文档视界 最新最全的文档下载
当前位置:文档视界 › VIB07--FFT机械状态振动分析仪

VIB07--FFT机械状态振动分析仪

VIB07--FFT机械状态振动分析仪
VIB07--FFT机械状态振动分析仪

VIB07--FFT机械状态振动分析仪

一、产品概述

Route Based Data Collection & Trending

设备状态巡检和趋势分析

VIB07多功能型机械振动分析仪是检修人员开展工厂设备状态监测(CBM),实现设备预测维修(PdM)最可靠的点检采集仪器,是设备可靠性管理和TPM的利器。它操作简单,特别适合于设备点检和检维修人员,同样也适合现场生产操作者用于测量、记录和跟踪设备状态,发现异常,并能够对常见的机器振动故障进行诊断和趋势监测。Create the Value of Maintenance

创造维修的价值

VIB07多功能型机械振动分析仪是一款具有极高性价比的“傻瓜型”仪器,它基于专家经验,满足现实的需要,在确保状态信息完整有效的同时,将振动监测和分析变成容易的工作。多参数多频谱监测保证覆盖和灵敏响应旋转机器可能发生的振动故障, 展示机器的振动特征。每个测量参数明确一致,简单和容易理解。

The Mode of CBM

基于状态的维修模式

VIB07是设备维护人员得心应手的便利仪器。手持式的外观体现了优异的人机工程学设计,传感器,电缆,仪器及接口的每一个细节都经过精心考虑,满足现场环境下的可靠和耐用要求。仪器操作通过简洁

的按键和显示屏图标界面完成。高分辨率高亮背光LCD显示清晰,荧光按键使其能在黑暗环境下使用。锂离子充电电池保证连续使用30小时以上。仪器可自由切换中英双语版本。

二、主要性能指标

技术指标

显示

LCD液晶带背光,160x160pixels

传感器

类型:加速度传感器,灵敏度:100mv/g

振动测量

加速度0-20 g 峰值Peak(10-20,000Hz)

速度0-200 mm/s 有效值RMS(10~1,000Hz)

位移0-2000μm 峰-峰P-P(10~1,000Hz)

轴承状态

BG值0-5 g 有效值RMS(1k~20kHz)

BV值0-50 mm/s 有效值RMS(1k~20kHz)

包络解调ENV 0-5g 有效值RMS(0-1,000Hz),滤波范围(1-20kHz)振动单位m/s2,g,mm/s,ips,um,mil

幅值类型有效值RMS,峰值P,峰峰值P-P

测量精度 +/-3%

报警

内置ISO10816-3设备振动等级标准

内置轴承状态经验值等级标准

频谱分析

线数:400线;窗函数:汉宁窗;平均次数:4

低频:速度10-200Hz, mm/s RMS

中频:速度10-1,600Hz, mm/s RMS

高频:加速度10-20,000Hz, g P

解调:0-1,000Hz,滤波范围1k-20kHz, g P

红外测温

测温范围:-20~120℃,激光点指示目标,同时显示环境温度

精度:±2℃,分辨率1℃,单位:℃或℉,测距系数8:1

激光指示

Class 2 激光器λ=650nm, Pmax=1mW,

IEC60825-1:1993+A1:1997+A2:2001

耳机

阻抗48欧姆, 10Hz-20kHz或1k-20kHz, 可在仪器或耳机上调节音量内存 8M Flash

通讯 USB -Lemo接口

电池

锂离子3.6V 3000mAh,可连续使用25小时以上充电器 4.2V 1000mA,充电时间6小时

使用温度 -10~50℃

尺寸 220长x 97宽x45厚(mm)

重量 350g(不含传感器和电缆)

封装 IP65工业等级,防尘和防水溅

三,实物展示

测振仪原理及使用方法

测振仪原理及使用方法 测振仪 测振仪也叫测震表振动分析仪或者测震笔,是利用石英晶体和人工极化陶瓷(PZT)的压电效应设计而成。当石英晶体或人工极化陶瓷受到机械应力作用时,其表面就产生电荷。采用压电式加速度传感器,把振动信号转换成电信号,通过对输入信号的处理分析,显示出振动的加速度、速度、位移值,并可用打印机打印出相应的测量值。本仪器的技术性能符合国际标准ISO2954及中国国国家标准GB/T13824中,对于振动烈度测量仪和GB13823.3中,正弦激励法振动标准的要求。它广泛地被应用于机械制造、电力、冶车辆等领域。 测振仪-测振原理 在的测振仪一般都采用压电式的,结构形式大致有二种:①压缩式;②剪切式,测振仪原理是利用石英晶体和人工极化陶瓷(PZT)的压电效应设计而成。当石英晶体或人工极化陶瓷受到机械应力作用时,其表面就产生电荷,所形成的电荷密度的大小与所施加的机械应力的大小成严格的线性关系。同时,所受的机械应力在敏感质量一定的情况下与加速度值成正比。在一定的条件下,压电晶体受力后产生的电荷与所感受的加速度值成正比。 产生的电荷经过电荷放大器及其它运算处理后输出就是我们所需要的数据了Q=dij·F=dij·ma式中:Q-压电晶体输出的电荷,dij-压电晶体的二阶压电张量,m-加速度的敏感质量,a-所受的振动加速度值。测振仪压电加速度计承受单位振动加速度值输出电荷量的多少,称其电荷灵敏度,单位为pC/ms-2或pC/g(1g=9.8ms-2)。测振仪压电加速度计实质上相当于一个电荷源和一只电容器,通过等效电路简化以后,则可换算出加速度计的电压灵敏度为Sv=SQ/CaSv-,加速度计的电压灵敏度,mV/ms-2SQ-加速度计的电荷灵敏度,pC/ms-2Ca-加速度计的电容量测振仪压电式速度传感器,它是通过在压电式加速度传感器上加一个积分电路,通过将加速度信号积一次分,可以得到振动的速度值! 测振仪-主要功能 1.配有打印,可打印测量值; 2.具有存储功能:可存10个测量值。 3.具有欠电压指示功能; 4.具有日期设置功能。 测振仪-主要特点

