: 于是有:

直线一级倒立摆的极点配置转化为: 对于如上所述的系统,设计控制器,要求系统具有较短的调整时间(约 3 秒)和合适的阻尼(阻尼比? = 0.5)。 2.采用四种不同的方法计算反馈矩阵 K。 方法一:按极点配置步骤进行计算。 1) 检验系统可控性,由系统可控性分析可以得到,系统的状态完全可控性矩阵的秩等于系统的状态维数(4),系统的输出完全可控性矩阵的秩等于系统输出向量y 的维数(2),所以系统可控。 倒立摆极点配置原理图 2) 计算特征值 根据要求,并留有一定的裕量(设调整时间为 2 秒),我们选取期望的闭环极点s =μi (i = 1,2,3,4) ,其中: 其中,μ 3,μ 4 使一对具有的主导闭环极点,μ 1 ,μ 2 位于 主导闭环极点的左边,因此其影响较小,因此期望的特征方程为: 因此可以得到: 由系统的特征方程: 因此有 系统的反馈增益矩阵为: 3) 确定使状态方程变为可控标准型的变换矩阵 T:T = MW 式中: M = 0 1.0000 0 0 1.0000 0 0 0 0 0.7500 0 5.5125 0.7500 0 5.5125 0 W = 0 -7.3500 -0.0000 1.0000 -7.3500 -0.0000 1.0000 0 -0.0000 1.0000 0 0 1.0000 0 0 0 于是可以得到: T = -7.3500 -0.0000 1.0000 0 0 -7.3500 -0.0000 1.0000 0 -0.0000 0.7500 0 -0.0000 0 -0.0000 0.7500 T’= -7.3500 0 0 -0.0000 -0.0000 -7.3500 -0.0000 0 1.0000 -0.0000 0.7500 -0.0000 0 1.0000 0 0.7500

7状态空间设计法极点配置观测器解析

第7章线性定常离散时间状态空间设计法 7.1引言 7.2状态反馈配置极点 7.3状态估值和状态观测器 7.4利用状态估值构成状态反馈以配置极点 7.5扰动调节 7.6无差调节

7.1 引言 一个被控对象: (1)()()()() ():1,():1,:,:,:x k Fx k Gu k y k Cx k x k n u k m F n n G n m C r n +=+?? =?????? 7.1 当设计控制器对其控制时,需要考虑如下各因素: ● 扰动,比如负载扰动 ● 测量噪声 ● 给定输入的指令信号 ● 输出 如图7.1所示。 给d L (k )扰动 图7.1 控制系统示意图 根据工程背景的不同,控制问题可分为调节问题和跟踪问题,跟踪问题也称为伺服问题。 调节问题的设计目标是使输出迅速而平稳地运行于某一平衡状态。包括指令变化时的动态过程,和负载扰动下的动态过程。但是这二者往往是矛盾的,需要折衷考虑。 伺服问题的设计目标是对指令信号的快速动态跟踪。 本章研究基于离散时间状态空间模型的设计方法。 7.2研究通过状态变量的反馈对闭环系统的全部特征值任意配置——稳定性与快速线。 7.3考虑当被控对象模型的状态无法直接测量时,如何使用状态观测器对状态进行重构。 7.4讨论使用重构状态进行状态反馈时闭环系统的特征值。 7.5简单地讨论扰动调节问题。 7.6状态空间设计时的无差调节问题。

7.2 状态反馈配置极点 工程被控对象如式7.1,考虑状态反馈 ()()()u k v k Lx k =+ 7.2 如图7.2所示。式7.2带入式7.1,得 (1)()()()() ()()()x k Fx k Gu k y k Cx k u k v k Lx k +=+?? =??=+? 7.3 整理得 ()(1)()() ()()x k F GL x k Gv k y k Cx k +=++?? =? 7.4 (k ) v (k ) 图7.2 状态反馈任意配置闭环系统的极点 闭环系统的特征方程为 []det ()0zI F GL -+= 7.5 问题是在什么情况下式7.5的特征根是可以任意配置的?即任给工程上期望的n 个特征根λ1, λ2, ..., λn ,有 []1det ()()0n i i zI F GL z λ=-+=-=∏ 7.6 定理:状态反馈配置极点

