文档视界 最新最全的文档下载
当前位置:文档视界 › 齐次线性方程组系数行列式D

齐次线性方程组系数行列式D

齐次线性方程组系数行列式D

齐次线性方程组系数行列式D=0,有非零解,D不等于0,只有零解。矩阵中非0行的首元素全为1,首元素1所在的列的其他元素全为0

线性方程组AX=b有解的充分必要条件是R(A)=R(A)。当R(A)=R(A)=n(n为未知数的个数) 时,线性方程组有唯一解。当R(A)=R(A)

向量A可由B :a b c….d线性表示的充分必要条件是R(a b c…d)=R(a b c….d B)

设有向量a b c….,如果存在一组不全为0的数K1 K2……Km使k1a+k2b…..+kmc=0,则向量组a b c线性相关。当只有k1=k2=k3….=km=0时才成立,线性无关。

向量组A:a b …c线性相关的充分必要条件是:A=(ab...c)的秩<m,无关R(A)=m(m为构成矩阵A的列向量个数)

N个N维向量线性无关的充分必要条件是行列式系数A不等于0,相关是A=0

线性代数行列式算与性质

线性代数行列式的计算与性质 行列式在数学中,是一个函数,其定义域为的矩阵,取值为一个标量,写作或。行列式可以看做是有向面积或体积的概 念在一般的欧几里得空间中的推广。或者说,在维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。无论是在线性代数、多项式理论,还是在微积分学中(比如说换元积分法中),行列式作为基本的数学工具,都有着重要的应用。 行列式概念最早出现在解线性方程组的过程中。十七世纪晚期,关孝和与莱布尼茨的著作中已经使用行列式来确定线性方程组解的个数以及形式。十八世纪开始,行列式开始作为独立的数学概念被研究。十九世纪以后,行列式理论进一步得到发展和完善。矩阵概念的引入使得更多有关行列式的性质被发现,行列式在许多领域都逐渐显现出重要的意义和作用,出现了线性自同态和矢量组的行列式的定义。 行列式的特性可以被概括为一个多次交替线性形式,这个本质使得行列式在欧几里德空间中可以成为描述“体积”的函数。 矩阵 A 的行列式有时也记作 |A|。绝对值和矩阵范数也使用这个记法,有可能和行列式的记法混淆。不过矩阵范数通常以双垂直线来表示(如: ),且可以使用下标。此外,矩阵的绝对值是没有定义的。因此,行 列式经常使用垂直线记法(例如:克莱姆法则和子式)。例如,一个矩阵: A= ? ? ? ? ? ? ? i h g f e d c b a , 行列式也写作,或明确的写作: A= i h g f e d c b a , 即把矩阵的方括号以细长的垂直线取代 行列式的概念最初是伴随着方程组的求解而发展起来的。行列式的提出可以追溯到十七世纪,最初的雏形由日本数学家关孝和与德国数学家戈特弗里德·莱布尼茨各自独立得出,时间大致相同。

第6章_行列式、矩阵与线性方程组

124 第6章 行列式、矩阵与线性方程组 本章教学要求:了解行列式、矩阵的基本概念,并会计算行列式、矩阵的计算题。 在一个函数、方程或不等式中,如果所出现的数学表达式是关于未知数或变量的一次式,那么这个函数、方程或不等式就称为线性函数、线性方程或线性不等式。在经济管理活动中,许多变量之间存在着或近似存在着线性关系,使得对这种关系的研究显得尤为重要,许多非线性关系也可转化为线性关系。线性代数是高等数学的又一个重要内容,与微积分有着同样的地位和同等的重要性.行列式、矩阵与线性方程组(即一次方程组)的理论是线性代数的一个基本内容,也是主要内容.线性代数在许多实际问题中有着直接的应用,并为数学的许多分支和其它学科所借鉴.行列式、矩阵与线性方程组在数据计算、信息处理、均衡生产、减少消耗、增加产出等方面有着广泛应用,是我们改善企业生产经管管理、提高经济效益很有用的工具。在这一章里,我们将介绍行列式和矩阵的一些基础知识,并讨论线性方程组的解法,以及行列式、矩阵与线性方程组的一些相关经济应用。 6.1 n 阶行列式及性质 行列式是在讨论线性方程组时建立起来的一个数学概念,是我们解线性方程组的一个有力工具. 6.1.1 二阶行列式 二元线性方程组的一般形式是 )(Ⅰ ???=+=+2 2221211 2 12111b x a x a b x a x a ②① 利用消元法求解: 1222a ②a ①?-?,得 122221112212211)(a b a b x a a a a -=-. 2111a ①a ②?-?,得 121211212212211)(b a b a x a a a a -=-. 当012212211≠-a a a a 时,方程组)(Ⅰ的解为??? ??? ? --=--=1221221121 1112212 2122111222211a a a a a b a b x a a a a a b a b x ③. 在二元线性方程组)(Ⅰ的解的表达式③中,1x 、2x 的解的分母都是12212211a a a a -.为了便于记忆和讨论,引入一个新的记号 22 21 1211a a a a 来表示12212211a a a a -,即 22 21 1211a a a a =12212211a a a a - (6-1) 在 22 21 1211a a a a 中,11a 、12a 、21a 、22a 是方程组)( Ⅰ中1x 、2x 的系数,它们按原来的位置

