文档视界 最新最全的文档下载
当前位置:文档视界 › 等比数列单元测试题+答案 百度文库

等比数列单元测试题+答案 百度文库

等比数列单元测试题+答案 百度文库
等比数列单元测试题+答案 百度文库

一、等比数列选择题

1.等比数列{}n a 的前n 项和为n S ,416a =-,314S a =+,则公比q 为( )

A .2-

B .2-或1

C .1

D .2

2.已知正项等比数列{}n a 的公比不为1,n T 为其前n 项积,若20172021T T =,则2020

2021

ln ln a a =

( ) A .1:3

B .3:1

C .3:5

D .5:3

3.已知各项不为0的等差数列{}n a 满足2

6780a a a -+=,数列{}n b 是等比数列,且

77b a =,则3810b b b =( )

A .1

B .8

C .4

D .2 4.设{a n }是等比数列,若a 1 + a 2 + a 3 =1,a 2 + a 3 + a 4 =2,则 a 6 + a 7 + a 8 =( ) A .6 B .16 C .32 D .64 5.若1,a ,4成等比数列,则a =( )

A .1

B .2±

C .2

D .2-

6.已知数列{}n a 中,其前n 项和为n S ,且满足2n n S a =-,数列{}

2

n a 的前n 项和为n T ,若2

(1)0n n n S T λ-->对*n N ∈恒成立,则实数λ的取值范围是( )

A .()3,+∞

B .()1,3-

C .93,5?? ???

D .91,5?

?- ??

?

7.等差数列{}n a 的首项为1,公差不为0.若2a 、3a 、6a 成等比数列,则{}n a 的前6项的和为( ) A .24-

B .3-

C .3

D .8

8.等比数列{}n a 的各项均为正数,且101010113a a =.则313232020log log log a a a +++=

( ) A .3

B .505

C .1010

D .2020

9.记n S 为正项等比数列{}n a 的前n 项和,若2415S S ==,,则7S =( ). A .710S =

B .72

3

S =

C .7623

S =

D .7127

3

S =

10.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件

11a >,66771

1,

01

a a a a -><-,则下列结论正确的是( ) A .681a a >

B .01q <<

C .n S 的最大值为7S

D .n T 的最大值为7T

11.已知等比数列{}n a 的前n 项和为n S ,若123

111

2a a a ++=,22a =,则3S =( ) A .8

B .7

C .6

D .4

12.已知1a ,2a ,3a ,4a 成等比数列,且()2

1234123a a a a a a a +++=++,若11a >,则( )

A .13a a <,24a a <

B .13a a >,24a a <

C .13a a <,24a a >

D .13a a >,24a a >

13.已知数列{}n a 的首项11a =,前n 项的和为n S ,且满足()

*

122n n a S n N ++=∈,则

满足

2100111

1000

10

n n

S S 的n 的最大值为( ). A .7

B .8

C .9

D .10

14.已知数列{}n a 为等比数列,12a =,且53a a =,则10a 的值为( ) A .1或1-

B .1

C .2或2-

D .2

15.已知1,a 1,a 2,9四个实数成等差数列,1,b 1,b 2,b 3,9五个数成等比数列,则b 2(a 2﹣a 1)等于( ) A .8

B .﹣8

C .±8

D .98

16.设数列{}n a ,下列判断一定正确的是( )

A .若对任意正整数n ,都有24n

n a =成立,则{}n a 为等比数列

B .若对任意正整数n ,都有12n n n a a a ++=?成立,则{}n a 为等比数列

C .若对任意正整数m ,n ,都有2m n

m n a a +?=成立,则{}n a 为等比数列

D .若对任意正整数n ,都有

312

11

n n n n a a a a +++=??成立,则{}n a 为等比数列

17.已知等比数列{}n a 的前n 项和为2,2n S a =,公比2q ,则5S 等于( )

A .32

B .31

C .16

D .15

18.已知等比数列的公比为2,其前n 项和为n S ,则3

3

S a =( ) A .2

B .4

C .

74 D .

158

19.已知正项等比数列{}n a 满足11

2

a =,2432a a a =+,又n S 为数列{}n a 的前n 项和,则5S =( ) A .

