文档视界 最新最全的文档下载
当前位置:文档视界 › 翅片管换热器实验指导书

翅片管换热器实验指导书

翅片管换热器实验指导书
翅片管换热器实验指导书

*********************************************************** 空气 水热交换器实验

************************************************************

指导说明书

同济大学热能实验室

陈德珍

2000年1月

第一部分空冷器实验台系统说明

本实验台是上海交通大学开发、针对换热器课程的教学要求而设计的科教产品。所用的换热器为一较小的间壁式换热器,空气—水作为介质,实验台由独立的风源,热水源,温度控制器等组合而成,有较大的灵活性,以后还可发展冷却塔性能试验。

一、实验台组成、系统、设备及仪表

实验台系统的简图见图1,主要由风源、热水源、可控硅温度控制器组成。且各自独立,有较大的灵活性。

主要性能:

1.风源:风机:电机:400w,三相380v

风量:800m3/h

风压:60mmH2O

出风口尺寸:200×135mm

吸风口配二只可叠套的橡胶收缩风口,测速段处直径分别为

D1=120mm及D2=60mm,

2.热水源:水箱尺寸:445×245×575mm

水泵:电机:120W 单相220v

流量:h

压头:12mH2O

加热器:3KW 220V 3只

转子流量计:LZB-25 60-600L/h

3.可控硅温度控制器:TA-092 PID调节仪

ZK-03 三相可控硅电压调整器

最大输出功率10KW

铂电阻温度传感器 BA2 0~100℃

可控硅 3CT 20A/1000V

电源:三相380V

4.试验用换热器

实验所用的间壁式换热器为一较紧凑的翅片管式散热器,由铜管束套带皱折的铝整

体翅片构成,见图2。

主要参数:

管束:紫铜管管径:d0=10mm

d 1=8mm 节距 横向:s 1=45mm 纵向:s 2=13mm 翅片: 铝制、皱折、整片 片厚:δ= 片节距: t= 试件总体尺寸:

水侧:横向管数: n=3 纵向管排数: n=8

总管数: n=n×n=24 水通道并联管子数: 即n=3

管子总长度:L=a×n=×24=

通道面积:F w =n×π×d1×d1/4

=×10-4

㎡ 气侧:通道尺寸:a=200mm b=130mm h=116mm 翅片数:m=76 通风面积:Fa=a×b= 传热总面积: Aa=20201124.2)(2)4

1

(m n d m a m n d h S n =????-+????-

??πδπ 特征尺寸:Da=4V/A a =4×a×b×h/A a =4××× = 整个风源设计紧凑,风箱用塑料制成,出风口线型及大的收缩比,保证空气在换热器进口截面处有均匀流速。吸风口、调风口、整流栅、毕托管紧凑地组合在一起,为了适应不同风量测量的需要,用二只直径不同的可叠套使用的橡胶收缩风口,选用方便。

试验用换热器是放置在出风口上,拆换方便。风箱制成水密形式,需要时可更换试验件作冷却塔填料性能试验。

热水源水箱用不锈钢制成,水泵、流量计、调节阀、回流管路、加热器组合紧凑。 风源、热水源、温度控制器各自独立,移动方便,可充分发挥各自的功能。

翅片管散热器试验时,水---空气流可按逆流连接。空气---水进出口温度用铜—康铜热电偶测量,水温测点t w 1

,t w2直接放置在二联箱进出口。进口空气温度t a1,测点装在紧靠换热器的进出口截面处,换热器出口通道加一均温段,再用均不的九对热电偶并联测量出口空气温度t a2热电偶接线见图3,冷端放入冰瓶内,同过一转换开关,用电位差计测量tw 1、t w2、t a1、t a2 各温度。

用毕托管测定吸风口收缩段处流速,以确定空气流量,大流量时用收缩段直径D=120mm 的吸风口,小流量时用直径D=60mm 的吸风口,再用调风门改变风量。 水流量通过调节阀控制,用转子流量计测量。

第二部分 实验内容及安排

一、实验目的

借助该实验台,学生可以组织一间壁式换热器的试验,能够达到以下几方面。

1.测定间壁式换热器的传热系数;

2.了解换热器的工作性能,熟悉间壁式换热器的热工计算方法;

3.进一步可确定该换热器气侧换热面的传热特性,即传热因子与雷诺数之间的关系; 4.熟悉流体流速、流量、温度等的测量,以及对实验数据的处理。

二、实验内容及数据处理

1.测定换热器传热系数及其变化规律 热水在管内流动,放热量Qw.

Q w =M w ×C pw ×(tw 1-tw 2) (w) (1) 空气流过管束外侧,吸热量Q a

Q a =M a ×C pa ×(ta 2-ta 1) (w) (2)

以Q a 、Q w 间热平衡误差△<10%的数据认为有效,并按平均值作为其换热量Q.

△ =(Qw-Qa )/Q *100%

Q=(Qw+Qa)/2 (w) (3)

水---空气按逆流方式工作,传热系数K

K=Q/Aa ·△t m (w/m 2

℃) (4) 以上各式中:

tw 1、tw 2-----水进出口温度; (℃) ta 1、ta 2-----空气进出口温度; (℃) M w 、M a -----水、空气的质量流量; (Kg/S)

C pw 、C pa ----- 水、空气的比热; (J/Kg ·℃)

△t m -------- 平均温差,(℃);其计算如下: 1

2211221ln

)

()(a w a w a w a w m t t t t t t t t t -----=

?

A a --------气侧换热总面积。 (㎡)

空气流速变化对传热系数K 的影响较大,水流速度及水温变化对传热系数也有影响。为了了解空气流速及水流速度对传热系数的影响,可藉温控器保持相同的水温,并维持一定的水流量,改变不同的空气流量进行试验,可得出某水温、水流速条件下传热系数随空气流速的变化规律。

2.确定气侧换热面的传热规律,既传热因子J 与雷诺数Re 之间的关系 该换热器的传热元件为带翅片的圆管,换热器热阻由以下几部分组成。

(

)

(

)ηαπλπa

A Fa d d FW a i a

i

w

r l

r l

d KA 12ln 111

10

+

++

+= (5)

其中: r Fw

、r Fa

------为水侧和气侧的污垢热阻;(㎡℃/W)

αw 、αa -----为水侧和气侧换热系数; (W/㎡℃) η-------气侧的肋壁效率;

dl

i d d π2)

ln(0

------管壁导热热阻;(℃/W )

在试验设备新投入使用时,可忽略污垢热阻,(5)式可简化为:

a

a d d w i A l l d KA i ηαπλαπ12)

ln(110

++= (6) 其中:1/KA 由本实验确定,即:

1/KA=△t m /Q (7) 水侧换热系数αw ,按水在管内流动的换热准则方程,由计算确定。 由(6)式即可求出气侧换热表面的热阻1/(αa ·ηA a )值。 气侧换热面的换热规律可用J 和Re 关系表示。