第三章 一线性微分方程组 第四讲 常系数线性微分方程组的解法(1)

第四讲 常系数线性微分方程组的解法(4课时) 一、目的与要求: 理解常系数线性微分方程组的特征方程式, 特征根, 特征向量的概念, 掌握常系数线性微分方程组的基本解组的求法. 二、重点:常系数线性微分方程组的基本解组的求法. 三、难点:常系数线性微分方程组的特征方程式, 特征根, 特征向量的概念. 四、教学方法:讲练结合法、启发式与提问式相结合教学法. 五、教学手段:传统板书与多媒体课件辅助教学相结合. 六、教学过程: 1 新课引入 由定理3.6我们已知道,求线性齐次方程组(3.8)的通解问题,归结到求其基本解组. 但是对于一般的方程组(3.8),如何求出基本解组,至今尚无一般方法. 然而对于常系数线性齐次方程组 dY AY dx = (3.20) 其中A 是n n ?实常数矩阵,借助于线性代数中的约当(Jordan)标准型理论或矩阵指数,可以使这一问题得到彻底解决. 本节将介绍前一种方法,因为它比较直观. 由线性代数知识可知,对于任一n n ?矩阵A ,恒存在非奇异的n n ?矩阵T ,使矩阵1T AT -成为约当标准型. 为此,对方程组(3.20)引入非奇异线性变换 Y TZ = (3.21) 其中()(,1,2,,),ij T t i j n ==L det 0T ≠,将方程组(3.20)化为 1dZ T ATZ dx -= (3.22) 我们知道,约当标准型1 T AT -的形式与矩阵A 的特征方程 111212122212det()0n n n n nn a a a a a a A E a a a λλλλ---==-L L M M M L

的根的情况有关. 上述方程也称为常系数齐次方程组(3.20)的特征方程式.它的根称为矩阵A 的特征根. 下面分两种情况讨论. (一) 矩阵A 的特征根均是单根的情形. 设特征根为12,,,,n λλλL 这时 12100 n T AT λλλ-??????=?????? 方程组(3.20)变为 11122200n n n dz dx z dz z dx z dz dx λλλ??????????????????????=???????????????? ?????? M M (3.23) 易见方程组(3.23)有n 个解 1110(),00x Z x e λ????????=????????M 220010(),,()0001n x x n Z x e Z x e λλ????????????????==???????????????? L M M 把这n 个解代回变换(3.21)之中,便得到方程组(3.20)的n 个解 12()i i i i x x i i ni t t Y x e e T t λλ???? ??==?????? M (1,2,,)i n =L

同济大学线性代数教案第一章线性方程组与矩阵

线性代数教学教案 第一章线性方程组与矩阵 授课序号01 1112121 2 n n m m mn a a a a a a ?? ?? ??? ,有时为了强调矩阵的行数和列数,也记为

n a ???. 212 n n n nn a a a ? ??? . 1112 00n n nn a a a a ?? ?? ? ? ?与上三角矩阵200 n nn a ? ??? . 000 0n a ??? ??? ,或记为100 1? ???? . 负矩阵的定义:对于矩阵()ij m n a ?=A ,称矩阵21 22 n m m m mn mn b a b a b ?? +++? ,

a b+

21 2 n m m mn a a a ????,转置矩阵212.m n n nm a ? ??? 矩阵的转置满足的运算规律(这里k 为常数,A 与B 为同型矩阵)阶方阵()ij a =A 如果满足222n n m mn n a x +21 2 n m m mn a a a ????称为该线性方程组的系数矩阵n x ???,m b = ? ??? β,有:

2221122221 21122n n n m m mn n m m mn n a a a x a x a x a x ??? ? =??? ???? ? ++ +????? . 再根据矩阵相等的定义,该线性方程组可以用矩阵形式来表示:=Ax β.