基于极点配置的控制器设计与仿真

计算机控制理论与设计作业 题目:基于极点配置方法的直流调速系统的控制器设计

摘要 本文目的是用极点配置方法对连续的被控对象设计控制器。基本思路是对连续系统进行数学建模,将连续模型进行离散化,针对离散的被控对象,用极点配置的方法分别在用状态方程和传递函数两种描述方法下设计前馈和反馈控制器,并用MATLAB仿真。文中具体以直流调速系统作为研究对象,对直流调速系统的组成和结构进行了分析,把各个部分进行数学建模,求出其传递函数,组成系统结构框图,利用自控原理的知识对结构图化简,求出被控对象的传递函数和状态方程,进一步得将其离散化。第一种是通过极点配置设计方法的原理,用状态方程设计被控对象的控制律,因为直流调速系统存在噪声,实际状态不可测,故选择了全阶的观测器,又因为采样时间小于计算延时,所以选择了预报观测器。利用所学知识对此闭环系统设计前馈和反馈控制器[1]。第二种利用传统的离散传递函数,从代数多项式的角度进行复合控制器的设计,在保证系统稳定的情况下,分析系统的可实现性,稳定性,静态指标,动态指标,抗干扰等方面性能研究前馈反馈相结合控制器设计。重点是保证被控对象的不稳定的零极点不能被抵消。最后利用MATLAB的Simulink进行仿真,观察系统的输出的y和u和收敛性,并加入扰动看其抗干扰性能,得出结论。 经研究分析,对于直流调速系统,基于极点配置设计的前馈反馈相结合的控制器,具有良好的稳定性能和抗干扰性能。运行结果符合实际情况。 关键词:极点配置;状态方程;直流调速系统;代数多项式;Matlab;

1绪论 1.1论文的背景及意义 在工业生产和日常生活中,自动控制系统分为确定性系统和不确定性系统两类,确定性系统是指系统的结构和参数是确定的,确定的输入下,输出也确定的一类系统。确定性系统相对于不确定性系统而言的。在确定的系统中所用的变量都可用确切的函数关系来描述,系统的运动特性可以完全确定。以确定性系统为研究对象的控制理论称为确定性控制理论。本文以直流调速系统为研究对象,利用极点配置的设计方法,包括利用状态空间模型和传递函数模型分别描述线性系统,采用闭环极点为指标的控制器设计的理论和方法,设计出前馈和反馈控制器,组建闭环控制系统,用Matlab进行仿真可以逼真地还原出实际系统。 1.2 论文的主要内容 本文直流电机的调速系统的模型作为研究对象,利用线性系统极点配置的设计方法,设计前馈反馈控制器。论文研究的主要内容: (1)阅读学习国内外期刊文献,研究了极点配置的基本原理和Matlab的实现方法。 (2)系统的说明直流电机的系统结构和工作原理并分析,建立直流调速系统的数学模型,将其进行离散化,并讨论其传递函数与状态方程之间的关系。 (3)分析极点配置控制器的设计原理,利用状态方程设计控制器。 (4)将被控对象的传递函数离散化,利用传递函数模型设计控制器。 (4)在MATLAB中建立闭环直流调速系统的模型,根据闭环极点配置的设计步骤编写程序,用Simulink搭建仿真系统,对闭环直流调速系统的输出进行仿真分析。 (5)对仿真结果分析。将仿真结果与实际直流调速系统的阶跃响应的各项参数相比较,得出结论。

现代控制理论课程设计(大作业)

现代控制理论课 程设计报告 题目打印机皮带驱动系统能控能观和稳定性分析 项目成员史旭东童振梁沈晓楠 专业班级自动化112 指导教师何小其 分院信息分院 完成日期 2014-5-28

目录 1. 课程设计目的 (3) 2.课程设计题目描述和要求 (3) 3.课程设计报告内容 (4) 3.1 原理图 (4) 3.2 系统参数取值情况 (4) 3.3 打印机皮带驱动系统的状态空间方程 (5) 4. 系统分析 (7) 4.1 能控性分析 (7) 4.2 能观性分析 (8) 4.3 稳定性分析 (8) 5. 总结 (10)

项目组成员具体分工 打印机皮带驱动系统能控能观和稳定性 分析 课程设计的内容如下: 1.课程设计目的 综合运用自控现代理论分析皮带驱动系统的能控性、能观性以及稳定性,融会贯通并扩展有关方面的知识。加强大家对专业理论知识的理解和实际运用。培养学生熟练运用有关的仿真软件及分析,解决实际问题的能力,学会使用标准、手册、查阅有关技术资料。加强了大家的自学能力,为大家以后做毕业设计做很好的铺垫。 2.课程设计题目描述和要求 (1)环节项目名称:能控能观判据及稳定性判据 (2)环节目的: ①利用MATLAB分析线性定常系统的可控性和客观性。 ②利用MATLAB进行线性定常系统的李雅普诺夫稳定性判据。 (3)环节形式:课后上机仿真 (4)环节考核方式: 根据提交的仿真结果及分析报告确定成绩。 (5)环节内容、方法: ①给定系统状态空间方程,对系统进行可控性、可观性分析。 ②已知系统状态空间方程,判断其稳定性,并绘制出时间响应曲线验

证上述判断。 3.课程设计报告内容 3.1 原理图 在计算机外围设备中,常用的低价位喷墨式或针式打印机都配有皮带驱动器。它用于驱动打印头沿打印页面横向移动。图1给出了一个装有直流电机的皮带驱动式打印机的例子。其光传感器用来测定打印头的位置,皮带张力的变化用于调节皮带的实际弹性状态。 图1 打印机皮带驱动系统 3.2 系统参数取值情况 表1打印装置的参数