基于单片机音频信号分析仪设计

2007年A题音频信号分析仪 本系统基于Altera Cyclone II 系列FPGA嵌入高性能的嵌入式IP核(Nios)处理器软核,代替传统DSP芯片或高性能单片机,实现了基于FFT的音频信号分析。 音频信号分析仪 山东大学王鹏陈长林秦亦安 摘要:本系统基于Altera Cyclone II 系列FPGA嵌入高性能的嵌入式IP核(Nios)处理器软核,代替传统DSP芯片或高性能单片机,实现了基于FFT的音频信号分析。并在频域对信号的总功率,各频率分量功率,信号周期性以及失真度进行了计算。并在FPGA中嵌入了8阶IIR切比雪夫(Chebyshev)II型数字低通滤波器,代替传统有源模拟滤波器实现了性能优异的音频滤波。配合12位A/D转换芯片AD1674,和前端自动增益放大电路,使在50mV到5V的测量范围下,单一频率功率及总功率测量误差均控制在1%以内。 关键词:FPGA;IP核;FFT;IIR;可控增益放大 Abstract: This system is based on IP core(Nios)soft-core processors embedded in the FPGA of Altera Cyclone II family. Instead of using DSP or microcontroller, we use Nios II to perform a low-cost FFT-based analysis of the audio signal.And we caculated the power of the whole signal,the power of each frequence point that componented the signal.By the way,we anlysised its periodicity and distortion.We also embedded an 8-order Chebyshev II IIR digital low-pass filter to replace the traditional analog Active Filter to perform an excellent audio filter. With 12bit A / D converter chip AD1674, and the front-end automatic gain amplifier, this system’s single-frequency power and total power measurement error is below 1% in 50mV to 5V measurement range. Keyword: FPGA;IP core; FFT;IIR; automatic gain amplifier 一、方案选择与论证 1、整体方案选择 音频分析仪可分为模拟式与数字式两大类。 方案一:以模拟滤波器为基础的模拟式频谱分析仪。有并行滤波法、扫描滤波法、小外差法等。因为受到模拟滤波器滤性能的限制,此种方法对我们来说实现起来非常困难。 方案二:以FFT为基础的的数字式频谱分析仪。通过信号的频谱图可以很方便的得到输入信号的各种信息,如功率谱、频率分量以及周期性等。外围电路少,实现方便,精度高。 所以我们选用方案二作为本音频分析仪的实现方式。

CATIA 机械运动分析与模拟实例

前言 CATIA软件是法国达索飞机制造公司首先开发的。它具有强大的设计、分析、模拟加工制造、设备管理等功能。其设计工作台多达60多个,就足以说明软件功能的强大。 本书是作者在出版系列CATIA软件功能介绍后,专门针对某一项功能写的实例教程。在讲解示例的过程中,作者也注意了将某些快捷功能插入进来,进行讲解。比如在装配设计工作台对零件进行重新设计,比如在装配图中直接导入或者插入新的零件。在同类的图书中,很难涉及到这些快捷功能。 本书是基于CATIA V5 R16写成的,在完成本书时,已经有R17版本了,读者在更高的版本上也可以使用此书。读者在阅读本书,使用软件时,需要反复练习,才能熟练运用本书所讲解的一些功能。可以根据本书的步骤,做一些自己学习和工作中遇到的模型,也可以拿机械设计的标准件来做练习实例。 本书适合做机械设计的专业人员和机械相关专业的学生使用。本书也同样适合想学习CATIA软件的其他读者。本书前面20章都是讲解某一项铰的设计方法,最后一章是综合前面各章内容做的一个实例。本书编写过程中考虑到了初学者可能对CATIA机械零件设计的功能还不是很熟悉,因此,对于各章所涉及到的零件,模型建立方法都做了详细的介绍。对于已经熟悉CATIA基本设计功能的读者,可以略读这部分内容,直接阅读各章最后一节的内容。对于只想了解CATIA 机械零件设计的读者,可以仔细阅读每章前面各节的内容,把本书作为机械设计的详细教程,未尝不可。 感谢我的家人,他们给了我很大的支持,使我能抽出时间完成此书。感谢我的单位领导对工作的支持,特别是反应堆结构室的领导和各位同仁,他们的鼓励和帮助,使我坚持下来完成此书,并使我受益匪浅。 本书由盛选禹和盛选军主编。 冯志江老师参加了本书第1、第2、第3章的编写工作。王存福同志参加了第6、第7、第8章的编写工作 参加本书编写工作的还有张宏志,王玉洁,孙新城,盛选贵,曹京文、陈树青、王恩标、于伟谦、盛帅、候险峰、盛硕、陈永澎、盛博、曹睿馨、张继革、刘向芳、富晶、孟庆元、宗纪鸿、唐守琴。 由于时间比较仓促,认识水平有限等,不能避免有错误出现,读者在阅读时发现错误,请通知编者,不胜感激。也希望就CATIA软件的问题和广大读者继续探讨。作者联系电子邮件:xuanyu@https://www.docsj.com/doc/b315694640.html,。 编者 2006年12月于北京

