文档视界 最新最全的文档下载
当前位置:文档视界 › 江苏省高中物理基本知识点总结

江苏省高中物理基本知识点总结

江苏省高中物理基本知识点总结
江苏省高中物理基本知识点总结

A B

物理重要知识点总结

学好物理要记住:最基本的知识、方法才是最重要的。 秘诀:“想” 学好物理重在理解........

(概念、规律的确切含义,能用不同的形式进行表达,理解其适用条件) A(成功)=X(艰苦的劳动)十Y(正确的方法)十Z(少说空话多干实事)

(最基础的概念,公式,定理,定律最重要);每一题中要弄清楚(对象、条件、状态、过程)是解题关健

物理学习的核心在于思维,只要同学们在平常的复习和做题时注意思考、注意总结、善于归纳整理,对于课堂上老师所讲的例题做到触类旁通,举一反三,把老师的知识和解题能力变成自己的知识和解题能力,并养成规范答题的习惯,这样,同学们一定就能笑傲考场,考出理想的成绩!

对联: 概念、公式、定理、定律。 (学习物理必备基础知识) 对象、条件、状态、过程。(解答物理题必须明确的内容)

力学问题中的“过程”、“状态”的分析和建立及应用物理模型在物理学习中是至关重要的。

说明:凡矢量式中用“+”号都为合成符号,把矢量运算转化为代数运算的前提是先规定正方向。

答题技巧:“基础题,全做对;一般题,一分不浪费;尽力冲击较难题,即使做错不后悔”。“容易题

不丢分,难题不得零分。“该得的分一分不丢,难得的分每分必争”,“会做?做对?不扣分”

在学习物理概念和规律时不能只记结论,还须弄清其中的道理,知道物理概念和规律的由来。 力的种类:(13个性质力)

有18条定律、2条定理

1重力: G = mg (g 随高度、纬度、不同星球上不同) 2弹力:F= Kx

3滑动摩擦力:F 滑= μN

4静摩擦力: O ≤ f 静≤ f m (由运动趋势和平衡方程去判断)

5浮力: F 浮= ρgV 排 6压力: F= PS = ρghs 7万有引力: F 引

=G

2

21r m m

8库仑力: F=K

2

2

1r q q (真空中、点电荷)

9电场力: F 电=q E =q

d

u 10安培力:磁场对电流的作用力

F= BIL (B ⊥I)方向:左手定则

11洛仑兹力:磁场对运动电荷的作用力

f=BqV (B ⊥V) 方向:左手定则

12分子力:分子间的引力和斥力同时存在,都随距离的增

大而减小,随距离的减小而增大,但斥力变化得快.

。 13核力:只有相邻的核子之间才有核力,是一种短程强力。

1万有引力定律B 2胡克定律B 3滑动摩擦定律B 4牛顿第一定律B

5牛顿第二定律B 力学 6牛顿第三定律B 7动量守恒定律B 8机械能守恒定律B

9能的转化守恒定律. 10电荷守恒定律 11真空中的库仑定律 12欧姆定律

13电阻定律B 电学 14闭合电路的欧姆定律B 15法拉第电磁感应定律 16楞次定律B 17反射定律 18折射定律B 定理: ①动量定理B

②动能定理B 做功跟动能改变的关系

受力分析入手(即力的大小、方向、力的性质与特征,力的变化及做功情况等)。 再分析运动过程(即运动状态及形式,动量变化及能量变化等)。 最后分析做功过程及能量的转化过程;

然后选择适当的力学基本规律进行定性或定量的讨论。

强调:用能量的观点、整体的方法(对象整体,过程整体)、等效的方法(如等效重力)等解决 Ⅱ运动分类:(各种运动产生的力学和运动学条件及运动规律.............

)是高中物理的重点、难点 高考中常出现多种运动形式的组合 追及(直线和圆)和碰撞、平抛、竖直上抛、匀速圆周运动等 ①匀速直线运动 F 合=0 a=0 V 0≠0 ②匀变速直线运动:初速为零或初速不为零,

③匀变速直、曲线运动(决于F 合与V 0的方向关系) 但 F 合= 恒力

④只受重力作用下的几种运动:自由落体,竖直下抛,竖直上抛,平抛,斜抛等

⑤圆周运动:竖直平面内的圆周运动(最低点和最高点);匀速圆周运动(关键搞清楚是什么力提供作向心力) ⑥简谐运动;单摆运动; ⑦波动及共振;