312

或112

B .

31

2 C .15

D .6

20.各项为正数的等比数列{}n a ,478a a ?=,则2122210log log log a a a +++=( )

A .15

B .10

C .5

D .3

二、多选题

21.已知1a ,2a ,3a ,4a 依次成等比数列,且公比q 不为1.将此数列删去一个数后得到的数列(按原来的顺序)是等差数列,则正数q 的值是( ) A

B

C

D

22.若数列{}n a 的前n 项和是n S ,且22n n S a =-,数列{}n b 满足2log n n b a =,则下列选项正确的为( ) A .数列{}n a 是等差数列

B .2n

n a =

C .数列{}2n

a 的前n 项和为2122

3

n +-

D .数列11n n b b +?

?

?

????

的前n 项和为n T ,则

1n T <

23.已知等比数列{}n a 公比为q ,前n 项和为n S ,且满足638a a =,则下列说法正确的是( )

A .{}n a 为单调递增数列

B .6

3

9S S = C .3S ,6S ,9S 成等

比数列

D .12n n S a a =-

24.关于递增等比数列{}n a ,下列说法不正确的是( ) A .10a >

B .1q >

C .

1

1n

n a a +< D .当10a >时,

1q >

25.对任意等比数列{}n a ,下列说法一定正确的是( ) A .1a ,3a ,5a 成等比数列 B .2a ,3a ,6a 成等比数列 C .2a ,4a ,8a 成等比数列

D .3a ,6a ,9a 成等比数列

26.已知集合{

}*

21,A x x n n N

==-∈,{}*

2,n

B x x n N ==∈将A

B 的所有元素从

小到大依次排列构成一个数列{}n a ,记n S 为数列{}n a 的前n 项和,则使得112n n S a +>成立的n 的可能取值为( ) A .25

B .26

C .27

D .28

27.在公比为q 等比数列{}n a 中,n S 是数列{}n a 的前n 项和,若521127,==a a a ,则下列说法正确的是( ) A .3q = B .数列{}2n S +是等比数列 C .5121S =

D .()222lg lg lg 3n n n a a a n -+=+≥

28.数列{}n a 的前n 项和为n S ,若11a =,()

*

12n n a S n N +=∈,则有( ) A .1

3n n S -= B .{}n S 为等比数列 C .1

23n n a -=?

D .2

1,

1,23,2n n n a n -=?=?

?≥?

29.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并且满足条件

11a >,671a a >,

671

01

a a -<-,则下列结论正确的是( ) A .01q <<

B .8601a a <<

C .n S 的最大值为7S

D .n T 的最大值为6T

30.已知数列{}n a 为等差数列,11a =,且2a ,4a ,8a 是一个等比数列中的相邻三项,记()0,1n

a n n

b a q q =≠,则{}n b 的前n 项和可以是( )

A .n

B .nq

C .

()

12

1n n n q nq nq q q ++---

D .

()

211

2

1n n n q nq nq q q ++++---

31.已知数列{}n a 满足11a =,()*123n

n n

a a n N a +=

∈+,则下列结论正确的有( ) A .13n a ??

+?

???

为等比数列 B .{}n a 的通项公式为1123

n n a +=-

C .{}n a 为递增数列

D .1n a ???

???

的前n 项和2

234n n T n +=-- 32.在公比q 为整数的等比数列{}n a 中,n S 是数列{}n a 的前n 项和,若 1418a a +=, 2312a a +=,则下列说法正确的是( )

A .2q

B .数列{}2n S +是等比数列

C .8

510S =

D .数列{}lg n a 是公差为2的等差数列

33.已知数列{a n }为等差数列,首项为1,公差为2,数列{b n }为等比数列,首项为1,公比为2,设n n b c a =,T n 为数列{c n }的前n 项和,则当T n <2019时,n 的取值可以是下面选项中的( ) A .8

B .9

C .10

D .11

34.已知等比数列{a n }的公比2

3

q =-

,等差数列{b n }的首项b 1=12,若a 9>b 9且a 10>b 10,

则以下结论正确的有( ) A .a 9?a 10<0

B .a 9>a 10

C .b 10>0

D .b 9>b 10

35.关于等差数列和等比数列,下列四个选项中不正确的有( )