授课序号02 21 2 t s s st ????A A A ,21 2 t s s st ? = ? ??? B B B B ,的行数相同、列数相同,则有 21 22 t s s s st st ?? ±±±? B A B A B . 111221 2 t s s st ? ? ??? A A A A A ,都有21 2 t s s st k k ? ??? A A A .

《经济数学》第6章 行列式矩阵与线性方程组

第6章 行列式、矩阵与线性方程组 本章教学要求:了解行列式、矩阵的基本概念,并会计算行列式、矩阵的计算题。 在一个函数、方程或不等式中,如果所出现的数学表达式是关于未知数或变量的一次式,那么这个函数、方程或不等式就称为线性函数、线性方程或线性不等式。在经济管理活动中,许多变量之间存在着或近似存在着线性关系,使得对这种关系的研究显得尤为重要,许多非线性关系也可转化为线性关系。线性代数是高等数学的又一个重要内容,与微积分有着同样的地位和同等的重要性.行列式、矩阵与线性方程组(即一次方程组)的理论是线性代数的一个基本内容,也是主要内容.线性代数在许多实际问题中有着直接的应用,并为数学的许多分支和其它学科所借鉴.行列式、矩阵与线性方程组在数据计算、信息处理、均衡生产、减少消耗、增加产出等方面有着广泛应用,是我们改善企业生产经管管理、提高经济效益很有用的工具。在这一章里,我们将介绍行列式和矩阵的一些基础知识,并讨论线性方程组的解法,以及行列式、矩阵与线性方程组的一些相关经济应用。 6.1 n 阶行列式及性质 行列式是在讨论线性方程组时建立起来的一个数学概念,是我们解线性方程组的一个有力工具. 6.1.1 二阶行列式 二元线性方程组的一般形式是 )(Ⅰ ???=+=+2 2221211 2 12111b x a x a b x a x a ②① 利用消元法求解: 1222a ②a ①?-?,得 122221112212211)(a b a b x a a a a -=-. 2111a ①a ②?-?,得 121211212212211)(b a b a x a a a a -=-. 当012212211≠-a a a a 时,方程组)(Ⅰ的解为??? ??? ? --=--=1221221121 1112212 2122111222211a a a a a b a b x a a a a a b a b x ③. 在二元线性方程组)(Ⅰ的解的表达式③中,1x 、2x 的解的分母都是12212211a a a a -.为了便于记忆和讨论,引入一个新的记号 22 21 1211a a a a 来表示12212211a a a a -,即 22 21 1211a a a a =12212211a a a a - (6-1) 在 22 21 1211a a a a 中,11a 、12a 、21a 、22a 是方程组)( Ⅰ中1x 、2x 的系数,它们按原来的位置

2021年常系数线性方程组基解矩阵的计算

常系数线性方程组基解矩阵的计算 欧阳光明(2021.03.07) 董治军 (巢湖学院数学系,安徽巢湖238000) 摘要:微分方程组在工程技术中的应用时非常广泛的,不少问题都归结于它的求解问题,基解矩阵的存在和具体寻求是不同的两回事,一般齐次线性微分方程组的基解矩阵是无法通过积分得到的,但当系数矩阵是常数矩阵时,可以通过方法求出基解矩阵,这时可利用矩阵指数exp A t,给出基解矩阵的一般形式,本文针对应用最广泛的常系数线性微分方程组,结合微分方程,线性代数等知识,讨论常系数齐次线性微分方程的基解矩阵的几个一般的计算方法. 关键词;常系数奇次线性微分方程组;基解矩阵;矩阵指数Calculation of Basic solution Matrix of Linear Homogeneous System with Constant Coefficients Zhijun Dong (Department of Mathematics,Chaohu CollegeAnhui,Chaohu) Abstract:Differential equations application in engineering technology is very extensive, when many problems are attributable to its solving problem, base solution matrix existence and specific seek is different things, general homogeneous linear differential equations is not the

线性代数技巧行列式的计算方法

计算n 阶行列式的若干方法举例 n 阶行列式的计算方法很多,除非零元素较多时可利用定义计算(①按照某一列或某一行展开②完全展开式)外,更多的是利用行列式的性质计算,特别要注意观察所求题目的特点,灵活选用方法,值得注意的是,同一个行列式,有时会有不同的求解方法。下面介绍几种常用的方法,并举例说明。 1.利用行列式定义直接计算 例1 计算行列式 00100 20010000 n D n n = - 解 D n 中不为零的项用一般形式表示为 112211!n n n nn a a a a n ---= . 该项列标排列的逆序数t (n -1 n -2…1n )等于 (1)(2) 2 n n --,故 (1)(2) 2 (1) !.n n n D n --=- 2.利用行列式的性质计算