VIB05测振仪原理与使用方法

历史上设备维修制度经历了“事后维修”、“预防维修”、“计划预防检修”等多种方式,最具代表性的是失效后修理和制定定期的大、中、小修计划。这些方式的共同点在于不是以设备实际存在的隐患为依据的,因而不可避免存在盲目拆卸,维修不足和人力、财力的浪费或机器停运造成经济损失等缺点,维修缺乏科学性。随着科学技术的不断提高,设备(或零部件)的状态检测仪器和手段得到了很大发展。人们发现,通过检测仪器对设备的运行情况进行诊断,确定设备存在的早期故障及原因,有针对地制定维修计划是行之有效的,它从很大程度上弥补了以上缺点。据统计结果表明,在机械行业中,尤其是旋转机械的状态检测,使用最多的故障诊断仪器是测振仪。 在我公司成立之初就很重视设备状态监测和故障诊断技术的应用,为各生产车间配备了测振仪。我们一直以来用的都是祺迈KM的VIB05测振仪,它是一款集振动测量、轴承状态检测与红外测温3大功能于一体的多功能振动和轴承状态检测仪,一般用于现场设备维修人员进行设备状态监测。仪器内置自动报警系统,当发现设备振动超标时,可进一步使用精密测量如振动分析仪进行故障诊断,也可结合个人经验直接进行设备故障诊断。 测振仪的操作步骤: 使用VIB05测振仪进行设备诊断可分为三个环节:准备工作、诊断实施和决策验证,这三个环节可归纳为以下六个步骤。 1.了解测量对象。在测量设备状态之前应该充分了解诊断对象的结构参数、运行参数和设备本身的状况等。 2.确定测量方案。包括下列内容: (1)测点的选择。应满足下列要求:①测点要尽可能靠近振源,对振动反应敏感,减少信号在传递途中的能量损失。②有足够空间放置传感器。③符合安全操作要求,由于现场振动测量是在设备运转状态下进行,所以必须保证人身和设备的安全。此外,VIB05相较于其他的测振仪,最有特色的就是多出了轴承状态检测的功能,这点很重要。因为,轴承是设备的关键,也是监测振动的理想部位,转子上的振动直接作用在轴承上,并通过轴承把机器与基础连接成一个整体,轴承部位的振动信号体现了设备基础的振动状况。最后,设备的地脚、机壳、进出口管道、基础等部位也是测量振动的常设测点。

音频信号分析仪(A题一等奖)

题目名称:音频信号分析仪(A题) 华南理工大学电子与信息学院参赛队员:陈旭张洋林士明 摘要:本音频信号分析仪由32位MCU为主控制器,通过AD转换,对音频信号进行采样,把连续信号离散化,然后通过FFT快速傅氏变换运算,在时域和频域对音频信号各个频率分量以及功率等指标进行分析和处理,然后通过高分辨率的LCD对信号的频谱进行显示。该系统能够精确测量的音频信号频率范围为20Hz-10KHz,其幅度范围为5mVpp-5Vpp,分辨力分为20Hz和100Hz两档。测量功率精确度高达1%,并且能够准确的测量周期信号的周期,是理想的音频信号分析仪的解决方案。 关键词:FFT MCU频谱功率 Abstract:The audio signal analyzer is based on a32-bit MCU controller,through the AD converter for audio signal sampling,the continuous signal discrete,and then through the FFT fast Fourier transform computing,in the time domain and frequency domain of the various audio frequency signal weight and power,and other indicators for analysis and processing,and then through the high-resolution LCD display signals in the spectrum.The system can accurately measure the audio signal frequency range of20Hz-10KHz,the range of5-5Vpp mVpp,resolution of20Hz and100Hz correspondent.Power measurement accuracy up to1%,and be able to accurately measuring the periodic signal cycle is the ideal audio signal analyzer solution. Keyword:FFT MCU Spectrum Power

旋转设备振动在线监测系统

旋转设备振动在线系统 技术方案 合肥优尔电子科技有限公司 2016. 8

一.现状分析 随着我国工业现代化进程的加快,对于连续生产的企业而言,大型旋转设备的稳定运行十分重要,一旦发生故障,都有可能导致整个生产线停机,造成极大的损失。这种损失可达每小时数十万元之巨,特别是生产过程智能控制系统的采用,对关键设备安全运行的依赖程度越来越高,因此,对这些设备进行在线监测就显得非常重要。 各种旋转设备运转过程中各零部件磨损并非相同,随其工作条件而异,但磨损的发展是有其规律的,如果能够对设备受到的这种磨损失效规律进行掌握,设备各零部件的相对运动趋势将反应出振动、温度、声音的连锁效应,使我们提前知晓设备各项功能发生改变的趋势与结果。国网铜陵发电有限公司拥有多种大、中、小型旋转设备,其较多旋转设备占据着生产中的核心地位。 二、系统架构 旋转设备振动在线监测系统,通过无线自组网和现场总线的方式,将从各传感单元采集的数据汇集到管理后台,通过计算机系统处理实现应用服务,计算机系统主要由数据前端设备、服务器机和管理端PC组成。 系统拓扑如下图所示: 三、振动采集终端 3.1振动传感器 在旋转设备两端轴座(具体部位可根据现场情况确定)设置两组三维(X、Y、Z方向)加速度振动传感器,测量振动位移矢量,监测主轴与轴瓦(轴座)之间的轴向、径向游离与波动情况。 振动传感器利用压电晶体的正压电效应,当压电晶体在一定方向的外力作用下,它的晶体面产生电压,采集电路检测出这个电压值后换算成受力大小F,由

公式a=F/m可以得出瞬间加速度大小a,对加速度二次积分得出瞬间位移量,从而得出被测对象振动频谱和振动位移。 主要技术参数: ●传感器类型:IEPE ●灵敏度:100mV/g? ●加速度量程:?0.1~100mm/s2 ●速度量程:0.1~250mm/s ●位移量程:1~3000μm ●频率范围:0.3~12000Hz(±10%) ●谐振点: 27kHz ●分辨率:?0.001g ●非线性:≤1% ●横向灵敏度:≤3% ●恒定电流:4mA ●输出阻抗:<100Ω ●激励电压:DC24V ●温度范围:-40~+80℃ ●放电时间常数:≥1秒 3.2振动采集器 ?YT-400?振动采集器是合肥优尔电子科技自主研发的一款高性能IEPE类传感器信号采集终端,内置了传感器所需的恒流激励和信号调理电路,可以不需外部的信号调理器而直接采集IEPE传感器的输出信号。YT-400具有四路大量程、高采样率、低噪声的高性能同步信号采集通道。每个通道的量程为±10V,采样率高达128Ksps,并能保证实时传输到后台服务器进行显示与分析。通过高性能ADC和先进的DSP信号处理技术,使YT-400具备极低的采样噪声,在1Ksps 采样率下采样噪声峰峰值仅为0.00004V,满量程信号的信噪比高达50万。多通道、高采样率和低噪声和同步采样使YT-400能够满足科研与生产中高端信号监测的需要。? YT-400系列采用跨平台通用的动态链接库作为驱动函数接口,可工作在