A .若数列{}n a 的前n 项和2(n S an bn c a =++,b ,c 为常数)则数列{}n a 为等差数列

B .若数列{}n a 的前n 项和1

22n n S +=-,则数列{}n a 为等差数列

C .数列{}n a 是等差数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,?仍为等差数列

D .数列{}n a 是等比数列,n S 为前n 项和,则n S ,2n n S S -,32n n S S -,?仍为等比数列;

【参考答案】***试卷处理标记,请不要删除

一、等比数列选择题 1.A 【分析】

由416a =-,314S a =+列出关于首项与公比的方程组,进而可得答案. 【详解】 因为314S a =+, 所以234+=a a ,

所以()2

13

1416

a q q a q ?+=??=-??, 解得2q =-, 故选:A . 2.A 【分析】

由20172021T T =得20182019202020211a a a a =,由等比数列性质得20182021201920201a a a a ==,这样可把2020a 和2021a 用q 表示出来后,可求得2020

2021

ln ln a a . 【详解】

{}n a 是正项等比数列,0n a >,0n T ≠,*n N ∈,

所以由2017202120172018201920202021T T T a a a a ==?,得20182019202020211a a a a =, 所以20182021201920201a a a a ==,设{}n a 公比为q ,1q ≠,

22021201820213()1a a a q ==,2

202020192020()1a a a q

==,即322021a q =,122020a q =, 所以

12

2020

3

2021

2

1ln ln ln 123ln 3ln ln 2

q

a q a q q ===. 故选:A . 【点睛】

本题考查等比数列的性质,解题关键是利用等比数列性质化简已知条件,然后用公比q 表示出相应的项后可得结论. 3.B 【分析】

根据等差数列的性质,由题中条件,求出72a =,再由等比数列的性质,即可求出结果. 【详解】

因为各项不为0的等差数列{}n a 满足2

6780a a a -+=,

所以2

7720a a -=,解得72a =或70a =(舍);

又数列{}n b 是等比数列,且772b a ==,

所以3

3810371178b b b b b b b ===.

故选:B. 4.C 【分析】

根据等比数列的通项公式求出公比2q ,再根据等比数列的通项公式可求得结果.

【详解】

设等比数列{}n a 的公比为q ,

则234123()2a a a a a a q ++=++=,又1231a a a ++=,所以2q

所以55

678123()1232a a a a a a q ++=++?=?=.

故选:C . 5.B 【分析】

根据等比中项性质可得24a =,直接求解即可. 【详解】

由等比中项性质可得:

2144a =?=,

所以2a =±, 故选:B 6.D

【分析】

由2n n S a =-利用11,1,2n n

n S n a S S n -=?=?-≥?,得到数列{}n

a 是以1为首项,1

2为公比的等比数列,进而得到{}

2

n a 是以1为首项,

1

4

为公比的等比数列,利用等比数列前n 项和公式得到n S ,n T ,将2(1)0n

n n S T λ-->恒成立,转化为(

)

()

321(1)

2

10n

n

n

λ---+>对

*n N ∈恒成立,再分n 为偶数和n 为奇数讨论求解.

【详解】

当1n =时,112S a =-,得11a =; 当2n ≥时,由2n n S a =-, 得112n n S a --=-,

两式相减得11

2

n n a a -=, 所以数列{}n a 是以1为首项,

1

2

为公比的等比数列. 因为11

2

n n a a -=, 所以22114

n n a a -=.

又2

11a =,所以{}

2

n a 是以1为首项,

1

4

为公比的等比数列, 所以1112211212n

n n S ??- ???????==-?? ???????-,11414113414

n

n

n T ??- ???????==-?? ???????-,

由2(1)0n n n

S T λ-->,得2

14141(1)10234n n

n

λ????????---?->???? ? ?????????????, 所以2

21131(1)1022n n

n λ????????---->???? ? ?????????????

, 所以2

11131(1)110222n n n n

λ????????????----+>?????? ? ? ????????????????

???.

又*n N ∈,所以1102n

??-> ???

所以1131(1)1022n n n

λ????????---+>???? ? ????????????