状态反馈与极点配置报告

自 动 控 制 原 理 (课程设计)

一、题目 用MATLAB创建用户界面,并完成以下功能: (1)由用户输入被控系统的状态空间模型、闭环系统希望的一组极点; (2)显示未综合系统的单位阶跃响应曲线; (3)显示采用一般设计方法得到的状态反馈矩阵参数; (4)显示闭环反馈系统的单位阶跃响应曲线; (5)将该子系统嵌入到寒假作业中程序中。 分别对固定阶次和任意阶次的被控系统进行设计。分别给出设计实例。 二、运行结果 界面:如图 由用户输入被控系统的状态空间模型、闭环系统希望的一组极点 例如,输入 010 001 034 A ?? ?? =?? ?? -- ?? , 1 B ?? ?? =?? ?? ?? ,[] 2000 C=,0 D=,闭环系统 希望的一组极点:22j -+、22j --、5 -如图所示:

被控系统的单位阶跃响应曲线 闭环系统的单位阶跃响应曲线

状态反馈矩阵显示 三、讨论 该闭环控制系统的状态反馈与极点配置设计系统可用于任意阶次的控制系统。在此之前,我还做了一个固定阶次的控制系统状态反馈与极点配置的Matlab 控制台程序(见附录二)。 该系统的利用状态反馈进行极点任意配置所采用的方法为一般方法,其步骤如下: ①判断受控系统是否完全能控; ②由给定的闭环极点要求确定希望的闭环特征多项式的n个系数 ~ i a; ③确定原受控系统的特征多项式系数i a; ④确定系统状态反馈矩阵 ~ ~~ ~ [,,,] 12n f f f F=的诸元素~~1 1i i i f a a - =- -; ⑤确定原受控系统化为能控标准形的变换阵的逆1 P-, ⑥确定受控系统完成闭环极点配置任务的状态反馈阵 ~ 1 F F P-=。 四、参考文献 [1]黄家英.《自动控制原理》.高等教育出版社,2010.5 [2]唐向红,郑雪峰.《MATLAB及在电子信息类》.电子工业出版社,2009.6 [3]吴大正,高西全.《MATLAB新编教程》.机械工业出版社,2008.4 五、附录 function varargout = tufeiqiang(varargin) %TUFEIQIANG M-file for tufeiqiang.fig % TUFEIQIANG, by itself, creates a new TUFEIQIANG or raises the existing % singleton*. % % H = TUFEIQIANG returns the handle to a new TUFEIQIANG or the handle to % the existing singleton*. % % TUFEIQIANG('Property','Value',...) creates a new TUFEIQIANG using

极点配置直接自校正控制最小相位确定性系统Word文档

%极点配置直接自校正控制(最小相位确定性系统) 设被控对象为开环不稳定最小相位系统: ()2(1) 1.1(2)(3)0.5(4)y k y k y k u k u k --+-=-+- 期望传递函数分母多项式为: 112()1 1.32050.4966m A z z z ---=-+ 取遗忘因子=1,期望输出y r (k )为幅值为10的方波信号。 clear all;close all; a=[1 -2 1.1];b=[1 0.5];d=3; %对象参数 Am=[1 -1.3 0.5]; %期望闭环特征多项式 na=length(a)-1;nb=length(b)-1; nam=length(Am)-1; nf=nb+d-1;ng=na-1; %确定多项式A0 na0=2*na-nam-nb-1; %观测器最低阶次 A0=1; for i=1:na0 A0=conv(A0,[1 0.3-i*0.1]); %生成观测器 end AA=conv(A0,Am);naa=na0+nam;

nfg=max(naa,max(nf,ng)); %用于ufk, yuf更新 nr=na0; %R的阶次 L=400; uk=zeros(d+nb,1); ufk=zeros(d+nfg,1); %滤波输入的初值 yk=zeros(max(na,d),1); yfk=zeros(d+nfg,1); yrk=zeros(max(na,d),1); yr=10*[ones(L/4,1);-ones(L/4,1);ones(L/4,1);-ones(L/4+d,1)] ; %RELS初值设定 thetae_1=0.001*ones(nf+ng+2,1); P=10^6*eye(nf+ng+2); lambda=1; %遗忘因子 for k=1:L time(k)=k; y(k)=-a(2:na+1)*yk(1:na)+b*uk(d:d+nb); ufk(d)=-AA(2:naa+1)*ufk(d+1:d+naa)+uk(d); %滤波输入输出