传热因子J 可用折算换热系数αA =αa η来定义。 32

Pr ??=

p

a A

C G J α (8)

雷诺数Re 的计算为: μ

H

a e D G R ?=

(9)

其中特征尺寸D H

可用下式定义

D H =4V/A a (m) (10)

V 为气侧通道所占体积:V=a×b×h (m 3

) A a 为与空气接触的表面积,即气侧表面积 (㎡) G a 为空气质量流速,可采用下式计算: a

a

a F M G =

(Kg/㎡?s) 即用空气流至换热器的迎面质量流速,来定义雷诺数。

采用上述J 及Re 的定义法,数据处理及使用结果亦比较方便。

试验工况可安排在不同的空气流量下进行(为什么),水温及水速可不受限制。将各工况所测结果按上述方法计算出相应的J 与Re ,然后绘在双对数纸坐标上,即得出其J~Re 变化规律。此部分内容要求同学们自己完成。

三.实验步骤及注意事项 实验步骤:

1.接通可控硅温控器电源,设定热水加热温度,对水加热10分钟。 2.开启回水阀,打开水泵,调节流量。 3.开启风机,将风门调至所需开度。

4.待水温及水流量稳定后,读取有关数据。

5.改变工况,稳定5分钟后再读取另一工况的数据。 注意事项:

1.热水温度一般设置在70~80℃ 2.水流量一般选在250~350L/h 左右

测传热系数K 时,维持恒定的水流量,改变不同的空气流速进行测量。

欲测气侧传热因子J 与雷诺数Re 关系时,改变不同的空气流速,可相应适当调节水流量。

3.用不同收缩口直径的吸风口,并调节风门开度,以获得不同的空气流量。 4.因为可控硅温控器对水温的控制有1~2℃的波动,会对读数和实验结果造成一定影响,可用调压器替代可控硅温控器以保证进口水温的稳定。

5.注意为什么本实验采用改变风量的方法来测量传热因子J~Re 曲线。如果采用改变水侧流量的方式来测取水侧J~Re 曲线,会有什么现象

四.实验及结果整理

要求由学生自己编制实验大纲,完成实验。大纲要求包括试验对象、试验原理、试验设备及测量系统、试验工况选定、数据记录表格、数据处理等。然后自己组织试验,再完成实验报告。时间上安排二次,第一次了解试验台装置并编制实验大纲,第二次再进行试验。教师只就试验原理作简单介绍,提出编制大纲的要求。

附表一为数据记录表格的参考格式。

附表二、三为数据处理及整理的参考格式。 另要求:

1. 将传热系数K 随空气质量流速Ga 的变化规律在方格纸上用坐标图表示。

2. 将气侧换热面的传热因子J 与雷诺数Re 间的关系在方格纸上用坐标图表示。

附表 1 空气---水换热器实验数据记录及计算结果实验完成人:

附表2 水管内外换热系数的计算实验完成人:

换热器综合台试验台使用说明

换热器综合台试验台使用说明 换热器性能测试试验主要对应用较广的间壁式换热器中的三种换热器—套管式换热器、螺旋板式换热器和列管式换热器进行其性能的测试。其中,对套管式换热器和螺旋板式换热器可以进行顺流和逆流两种流动方式的性能测试,而列管式换热器只作一种流动方式的性能测试。 换热器性能试验的内容主要为测试换热器的总传热系数,对数传热温差和热平衡误差等,并就不同的换热器、不同两种流动方式、不同工况的传热情况和性能进行比较和分析。 一、实验目的 1.熟悉换热器性能的测试方法; 2.了解套管式换热器、螺旋板式换热器和列管式换热器的结构特点及其性能的差别; 3.加深对顺流和逆流两种换热器换热能力差别的认识。 二、实验内容及步骤 换热器性能试验的内容主要是测定换热器的总传热系数、对数传热温差和热平衡误差等,并就不通换热器、补贴两种流动方式、不同工况的传热情况和性能进行比较和分析。 1.实验前的准备工作 1)熟悉实验装置及使用仪表的工作原理和性能; 2)更换并安装好需要测试的换热器; 3)按顺流(或逆流)方式调整冷流换向阀门组各阀门的开或闭。 4)冷、热水箱充水。 2.进行试验 1)接通电源,启动冷水泵和热水泵(为提高热水温升速度,可先不启动冷水泵),并调节好合适的流量。 2)调整控温仪,使其能使加热水温控制在80摄氏度以下的某一指定温度。 3)将热水箱的手动和自动加热器均送电投入使用。 4)待自动电加热器第一次动作之后,切断手动电加热器开关。此后,加热系统进入自动控温状态。 5)利用温度测点选择琴健开关和温度数显示仪,观测和检查换热器冷热流体的进出口温度。 6)待冷热流体的温度基本稳定后,即可测出这些测温点的温度数值,同时在流量计上测读冷、热流体的流量读数,并将上述测试数据录入实验记录表中。 7)如需改变流动方向(顺逆流)的试验,或需绘制换热器传热性能曲线而要求改变工况(如改变冷热水流速或流量)进行试验,或需要重复进行试验时,都要重新安排试验方法与上述基本相同。记录下这些试验的测试数据。 8)实验结束后,首先关闭电加热器,5分钟后切断全部电源。 注意事项: 1.热流体在热水箱中加热温度不得超过80℃; 2.实验台使用前应加接地线,以保安全。

通信工程专业综合实验指导书

通信工程专业综合实验指导书 XX建筑大学 信息与电气工程学院 通信工程教研室 2009年3月

实验一、学习数字通信系统的SystemView仿真软件 一、实验目的 1.了解SystemView软件,学习数字通信系统SystemView仿真软件的使用方法,为实际的仿真应用打下良好的基础。 2.掌握软件设计和仿真的方法。 二、实验说明 SystemView是美国ELANIX公司推出的,基于Windows环境的用于系统仿真分析的可视化软件工具。使用它,用户可以用图符(Token)去描述自己的系统,无需与复杂的程序语言打交道,不用写代码即可完成各种系统的设计与仿真。 利用SystemView,可以构造各种复杂的模拟、数字、数模混合系统和各种多速率系统,它可用于各种线性或非线性控制系统的设计和仿真。 SystemView的图符资源十分丰富,特别适合于现代通信系统的设计、仿真和方案论证。还可进行CDMA通信系统和数字电视业务的分析;用户还可以自己用C语言编写自己的用户自定义库。 SystemView能自动执行系统连接检查,给出连接错误信息或尚悬空的待连接端信息,通知用户连接出错并通过显示指出出错的图标。 在系统设计和仿真方面,SystemView还提供了一个真实而灵活的窗口用以检查、分析系统波形,也可完成对仿真运行结果的各种运算、频谱分析、滤波。 三、实验设备 四、实验内容 1.安装SystemView,对该软件有一个感性认识