?,

即(

)

()

321(1)

2

10n

n

n

λ---+>对*n N ∈恒成立,

当n 为偶数时,()()321210n

n

λ--+>,

所以()()3213216

632121

21

n

n

n n n λ-+-<==-

+++, 令6

321

n n b =-+,则数列{}n b 是递增数列,

所以22

69

3215

λb <=-=+; 当n 为奇数时,(

)()

321210n

n

λ-++>,

所以()()3213216

632121

21

n

n

n n n λ-+--<==-

+++,

所以16

332121

λb -<=-=-=+, 所以1λ>-.

综上,实数λ的取值范围是91,5?

?- ??

?.

故选:D. 【点睛】

方法点睛:数列与不等式知识相结合的考查方式主要有三种:一是判断数列问题中的一些不等关系;二是以数列为载体,考查不等式的恒成立问题;三是考查与数列问题有关的不等式的证明.在解决这些问题时,往往转化为函数的最值问题. 7.A 【分析】

根据等比中项的性质列方程,解方程求得公差d ,由此求得{}n a 的前6项的和. 【详解】

设等差数列{}n a 的公差为d ,由2a 、3a 、6a 成等比数列可得2

326a a a =,

即2

(12)(1)(15)d d d +=++,整理可得220d d +=,又公差不为0,则2d =-, 故{}n a 前6项的和为616(61)6(61)

661(2)2422

S a d ?-?-=+=?+?-=-. 故选:A 8.C 【分析】

利用等比数列的性质以及对数的运算即可求解. 【详解】

由120202201932018101010113a a a a a a a a =====,

所以313232020log log log a a a ++

+

()10103101010113log log 31010a a ===.

故选:C 9.D 【分析】

利用等比数列前n 项和公式列出方程组,求出首项和公比,由此能求出这个数列的前7项和. 【详解】

n S 为正项等比数列{}n a 的前n 项和,21S =,45S =,

∴21410(1)

11(1)51q a q q

a q q ?

?>?

?-?=?

-??-?=-??,解得113a =,2q ,

771

(12)

1273123

S -∴==

-.

故选:D . 10.B 【分析】

根据11a >,66771

1,01

a a a a -><-,分0q < ,1q ≥,01q <<讨论确定q 的范围,然后再逐项判断. 【详解】

若0q <,因为11a >,所以670,0a a <>,则670a a ?<与671a a ?>矛盾,

若1q ≥,因为11a >,所以671,1a a >>,则67101a a ->-,与671

01

a a -<-矛盾, 所以01q <<,故B 正确;

因为

671

01

a a -<-,则6710a a >>>,所以()26870,1a a a =∈,故A 错误; 因为0n a >,01q <<,所以1

11n n a q a S q q

=

---单调递增,故C 错误; 因为7n ≥时,()0,1n a ∈,16n ≤≤时,1n a >,所以n T 的最大值为6T ,故D 错误; 故选:B 【点睛】

关键点点睛:本题的关键是通过穷举法确定01q <<.

11.A 【分析】

利用已知条件化简,转化求解即可. 【详解】

已知{}n a 为等比数列,132

2a a a ∴=,且22a =,

满足

131233

21231322111124

a a a a a S a a a a a a a +++++=+===,则S 3=8. 故选:A . 【点睛】 思路点睛:

(1)先利用等比数列的性质,得132

2a a a ∴=,

(2)通分化简3

12311124

S a a a ++==. 12.B 【分析】

由12340a a a a +++≥可得出1q ≥-,进而得出1q >-,再由11a >得出0q <,即可根据q 的范围判断大小. 【详解】

设等比数列的公比为q , 则(

)()()23

2

123411

1+++1+1+0a a a a a q q q

a q q +++==≥,可得1q ≥-,

当1q =-时,12340a a a a +++=,()2

1230a a a ++≠,1q ∴>-,

()2

1234123a a a a a a a +++=++,即()2

23211+++1++q q q a q q =,

()

23

12

21+++11++q q q a q q ∴=

>,整理得432++2+0q q q q <,显然0q <,

()1,0q ∴∈-,()20,1q ∈,

()213110a a a q ∴-=->,即13a a >,

()()32241110a a a q q a q q ∴-=-=-<,即24a a <.