例2 一个n 阶行列式n ij D a =的元素满足 ,,1,2,,,ij ji a a i j n =-= 则称D n 为反对称行列式,证明:奇数阶反对称行列式为零. 证明:由i j j a a =-知i i i a a =-,即 0,1,2,,ii a i n == 故行列式D n 可表示为 1213112 23213 2331230000 n n n n n n n a a a a a a D a a a a a a -=----- 由行列式的性质A A ' = 1213112 23213 2331230000n n n n n n n a a a a a a D a a a a a a -----=- 1213112 23213 23312300(1)00 n n n n n n n a a a a a a a a a a a a -=------ (1)n n D =- 当n 为奇数时,得D n =-D n ,因而得D n = 0.

矩阵与线性方程组

第1 章矩阵与线性方程组 矩阵是描述和求解线性方程组最基本和最有用的工具。本章涉及向量和矩阵的基本 概念,归纳了向量和矩阵的基本运算。 1.1 主要理论与方法 1.1.1 矩阵的基本运算 一、矩阵与向量 a11x1 + a12x2 + ¢ ¢ ¢+ a1n x n = b1 a21x1 + a22x2 + ¢ ¢ ¢+ a2n x n = b2 ... a m1x1 + a m2x2 + ¢ ¢ ¢+ a mn x n = b m 9> >>>=>>>>; (1.1) 它使用m个方程描述n个未知量之间的线性关系。这一线性方程组很容易用矩阵||向量 形式简记为 Ax = b (1.2) 式中 A =26664 a11 a12 ¢ ¢ ¢ a1n a21 a22 ¢ ¢ ¢ a2n ... ... ... a m1 a m2 ¢ ¢ ¢ a mn 37775 (1.3) 称为m £ n矩阵,是一个按照长方阵列排列的复数或实数集合;而 x =26664 x1 x2 ... x n 37775 ; b =26664 b1 b2 ... b m 37775 (1.4) 分别为n £1向量和m£1向量,是按照列方式排列的复数或实数集合,统称列向量。类似地,按照行方式排列的复数或实数集合称为行向量,例如 a = [a1; a2; ¢ ¢ ¢ ; a n] (1.5) 是1 £ n向量。 二、矩阵的基本运算 1. 共轭转置:若A = [a ij ]是一个m£ n矩阵,则A的转置记作A T,是一个n £m矩阵, 定义为[A T]ij = a ji;矩阵A的复数共轭A¤定义为[A¤]ij = a¤ji;复共轭转置记作A H,定义 为 A H =26664 a¤11 a¤21 ¢ ¢ ¢ a¤m1 a¤12 a¤22 ¢ ¢ ¢ a¤m2 ...

线性方程组的几何意义与矩阵之间的关系

线性方程组的几何意义与矩阵之间的关系 数学系数052 蒋春 摘要:通过对二元线性方程组,三元线性方程组,四元线性方程组有关系数矩阵,增广矩阵的秩的分析,对其列,行向量的线性相关性分析,初步得出如何用矩阵的方式讨论线性方程组的几何意义。 关键词:线性方程组 空间直线 系数矩阵 增广矩阵 矩阵秩 线性相关性 引言:判断空间中平面与平面、直线与直线及直线与平面的位子关系是代数知识在空间解析几何上的应用,体现了几何与代数的完美结合,虽在解析中给出了两条判定定理,但在实际应用中这两条定理是不够用的,本文用方程组系数矩阵,增广矩阵的秩,对其列,行向量的线性相关性作出系统研究,并给出了一些非常有用的结论。 1:二元线性方程组几何意义与矩阵之间的关系 设线性方程组:1111 2 222a x b y c l a x b y c l +=?????????+=???????? 因为i i i a x b y c +=表示平面内一条直线i l 根据解析几何知1l 与2l 的几何关系: ○1:相交的充分必要条件是(不重合): ()11 22 1a b a b ≠??????? ○2平行的充分必要条件是: ()111 222 2a b c a b c =≠??????? ○3重合的充分必要条件是: ()111222 3a b c a b c ==??????? 设线性方程组系数矩阵和增广矩阵分别为 1122a b A a b ??=????,111222a b c B a b c ??=???? 现记线性方程组增广矩阵的列向量 112a a α??=????,122b b α??=????,132c c α?? =???? 则