旋转机械振动的基本特性

旋转机械振动的基本特性 概述 绝大多数机械都有旋转件,所谓旋转机械是指主要功能由旋转运动来完成的机械,尤其是指主要部件作旋转运动的、转速较高的机械。 旋转机械种类繁多,有汽轮机、燃气轮机、离心式压缩机、发电机、水泵、水轮机、通风机以及电动机等。这类设备的主要部件有转子、轴承系统、定子和机组壳体、联轴器等组成,转速从每分钟几十到几万、几十万转。 故障是指机器的功能失效,即其动态性能劣化,不符合技术要求。例如,机器运行失稳,产生异常振动和噪声,工作转速、输出功率发生变化,以及介质的温度、压力、流量异常等。机器发生故障的原因不同,所反映出的信息也不一样,根据这些特有的信息,可以对故障进行诊断。但是,机器发生故障的原因往往不是单一的因素,一般都是多种因素共同作用的结果,所以对设备进行故障诊断时,必须进行全面的综合分析研究。 由于旋转机械的结构及零部件设计加工、安装调试、维护检修等方面的原因和运行操作方面的失误,使得机器在运行过程中会引起振动,其振动类型可分为径向振动、轴向振动和扭转振动三类,其中过大的径向振动往往是造成机器损坏的主要原因,也是状态监测的主要参数和进行故障诊断的主要依据。 从仿生学的角度来看,诊断设备的故障类似于确定人的病因:医生需要向患者询问病情、病史、切脉(听诊)以及量体温、验血相、测心电图等,根据获得的多种数据,进行综合分析才能得出诊断结果,提出治疗方案。同样,对旋转机械的故障诊断,也应在获取机器的稳态数据、瞬态数据以及过程参数和运行状态等信息的基础上,通过信号分析和数据处理提取机器特有的故障症兆及故障敏感参数等,经过综合分析判断,才能确定故障原因,做出符合实际的诊断结论,提出治理措施。 根据故障原因和造成故障原因的不同阶段,可以将旋转机械的故障原因分为几个方面,见表1。 表1 旋转机械故障原因分类

音频信号分析仪毕业论文

音频信号分析仪 指导老师:邓晶 年纪专业:11信息工程 成员:丽梅(1128401039) 东飞(1128401014) 罗兰(1128401128) 日期:2014年6月

摘要:本音频信号分析仪基于快速傅里叶变换的原理,以32位CPU STM32构成的最小系统为控制核心,由电压跟随、程控放大、峰值检测、抗混叠滤波等模块组成。本音频信号分析仪由STM32控制,通过AD转换,对音频信号进行采样,把连续信号离散化,然后通过FFT运算,对音频信号各个频率分量以及功率等指标进行分析和处理,然后通过高分辨率的LCD对信号的频谱进行显示。该系统能够精确测量的音频信号频率围为50Hz-10KHz,其幅度围为5mVpp-5Vpp,分辨力为50Hz。 关键词:FFT 嵌入式系统前级信号处理功率谱 Abstract: This audio signal analyzer based on the principle of fast Fourier transform, the minimum system consisting of STM32 embedded system as control core, followed by the voltage, program-controlled amplifier, peak detection, such as anti aliasing filter modules. This audio signal analyzer controlled by an embedded system, through the AD conversion, the audio signal sampling, the continuous signal discretization, then through FFT arithmetic, each frequency component and the power index in the audio signal analysis and processing, and then through high resolution display LCD frequency spectrum of the signal and the characteristics of. The system can accurately measure the audio signal frequency range of 50 -10K HZ, its amplitude range is 5 mVpp- 5 V pp ,resolution of 50 Hz.

转动设备常见振动故障频谱特征及其案例解析分析

转动设备常见振动故障频谱特征及案例分析 一、不平衡 转子不平衡是由于转子部件质量偏心或转子部件出现缺损造成的故障,它是旋转机械最常见的故障。结构设计不合理,制造和安装误差,材质不均匀造成的质量偏心,以及转子运行过程中由于腐蚀、结垢、交变应力作用等造成的零部件局部损坏、脱落等,都会使转子在转动过程中受到旋转离心力的作用,发生异常振动。 转子不平衡的主要振动特征: 1、振动方向以径向为主,悬臂式转子不平衡可能会表现出轴向振动; 2、波形为典型的正弦波; 3、振动频率为工频,水平与垂直方向振动的相位差接近90度。 案例:某装置泵轴承箱靠联轴器侧振动烈度水平13.2 mm/s,垂直11.8mm /s,轴向12.0 mm/s。各方向振动都为工频成分,水平、垂直波形为正弦波,水平振动频谱如图1所示,水平振动波形如图2所示。再对水平和垂直振动进行双通道相位差测量,显示相位差接近90度。诊断为不平衡故障,并且不平衡很可能出现在联轴器部位。

解体检查未见零部件的明显磨损,但联轴器经检测存在质量偏心,动平衡操作时对联轴器相应部位进行打磨校正后振动降至2.4 mm/s。 二、不对中 转子不对中包括轴系不对中和轴承不对中两种情况。轴系不对中是指转子联接后各转子的轴线不在同一条直线上。轴承不对中是指轴颈在轴承中偏斜,轴颈与轴承孔轴线相互不平行。通常所讲不对中多指轴系不对中。 不对中的振动特征: 1、最大振动往往在不对中联轴器两侧的轴承上,振动值随负荷的增大而增高;