故选:B. 【点睛】

关键点睛:本题考查等比数列的性质,解题的关键是通过已知条件判断出()1,0q ∈-,从而可判断大小. 13.C 【分析】

根据(

)*

122n n a S n N

++=∈可求出n

a

的通项公式,然后利用求和公式求出2,n n S S ,结合

不等式可求n 的最大值. 【详解】

1122,22()2n n n n a S a S n +-+=+=≥相减得1(22)n n a a n +=≥,11a =,21

2

a =

;则{}n a 是首项为1,公比为12的等比数列,100111111000210n

??<+< ???,1111000210

n

??<< ???,则n 的最大值为9. 故选:C 14.C 【分析】

根据等比数列的通项公式,由题中条件,求出公比,进而可得出结果. 【详解】

设等比数列{}n a 的公比为q ,

因为12a =,且53a a =,所以2

1q =,解得1q =±, 所以9

1012a a q ==±.

故选:C. 15.A 【分析】

由已知条件求出公差和公比,即可由此求出结果. 【详解】

设等差数列的公差为d ,等比数列的公比为q , 则有139d +=,4

19q ?=,

解之可得83

d =

,2

3q =, ()22218

183

b a a q ∴-=??=.

故选:A. 16.C 【分析】

根据等比数列的定义和判定方法逐一判断. 【详解】

对于A ,若24n

n

a =,则2n

n a =±,+1

+12n n a =±,则1

2n n

a a +=±,即后一项与前一项的比不一定是常数,故A 错误;

对于B ,当0n a =时,满足12n n n a a a ++=?,但数列{}n a 不为等比数列,故B 错误; 对于C ,由2

m n

m n a a +?=可得0n a ≠,则+1

+12

m n m n a a +?=,所以1+1

222

n n m n m n a a +++==,故

{}n a 为公比为2的等比数列,故C 正确;

对于D ,由

312

11

n n n n a a a a +++=??可知0n a ≠,则312n n n n a a a a +++?=?,如1,2,6,12满

足312n n n n a a a a +++?=?,但不是等比数列,故D 错误. 故选:C. 【点睛】

方法点睛:证明或判断等比数列的方法,

(1)定义法:对于数列{}n a ,若()1

0,0n n n

a q q a a +=≠≠,则数列{}n a 为等比数列; (2)等比中项法:对于数列{}n a ,若()2

210n n n n a a a a ++=≠,则数列{}n a 为等比数列;

(3)通项公式法:若n

n a cq =(,c q 均是不为0的常数),则数列{}n a 为等比数列;

(4)特殊值法:若是选择题、填空题可以用特殊值法判断,特别注意0n a =的判断. 17.B 【分析】

先求得首项,根据等比数列的求和公式,代入首项和公比的值,即可计算出5S 的值. 【详解】

因为等比数列{}n a 的前n 项和为2,2n S a =,公比2q

,所以2

11a a q

=

=,又因为1111n

n

a q S q

q

,所以()551123112

S -=

=-.

故选:B. 18.C 【分析】

利用等比数列的通项公式和前n 项和公式代入化简可得答案 【详解】

解:因为等比数列的公比为2,

所以313

12311(12)

7712244

a S a a a a --===?, 故选:C 19.B 【分析】

首先利用等比数列的性质求3a 和公比q ,再根据公式求5S . 【详解】

正项等比数列{}n a 中,

2432a a a =+∴,

2332a a =+∴,

解得32a =或31a =-(舍去) 又11

2

a =

, 23

1

4a q a =

=, 解得2q

5

151

(132)

(1)312112

a q S q --∴===--,

故选:B 20.A 【分析】

根据等比数列的性质,由对数的运算,即可得出结果. 【详解】 因为478a a ?=, 则()()5

2212221021210110log log log log ...log a a a a a a a a ???=+

?++=

()2475log 15a a =?=.

故选:A.