行列式的计算方法与其在线性方程组的简单应用

本科生毕业论文 题 目: 行列式的计算方法及其在线性方程组中的应用姓 名: 学 号: 系 别: 年 级: 专 业: 摘 要 《高等代数》是数学专业学生的一门必修基础课程。行列式的计算是高等代数中的重点、难点,特别是n 阶行列式的计算,学生在学习过程中,普遍存在很多困难,难于掌握。计算n 阶行列式的方法很多,但具体到一个题,要针对其特征,选取适当的方法求解。当看到一个貌似非常复杂的n 阶行列式时, 仔细观察,

会发现其实它们的元素在行或列的排列方式上都有某些规律。掌握住这些规律,选择合适的计算方法,能使我们在极短的时间内达到事半功倍的效果!本文首先介绍n阶行列式的定义、性质,再归纳总结行列式的各种计算方法、技巧及其在线性方程组中的初步应用。行列式是线性方程组理论的一个组成部分,是中学数学有关内容的提高和推广。它不仅是解线性方程组的重要工具,而且在其它一些学科分支中也有广泛的应用。 关键词:n阶行列式计算方法归纳线性方程组 ABST RACT Algebra is a courses of mathematics specialized compulsory of the basic mathematic. The determinant's calculation is the most difficulty in higher algebra, especially, the n order determinant's calculation, alway is student's difficulty in the learning process, so ,it is difficult to master for ours . There are a lot of calculations of

线性代数之行列式的性质及计算讲解学习

线性代数之行列式的性质及计算

第二节 行列式的性质与计算 §2.1 行列式的性质 考虑11 1212122212n n n n nn a a a a a a D a a a = L L L L L L L 将它的行依次变为相应的列,得 11 21112 222 12n n T n n nn a a a a a a D a a a = L L L L L L L 称T D 为D 的转置行列式 . 性质1 行列式与它的转置行列式相等.(T D D =) 事实上,若记111212122212n n T n n nn b b b b b b D b b b = L L L L L L L L L L 则(,1,2,,)ij ji b a i j n ==L 1212() 12(1)n n p p p T p p np D b b b τ∴=-∑L L 1212()12(1).n n p p p p p p n a a a D τ=-=∑L L 说明:行列式中行与列具有同等的地位, 因此行列式的性质凡是对行成立的结论, 对列也同样成立. 性质2 互换行列式的两行(i j r r ?)或两列(i j c c ?),行列式变号. 例如 123 123086351.351 086 =- 推论 若行列式D 有两行(列)完全相同,则0D =. 证明: 互换相同的两行, 则有D D =-, 所以0D =. 性质3 行列式某一行(列)的所有元素都乘以数k ,等于数k 乘以此行列式,即

111211112112121212 n n i i in i i in n n nn n n nn a a a a a a ka ka ka k a a a a a a a a a =L L L L L L L L L L L L L L L L L L L L L L 推论:(1) D 中某一行(列)所有元素的公因子可提到行列式符号的外面; (2) D 中某一行(列)所有元素为零,则0D =; 性质4: 行列式中如果有两行(列)元素对应成比例, 则此行列式等于零. 性质5: 若行列式某一行(列)的所有元素都是两个数的和,则此行列式等于两个行列式的和.这两个行列式的这一行(列)的元素分别为对应的两个加数之一,其余各行(列)的元素与原行列式相同 .即 11121112212 n i i i i in in n n nn a a a a b a b a b a a a +++=L L L L L L L L L L L 1112112 12 n i i in n n nn a a a a a a a a a +L L L L L L L L L L L 111211212 n i i in n n nn a a a b b b a a a L L L L L L L L L L L . 证: 由行列式定义 1212()12(1)()n i i n p p p p p ip ip np D a a a b a τ=-+∑L L L 12121212()()1212(1)(1).n n i n i n p p p p p p p p ip np p p ip np a a a a a a b a ττ=-+-∑∑L L L L L L 性质6 行列式D 的某一行(列)的各元素都乘以同一数k 加到另一行(列)的相应元素上,行列式的值不变()i j r kr D D +=,即 111211212 i j n r kr i i in n n nn a a a a a a a a a +=L L L L L L L L L L L 11121112212 n i j i j in jn n n nn a a a a ka a ka a ka a a a +++L L L L L L L L L L L 计算行列式常用方法: 利用性质2,3,6, 特别是性质6把行列式化为上(下)三角形行列式, 从而, 较容易的计算行列式的值.