2、平行不对中主要引起径向振动,振动频率为2倍工频,同时也存在工频和多倍频,但以工频和2倍工频为主; 3、平行不对中在联轴节两端径向振动的相位差接近180度; 4、角度不对中时,轴向振动较大,振动频率为工频,联轴器两端轴向振动相位差接近180度。 案例:某卧式高速泵振动达16.0 mm/s,由振动频谱图(图3)可以看出,50 Hz(电机工频)及其2倍频幅值显著,且2倍频振幅明显高于工频,初步判定为不对中故障。再测量泵轴承箱与电机轴承座对应部位的相位差,发现接近180度。 解体检查发现联轴器有2根联接螺栓断裂,高速轴上部径向轴瓦有金属脱落现象,轴瓦间隙偏大;高速轴止推面磨损,推力瓦及惰性轴轴瓦的间隙偏大。检修更换高速轴轴瓦、惰性轴轴瓦及联轴器联接螺栓后,振动降到A区。 三、松动 机械存在松动时,极小的不平衡或不对中都会导致很大的振动。通常有三种类型的机械松动,第一种类型的松动是指机器的底座、台板和基础存在结构松动,或水泥灌浆不实以及结构或基础的变形,此类松动表现出的振动频谱主要为1x。第二种类型的松动主要是由于机器底座固定螺栓的松动或轴承座出现裂纹引起,其振动频谱除1X外,还存在相当大的2X分量,有时还激发出1/2X和3X振动

旋转机械振动故障诊断的图形识别方法研究

旋转机械振动故障诊断的图形识别方法研究 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

旋转机械振动故障诊断的图形识别方法研究我国近年来的旋转机械逐渐发展为大型机械,在这种发展趋势下人们开始重视对振动故障的诊断方法进行研究,在深入研究后探索出了一系列用人工识别图像来实现旋转机械振动故障诊断的方法。本文主要分析了旋转机械振动故障的机理、故障的特点以及几种图形识别方法。经过多种试验证明图形识别方法的科学可行性,值得在今后的实际操作中得到运用和发展。 对于旋转机械在工作状态当中会发生振动,从而由振动产生的各种信号,信号会形成一些参数图形,通过对这些参数图形的研究与分析,我们可以实现对器械运行过程中的日常管理和保护。这也是目前应该采用的设备管理方式。而在实际操作过程中,图形识别技术并没有深入到工作当中。这种手段没有被利用于诊断旋转机械故障的原因是提取出明显的图形特征在技术上具有一定的困难,而且对于图形具体特征的描述也具有很大的挑战,是否能够将图形所呈现出的特征准确地表述出来是图形识别技术在旋转机械振动故障诊断方面的一个限制性因素。诊断旋转机械振动故障的原则 采集诊断依据

被诊断的机械表面所能表现出的所有相关信息都能够作为旋转振动机械故障诊断的有效依据。这些信息在机械运行的过程中能够通过传感器传递给人们。对旋转机械振动故障的诊断是否准确,一个重要的因素就是收集到的有关信息是否真实可靠,依据信息是否准确真实的决定性因素是传感器的品质,传感器质量如何、感应是否灵敏以及工作人员的直观判断都是决定信息准确性的重要衡量标准。 对采集的信息进行处理和研究 从传感器和工作人员两方面收集到的依据信息通常是混乱无序的,不能明显的看出其特点,这就导致了无法准确地对故障进行判断,这就要求我们在成功收集信息之后要及时对大量信息进行筛选和处理,目前普遍采用专业的机器来对这些信息进行分析和研究以及进一步的转换,经过这些处理之后所得到的信息要保证具有至关、价值性强等特点。 对故障进行诊断 对旋转机械振动故障诊断方面对工作人员的要求比较高,要求其具有过硬的理论知识功底以及丰富的实际工作经验。工作人员应该充分了解机械方面的相关知识,熟练掌握机械的维修要点以及安装过程。正确的对机械振动故障进行诊断,并且能够对故障的发展形势进行预想,只有这

振动数据采集仪的操作说明

CoCo-80X是晶钻公司的新一代手持式动态信号分析仪和频谱分析仪。它的一大优点是,简洁的界面和简单的控件,信号显示只传达最必要的信息,而先进的功能也可以通过触摸屏控制和功能键即时可用。用户可以快速添加或删除任何图形的信号,也可以通过触摸屏配置X和Y轴。 我将给你们一个“如何设置其显示”的快速指南。开始,打开一个CSA。这是信号显示屏幕,它是信号分析的主要控制界面。从这里,你可以控制分析和查看你的实时信号。 信号显示由一个或两个信号窗口组成。在这我已经打开一个时间流的双信号窗口上面有一个时间流信号,底部有一个自功率谱信号。您可以使用触摸屏来缩放和滚动显示。交互式触摸显示提供了对某些信号显示设置的直接控制。

点击触摸屏上一个信号页眉来重新配置信号显示。用户可以快速添加或删除信号并且可以改变信号图的颜色。显示格式可以从一个信号图转换为数字显示通过切换到文本类型菜单。信号轴也可以通过触摸屏来配置。 您可以手动设置X和Y轴的范围,或者也可以使用自动标尺功能。点击信号轴来进行更改。

多个窗口可以同时运行,每个窗口都可以有一个独特的配置。我们有一个专用的菜单来配置每个窗口的显示;此菜单称为“信号和窗口设置”。从显示屏幕按下F1并选择信号和窗口设置。这是为每个窗口设置显示的地方。您可以选择显示哪些类型的信号以及将采集哪些信道。像信号显示一样,你只能一次查看一个窗口。使用屏幕顶部的选项卡来切换到其他窗口。你可以通过选择适当的复选框来添加或移除信号。它只允许每个信号一个信号类型。当一个信号被添加,这就建立了可以在显示器上观看的信号类型。我们必须首先禁用所有激活的信号来改变显示信号类型。