控制系统的极点配置设计法

控制系统的极点配置设计法 一、极点配置原理 1.性能指标要求 2.极点选择区域 主导极点: 2 11 1 cos tan ξ βξ ξ -- - == 图3.22 系统在S平面上满足 时域性能指标的范围 n s t ζω 4 = ;当Δ=0.02时,。 n s t ζω 3 = 当Δ=0.05时,

3.其它极点配置原则 系统传递函数极点在s 平面上的分布如图(a )所示。极点s 3距虚轴距离不小于共轭复数极点s 1、s 2距虚轴距离的5倍,即n s s ξω5Re 5Re 13=≥(此处ξ,n ω对应于极点s 1、s 2) ;同时,极点s 1、s 2的附近不存在系统的零点。由以上条件可算出与极点s 3所对应的过渡过程分量的调整时间为 135 1 451s n s t t =?≤ ξω 式中1s t 是极点s 1、s 2所对应过渡过程的调整时间。 图(b )表示图(a )所示的单位阶跃响应函数的分量。由图可知,由共轭复数极点s 1、s 2确定的分量在该系统的单位阶跃响应函数中起主导作用,即主导极点。因为它衰减得最慢。其它远离虚轴的极点s 3、s 4、s 5 所对应的单位阶跃响应衰减较快,它们仅在极短时间内产生一定的影响。因此,对系统过渡过程进行近似分析时。可以忽略这些分量对系统过渡过程的影响。 n x o (t) (a ) (b ) 系统极点的位置与阶跃响应的关系

二、极点配置实例 磁悬浮轴承控制系统设计 1.1磁悬浮轴承系统工作原理 图1是一个主动控制的磁悬浮轴承系统原理图。主要由被悬浮转子、传感器、控制器和执行器(包括电磁铁和功率放大器)四大部分组成。设电磁铁绕组上的电流为I0,它对转子产生的吸力F和转子的重力mg相平衡,转子处于悬浮的平衡位置,这个位置称为参考位置。 (a)(b) 图1 磁悬浮轴承系统的工作原理 Fig.1 The magnetic suspension bearing system principle drawing 假设在参考位置上,转子受到一个向下的扰动,转子就会偏离其参考位置向下运动,此时传感器检测出转子偏离其参考位置的位移,控制器将这一位移信号变换成控制信号,功率放大器又将该控制信号变换成控制电流I0+i,控制电流由I0增加到I0+i,因此,电磁铁的吸力变大了,从而驱动转子返回到原来的平衡位置。反之,当转子受到一个向上的扰动并向上运动,此时控制器使得功率放大器的输出电流由I0,减小到I0-i,电磁铁的吸力变小了,转子也能返回到原来的平衡位置。因此,不论转子受到向上或向下的扰动,都能回到平衡状态。这就是主动磁轴承系统的工作原理。即传感器检测出转子偏移参考点的位移,作为控制器的微处理器将检测到的位移信号变换成控制信号,然后功率放大器将这一控制信号转换成控制电流,控制电流在执行磁铁中产生磁力从而使转子维持其悬浮位置不变。悬浮系统的刚

自校正控制系统分析

自校正控制系统分析 摘要:本文介绍了自校正控制系统的基本结构,主要介绍了基于PID 结构的间接自校正控制系统的控制算法,并通过实例仿真结果,表明了自校正PID 控制不仅需要调整的参数少,而且还能够根据对象特性的变化在线修改这些参数,增强了控制器的自适应能力。 关键字:自校正控制系统;PID 控制;自适应能力 1 引言 自校正控制系统主要由参数估计器、控制器设计、控制器和被控对象4部分组成,如图1所示。该系统内环由被控对象和可调控制器组成,外环则由过程模型参数估计器和控制器参数计算器所组成,其任务是辨识过程参数再按选定的设计方法综合出控制器参数,用以修改内环的控制器。这类系统的特点是必须对过程或者被控对象进行在线辨识估计器,然后用对象参数估计值和事先规定的性能指标在线综合出调节器的控制参数,并根据此控制参数产生的控制作用对被控对象进行控制经过多次地辨识和综合调节参数可以使系统的性能指标趋于最优。 图1 自适应控制系统结构图 自适应控制算法对于复杂系统能够达到较好的控制精度跟踪速度以及稳定性,其实时性好,算法简单,易于实现。然而,在PID 控制中,一个至关重要的问题就是PID 参数的整定。典型的PID 参数整定方法是在获取被控对象数学模型的基础上,根据某一整定规则来确定参数。PID 参数整定的优劣,不但会影响到控制质量,而且会影响到控制系统的稳定性和鲁棒性。本文介绍了基于PID 结构的间接自校正控制。 2 基于PID 结构的间接自校正控制 自校正PID 控制算法的设计思想是: 以极点配置控制律为控制器基本形式,引入递推算法估计对象参数,并将估计结果按极点配置法进行控制器参数的设计。下面介绍自校正PID 控制器。 被控对象为 )()()()()(11k e k u z B z k y z A d +=--- (1) 式中,u(k),y(k)表示系统的输入和输出,e(k)为外部扰动,d ≥为纯延迟,且221111)(---++=z a z a z A ,21101)(---+???++=z b z b b z B b n 。 对系统(1)采用PID 控制,此时,对应的PID 控制器可表示为 )()()()()()(1111k y z R k y z R t u z F r ----= (2) ?=--)()(1 11z F z F (3) 过 程过程模型参数估计器 可调控制器 输出控制量输入 过程参数 控制器 参 数 控制器参数 计算器