线性代数特殊行列式及行列式计算方法总结

特殊行列式及行列式计算方法总结 一、 几类特殊行列式 1. 上(下)三角行列式、对角行列式(教材P7例5、例6) 2. 以副对角线为标准的行列式 11112112,1 221222,11,21,1 1,11 2 ,1 (1)2 12,11 000000 0000 0000 (1) n n n n n n n n n n n nn n n n n n nn n n n n n a a a a a a a a a a a a a a a a a a a a a a ---------===-L L L L L L M M M M M M M M M N L L L L 3. 分块行列式(教材P14例10) 一般化结果: 00n n m n n m n m m n m m n m A C A A B B C B ????= =? 0(1)0n m n n m n mn n m m m n m m n A C A A B B C B ????= =-? 4. 范德蒙行列式(教材P18例12) 注:4种特殊行列式的结果需牢记! 以下几种行列式的特殊解法必须熟练掌握!!! 二、 低阶行列式计算 二阶、三阶行列式——对角线法则 (教材P2、P3) 三、 高阶行列式的计算 【五种解题方法】 1) 利用行列式定义直接计算特殊行列式; 2) 利用行列式的性质将高阶行列式化成已知结果的特殊行列式; 3) 利用行列式的行(列)扩展定理以及行列式的性质,将行列式降阶进行计算— —适用于行列式的某一行或某一列中有很多零元素,并且非零元素的代数余子式很容易计算; 4) 递推法或数学归纳法; 5) 升阶法(又称加边法)

线性方程组与矩阵

第一章 线性方程组与矩阵 课程教案 授课题目:第二节 矩阵概念与矩阵的初等变换 教学目的:1.掌握高斯消元法求解线性方程组. 2.理解矩阵的概念、运算及其性质,掌握矩阵的初等行变换. 教学重点:本章以课堂教学为主,使学生掌握矩阵的初等行变换,提高学生的逻 辑思维能力和计算能力. 教学难点: 初等行变换的运用. 课时安排:2学时. 授课方式:多媒体与板书结合. 教学基本内容: §1.2 矩阵概念与矩阵的初等变换 1. 概念 对线性方程组 ?????? ?=+++=+++=+++m mn m m n n n n b x a x a x a b x a x a x a b x a x a x a 322112 222212*********ΛΛΛΛΛΛΛΛΛΛΛΛΛΛΛ (1) 其系数可用?????? ? ??mn m m n n a a a a a a a a a ΛΛΛΛΛΛΛ212222111211表示. 定义1 m n ?个数排列成m 行(横向)、n 列(纵向)的矩形数表: 1112 12122212 n n m m mn a a a a a a A a a a ?? ? ? = ? ??? L L L L L L L 称为m n ?矩阵,简记为()ij m n A a ?=,其中ij a 为A 中第i 行第j 列的元素.如 ???? ??????-5162120710903 是3行4列的矩阵.这里,3×4是个记号,表明矩阵有3行4列的事实而不能取乘积“12”. 2. 一些特殊的矩阵 1) 行矩阵——只有一行的矩阵. 例(12 5)A =.

2) 列矩阵——只有一列的矩阵. 例312B ????=-?????? . 3) 零矩阵——所有元素都等于0的矩阵.例000000C ?? =? ???. 4) 同型矩阵——行数相同、列数也相同.例235176D ?? =? ? ?? 与C 同型. 5) 当m n =时称 ()ij n n A a ?=为n 阶方阵;1122,,,nn a a a L 所在的对角线称为方阵的主对角线. 6) 主对角线下(上)方的元素全为零的方阵称为上(下)三角阵.例???? ??????500230704为上三角阵;???? ? ?????5613035004为下三角阵. 7) 主对角线以外的元素全为零的方阵称为对角阵,记为????? ?? ?? ???=n d d d D Λ M M M Λ Λ 00000021,简记为),,,(21n d d d diag D Λ=. 8) 数量阵——对角阵中(1)i d d i n =≤≤. 例300030003A ????=??????. 9) 单位阵——数量阵中1d =,记以I 或E .例100010001E ????=?????? . 注 (1) 只有1列或1行的矩阵分别称为列矩阵或行矩阵,也被称为列向量或行向量.这 样,它们就有了矩阵和向量的双重“身份”. 作为向量,常用小写黑体字母a 、b 、……等标记之,向量的元也称为分量,一个向量 所含分量的个数称为维(是个数),如???? ??????-213是个3维列向量,其实就是由3个数组成的一个有序数组.