音频信号分析仪设计报告

音频信号分析仪设计报告 1.摘要: 设计一个可对音频信号进行分析,并在LCD上显示其频率分量及功率的电路,电路还可对输入的失真信号进行失真度测量。电路主要由扫描滤波网络,检波采集网络,以及失真度测量网络构成。扫描滤波部分主要由MAX264开关电容滤波器电路和基于DDS扫描控制信号产生电路组成,完成对各个频率分量的提取;检波部分主要由有效值转换电路完成对频率分量功率的测量;失真度测量部分可自动跟踪输入信号的基频,通过谐波检测的方法,实现对失真度的测量,并可借助单片机测量其频率。整个测量电路结构简单,可较好完成对音频信号的各项分析。 关键字:MAX264 AD9851 音频功率检测失真度 2.总体方案设计 2.1方案一 动态信号分析法,即对信号进行时域采集,然后进行fourier变换,转换成频域信号。特点是较快,有较高的分辩率和采样速率。但受采样定理限制,无法推广到高频,且对采集网络要求较高,一般的单片机无法完成信号的频域变换算法。 2.2方案二 并行滤波法,通过一组滤波器网络,且每个滤波器都有自己的检波器,其通频带应尽量窄,数目应应该有足够的密度概括整个测量频带。优点是可实时显示和分析各个信号的频率分布及大小,缺点是其频率分量的个数取决于滤波器数目,当测量带宽增大,所需滤波器数目巨大。 2.3方案三 外差法,采用超外差接收机的方式,利用混频器、中频放大器、中频滤波器、检波器等构成频谱分析电路。其优点是工作频率范围宽、选择性好、灵敏度高。但是由于本振是连续可调谐的,被分析的频谱是依次顺序取样,因此扫频外差式不能实时地检测和显示信号的频谱。 2.4方案四 扫描滤波法,其采用中心频率可调的滤波器。被测信号首先加至可调谐窄带滤波器,其中心频率自动反复在信号频率范围内扫描。扫描滤波式频谱分析电路的优点是结构简单,价格低廉。由于没有混频电路,省去了抑制假信号的问题。我们选择这种方案,用DDS控制滤波器中心频率从而实现对不同频率分量的的提取并且利用滤波网络还可以实现失真度测量。(系统框图如下)

AWA6256B-环境振动使用说明

目录 1 概述 2 2 主要性能指标 3 3 结构特征 6 3.1 外形图 6 3.2 按键 6 3.3 输入输出接口7 3. 4 过载指示9 3.5 工作电源9 4 常见符号及名词术语10 5 工作原理11 6 仪器的连接和开关机11 6.1 连接11 6.2 开关机11 7 参数设置12 7.1 参数设置菜单12 7.2 预存测点名的输入14 7.3 查看预存测点名16 8 振动测量16 8.1 显示界面和选项16 8.2 进行测量19 9 数据管理20 9,1 数据调阅20 9.2 用微型打印机打印输出22 9.3 删除存储的数据23 9.3 删除存储的数据23 10频率计权相对响应(ISO8041,2型)24 11 为试验目的规定的信息25 附录装箱清单26

1.概述 AW A6256B +型环境振动分析仪是一种采用数字信号处理技术的手持式分析仪,它既能测量全身垂向(W.B.z )计权振级(也是环境振级),又能测量全身水平(W.B.x-y )计权振级,以及不计权振动加速度级。满足GB/T 10071-1988 《环境振动测量方法》标准对振动测量仪器的要求,也符合ISO 8041:1990《人体对振动的响应——测量仪器》。 AW A6256B +型是AW A6256B 型的换代产品,与AW A6256B 型环境振动分析仪相比,主要是频率计权、检波和时间计权是通过数字信号处理技术实现的,因此稳定性更好,动态范围更大,而且以后可升级为符合正在修订中的新的环境振动国家标准要求,外形更加美观。 环境振动对人体的影响与振动的加速度有效值、振动的频率特性、振动的作用时间、振动的方向和部位等等因素有关。评价振动对人体的影响的基本量是频率计权加速度a W 或频率计权加速度级VL W (简称计权振级): 频率计权加速度(指数平均) a W :按公式4-1进行均方根计算 (1) 计权振级:均方根计权加速度a w 与基准加速度a 0的比值取以10为底的对数再乘以20,即 VL W =20l g(a w /a 0) (dB) (2) 式中:a W 为频率计权加速度有效值(m/s 2) a 0为参考加速度(10-6 m/s 2)。 本仪器内置有根据ISO 8041:1990规定的全身垂直频率计权(W.B.z )和全身水平频率计权(W.B.z-y ),可分别直接测量全身垂直计权振级VL Z 和全身水平计权振级VL X —Y 。仪器还具有平直频率计权特性,用于测量非计权加速度级VLa 。根据GB/T 10070-1980《城市区域环境振动标准》,城市区域环境振动采用铅垂向z 振级,也就是全身垂直()212,exp 1)(???? ????? ??-=?∞-t W W d t a t a ξτξξττ

振动分析仪作业指导书

AWA6256B型环境振动分析仪 作业指导书 一、操作规程 1.开/关机 1.1将LR6(AA)电池装入电池仓,或接入5V外部电源,按下仪器的红色“开机/复位”键后放开,大约1s后LCD显示屏上显示“环境振动分析”并自检。按“△”、“▽”键可以改变LCD显示器的对比度(共30级);按“确定”键,进入主菜单,如果用户5秒以上不按任何键,则自动进入主菜单。主菜单共有三个子菜单,它们分别是①振动测量:并行(同时)测量2种频率计权和1种平直频率响应、4种时间计权的振级或加速度级,统计振动等。②数据管理:查看仪器内已经保存的测量结果。③参数设置:设定测点名、测量时间等参数。 1.2显示屏右上角“”图标后的数字表示还可以保存数据组数。 1.3按“←”、“→”键可以移动光标,按下“确定”键5秒以上不按任何键进入子菜单。 1.4开机后,任何时刻按下“开机/复位”键,仪器马上中断一切操作和测量,执行上述开机/复位操作。 1.5仪器使用完毕,按下“关机”键可将电源关闭,仪器内部的日历时钟子内部后备电池的支持下继续走动,当后备电池充满电时可