根据SystemView安装软件说明,在电脑上安装SystemView软件。 2.了解SystemView设计窗口 启动SystemView后就会出现如图1所示的系统设计窗口。它包括标题栏、菜单栏、工具条、滚动条、提示栏、图符库和设计窗工作区。其中设计窗口工作区是用于设置、连接各种图符以创建系统,进行系统仿真等操作;提示栏用于显示系统仿真的状态信息、功能快捷键的功能信息提示和图符的参数显示;滚动条用于移动观察当前的工作区域。当鼠标器位于功能图符上时,则该图符的具体参数就会自动弹出显示。 3.了解SystemView图符库 SystemView的图标库可分为3种,即基本库、专业库以及用户扩展库。分别了解相关图库的功能,便于后续设计使用。 4.了解SystemView分析窗口

换热站操作规程

换热站操作规程

换热站操作规程 一、运行前的检查 1、确认换热器、水泵、软化器、真空脱气机、自动过滤器(水医生)、配电系统经过检修,存在隐患得到整改,设备处于完好状态,水泵转向正确。 2、检查换热站内管道、阀门、仪器仪表等安装可靠,连接部位无漏水等现象。检查安全阀、压力表等经过校验。所有手动、电动阀门开关灵活。 3、检查各设备地脚螺栓有无松动,水泵对轮防护罩安全牢固,并对水泵进行手动盘车,确保转动灵活。 4、检查水处理设备的出水水质,确认水质合格,且水箱水位在3/4处。 5、打开集水缸、分水缸进出水阀门。 6、检查换热器各夹紧螺母有无松动现象,同时关闭换热器 一、二次侧进、出口阀门。 7、打开真空脱气机、自动过滤器等进出口阀门。关闭水泵进出口阀门。 8、确认各电机电源已送上,各设备接地线牢固。 9、上岗人员经培训合格持证上岗并配备到位。换热站内各标示齐全,各项运行记录本准备到位。 二、注水

1、检查阀门开关情况:打开过滤器(水医生)进出口阀门,打开供回集水器进出口阀门,打开交换器(冷水)进出口阀门,打开进补水泵管道阀门。其余阀门处于关闭状态。 2、开始注水 注水启动顺序:开启软化器---启动补水泵---启动循环泵 (0.15MP)---手动操作水医生(每1小时手动排污一次) 3、注水中检查 1、检查所有密封面、法兰连接处及所有焊缝处有无渗漏等现象。 2、检查运行设备电机温升是否正常。 3、检查运转设备有无震动现象。 4、检查软化系统水质是否合格、出水量是否满足要求,保证水箱水位不低于安全水位线。 5、检查供电系统是否正常,指示灯能否正确指示,各电器元件、接线有无过热等现象。 6、检查供回水压力是否能稳压。 7、检查电脑监控显示内容是否正常。 三、供暖系统运行 一、设备的启动 一)换热器的启动 1、打开换热器二次侧进出水阀门。 2、待二次网循环正常后,方可打开一次侧进出水阀门。

换热器性能综合测试实验

第一章实验装置说明 第一节系统概述 一、装置概述 目前我国传热元件的结构形式繁多,其换热性能差异较大,在合理选用和设计换热器的过程中,传热系数是度量其性能好坏的重要指标。本装置通过以应用较为广泛的间壁式换热器(共有套管式换热器、螺旋板式换热器、列管式换热器和钎焊板式换热器四种)为实验对象,对其传热性能进行测试。。 二、系统特点 1.采用四种不同结构的换热器(分别为套管式换热器、螺旋板式换热器、列管式换热器和钎焊板式换热器)作为实验对象,对其进行性能测量。 2.实验装置可测定换热器总的传热系数、对数传热温差和热平衡误差等,并能根据不同的换热器对传热情况和性能进行比较分析。 3.实验装置采用工业现场的真实换热器部件,与实际应用接轨。 三、技术性能 1.输入电源:三相五线制 AC380V±10% 50Hz 2.工作环境:温度-10℃~+40℃;相对湿度<85%(25℃);海拔<4000m 3.装置容量:<4kVA 4.套管式换热器:换热面积0.14m2 5.螺旋板式换换热器:换热面积1m2 6.列管式换热器:换热面积0.5m2 7.钎焊板式换热器:0.144m2 8.电加热器总功率:<3.5kW 9.安全保护:设有电流型漏电保护、接地保护,安全符合国家标准。 四、系统配置 1.被控对象系统:主要由不锈钢钢架、热水箱、热水泵、冷水箱、冷水泵、涡轮流量计、PT100温度传感器、板式换热器、列管式换热器、套管式换热器、螺旋板式换热器、冷凝器、电加热棒、电磁阀、电动球阀、黄铜闸阀以及管道管件等。 2.控制系统:主要由电源控制箱、漏电保护器、温度控制仪、流量显示仪、调压模块、开关电源以及开关指示灯等。 第二节换热器的认识 一、换热器的形式 能使热流体向冷流体传递热量,满足工艺要求的装置称为换热器。换热器的形式有很多,

化工原理课程设计管壳式换热器汇总

化工原理课程设计管壳式换热器汇总 公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]

设计一台换热器 目录 化工原理课程设计任务书 设计概述 试算并初选换热器规格 1. 流体流动途径的确定 2. 物性参数及其选型 3. 计算热负荷及冷却水流量 4. 计算两流体的平均温度差 5. 初选换热器的规格 工艺计算 1. 核算总传热系数 2. 核算压强降 经验公式 设备及工艺流程图 设计结果一览表 设计评述 参考文献 化工原理课程设计任务书 一、设计题目: 设计一台换热器 二、操作条件: 1、苯:入口温度80℃,出口温度40℃。 2、冷却介质:循环水,入口温度35℃。

3、允许压强降:不大于50kPa。 4、每年按300天计,每天24小时连续运行。 三、设备型式: 管壳式换热器 四、处理能力: 99000吨/年苯 五、设计要求: 1、选定管壳式换热器的种类和工艺流程。 2、管壳式换热器的工艺计算和主要的工艺尺寸的设计。 3、设计结果概要或设计结果一览表。 4、设备简图。(要求按比例画出主要结构及尺寸) 5、对本设计的评述及有关问题的讨论。 1.设计概述 热量传递的概念与意义 1.热量传递的概念 热量传递是指由于温度差引起的能量转移,简称传热。由热力学第二定律可知,在自然界中凡是有温差存在时,热就必然从高温处传递到低温处,因此传热是自然界和工程技术领域中极普遍的一种传递现象。 2. 化学工业与热传递的关系 化学工业与传热的关系密切。这是因为化工生产中的很多过程和单元操作,多需要进行加热和冷却,例如:化学反应通常要在一定的温度进行,为