线性代数行列式基本概念

目录 一、行列式 (2) 二、矩阵特征值 (2) 三、正定矩阵 (2) 四、幺模矩阵 (3) 五、顺序主子阵 (4) 六、正定二次型 (6) 七、矩阵的秩 (6) 八、初等变换(elementary transformation) (7)

一、行列式 见ppt。 二、矩阵特征值 设 A 是n阶方阵,如果存在数m和非零n维列向量 x,使得 Ax=mx 成立,则称 m 是A的一个特征值(characteristic value)或本征值(eigenvalue)。非零n维列向量x称为矩阵A的属于(对应于)特征值m的特征向量或本征向量,简称A的特征向量或A的本征向量。 求矩阵特征值的方法 Ax=mx,等价于求m,使得(mE-A)x=0,其中E是单位矩阵,0为零矩阵。 |mE-A|=0,求得的m值即为A的特征值。|mE-A| 是一个n次多项式,它的全部根就是n阶方阵A的全部特征值,这些根有可能相重复,也有可能是复数。 如果n阶矩阵A的全部特征值为m1 m2 ... mn,则|A|=m1*m2*...*mn 如果n阶矩阵A满足矩阵多项式方程g(A)=0, 则矩阵A的特征值m一定满足条件g(m)=0;特征值m可以从解方程g(m)=0求得。 三、正定矩阵 设M是n阶实系数对称矩阵,如果对任何非零向量 X=(x_1,...x_n),都有XMX′>0(X'为X的转置矩阵 ),就称M正定(Positive Definite)。 正定矩阵在相合变换下可化为标准型,即单位矩阵。 所有特征值大于零的对称矩阵(或厄米矩阵)也是正定矩阵。 另一种定义:一种实对称矩阵.正定二次型f(x1,x2,…,xn)=X′AX的矩阵A(A′)称为正定矩阵. 判定定理1:对称阵A为正定的充分必要条件是:A的特征值全为正。 判定定理2:对称阵A为正定的充分必要条件是:A的各阶顺序主子式都为正。 判定定理3:任意阵A为正定的充分必要条件是:A合同于单位阵。 正定矩阵的性质: 1.正定矩阵一定是非奇异的。非奇异矩阵的定义:若n阶矩阵A的行列式不为零,即|A|≠0,则称A为非奇异矩 2.正定矩阵的任一主子矩阵也是正定矩阵。

线性代数之行列式的性质和计算

第二节 行列式的性质与计算 §2.1 行列式的性质 考虑11 12121 22 212 n n n n nn a a a a a a D a a a = 将它的行依次变为相应的列,得 11 21112 22212n n T n n nn a a a a a a D a a a = 称T D 为D 的转置行列式 . 性质1 行列式与它的转置行列式相等.(T D D =) 事实上,若记1112 12122212 n n T n n nn b b b b b b D b b b = 则(,1,2, ,)ij ji b a i j n == 12 12 () 12(1)n n p p p T p p np D b b b τ∴=-∑12 12() 12(1).n n p p p p p p n a a a D τ=-=∑ 说明:行列式中行与列具有同等的地位, 因此行列式的性质凡是对行成立的结论, 对列也同样成立. 性质2 互换行列式的两行(i j r r ?)或两列(i j c c ?),行列式变号. 例如 123 123086351.351 086 =- 推论 若行列式D 有两行(列)完全相同,则0D =. 证明: 互换相同的两行, 则有D D =-, 所以0D =. 性质3 行列式某一行(列)的所有元素都乘以数k ,等于数k 乘以此行列式,即 111211112 112121 2 1 2 n n i i in i i in n n nn n n nn a a a a a a ka ka ka k a a a a a a a a a = 推论:(1) D 中某一行(列)所有元素的公因子可提到行列式符号的外面;

齐次和非齐次线性方程组的解法(整理)

线性方程组解的结构(解法) 一、齐次线性方程组的解法 【定义】 r (A )= r 时,若()r A n ≤,则存在齐次线性方程组的同解方程组; 若()r A n >,则齐次线性方程组无解。 1、求AX = 0(A 为m n ?矩阵)通解的三步骤 (1)?? →A C 行 (行最简形); 写出同解方程组CX =0. (2) 求出CX =0的基础解系,,,n r -12ξξξ; (3) 写出通解n r n r k k k --=+++1122X ξξξ其中k 1,k 2,…, k n-r 为任意常数.