倒立摆系统的状态空间极点配置控制设计

摘要:为实现多输入、多输出、高度非线不稳定的倒立摆系统平衡稳定控制,将倒立摆系统的非线性模型进行近似线性化处理,获得系统在平衡点附近的线性化模型。利用牛顿—欧拉方法建立直线型一级倒立摆系统的数学模型。在分析的基础上,基于状态反馈控制中极点配置法对直线型倒立摆系统设计控制器。由MATLAB仿真表明采用的控制策略是有效的,设计的控制器对直线型一级倒立摆系统的平衡稳定性效果好,提高了系统的干扰能力。 关键词:倒立摆、极点配置、MATLAB仿真 引言:倒立摆是进行控制理论研究的典型试验平台,由于倒立摆本身所具有的高阶次、不稳定、非线性和强耦合性,许多现代控制理论的研究人员一直将他视为典型的研究对象,不断从中发掘出新的控制策略和控制方法。控制器的设计是倒立摆系统的核心内容,因为倒立摆是一个绝对不稳定的系统,为使其保持稳定并且可以承受一定的干扰,基于极点配置法给直线型一级倒立摆系统设计控制器 1.数学模型的建立 倒立摆系统其本身是自不稳定的系统,实验建模存在着一定的困难。在忽略掉一些次要的因素之后,倒立摆系统就是一典型的运动的刚体系统,可以在惯性坐标系中应用经典力学理论建立系统动力学方程。下面采用牛顿-欧拉方法建立直线型一级倒立摆系统的数学模型。 1.1微分方程的数学模型 在忽略了空气阻力和各种摩擦力之后,可将直线一级倒立摆系统抽象成小车和匀质杆组成的系统,如图1所示:

图1:直线一级倒立摆模型 设系统的相关参数定义如下: M:小车质量 m:摆杆质量 b:小车摩擦系数 l:摆杆转动轴心到杆质心的长度 I:摆杆质量 F:加在小车上的力 x:小车位置 Φ:摆杆与垂直方向上方向的夹角 θ:摆杆与垂直方向下方向的夹角(摆杆的初始位置为竖直向下) 如下图2所示为小车和摆杆的受力分析图。其中,N和P为小车与摆杆相互作用力的水平和垂直方向的分量。

综合性实验 极点配置全状态反馈控制指导书

综合性实验极点配置全状态反馈控制 一、实验目的 1.学习并掌握用极点配置方法设计全状态反馈控制系统的方法。 2.用电路模拟与软件仿真方法研究参数对系统性能的影响。 二、实验内容 1.设计典型二阶系统的极点配置全状态反馈控制系统,并进行电路模拟与软件仿真研究。 2.设计典型三阶系统的极点配置全状态反馈控制系统,并进行电路模拟与软件仿真研究。 三、实验前准备工作 1 推导图1的数学模型(状态空间表达式),分析系统的能控性。 2 若系统期望的性能指标为:超调量,峰值时间,求出期望的极点值。根据以上性能指标要求设计出状态反馈控制器。 3 推导图2的数学模型(传递函数),求出其单位阶跃响应的动态性能指标(超调量、调节时间、静态速度误差系数)。 4 推导图4的数学模型(状态空间表达式),分析系统的能控性。 5考虑系统稳定性等要求,选择理想极点为:S1=-9,S2 =-2+j2,S3=-2-j2, 根据以上性能指标要求思考如何设计状态反馈控制器。 6 推导图7的数学模型(传递函数)。 四、实验步骤 1.典型二阶系统 (1)对一已知二阶系统(见图1)用极点配置方法设计全状态反馈系数。 (2)见图2和图3,利用实验箱上的电路单元U9、U11、U12和U8,按设计参数设计并连接成系统模拟电路,测取阶跃响应,并与软件仿真结果比较。 (3)改变系统模拟电路接线,使系统恢复到图1所示情况,测取阶跃响应,并与软件仿真结果比较。 (4)对实验结果进行比较、分析,并完成实验报告。 2.典型三阶系统 (1)对一已知三阶系统(见图4)用极点配置方法设计全状态反馈系数。 (2)见图5和图7,利用实验箱上的电路单元U9、U11、U12、U15和

自控原理实验(平台课)