二、多选题

21.AB 【分析】

因为公比q 不为1,所以不能删去1a ,4a ,设等差数列的公差为d ,分类讨论,即可得到答案 【详解】

解:因为公比q 不为1,所以不能删去1a ,4a ,设等差数列的公差为d , ①若删去2a ,则有3142a a a =+,得231112a q a a q =+,即2321q q =+, 整理得()()()2

111q

q q q -=-+,

因为1q ≠,所以21q q =+, 因为0q >

,所以解得q =

, ②若删去3a ,则2142a a a =+,得31112a q a a q =+,即3

21q q =+,

整理得(1)(1)1q q q q -+=-,因为1q ≠,所以(1)1q q +=,

因为0q >

,所以解得12

q -+=,

综上q =

或q =,

故选:AB 22.BD 【分析】

根据22n n S a =-,利用数列通项与前n 项和的关系得1,1

,2

n n S n a S n =?=?≥?,求得通项n a ,然

后再根据选项求解逐项验证. 【详解】

当1n =时,12a =,

当2n ≥时,由22n n S a =-,得1122n n S a --=-, 两式相减得:12n n a a -=, 又212a a =,

所以数列{}n a 是以2为首项,以2为公比的等比数列, 所以2n n a =,24n

n a =,数列{}2n

a

的前n 项和为()14144414

3

n n n

S +--'=

=

-, 则22log log 2n

n n b a n ===,

所以()11111

11

n n b b n n n n +==-??++,

所以 1111111

(11123411)

n T n n n =-+-++-=-<++, 故选:BD 【点睛】

方法点睛:求数列的前n 项和的方法 (1)公式法:①等差数列的前n 项和公式,()()

11122

n n n a a n n S na d +-=

=+②等比数列的前n 项和公式()

11,1

1,11n

n na q S a q q q

=??=-?≠?

-?;

(2)分组转化法:把数列的每一项分成两项或几项,使其转化为几个等差、等比数列,再求解.

(3)裂项相消法:把数列的通项拆成两项之差求和,正负相消剩下首尾若干项.

(4)倒序相加法:把数列分别正着写和倒着写再相加,即等差数列求和公式的推导过程的推广.

(5)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列对应项之积构成的,则这个数列的前n 项和用错位相减法求解.

(6)并项求和法:一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)n f (n )类型,可采用两项合并求解. 23.BD 【分析】

根据638a a =利用等比数列的性质建立关系求出2q ,然后结合等比数列的求和公式,

逐项判断选项可得答案. 【详解】

由638a a =,可得3338q a a =,则2q

当首项10a <时,可得{}n a 为单调递减数列,故A 错误;

由6

63

312912

S S -==-,故B 正确; 假设3S ,6S ,9S 成等比数列,可得2693S S S =?, 即6239(12)(12)(12)-=--不成立,

显然3S ,6S ,9S 不成等比数列,故C 错误; 由{}n a 公比为q 的等比数列,可得11

122121

n n n n a a q a a S a a q --===--- 12n n S a a ∴=-,故D 正确;

故选:BD . 【点睛】

关键点睛:解答本题的关键是利用638a a =求得2q ,同时需要熟练掌握等比数列的求

和公式. 24.ABC 【分析】

由题意,设数列{}n a 的公比为q ,利用等比数列{}n a 单调递增,则

111(1)0n n n a a a q q -+-=->,分两种情况讨论首项和公比,即可判断选项.

【详解】

由题意,设数列{}n a 的公比为q ,

因为1

1n n a a q -=,

可得1

11(1)0n n n a a a q

q -+-=->,

当10a >时,1q >,此时1

01n

n a a +<

<,

当10a <时,1

01,1n

n a q a +<<>, 故不正确的是ABC. 故选:ABC. 【点睛】

本题主要考查了等比数列的单调性.属于较易题. 25.AD 【分析】

根据等比数列的定义判断. 【详解】

设{}n a 的公比是q ,则1

1n n a a q -=,

A .

23513

a a

q a a ==,1a ,3a ,5a 成等比数列,正确; B ,32

a q a =,36

3a q a =,在1q ≠时,两者不相等,错误; C .2

42a q a =,484a q a =,在21q ≠时,两者不相等,错误; D .3

6936

a a q a a ==,3a ,6a ,9a 成等比数列,正确. 故选:AD . 【点睛】

结论点睛:本题考查等比数列的通项公式.