换热器作业指导书23页word

一、换热器检修流程 二、换热器检修方案 工机具一览表 消耗材料一览表 三、换热器检修规程 一、换热器检修流程 1.目的与适用范围 保证设备的检修质量达到规范要求,保证设备检修过程的安全、可靠。 本作业指导书适用于化工企业中设计压力不大于 6.4Mpa,设计温度大于-20℃,小于520℃的壳式换热器的维护和检修。 根据检修周期一般可分为中修与大修,具体检修内容一般由甲方根据实际情况来决定。 2.引用标准及编制依据 《设备维护检修规程之换热器维护检修规程》 HG25004-91 3.工作内容及操作流程 4.操作程序及技术要求 4.1 施工准备

4.1.1 主要工机具准备:准备好施工用工机具,检验合格,并运到施工现场。 4.1.2 技术交底:技术人员应对检修人员进行全面的施工技术交底。 4.1.3 应在工艺处理完毕,并由业主出具设备开工单后方可进行施工。 4.2 管壳式换热器检修 4.2.1 解体 a) 拆封头:拆封头时应注意避免将密封面损伤。 b) 抽芯:用手动葫芦或卷扬机缓慢的将管束从壳体中抽出,在抽芯过程中要注意 不能损坏换热管。 4.2.2 对换热器的清理 a) 密封面的清理、研磨:将旧垫片取下后,用砂纸或非金属硬片之类的工具将铁 锈及其他污物清除干净,特别要注意将密封沟槽内的残留密封胶去除干净,不得在密封面留下任何划痕,必要时可用研磨沙进行研磨。 b) 清扫壳程和管程积存的污垢。 c) 常见的清理方法 ●机械除垢法:利用各种铲削刷等工具清理,并用压缩空气、高压水和蒸汽等 配合清理,当结垢较严重或全部堵死时,可用管式冲水钻(捅管机)冲洗。 ●冲洗法:利用高压水泵打出的水通过调节阀,再经过高压软管通至手枪试喷 射枪进行喷射清理污垢,若在水中混入石英砂效果更好。 ●化学除垢法:可根剧结垢物的化学成份采用酸洗或碱洗,采用化学清洗时必 须加入缓蚀剂或用清水冲洗以防止腐蚀设备。 4.2.3 检查与维修 4.2.3.1封头、壳体检查与维修

管壳式换热器设计 课程设计

河南理工大学课程设计管壳式换热器设计 学院:机械与动力工程学院 专业:热能与动力工程专业 班级:11-02班 学号: 姓名: 指导老师: 小组成员:

目录 第一章设计任务书 (2) 第二章管壳式换热器简介 (3) 第三章设计方法及设计步骤 (5) 第四章工艺计算 (6) 4.1 物性参数的确定 (6) 4.2核算换热器传热面积 (7) 4.2.1传热量及平均温差 (7) 4.2.2估算传热面积 (9) 第五章管壳式换热器结构计算 (11) 5.1换热管计算及排布方式 (11) 5.2壳体内径的估算 (13) 5.3进出口连接管直径的计算 (14) 5.4折流板 (14) 第六章换热系数的计算 (20) 6.1管程换热系数 (20) 6.2 壳程换热系数 (20) 第七章需用传热面积 (23) 第八章流动阻力计算 (25) 8.1 管程阻力计算 (25) 8.2 壳程阻力计算 (26) 总结 (28)

第一章设计任务书 煤油冷却的管壳式换热器设计:设计用冷却水将煤油由140℃冷却冷却到40℃的管壳式换热器,其处理能力为10t/h,且允许压强降不大于100kPa。 设计任务及操作条件 1、设备形式:管壳式换热器 2、操作条件 (1)煤油:入口温度140℃,出口温度40℃ (2)冷却水介质:入口温度26℃,出口温度40℃

第二章管壳式换热器简介 管壳式换热器是在石油化工行业中应用最广泛的换热器。纵然各种板式换热器的竞争力不断上升,管壳式换热器依然在换热器市场中占主导地位。目前各国为提高这类换热器性能进行的研究主要是强化传热,提高对苛刻的工艺条件和各类腐蚀介质适应性材料的开发以及向着高温、高压、大型化方向发展所作的结构改进。 强化传热的主要途径有提高传热系数、扩大传热面积和增大传热温差等方式,其中提高传热系数是强化传热的重点,主要是通过强化管程传热和壳程传热两个方面得以实现。目前,管壳式换热器强化传热方法主要有:采用改变传热元件本身的表面形状及表面处理方法,以获得粗糙的表面和扩展表面;用添加内物的方法以增加流体本身的绕流;将传热管表面制成多孔状,使气泡核心的数量大幅度增加,从而提高总传热系数并增加其抗污垢能力;改变管束支撑形式以获得良好的流动分布,充分利用传热面积。 管壳式热交换器(又称列管式热交换器)是在一个圆筒形壳体内设置许多平行管子(称这些平行的管子为管束),让两种流体分别从管内空间(或称管程)和管外空间(或称壳程)流过进行热量交换。 在传热面比较大的管壳式热交换器中,管子根数很多,从而壳体直径比较大,以致它的壳程流通截面大。这是如果流体的容积流量比较小,使得流速很低,因而换热系数不高。为了提高流体的流速,可在管外空间装设与管束平行的纵向隔板或与管束垂直的折流板,使管外流体在壳体内曲折流动多次。因装置纵向隔板而使流体来回流动的次数,称为程数,所以装了纵向隔板,就使热交换器的管外空间成为多程。而当装设折流板时,则不论流体往复交错流动多少次,其管外空间仍以单程对待。 管壳式热交换器的主要优点是结构简单,造价较低,选材范围广,处理能力大,还能适应高温高压的要求。虽然它面临着各种新型热交换器的挑战,但由于它的高度可靠性和广泛的适应性,至今仍然居于优势地位。 由于管内外流体的温度不同,因之换热器的壳体与管束的温度也不同。如果两流体温度相差较大,换热器内将产生很大的热应力,导致管子弯曲、断裂或从管板上拉脱。因此,当管束与壳体温度差超过50℃时,需采取适当补偿措施,

WDT-IIIC综合实验指导书

第三章一机—无穷大系统稳态运行方式实验一、实验目的 1.了解和掌握对称稳定情况下,输电系统的各种运行状态与运行参数的数值变化范围; 2.了解和掌握输电系统稳态不对称运行的条件;不对称度运行参数的影响;不对称运行对发电机的影响等。 二、原理与说明 电力系统稳态对称和不对称运行分析,除了包含许多理论概念之外,还有一些重要的“数值概念”。为一条不同电压等级的输电线路,在典型运行方式下,用相对值表示的电压损耗,电压降落等的数值范围,是用于判断运行报表或监视控制系统测量值是否正确的参数依据。因此,除了通过结合实际的问题,让学生掌握此类“数值概念”外,实验也是一条很好的、更为直观、易于形成深刻记忆的手段之一。实验用一次系统接线图如图2所示。