供仪器内部的日历时钟继续走动3个月以上。测量结果保存在FLASH 中,没有外部电源的情况下,数据也不会丢失。 2参数设置,在开始测量前,应首先进行参数设置。 参数设置菜单,在主菜单,将光标移动到“参数设置”上,按下“确定”键,依次设定“测点名”、“测定名选择”、“启动前提示用户先设定参数”、“统计用频率计权”、“传感器灵敏度”、“积分测量时间”、“时钟”等参数。 3振动测量 3.1用延伸电缆连接加速度传感器和仪器,将传感器稳定地放置于测点处,传感器上的箭头方向与测量的主轴方向一致。按“开机/复位”键开机,进入“参数设置”子菜单,检查电源电压、测点名、统计用频率计权、传感器灵敏度、积分测量时间、时钟等是否正确,确认后退出“参数设置”子菜单,进入“振动测量”子菜单,选择量程、工作方式,按下“启动”键,仪器开始积分测量和统计分析。 3.2当需要暂停测量时,按一下“启动/暂停”键,仪器暂停测量,再按一下“启动/暂停”键仪器继续测量。 3.3当测量中需要保存测量数据时,先将光标移到屏幕右下角“贮存”项,再按下“确定”键,仪器暂停测量并保存当前测量数据,待存完数据后,按“启动”键继续测量。 3.4当需要人为结束测量并保存测量结果时,先按一下“启动/暂停”键暂停测量,再按下“删除”键,仪器清除当前测量数据并结束测量。

高中物理《机械振动》知识梳理

《机械振动》知识梳理 【简谐振动】 1.机械振动: 物体(或物体的一部分)在某一中心位置两侧来回做往复运动,叫做机械振动。 机械振动产生的条件是:(1)回复力不为零。(2)阻力很小。 回复力:使振动物体回到平衡位置的力叫做回复力,回复力属于效果力,在具体问题中要注意分析什么力提供了回复力。 2.简谐振动: 在机械振动中最简单的一种理想化的振动。 对简谐振动可以从两个方面进行定义或理解: (1)物体在跟位移大小成正比,并且总是指向平衡位置的回复力作用下的振动,叫做简谐振动。 (2)物体的振动参量,随时间按正弦或余弦规律变化的振动,叫做简谐振动,在高中物理教材中是以弹簧振子和单摆这两个特例来认识和掌握简谐振动规律的。 【简谐运动的描述】 位移x:由平衡位置指向振动质点所在位置的有向线段叫做位移。位移是矢量,其最大值等于振幅。 振幅A:做机械振动的物体离开平衡位置的最大距离叫做振幅,振幅是标量,表示振动的强弱。 周期T:振动物体完成一次余振动所经历的时间叫做周期。所谓全振动是指物体从某一位置开始计时,物体第一次以相同的速度方向回到初始位置,叫做完成了一次全振动。 频率f:振动物体单位时间内完成全振动的次数。 角频率:角频率也叫角速度,即圆周运动物体单位时间转过的弧度数。引入这个参量来描述振动的原因是人们在研究质点做匀速圆周运动的射影的运动规律时,发现质点射影做的是简谐振动。因此处理复杂的简谐振动问题时,可以将其转化为匀速圆周运动的射影进行处理,这种方法高考大纲不要求掌握。 相位:表示振动步调的物理量。现行中学教材中只要求知道同相和反相两种情况。【简谐运动的处理】 用动力学方法研究,受力特征:回复力F =- Kx;加速度,简谐振动是一种变加速运动。在平衡位置时速度最大,加速度为零;在最大位移处,速度为零,加速度最大。 用运动学方法研究:简谐振动的速度、加速度、位移都随时间作正弦或余弦规律的变化,这种用正弦或余弦表示的公式法在高中阶段不要求学生掌握。 用图象法研究:熟练掌握用位移时间图象来研究简谐振动有关特征是本章学习的重点之一。 从能量角度进行研究:简谐振动过程,系统动能和势能相互转化,总机械能守恒,振动能量和振幅有关。 【单摆】 单摆周期公式简谐振动物体的周期和频率是由振动系统本身的条件决定的。 单摆周期公式中的L是指摆动圆弧的圆心到摆球重心的距离,一般也叫等效摆长。【外力作用下的振动】 物体在周期性外力作用下的振动叫受迫振动。受迫振动的规律是:物体做受迫振动的频率等于策动力的频率,而跟物体固有频率无关。 当策动力的频率跟物体固有频率相等时,受迫振动的振幅最大,这种现象叫共振。共振是受迫振动的一种特殊情况。 1

DHVTC-5901振动测试与控制实验系统组成与使用方法

实验一DHVTC-5901振动测试与控制实验系统组成与使用方法 一、实验目的 1、了解振动测试与控制实验系统的组成、安装和调整方法。 2、学会激振器、传感器与动态分析仪的操作、使用方法。 二、DHVTC振动测试与控制实验系统的组成 图1-1DHVTC振动测试与控制学生实验系统示意图 (1)底座(2)支座(3)二(三)自由度系统(4)薄壁圆板(5)非接触式激振器(6)接触式激振器(7)力传感器(8)偏心电机(9)磁电式速度传感器(10)被动隔振系统(11)简支梁(12)主动隔振空气阻尼器(13)单/复式动力吸振器(14)压电式加速度传感器(15)电涡流位移传感器(16)磁力表座 如图1-1所示,实验系统由“振动与控制实验台”、激振测振系统与动态分析仪组成。 1、振动与控制实验台 振动测试与控制实验台由弹性体系统(包括简支梁、悬臂梁、薄壁圆板、单自由度系统、二自由度系统、多自由度系统模型)配以主动隔振、被动隔振及动力吸振用的空气阻尼减震