实验一 控制系统的初步认识 过程控制CS4000系统介绍 过程控制是针对工业生产过程中液位、流量、温度、压力等参数的控制。 一、 CS4000系统组成 1、 双管路流量系统 系统包括两个独立的水路动力系统,一路由 水泵、电动调节阀、电磁流量计组成(主管路), 由电动调节阀调节流量,电磁流量计检测流量; 另一路由变频器、水泵、涡轮流量计组成(副管路),由变频器调节流量,涡轮流量计检测流量。如右图: 双管路流量系统可以完成多种方式下的流量控制实验:a.单回路流量控制实验b.流量比值控制实验 2、 四容水箱液位系统 系统提供一组有机玻璃四容水箱,每个水箱装有 液位变送器;通过阀门切换,任何两组动力的水流可以到达任何一个水箱。因此系统可以完成多种方式下的液位、流量及其组合实验。如右图: 3、 热水箱-纯滞后水箱温度系统 系统提供了一个加热水箱和一个温度纯滞后水箱,加热水箱及纯滞后水箱不同时间常数位置装有Pt100热电阻检测温度,由可控硅控制电加热管提供可调热源,系统可以完成多种温度实验 二、 执行机构 1、可控硅移相调压装置 通过4-20mA 电流控制信号控制单相220V 交流电源在0-220V 之间实现连续变化,从而调节电加热管的功率。 2、调节阀 电动调节阀 电动调节阀通过改变管路的流通面积来改变控制通过的流量,由电动执行机构和调节阀两部分组成。调节阀部分主要由阀杆、阀体、阀芯、及阀座等部件组成。当阀芯在阀体内上

下移动时,可改变阀芯阀座间的流通面积。 电动执行机构一般采用随动系统的方案组成,如上图所示。从调节器来的信号通过伺服放大器驱动电动机,经减速器带动调节阀,同时经位置发生器将阀杆行程反馈给伺服放大器,组成位置随动系统。依靠位置负反馈,保证输入信号准确地转换为阀杆的行程。 为了简单,电动执行器中常使用两位式放大器和交流鼠笼式电机组成交流继电器式随动系统。执行器中的电机常处于频繁的启动制动过程中,在调节器输出过载或其他原因使阀卡住时,电机还可能长期处于堵转状态。为了保证电机在这种情况下不至因过热而烧毁,电动执行器都使用专门的异步电机,以增大转子电阻的办法,减小启动电流,增加启动力矩,使电机在长期堵转时温升也不超出允许范围。这样做虽使电机效率降低,但大大提高了执行器的工作可靠性。 三、检测机构 1、扩散硅式压力传感器 2、涡轮流量计 3、电磁流量计 4、Pt100热电阻温度传感器 四、控制系统 1、智能调节仪控制系统 智能调节仪型号为上海万迅仪表有限公司AI818A,系统中有两块AI818A,以便可以实现串级等复杂控制。AI818A与电脑通过串口通讯。上位机软件采用MCGS。AI818A 与MCGS的使用参照相关手册。 2、DDC计算机直接控制系统 采用集智达R-8000系列RemoDAQ- R-8017模拟量输入模块, RemoDAQ-R-8024模拟量输出模块。与电脑串口通讯。上位机DDC实验软件是厂家面向过程控制实验特点,结合本过程控制实验对象,开发的一套DDC实验软件。运行电脑桌面的“中控教仪过程控制实验软件”图标即可打开实验软件。实验内容参照相应的实验指导书。 3、PLC可编程控制器控制系统 采用西门子s7-300PLC,电脑上安装了一块CP5621西门子通讯卡(PCI-E插槽),通讯线将卡接口连到PLC的cpu的MPI端口,实现通讯。PLC中运行的程序采用西门子STEP7设计并下载到PLC中、上位机程序采用西门子Wincc设计,存放在电脑C盘基础性/总线型目录的PLC子目录下,运行电脑桌面的WINCC图标可打开该实验软件,再参照相应的实验指导书完成实验。 4、C3000过程控制器 C3000 是国产的一种采用32 位微处理器和5.6 英寸TFT彩色液晶显示屏的可编程多回路控制器。C3000 过程控制器主要有控制、记录、分析等功能。可通过串口、以太网和CF卡实现与上位机的数据交换。本装置中采用串口与上位机通讯。C3000内部有3个程序控制模块、4 个单回路PID控制模块、6 个ON/OFF 控制模块,可实现串级、分程、三冲量、比值控制及用户定制等多种复杂的控制方案。