图2 一次系统接线图 本实验系统是一种物理模型。原动机采用直流电动机来模拟,当然,它们的特性与大型原动机是不相似的。原动机输出功率的大小,可通过给定直流电动机的电枢电压来调节。实验系统用标准小型三相同步发电机来模拟电力系统的同步发电机,虽然其参数不能与大型发电机相似,但也可以看成是一种具有特殊参数的电力系统的发电机。发电机的励磁系统可以用外加直流电源通过手动来调节,也可以切换到台上的微机励磁调节器来实现自动调节。实验台的输电线路是用多个接成链型的电抗线圈来模拟,其电抗值满足相似条件。“无穷大”母线就直接用实验室的交流电源,因为它是由实际电力系统供电的,因此,它基本上符合“无穷大”母线的条件。 为了进行测量,实验台设置了测量系统,以测量各种电量(电流、电压、功率、频率)。为了测量发电机转子与系统的相对位置角(功率角),在发电机轴上装设了闪光测角装置。此外,台上还设置了模拟短路故障等控制设备。 三、实验项目和方法 1.单回路稳态对称运行实验

换热器综合实验(实验)

动力工程学院研究生实验报告题目:换热器综合实验 学号:20121002012 姓名:毛娜 教师:王宏 动力工程学院中心实验室 2013年7月

报告内容 一实验背景 换热器在工业生产中是经常使用的设备。热流体借助于传热壁面,将热量传递给冷流体,以满足生产工艺的要求。本实验主要对应用较广的间壁式换热器中的三种换热:套管式换热器螺旋板式换热器和列管式换热器进行其性能的测试。其中,对套管式换热器和螺旋板式换热器可以进行顺流和逆流两种流动方式的性能测试,而列管式换热器只能作一种流动方式的性能测试。通过实验,主要达到以下目的: 1、熟悉换热器性能的测试方法; 2、了解套管式换热器,螺旋板式换热器和列管式换热器的结构特点及其性能的差别; 3、加深对顺流和逆流两种流动方式换热器换热能力差别的认识。 二实验方案 (一)实验装置 实验装置简图如图1所示: 图1 实验装置简图 1. 热水流量调节阀 2. 热水螺旋板、套管、列管启闭阀门组 3. 冷水流量计 4. 换热器进口压力表 5. 数显温度计 6. 琴键转换开关 7. 电压表 8. 电流表 9. 开关组 10. 冷水出口压力计11. 冷水螺旋板、套管、列管启闭阀门组 12. 逆顺流转换阀门组13. 冷水流量调节阀

换热器性能试验的内容主要为测定换热器的总传热系数,对数传热温差和热平衡误差等,并就不同换热器,不同两种流动方式,不同工况的传热情况和性能进行比较和分析。 本实验装置采用冷水可用阀门换向进行顺逆流实验;如工作原理图2所示。换热形式为热水—冷水换热式。热水加热采用电加热方式,冷—热流体的进出口温度采用数显温度计,可以通过琴键开关来切换测点。 注意事项: ①热流体在热水箱中加热温度不得超过80℃; ②实验台使用前应加接地线,以保安全。 图2 换热器综合实验台原理图 1. 冷水泵 2. 冷水箱 3. 冷水浮子流量计 4. 冷水顺逆流换向阀门组 5. 列管式换热器 6. 电加热水箱 7. 热水浮子流量计8. 回水箱9. 热水泵10. 螺旋板式换热器11. 套管式换热器 (二)实验台参数 1、换热器换热面积{F}: (1)套管式换热器:0.45m2 (2)螺旋板式换热器:0.65 m2 (3)列管式换热器:1.05 m2 2、电加热器总功率:9.0KW 3、冷、热水泵:

乐高实验指导书1

创新综合实验

目录 第一部分课程总览 (3) 第二部分综合实验 (6) Lab1 光电传感器自动跟踪小车 (6) Lab2 光电传感器测距功能测试 (8) Lab3 光电传感器位移传感应用 (12) Lab4 超声波传感器测试 (13) Lab5 超声波传感器位移传感应用 (17) 第三部分创新实验 a)双轮自平衡机器人; b)碰触传感机器人设计(基于Microsoft Robotics Studio平台); c)寻线机器人的仿真和建模及实例(基于Lejos-Osek 设计一个机器人的实例); d)自己提出一个合理的项目

第一部分 课程总览 1.目的与意义 提倡“素质教育”、全面培养和提高学生的创新以及综合设计能力是当前高等工科院校实验教学改革的主要目标之一。为适应素质教育的要求,高等工科院校的实验课程正经历着从“单一型”“验证型”向“设计型”“开放型”的变革过程。我院测试及控制类课程《电工电子技术》《测试技术》《微机原理及接口技术》等课程涵盖了机械设备及加工过程测试控制相关的电子电路、传感器、信号处理、接口、控制原理、测控计算机软件等理论及技术,具有综合性、实践性强的特点,但目前各课程的实验教学存在着孤立、分散、缺乏系统性的问题。为促进机械工程学科学生对于计算机测控技术的工程创新设计能力、促进相关理论知识的理解和灵活应用,本机电一体化创新综合实验以丹麦乐高(LEGO)公司教育部开发的积木式教学组件-智力风暴( MINDSTORMS)为基础进行。 采用LEGO MINDSTORMS 为基础建立开放型创新实验室,并根据我院测试及控制类课程《电工电子技术》《测试技术》《微机原理及接口技术》等课程设计多层次的综合创新实验设计项目,具有技术综合性和趣味性以及挑战性,能有效激发学生的学习兴趣,使学生在实践项目的过程中激发和强化他们的创造力、动手能力、协作能力、综合能力和进取精神;可使学生在实施项目的过程中对材料、机械、电子、计算机硬件、软件均有直观的认知并掌握机械工程测试与控制的综合分析设计能力。 2.实验基础 2.1 LEGO MINDSTORMS 控制器硬件 要求认识和理解RCX、NXT的基本结构,输入输出设备及接口,DCP传感器及接口,并熟练进行连接与操作。 2.2根据具体的实验要求选择适合的软件 ?Microsoft Robotics Studio基础 ?VPL编程 ?Microsoft Robotics Studio软件 ?Robolab软件 ?NXT软件 ?Matlab等等 2.3授课方式: 课堂讲授,编程以自学为主 参考书: a)LEGO快速入门 b)乐高组件和ROBOLAB软件在工程学中的应用 c)ROBOLAB2.9编程指南 d)ROBOLAB研究者指南