器、单式动力吸振器、复式动力吸振器等组成。是完成振动与振动控制等近30个实验的试验平台。 2、激振系统与测振系统 (1)激振系统 激振系统包括: DH1301正弦扫频信号源 JZ-1型接触式激振器 JZF-1型非接式触激振器 偏心电动机、调压器 力锤(包括测力传感器) (2)测振系统 动态采集分析仪 ZG-1型磁电式振动速度传感器 压电式加速度传感器 WD302电涡流位移传感器 测力传感器 (3)动态采集分析系统 信号调理器 数据采集仪 计算机系统(或笔记本电脑) 控制与基本分析软件 模态分析软件 三、DHVTC-59型仪器的使用方法 1、激振系统的使用方法 DH1301型正弦扫频信号源是配有功率放大器的正弦激振信号源,可推动JZ-1型接触式激振器或JZF-1型非接式触激振器。 A、技术指标:频率范围10-1000Hz 谐波失真〈1% 最大输出功率5ω 输出电流0~500 m A 功耗20ω

音频频谱分析仪设计与实现

实验八 音频频谱分析仪设计与实现 一、实验原理 MATLAB 是一个数据分析和处理功能十分强大的工程实用软件,其数据采集工具箱为实现数据的输入和输出提供了十分方便的函数和指令。 本实验基于声卡与MATLAB 实现音频信号频谱分析仪。 1、频率(周期)检测 对周期信号来说,可以用时域波形分析来确定信号的周期,也就是计算相邻两个信号波峰的时间差或过零点的时间差。采用过零点(ti )的时间差T (周期)。频率即为f=1/T ,由于能够求得多个T 值,故采用他们的平均值作为周期的估计值。 2、峰值检测 在一个周期内,求出信号最大值max y 与最小值min y 的差得一半记为A ,同样得到多个A 值,但第一个A 值对应的max y 和min y 不是在一个周期内搜索得到的,故以除第一个以外的A 值的平均作为幅值的估计值。 3、相位检测 采用过零法,即通过判断与同频零相位信号过零点时刻,计算其时间差,然后换成相 应的相位差。)π(T /ti -12=?,同样以?的平均值作为相位的估计值。 4、数字信号统计量估计 (1)峰值P 的估计 在样本数据x 中找出最大值与最小值,其差为双峰值,双峰值的一半即为峰值。 (2)均值估计 ∑=N i=0 iyN 1)y (E ,N 为样本容量。 (3)均方值估计 ∑=Ni=0iy22N 1 )y (E (4)方差估计 ∑=Ni=0 iy2))(E -(N 1)y (D y 5、频谱分析原理 时域分析只能反映信号的幅值随时间的变化情况,除但频率分量的简单波形外,很难明确提示信号的频率组成和各频率分量大小,而频谱分析能很好的解决此问题。 (1)DFT 与FFT 对于给定的时域信号y ,可以通过Fourier 变换得到频域信息Y 。Y 可按下式计算 式中,N 为样本容量,Δt = 1/Fs 为采样间隔。 采样信号的频谱是一个连续的频谱,不可能计算出所有的点的值,故采用离散Fourier 变换(DFT),即

振动分析仪之设备状态监测与故障诊断的三个阶段

振动分析仪之设备状态监测与故障诊断的三个阶段 与故障诊断技术的实质是了解和掌握设备在运行过程中的状态,评价、预测设备的可靠性, 早期发现故障,并对其原因、部位、危险程度等进行识别,预报故障的发展趋势,并针对具 体情况作出决策。由此可见,设备状态监测与故障诊断技术包括识别设备状态监测和预测发 展趋势两方面的内容。具体过程分为状态监测、分析诊断和治理预防三个基本环节。 1.状态监测 状态监测是在设备运行中,对特定的特征信号进行检测、变换、记录、分析处理并显示、记录,是对设备进行的基础工作。检测的信号主要是机组或零部件在运行中的各种信息(振动、噪声、转速、温度压力、流量等),通过利用如机械状态分析仪VIB07这种类型仪器的把这 些信息转换为电信号或其他物理信号,送入信号处理系统中进行处理,以便得到能反映设备 运行状态的特征参数,从而实现对设备运行状态的监测和下一步诊断工作。 2.分析诊断 分析诊断实际上包括两方面的内容:信号分析处理、故障诊断。 信号分析处理的目的是把获得的信息通过一定的方法进行变换处理,从不同的角度提取 最直观、最敏感、最有用的特征信息。分析处理可用专门的振动分析仪器,如VIB07或计算 机进行,一般情况下要从多重分析域、多个角度来分析观察这些信息。分析处理方法的选择、处理过程的准确性以及表达的直观性都会对诊断结果产生较大影响。 故障诊断是在状态监测与信号分析处理的基础上进行的。进行故障诊断需要根据状态监 测与信号分析处理所提供的能反映设备运行状态的征兆或特征参数的变化情况,有时还需要 进一步与某些故障特征参数进行比较,以识别设备是在运转正常还是存在故障。如果存在故障,要诊断故障的性质和程度、产生原因或发生部位,并预测设备的性能和故障发展趋势。 这是设备诊断的第二阶段。 如VIB07振动分析仪,兼备振动分析软件CM-Trend,可软件形成具有机器振动状态数据采集,数据管理,状态报警,故障诊断和趋势分析功能的基本预测维修系统。软件为使用者 提供一个方便灵活的工作平台,使其能够管理机器状态数据,进行日程数据采集,评价机 器状态,分析机器故障并提出预测维修报告。 3.治理预防 治理预防措施是在分析诊断出设备存在异常状态,即存在故障时,就其原因、部位和危 险程度进行研究并采取治理措施和预防的办法。通常包括调整、更换、检修、改善等方面的 工作。如果经过分析认为设备在短时间内尚可继续维持运行时,那就要对故障的发展加强监测,以保证设备运行的可靠性。根据设备故障情况,治理预防措施有巡回监测、监护运行、 立即停机检修三种。 与故障诊断技术的实质是了解和掌握设备在运行过程中的状态,评价、预测设备的可靠性, 早期发现故障,并对其原因、部位、危险程度等进行识别,预报故障的发展趋势,并针对具 体情况作出决策。由此可见,设备状态监测与故障诊断技术包括识别设备状态监测和预测发 展趋势两方面的内容。具体过程分为状态监测、分析诊断和治理预防三个基本环节。 1.状态监测

相关文档
相关文档 最新文档