基于极点配置方法的直流电机转速控制系统设计

摘要 建模、控制与优化是控制理论要解决的主要问题。在这些问题中,广泛采用了现代数学方法,使得控制理论的研究不断深入,取得了丰硕的成果。建模是控制理论中所要解决的第一个问题。控制理论中的建模方法主要有两种,一是经验建模,二是根据物理规律建模。所研究的对象主要是动态模型,一般用微分方程或差分方程来描述。设计控制系统是控制理论的核心内容。在线性系统中,我们所用到的数学工具是拓扑、线性群。在非线性系统中,我们用到了微分几何。可以说微分几何是非线性控制理论的数学基础。优化是控制的一个基本目的,而最优控制则是现代控制理论的一个重要组成部分。例如庞特里亚金的极大值原理、贝尔曼的动态规划,都是关于优化和最优控制问题的。 本报告首先介绍了直流电动机的物理模型, 并测量计算了它的具体参数。然后根据牛顿第二定律和回路电压法分别列写运动平衡方程式和电机电枢回路方程式,从而通过一些数学变换抽象出了以电压为输入、转速为输出、电流和转速为状态变量的数学模型。通过对抽象出来的模型进行性能分析,确定需要使用状态观测器来修正系统。继而借助MATLAB软件对转速环进行了状态反馈控制器的设计,使系统的阶跃响应达到了设计指标。 关键词:建模控制理论设计控制系统直流电动机转速状态反馈控制器

1 系统的物理模型、参数及设计要求 -------------------- 4 1.1 系统模型 ------------------------------------- 4 1.2 系统参数 ------------------------------------- 5 1.3 设计要求 ------------------------------------- 5 2 系统模型的建立------------------------------------ 6 2.1 模型抽象 ------------------------------------- 6 2.2 所建模型的性能分析 --------------------------- 7 3 系统状态观测器的设计----------------------------- 11 3.1 期望配置的极点的确定以及状态观测器的设计----- 11 3.1.1 第一组极点配置-------------------------- 11 3.1.2 第二组极点配置-------------------------- 11 3.2 状态观测器的设计 ---------------------------- 12 3.2.1 第一组极点------------------------------ 12 3.2.2 第二组极点------------------------------ 14 3.3 状态观测器的仿真图 -------------------------- 16 3.4 原系统加了状态观测器后的仿真结果图及分析----- 17 3.4.1 第一组极点------------------------------ 17 3.4.2 第二组极点------------------------------ 18 4 状态观测器极点配置与PID方法的比较 --------------- 20 4.1 直流电机转速、电流PID控制的设计------------- 20 4.2 两种方法的比较 ------------------------------ 21

自控原理实验

实验八典型非线性环节的静态特性 一、实验目的 1. 了解典型非线性环节输出—输入的静态特性及其相关的特征参数; 2. 掌握典型非线性环节用模拟电路实现的方法。 二、实验内容 1. 继电器型非线性环节静特性的电路模拟; 2. 饱和型非线性环节静特性的电路模拟; 3. 具有死区特性非线性环节静特性的电路模拟; 4. 具有间隙特性非线性环节静特性的电路模拟。 三、实验原理 控制系统中的非线性环节有很多种,最常见的有饱和特性、死区特性、继电器特性和间隙特性。基于这些特性对系统的影响是各不相同的,因而了解它们输出-输入的静态特性将有助于对非线性系统的分析研究。 1. 继电型非线性环节 图7-1为继电器型非线性特性的模拟电路和静态特性。 图8-1 继电器型非线性环节模拟电路及其静态特性 继电器特性参数M是由双向稳压管的稳压值(4.9~6V)和后级运放的放大倍数(R X/R1)决定的,调节可变电位器R X的阻值,就能很方便的改变M值的大小。输入u i信号用正弦信号或周期性的斜坡信号(频率一般均小于10Hz)作为测试信号。实验时,用示波器的X-Y显示模式进行观测。 2. 饱和型非线性环节 图7-2为饱和型非线性环节的模拟电路及其静态特性。 图8-2 饱和型非线性环节模拟电路及其静态特性 图中饱和型非线性特性的饱和值M等于稳压管的稳压值(4.9~6V)与后一级放大倍数的乘积。线性部分斜率k等于两级运放增益之积。在实验时若改变前一级运放中电位器的阻值

可改变k 值的大小,而改变后一级运放中电位器的阻值则可同时改变M 和k 值的大小。 实验时,可以用周期性的斜坡或正弦信号作为测试信号,注意信号频率的选择应足够低(一般小于10Hz )。实验时,用示波器的X-Y 显示模式进行观测。 3. 具有死区特性的非线性环节 图7-3为死区特性非线性环节的模拟电路及其静态特性。 图8-3 死区特性非线性环节的模拟电路及其静态特性 图中后一运放为反相器。由图中输入端的限幅电路可知,当二极管D 1(或D 2)导通时的临界电压U io 为 E 1E R R u 2 1io α α -±=±=(在临界状态时: E R R R u R R R 2 11 0i 212+±=+) (7-1) 其中,2 11 R R R +=α。当0i i u u >时,二极管D 1(或D 2)导通,此时电路的输出电压 为 ))(1()(2 12 io i io i o u u u u R R R u --±=-+± =α 令)1(α-=k ,则上式变为 )(io i o u u k u -±= (7-2) 反之,当0i i u u ≤时,二极管D 1(或D 2)均不导通,电路的输出电压o u 为零。显然,该非 线性电路的特征参数为k 和io u 。只要调节α,就能实现改变k 和io u 的大小。 实验时,可以用周期性的斜坡或正弦信号作为测试信号,注意信号频率的选择应足够低(一般小于10Hz )。实验时,用示波器的X-Y 显示模式进行观测。 4. 具有间隙特性的非线性环节 间隙特性非线性环节的模拟电路图及静态特性如图7-4所示。 由图7-4可知,当E u i α α -< 1时,二极管D 1和D 2均不导通,电容C 1上没有电压,即U C (C 1两端的电压)=0,u 0=0;当E u i α α->1时,二极管D 2导通,u i 向C 1充电,其电压为 ))(1(io i o u u u --±=α 令)1(α-=k ,则上式变为 )(io i o u u k u -±=