数列{}n a 是等比数列,则由数列{}n a 根据一定的规律生成的子数列仍然是等比数列: 如奇数项1357,,,,a a a a 或偶数项246,,,

a a a 仍是等比数列,

实质上只要123,,,,,n k k k k 是正整数且成等差数列,则123,,,,,

n k k k k a a a a 仍是等比

数列. 26.CD 【分析】

由题意得到数列{}n a 的前n 项依次为2

3

1,2,3,2,5,7,2,9

,利用列举法,结合等差数列

以及等比数列的求和公式,验证即可求解. 【详解】

由题意,数列{}n a 的前n 项依次为2

3

1,2,3,2,5,7,2,9

利用列举法,可得当25n =时,A

B 的所有元素从小到大依次排列构成一个数列{}n a ,

则数列{}n a 的前25项分别为:1,3,5,7,9,11,13,

37,39,2,4,8,16,32,

可得52520(139)2(12)40062462212

S ?+-=+=+=-,2641a =,所以2612492a =,

不满足112n n S a +>; 当26n =时,A

B 的所有元素从小到大依次排列构成一个数列{}n a ,

则数列{}n a 的前25项分别为:1,3,5,7,9,11,13,

37,39,41,2,4,8,16,32,

可得52621(141)2(12)

44162503212

S ?+-=+=+=-,2743a =,所以2612526a =,

不满足112n n S a +>; 当27n =时,A

B 的所有元素从小到大依次排列构成一个数列{}n a ,

则数列{}n a 的前25项分别为:1,3,5,7,9,11,13,

37,39,41,43,2,4,8,16,32,

可得52722(143)2(12)

48462546212

S ?+-=+=+=-,2845a =,所以2712540a =,

满足112n n S a +>; 当28n =时,A

B 的所有元素从小到大依次排列构成一个数列{}n a ,

则数列{}n a 的前25项分别为:1,3,5,7,9,11,13,

37,39,41,43,45,2,4,8,16,32,

可得52823(145)2(12)

52962591212

S ?+-=+=+=-,2947a =,所以2812564a =,

满足112n n S a +>,

所以使得112n n S a +>成立的n 的可能取值为27,28. 故选:CD. 【点睛】

本题主要考查了等差数列和等比数列的前n 项和公式,以及“分组求和法”的应用,其中解答中正确理解题意,结合列举法求得数列的前n 项和,结合选项求解是解答的关键,着重考查推理与运算能力. 27.ACD 【分析】

根据等比数列的通项公式,结合等比数列的定义和对数的运算性质进行逐一判断即可. 【详解】

因为521127,==a a a ,所以有431127273q a q q q a ?=??=?=,因此选项A 正确;

因为131(31)

132n n n S -==--,所以131+2+2(3+3)132

n

n n S -==-, 因为+1+11

1(3+3)+22

2=1+1+21+3(3+3)2

n n

n n n S S -=≠常数, 所以数列{}2n S +不是等比数列,故选项B 不正确;

因为5

51(31)=1212

S =

-,所以选项C 正确; 11130n n n a a q --=?=>,

因为当3n ≥时,22222lg lg =lg()=lg 2lg n n n n n n a a a a a a -+-++?=,所以选项D 正确. 故选:ACD 【点睛】

本题考查了等比数列的通项公式的应用,考查了等比数列前n 项和公式的应用,考查了等比数列定义的应用,考查了等比数列的性质应用,考查了对数的运算性质,考查了数学运算能力. 28.ABD 【分析】

根据,n n a S 的关系,求得n a ,结合等比数列的定义,以及已知条件,即可对每个选项进行逐一分析,即可判断选择. 【详解】

由题意,数列{}n a 的前n 项和满足(

)*

12n n a S n N +=∈,

当2n ≥时,12n n a S -=,

两式相减,可得112()2n n n n n a a S S a +-=-=-, 可得13n n a a +=,即

1

3,(2)n n

a a n +=≥, 又由11a =,当1n =时,211222a S a ===,所以2

1

2a a =, 所以数列的通项公式为2

1,123

2

n n n a n -=?=??≥?;