线性代数习题册行列式-习题详解

行列式的概念 一、选择题 1. 下列选项中错误的是( ) (A) b a d c d c b a - = ; (B) a c b d d c b a = ; (C) d c b a d c d b c a = ++33; (D) d c b a d c b a ----- =. 答案:D 2.行列式n D 不为零,利用行列式的性质对n D 进行变换后,行列式的值( ). (A)保持不变; (B)可以变成任何值; (C)保持不为零; (D)保持相同的正负号. 答案:C 二、填空题 1. a b b a log 1 1 log = . 解析: 0111log log log 1 1log =-=-=a b a b b a b a . 2. 6 cos 3sin 6sin 3 cos π π ππ = . 解析: 02cos 6sin 3sin 6cos 3cos 6 cos 3 sin 6sin 3 cos ==-=πππππππ π π 3.函数x x x x x f 1213 1 2)(-=中,3x 的系数为 ; x x x x x x g 2 1 1 12)(---=中,3x 的系数为 . 答案:-2;-2.

阶行列式n D 中的n 最小值是 . 答案:1. 5. 三阶行列式11342 3 2 1-中第2行第1列元素的代数余子式 等于 . 答案:5. 6.若 02 1 8 2=x ,则x = . 答案:2. 7.在 n 阶行列式ij a D =中,当i

线性代数行列式经典例题

线性代数行列式经典例题 例1计算元素为a ij = | i -j |的n 阶行列式. 解 方法1 由题设知,11a =0,121a =,1,1,n a n =- ,故 011102120 n n n D n n --= -- 1,1,,2 i i r r i n n --=-= 01 111111 1 n ----

1,,1 j n c c j n +=-= 12 11 021 (1)2(1)020 1 n n n n n n ------=---- 其中第一步用的是从最后一行起,逐行减前一行.第二步用的每列加第n 列. 方法 2 011102120 n n n D n n --= --

1 1,2,,111111112 i i r r i n n n +-=----=-- 12,,100120123 1 j c c j n n n n +=---= --- = 12 (1)2 (1) n n n ---- 例2. 设a , b , c 是互异的实数, 证明: 的充要条件是a + b + c =0. 证明: 考察范德蒙行列式:

= 行列式 即为y 2 前的系数. 于是 = 所以 的充要条件是a + b + c = 0. 例3计算D n = 121 100010n n n x x a a a x a ----+ 解: 方法1 递推法 按第1列展开,有 D n = x D 1-n +(-1) 1 +n a n 1 111 1n x x x ----- = x D 1-n + a n 由于D 1= x + a 1,221 1x D a x a -=+,于是D n = x D 1-n + a n =x (x D 2-n +a 1-n )+ a n =x 2 D 2-n + a 1-n x + a n = = x 1 -n D 1+ a 2x 2 -n + + a 1-n x + a n =1 11n n n n x a x a x a --++++ 方法2 第2列的x 倍,第3列的x 2 倍, ,第n 列的x 1 -n 倍分别加到第1列上

(精选)线性代数行列式第一章练习题答案

《线性代数》(工)单元练习题 一、填空题 1、设矩阵A 为4阶方阵,且|A|=5,则|A*|=__125____,|2A|=__80___,|1-A |= 1/5 2、若方程组?? ? ??=+=+=+a bz cy b az cx ay bx 0 有唯一解,则abc ≠ 0 3、把行列式的某一列的元素乘以同一数后加到另一列的对应元素上,行列式 0 . 4、当a 为 1 or 2 时,方程组??? ??=++=++=++0 40203221321321x a x x ax x x x x x 有非零解. 5、设=-+----=31211142,4 101322 13A A A D 则 .0 二、单项选择题 1.设) (则=---===33 3231312322212113 1211113332312322 211312 11324324324,1a a a a a a a a a a a a D a a a a a a a a a D B (A)0 ; (B)―12 ; (C )12 ; (D )1 2.设齐次线性方程组??? ??=+-=++=+02020z y kx z ky x z kx 有非零解,则k = ( A ) (A )2 (B )0 (C )-1 (D )-2 3.设A=7 925138 02-,则代数余子式 =12A ( B ) (A) 31- (B) 31 (C) 0 (D) 11- 4.已知四阶行列式D 中第三列元素依次为-1,2,0,1,它们的余子式依次分别为5,3,-7,4, 则D= ( A ) (A ) -15 (B ) 15 (C ) 0 (D ) 1 三、计算行列式

齐次线性方程组的基础解系存在定理及其应用

齐次线性方程组的基础解系及其应用 齐次线性方程组一般表示成AX=0的形式,其主要结论有: (1)齐次线性方程组AX=0一定有解,解惟一的含义是只有零解,有非零解的含义是解不惟一(当然有无穷多解)。有非零解的充要条件是R(A)

相关文档
相关文档 最新文档