系统的能控性与能观性分析及状态反馈极点配置

实 验 报 告 课程 自动控制原理 实验日期 12 月26 日 专业班级 姓名 学号 实验名称 系统的能控性与能观性分析及状态反馈极点配置 评分 批阅教师签字 一、实验目的 加深理解能观测性、能控性、稳定性、最小实现等观念,掌握状态反馈极点配置方法,掌握如何使用MATLAB 进行以下分析和实现。 1、系统的能观测性、能控性分析; 2、系统的最小实现; 3、进行状态反馈系统的极点配置; 4、研究不同配置对系统动态特性的影响。 二、实验内容 1.能控性、能观测性及系统实现 (a )了解以下命令的功能;自选对象模型,进行运算,并写出结果。 gram, ctrb, obsv, lyap, ctrbf, obsvf, mineral ; (b )已知连续系统的传递函数模型,18 2710)(23++++= s s s a s s G , 当a 分别取-1,0,1时,判别系统的能控性与能观测性;

(c )已知系统矩阵为??????????--=2101013333.06667.10666.6A ,?? ??? ?????=110B ,[]201=C ,判别系统的能控性与能观测性; (d )求系统18 27101 )(2 3++++=s s s s s G 的最小实现。 2.实验内容 原系统如图1-2所示。图中,X 1和X 2是可以测量的状态变量。 图1-2 系统结构图 试设计状态反馈矩阵

,使系统加入状态反馈后其动态性能指标满足给定的要求: (1) 已知:K=10,T=1秒,要求加入状态反馈后系统的动态性能指标为: σ%≤20%,ts≤1秒。 (2) 已知:K=1,T=0.05秒,要求加入状态反馈后系统的动态性能指标为: σ%≤5%,ts≤0.5秒。 状态反馈后的系统,如图1-3所示:

极点配置自适应控制器的设计

具有抑制噪声性质的极点配置自校正控制器设计 摘要:本文首先介绍了极点配置自校正控制器设计中的一些不足之处,然后提 出了一种极点配置自校正控制算法.它具有以下三个特点:(1)除了配置系统的闭环极点外,还可抑制噪声对系统输出的干扰;(2)与其他极点配置自校正控制算法相比,本算法所需的计算量大为减少;(3)理论上可得到算法的收敛性结果.该算法已在实际系统中得到了成功的应用。 关键字:极点配置 自校正 仿真 一、前言 极点配置自校正控制器在最近几年里得到了很大的发展,出现了许多自校正算法,但现有的各种自校正控制算法还存在一些不够完善之处。首先,由于这种控制器的控制目的是配置系统的闭环极点,所以,在控制器的设计过程中,对如何减少噪声对系统输出的干扰这个问题没有特别加以考虑;第二,计算量比较大,难以实时控制;第三,理论上不够完善,如现有的各种算法都没有收敛性证明。所以说,极点配置自校正控制器的理论和应用都不太成熟,有待于进一步发展。 二、算法 设所研究的系统由下面方程描述。 (1) )e (t )C (q )u (t )(q q (t))(-1-1-k 1-+=B y q A 其中(t)y 为输出量,(t)u 为控制量,(t)e 为零均值白噪声且与t 时刻以前(不包括 t 时刻)的控制(t) u 无关。 c c b b a a n n n n n n q c q c q C q b q b b q B q a q a A -1 -11--1 -101 --1 -11 -1)()(1)q (+???++=+???++=+???++= )(1 -q A ,)(1 -q C 为稳定多项式,0 0≠b ,1-q 为延后一步算子。 对上述系统如采用如下控制律 ) () () ()() F(q ) G(q -(t)1 1111 --1t y q F q G t y u r --+ = (2) 其中(t)r y 为参考输入,)(1-q G ,)(1-q F ,)(1-1q G ,)(q -11F 为四个适当次数的多项。则可得闭环方程 (4) (t )u (t )u u (t )(3) (t )(t )y (t )2121+=+=y y

相关文档
相关文档 最新文档