当2n ≥时,1

1123322

n n n n a S --+?===,

又由1n =时,111S a ==,适合上式,

所以数列的{}n a 的前n 项和为1

3n n S -=;

又由11333

n

n n n S S +-==,所以数列{}n S 为公比为3的等比数列, 综上可得选项,,A B D 是正确的. 故选:ABD. 【点睛】

本题考查利用,n n a S 关系求数列的通项公式,以及等比数列的证明和判断,属综合基础题. 29.ABD 【分析】

先分析公比取值范围,即可判断A ,再根据等比数列性质判断B,最后根据项的性质判断

C,D. 【详解】

若0q <,则67670,00a a a a <>∴<与671a a >矛盾; 若1q ≥,则

11a >∴671,1a a >>∴

67101a a ->-与671

01

a a -<-矛盾; 因此01q <<,所以A 正确;

667710101

a a a a -<∴>>>-,因此2

768(,1)0a a a =∈,即B 正确; 因为0n a >,所以n S 单调递增,即n S 的最大值不为7S ,C 错误;

因为当7n ≥时,(0,1)n a ∈,当16n ≤≤时,(1,)n a ∈+∞,所以n T 的最大值为6T ,即D 正确; 故选:ABD 【点睛】

本题考查等比数列相关性质,考查综合分析判断能力,属中档题. 30.BD 【分析】

设等差数列{}n a 的公差为d ,根据2a ,4a ,8a 是一个等比数列中的相邻三项求得0d =或1,再分情况求解{}n b 的前n 项和n S 即可. 【详解】

设等差数列{}n a 的公差为d ,又11a =,且2a ,4a ,8a 是一个等比数列中的相邻三项

∴2428a a a =,即()()()2

11137a d a d a d +=++,化简得:(1)0d d -=,所以0d =或1,

故1n a =或n a n =,所以n b q =或n

n b n q =?,设{}n b 的前n 项和为n S ,

①当n b q =时,n S nq =;

②当n

n b n q =?时,

23123n n S q q q n q =?+?+?+??+?(1), 2341123n n qS q q q n q +=?+?+?+??+?(2),

(1)-(2)得:()()2311111n n n n n q q q S q q q q n q n q q

++--=+++-?=-?-+??,

所以1211

22

(1)(1)1(1)n n n n n n q q n q q nq nq q S q q q ++++-?+--=-=---,

故选:BD 【点睛】

本题主要考查了等差等比数列的综合运用与数列求和的问题,需要根据题意求得等差数列的公差与首项的关系,再分情况进行求和.属于中等题型. 31.ABD

由()*123n

n n

a a n N a +=

∈+两边取倒数,可求出{}n a 的通项公式,再逐一对四个选项进行判断,即可得答案. 【详解】 因为

112323n n

n n a a a a ++==+,所以11132(3)n n a a ++=+,又11

340a +=≠, 所以13n a ??+?

???

是以4为首项,2位公比的等比数列,1

1342n n a -+=?即1123n n a +=-,故

选项A 、B 正确. 由{}n a 的通项公式为1

12

3

n n a +=

-知,{}n a 为递减数列,选项C 不正确.

因为1231n n

a +=-,所以 1n a ??

????的前n 项和23112(23)(23)(23)2(222)3n n n T n +=-+-+

+-=++

+-

22(12)2312

234n n n n +-?-=?-=--.选项D 正确,

故选:ABD 【点睛】

本题考查由递推公式判断数列为等比数列,等比数列的通项公式及前n 项和,分组求和法,属于中档题. 32.ABC 【分析】

由1418a a +=,23

12a a +=,31118a a q +=,21112a q a q +=,公比q 为整数,解得

1a ,q ,可得n a ,n S ,进而判断出结论.

【详解】

∵1418a a +=,23

12a a +=且公比q 为整数,

∴31118a a q +=,2

1112a q a q +=,

∴12a =,2q

或1

2

q =

(舍去)故A 正确, ()12122212

n n n S +-=

=--,∴8510S =,故C 正确;

∴1

22n n S ++=,故数列{}2n S +是等比数列,故B 正确;

而lg lg 2lg 2n

n a n ==,故数列{}lg n a 是公差为lg 2的等差数列,故D 错误.

故选:ABC .

相关文档