板式换热器安装及操作规程

板式换热器安装及操作规程 换热器安装 1 、板式换热器的两块压紧板上有 4 个吊耳,供起吊时用,吊绳不得挂在接管、定位横梁或板片上。 2 、换热器周围要留有 1 米左右的空间,以便于检修。 3 、冷热介质进出口接管之安装,应严格按照出厂铭牌所规定方向连接,否则,换热器性能将受到影响。 4 、安装管路时,应在管路上配齐阀门、压力表、温度计,流量控制阀应装在换热器进口处,在出口处应装排气阀。 5 、设备管道里面要清理干净,防止砂石焊渣等杂物进入换热器,造成堵塞。 6 、当使用介质不干净,有较大颗粒或长纤维时,进口处应装有过滤器。 7 、换热器连接管道安装焊接时,应将电焊地线搭在焊接处,严禁将地线搭在远处,使电流回路通过换热器而造成损坏。 使用投产前准备

1 、设备使用前应检查夹紧螺栓是否松动,按照说明书应紧到尺寸 A 保证所有螺栓均匀一致。 2 、使用前按 1.25 倍的操作压力分到进行水压试验,保压二十分钟无泄漏方可投产。 3 、本设备使用前用清自来水进行 20 分钟左右清洗循环即可了。 4 、在管路系统中应设有放气阀开启后应排出设备中空气防止空气停留在设备中,降低传热效果。 5 、冷热介质进出口接管之安装,应严格按出厂铭牌所规定方向连接。否则,没能发挥设备最佳性能。 6 、本设备用于食品、制药投产前将每只螺栓松开,将每板片用棕刷清洗干净,应按照流程进行均匀组装完毕。 82 o - 90 o 热水进行 10 - 20 分钟循环消毒,立即起动物料泵,使冷却物料把板片内剩余水全部顶出,直至完全是物料即可生产了。 板式换热器操作规程 1 、开始运行操作时,如两种介质压力不一样,要先应缓慢打开低压侧阀门,然后开入高压侧阀门。 2 、停车运行时应缓慢切断高压侧流体,再切断低压流体,请注意这样做将大大有助于本设备之使用寿命。

换热器综合实验报告

实验四换热器综合实验报告 一、实验原理 换热器为冷热流体进行热量交换的设备。本次实验所用的均是间壁式换热器,热量通过 固体壁面由热流体传递给冷流体,包括:套管式换热器、板式换热器和管壳式换热器。针对上述三种换热器进行其性能的测试。其中,对套管式换热器、板式换热器和管壳式换热器可以进行顺流和逆流两种方式的性能测试。换热器性能实验的内容主要为测定换热器的总传热系数,对数传热温差和热平衡温度等,并就不同换热器,不同两种流动方式,不同工况的传热情况和性能进行比较和分析。 传热过程中传递的热量正比于冷、热流体间的温差及传热面积,即Q = KAΔT (1) 式中:A—传热面积,m2 (1)套管式换热器:0.45m2 (2)板式换热器:0.65m2 (3)管壳式换热器:1.05m2 电加热器:6kV ΔT—冷热流体间的平均温差,℃ K—换热器的传热系数,W/(m·℃) Q—冷热流体间单位时间交换的热量,W.冷热流体间的平均温差ΔT 常采用对数平均温差。对于工业上常用的顺流和逆流换热器,对数平均温差由下式计算 除了顺流和逆流按公式(2)计算平均温差以外,其他流动形式的对数平均温差,都可 以由假想的逆流工况对数平均温差乘上一个修正系数得到。修正系数的值可以由各种传热学书上或换热器手册上查得。 换热器实验的主要任务是测定传热系数K。实验时,由恒温热水箱中出来的热水经水泵

和转子流量计后进入实验换热器内管。在热水进出换热器处分别用热电阻测量水温。从换热 器内管出来的已被冷却的热水仍然回到热水箱中,经再加热供循环使用。冷却水由冷水箱经 水泵、转子流量计后进入换热器套管,在套管中被加热后的冷却水排向外界,一般不再循环 使用。套管外包有保温层,以尽量减少向外界的散热损失。冷却水进出口温度用热电阻测量。 通常希望冷热侧热平衡误差小于3%。 实验中待各项温度达到稳定工况时,测出冷、热流体进出口的温度和冷、热流体的流量, 就可以由下式计算通过换热面的总传热量 根据计算得到的传热量、对数平均温差及已知的换热面积,便可由公式(1)计算出传热系数K 。 换热器类型 方式 热进温度 热出温度 冷进温度 冷出温度 热流体流量 冷流体流量 板式 顺流 57.1 43.5 22.8 31.8 78 72 逆流 56.5 35.9 23.1 33.1 76 72 套管式 顺流 57.6 40.7 22.5 31.6 72 78 逆流 56.8 35.2 22.1 33 72 64 管壳式 顺流 57.1 40.5 22.5 31.3 76 72 逆流 57.2 41.1 22.6 32 74 65 计算传热系数K 和换热器效率 TA Q K ?=

综合实验试验指导书(一)

综合实验实验指导书 福建工程学院土木工程学院 2013年12月

学生实验守则 1、实验前应认真按教师布置进行预习,明确实验目的、要求,掌握实验内容、方法和步骤。 2、实验前的准备工作,经指导教师或实验技术人员检查,合格后方可进行实验。实验过程中认真观察各种现象,记录实验数据,不能马虎的抄袭。实验完毕必须整理好本组实验仪器,并经指导教师或实验技术人员验收后,方可离开。实验后,认真分析实验结果,正确处理数据,细心制作图表,做好实验报告。不符合要求者,应重做。 3、实验室内必须保持安静,不准高声喧哗打闹,不准抽烟,随地吐痰,乱抛纸屑杂物,不准做与实验无关的事。不准穿背心、裤衩、拖鞋(除规定须换专业拖鞋外)或赤脚进入实验室。 4、必须严格遵守实验制订的各项规章制度,认真执行操作规程。注意人身和设备安全。 5、爱护国家财物。节约水电和药品器材,不得动用他组的仪器、工具材料。凡损坏仪器、工具者应检查原因,填写报损单,并依照管理办法赔偿损失。 前言

为了达到预期目的,试验课必须注意以下几方面问题: 1、试验前认真预习指导书和课本有关内容,同时应复习其它已学有关课程的有关章节,充分了解各个试验的目的要求、试验原理、方法和步骤,并进行一些必要的理论计算。一些控制值的计算工作,试验前必须做好。 2、较大的小组试验,应选出一名小组长,负责组织和指挥整个试验过程,直至全组试验报告都上交后卸任,小组各成员必须服从小组长和指导教师的指挥,要明确分工,协调工作,不得擅离各自的岗位。 3、试验开始前。必须仔细检查试件和各种仪器仪表是否安装稳妥,荷载是否为零,安全措施是否有效,各项准备工作是否完成,要经指导教师检查通过后,试验才能开始。 4、试验时应严肃认真,密切注意观察试验现象,及时加以分析和记录,要以严谨的科学态度对待试验的每一步骤和每一个数据。 5、严格遵守实验室的规章制度,非试验用仪器设备不要乱动;试验用仪器、仪表、设备,要严格按规程进行操作,遇有问题及时向指导教师报告。 6、试验中要小心谨慎,不要碰撞仪器、仪表、试件和仪表架等。 7、试验结束后,要及时卸下荷载,使仪器、设备恢复原始状态,以后小心卸下仪器、仪表,擦净、放妥、清点归还,经教师认可并把试验记录交教师签字后离开。 8、试验资料应及时整理,按时独立完成试验报告,除小组分工由别人记录的原始数据外,严禁抄袭。 9、试验报告要求原始记录齐全、计算分析正确、数据图表清楚。 10、经教师认可,试验也允许采用另外方案进行。 试验一量测仪器的参观与操作练习

板式换热器安全操作规程通用版

操作规程编号:YTO-FS-PD550 板式换热器安全操作规程通用版 In Order T o Standardize The Management Of Daily Behavior, The Activities And T asks Are Controlled By The Determined Terms, So As T o Achieve The Effect Of Safe Production And Reduce Hidden Dangers. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

板式换热器安全操作规程通用版 使用提示:本操作规程文件可用于工作中为规范日常行为与作业运行过程的管理,通过对确定的条款对活动和任务实施控制,使活动和任务在受控状态,从而达到安全生产和减少隐患的效果。文件下载后可定制修改,请根据实际需要进行调整和使用。 (一)开车前准备 1.开机运行前,检查各夹紧螺栓有无松动,如有松动应均匀拧紧,拧紧时保证压紧板平行。 2.使用前按1.25倍的工作压力分到进行水压试验,保压20分钟无泄漏。第一次使用必须测压,以后可以间隔测压。 3.在管路系统中应设有放气阀,以排尽设备中的空气,以防止空气停在设备中,影响传热。 4.冷热介质按规定方向进入,不可任意更改接管方向,否则影响传热。 5.使用前应对换热器进行严格清洗消毒,清洗时可用热水进行,以除去设备中油污和杂物。 (二)操作程序 1.打开设备接管处的各介质出口阀门,在流量,压力均低于正常操作的情况,缓缓开关冷侧的进口阀观察设备有无异常,调整各进出口阀门,使流量、压力均满足工艺要求,达到正常工作状态。

化工原理课程设计换热器设计

化工原理 课 程 设 计 设计任务:换热器 班级:13级化学工程与工艺(3)班 姓名:魏苗苗 学号:1320103090 目录 化工原理课程设计任务书 (2) 设计概述 (3) 试算并初选换热器规格 (6) 1. 流体流动途径的确定 (6)

2. 物性参数及其选型 (6) 3. 计算热负荷及冷却水流量 (7) 4. 计算两流体的平均温度差 (7) 5. 初选换热器的规格 (7) 工艺计算 (10) 1. 核算总传热系数 (10) 2. 核算压强降 (13) 设计结果一览表 (16) 经验公式 (16) 设备及工艺流程图 (17) 设计评述 (17)

参考文献 (18) 化工原理课程设计任务书 一、设计题目: 设计一台换热器 二、操作条件:1、苯:入口温度80℃,出口温度40℃。 2、冷却介质:循环水,入口温度32.5℃。 3、允许压强降:不大于50kPa。 4、每年按300天计,每天24小时连续运行。 三、设备型式:管壳式换热器 四、处理能力:109000吨/年苯 五、设计要求: 1、选定管壳式换热器的种类和工艺流程。 2、管壳式换热器的工艺计算和主要的工艺尺寸的设计。 3、设计结果概要或设计结果一览表。

4、设备简图。(要求按比例画出主要结构及尺寸) 5、对本设计的评述及有关问题的讨论。 六、附表: 1.设计概述 1.1热量传递的概念与意义 1.1.1热量传递的概念 热量传Array递是指由于 温度差引起 的能量转移, 简称传热。由 热力学第二 定律可知,在 自然界中凡 是有温差存 在时,热就必 然从高温处 传递到低温 处,因此传热

换热站操作规程-(1)

第一章总则 第一条为了确保换热机组运行安全、稳定、经济、状态完好,规范换热站运行管理工作及操作人员操作行为,结合本部门实际情况,特制定本管理制度。 第二章换热站设备操作规程 (一)运行前操作规程 第二条确定二次网补水定压点,检查水处理设备的出水水质,确认水质合格后开启水箱的进水阀门将水箱备满水。 第三条对补水泵及循环泵轴进行手动盘车,察看是否能转动灵活,检查润滑油量是否符合标准。 第四条设备运行前,应检查换热器各夹紧螺母有无松动现象,同时检查换热器一、二次侧进、出口阀门是否关闭。 第五条要注意清除管线、过滤器内的杂物,以免堵塞换热器。 第六条检查管线连接是否正确,避免冷热介质相混,同时开启一次侧旁通阀。

第七条开启二次侧的进口阀门,启动二次侧补水泵,将板式换热器和二次网管路系统充满水,并排净内部空气(在二次网系统顶点排气阀排掉系统空气。待排气阀排气带水时,关闭排气阀,保证补水点规定压力。) 第八条泵启动时应关闭其他所有的阀门,启动后再缓慢的开启这些阀,以避免流量和压力过大。 第九条接通电源,启动二次水循环水泵,先开循环泵进口阀门,随后缓慢开启循环水泵出口阀门。 第十条在循环泵试车的二十分钟内,应不断检测水泵电机的温升是否超出铭牌规定值,并检查整个管网是否有漏点。 第十一条将管网压力提高到安全阀规定的开启压力,检验安全阀是否灵敏可靠,超压保护装置要进行试验。 第十二条在确认二次侧循环泵及二次侧管网工作正常后,依次缓慢打开换热器上的一次侧热源介质出、进口阀门,使流量逐渐达到规定要求,关闭一次侧旁通阀。 第十三条检查所有密封面及所有焊缝处有无渗漏等不正常现象。 (二)运行时操作规程

传热综合实验(参考提供)

实验五 传热综合实验 一、实验目的 1.通过对空气—水蒸气简单套管换热器的实验研究,掌握对流传热系数i α的测定方法,加深对其概念和影响因素的理解。并应用线性回归分析方法,确定关联式Nu=ARe m Pr 0.4中常数A 、m 的值。 2.通过对管程内部插有螺旋线圈的空气—水蒸气强化套管换热器的实验研究,测定其准数关联式Nu=BRe m 中常数B 、m 的值和强化比Nu/Nu 0,了解强化传热的基本理论和基本方式。 二、实验内容 1. 测定5~6个不同流速下普通套管换热器的对流传热系数i α,对i α的实验数据进行线性回归,求关联式Nu=ARe m Pr 0.4中常数A 、m 的值。 2.测定5~6个不同流速下强化套管换热器的对流传热系数i α,对i α的实验数据进行线性回归,求关联式Nu=BRe m 中常数B 、m 的值。 3.同一流量下,按实验1所得准数关联式求得Nu 0,计算传热强化比Nu/Nu 0。 三、实验原理 (一) 普通套管换热器传热系数及其准数关联式的测定 1.对流传热系数i α的测定 对流传热系数i α可以根据牛顿冷却定律,用实验来测定。因为i α<

《微控制器应用综合实验》实验指导书

《微控制器应用综合实验》实验指导书 实验一 Altium Designer软件的基本操作 一、实验目的 1、熟悉软件的设计编辑界面。 2、熟悉原理图的菜单栏、工具栏及工作面板 3、熟悉PCB编辑器的菜单栏、工具栏及工作面板 4、学会并掌握原理图库文件中原理图符号的绘制方法。 5、学会创建PCB新元件。 二、实验内容 本实验学习软件自带的参考设计 4 Port Serial Interface.PRJPCB,打开其中的原理图文件、PCB版图文件,原理图库文件和PCB库文件,了解相应的工作面板和工具栏,以及元器件属性的设置方法。通过原理图符号以及PCB新元件的绘制,进一步掌握工具栏和菜单栏的使用。 三、实验设备和仪器 1、PC机一台 2、正版Altium Designer软件一套 四、实验步骤 参考实验指导书附录部分。 五、实验报告 1、叙述实验步骤中图纸平移、缩放,对象的连线拖动和不连线拖动等操作的实现方法。 2、详述查找元器件TL16C554的具体步骤,和加载包含此元器件的集成库的方法。 3、详述在库面板中查找电阻、电容、二极管的具体步骤 4、详述布线宽度的设置方法和电气设计中安全间距规则的设置方法 4、详述绘制元器件1488_1的具体步骤。 5、详述绘制PCB元件DIP8的具体步骤。 附录:实验步骤 1.打开PCB工程文件4 Port Serial Interface.PRJPCB, 该工程文件在\Altium Designer\ Examples\Reference Designs\4 Port Serial Interface 文件夹中 2. 打开此工程中的原理图文件ISA Bus and Address Decoding.SchDoc 3. 尝试使用视图菜单(View 菜单)的快捷键和工具栏来实现图纸显示区域的设置。 4. 使用鼠标进行图纸的平移和缩放。 5. 分别进行单个对象和多个对象的选择 6. 分别实现所中对象的连线拖动和不连线拖动 7. 双击其中一个元器件。器件属性对话框会显示,你可以编辑器件的任何属性。 8. 实现元器件的复制和粘贴 9. 选中网络标签+12V_U/P,将其删除;然后执行菜单Place ?Net Label添加一个+12V_U/P 的网络标签。 10. 删除原理图中的任一总线,然后执行菜单Place ?Bus重新添加一条总线。 11. 删除原理图中的任一导线,然后执行菜单Place ?Wire重新添加一条导线。 12. 删除原理图中的任一总线入口,然后执行菜单Place ?Bus Entry重新添加一条导线。

换热器安全操作规程

换热器安全操作规程 一、目的为规范换热器的使用、维护和保养行为,防止事故发生,制定本规程。 二、范围适用于换热器的使用、维护、保养工作。 三、责任换热器的使用、维护、保养人员对本规程负责。 四、内容 1.换热器的基本结构及主要参数 1.1.换热器的基本结构 根据不同的使用目的,换热器可以分为四类:加热器、冷却器、蒸发器、冷凝器。 固定管板式列管式换热器,由管束、管板、折流板、分程隔板、壳体和封头等部件构成。 1.2.换热器的主要参数设计压力、最高工作压力、设计温度、换热面积 2.换热器的工作原理 2.1.列管式换热器是以封闭在壳体中管束的壁面作为传热面的间壁式换热器。 2.2.进行换热的冷热两种流体,一种在管内流动,称为管程流体;另一种在管外流动,称为壳程流体。 2.3.为提高管外流体的传热分系数,通常在壳体内安装若干挡板。挡板可提高壳程流体速度,迫使流体按规定路程多次横向通过管束,增强流体湍流程度。 2.4.流体每通过管束一次称为一个管程;每通过壳体一次称为一个壳程。为提高管内流体速度,可在两端管箱内设置隔板,将全部管子均分成若干组。这样流体每次只通过部分管子,因而在管束中往返多次,这称为多管程。 2.5.同样,为提高管外流速,也可在壳体内安装纵向挡板,迫使流体多次通过壳体空间,称为多壳程。多管程与多壳程可配合应用。 3.启动前的检查及准备工作 3.1.检查受压元件(如封头、筒体、设备法兰、管板、换热管等)有无异常情况。 3.2.检查安全附件(温度表、压力表等)是否完好和是否在有效检验期内。 3.3.检查阀门开启是否灵活,阀门开闭的位置是否正确。 4.开车程序 4.1.对采用加热形式的换热器时 4.1.1.先开启壳程出口阀门,然后开启管程出口阀门。 4.1.2.再开启管程的进口阀门,向加热器进料。

化工传热综合实验装置

化工传热综合实验装置 说明书 化学与生物工程学院环境工程实训室 2016.11

一、实验目的: 1.通过对空气—水蒸气简单套管换热器的实验研究,掌握对流传热系数i α的测定方法,加深对其概念和影响因素的理解。 2.通过对管程内部插有螺旋线圈的空气—水蒸气强化套管换热器的实验研究, 掌握对流传热系数i α的测定方法,加深对其概念和影响因素的理解。 3.学会并应用线性回归分析方法,确定关联式Nu=ARe m Pr 0.4中常数A 、m 的值。 4.由实验数据及关联式Nu=ARe m Pr 0.4计算出Nu 、Nu 0,求出强化比Nu/Nu 0,加 深理解强化传热的基本理论和基本方式。 二、实验内容: 1.测定5-6组不同流速下简单套管换热器的对流传热系数i α。 2.测定5-6组不同流速下强化套管换热器的对流传热系数i α。 3.对i α的实验数据进行线性回归,确定关联式Nu=ARe m Pr 0.4中常数A 、m 的数值。 4.通过关联式Nu=ARe m Pr 0.4计算出Nu 、Nu 0,并确定传热强化比Nu/Nu 0。 三、实验原理: 1.普通套管换热器传热系数测定及准数关联式的确定: (1)对流传热系数i α的测定: 对流传热系数i α可以根据牛顿冷却定律,通过实验来测定。因为i α<

相关文档