⑧分子热运动;(与宏观的机械运动区别) ⑨类平抛运动;

⑩带电粒在电场力作用下的运动情况;带电粒子在f 洛作用下的匀速圆周运动

Ⅲ。物理解题的依据:

(1)力或定义的公式 (2) 各物理量的定义、公式

(3)各种运动规律的公式 (4)物理中的定理、定律及数学函数关系或几何关系 Ⅳ几类物理基础知识要点:

①凡是性质力要知:施力物体和受力物体;

②对于位移、速度、加速度、动量、动能要知参照物; ③状态量要搞清那一个时刻(或那个位置)的物理量;

④过程量要搞清那段时间或那个位侈或那个过程发生的;(如冲量、功等)

⑤加速度a 的正负含义:①不表示加减速;② a 的正负只表示与人为规定正方向比较的结果。 ⑥如何判断物体作直、曲线运动; ⑦如何判断加减速运动; ⑧如何判断超重、失重现象。

⑨如何判断分子力随分子距离的变化规律

⑩根据电荷的正负、电场线的顺逆(可判断电势的高低)?电荷的受力方向;再跟据移动方向?其做功情况?电势能的变化情况

V 。知识分类举要

1.力的合成与分解、物体的平衡?求F 、F 2两个共点力的合力的公式:

F=θCOS F F F F 212

22

12++

合力的方向与F 1成α角:

1

tgα=

注意:(1) 力的合成和分解都均遵从平行四边行定则。

(2) 两个力的合力范围:? F1-F2 ?≤ F≤?F1 +F2 ?

(3) 合力大小可以大于分力、也可以小于分力、也可以等于分力。

共点力作用下物体的平衡条件:静止或匀速直线运动的物体,所受合外力为零。

∑F=0或∑F x=0∑F y=0

推论:[1]非平行的三个力作用于物体而平衡,则这三个力一定共点。按比例可平移为一个封闭的矢量三角形[2]几个共点力作用于物体而平衡,其中任意几个力的合力与剩余几个力(一个力)的合力一定等值反向

三力平衡:F3=F1 +F2

摩擦力的公式:

(1 ) 滑动摩擦力:f= μN

说明:a、N为接触面间的弹力,可以大于G;也可以等于G;也可以小于G

b、μ为滑动摩擦系数,只与接触面材料和粗糙程度有关,与接触面积大小、接触面相对运动快慢以

及正压力N无关.

(2 ) 静摩擦力:由物体的平衡条件或牛顿第二定律求解,与正压力无关.

大小范围:O≤ f静≤ f m (f m为最大静摩擦力与正压力有关)

说明:a 、摩擦力可以与运动方向相同,也可以与运动方向相反,还可以与运动方向成一定夹角。

b、摩擦力可以作正功,也可以作负功,还可以不作功。

c、摩擦力的方向与物体间相对运动的方向或相对运动趋势的方向相反。

d、静止的物体可以受滑动摩擦力的作用,运动的物体也可以受静摩擦力的作用。

力的独立作用和运动的独立性

当物体受到几个力的作用时,每个力各自独立地使物体产生一个加速度,就象其它力不存在一样,这个性质叫做力的独立作用原理。

一个物体同时参与两个或两个以上的运动时,其中任何一个运动不因其它运动的存在而受影响,这叫运动的独立性原理。物体所做的合运动等于这些相互独立的分运动的叠加。

根据力的独立作用原理和运动的独立性原理,可以分解速度和加速度,在各个方向上建立牛顿第二定律的分量式,常常能解决一些较复杂的问题。

VI.几种典型的运动模型:追及和碰撞、平抛、竖直上抛、匀速圆周运动等及类似的运动

探究匀变速直线运动实验:

下图为打点计时器打下的纸带。选点迹清楚的一条,舍掉开始比较密集的点迹,从便于测量的地方取一个开始点O ,然后每5个点取一个计数点A 、B 、C 、D …。(或相邻两计数点间

有四个点未画出)测出相邻计数点间的距离s 1、s 2、s 3…

利用打下的纸带可以:

⑴求任一计数点对应的即时速度v :如T s s v c 23

2+=(其中记数周期:T =5×0.02s=0.1s )

⑵利用上图中任意相邻的两段位移求a :如2

23T s s a -=

⑶利用“逐差法”求a :()()23216549T

s s s s s s a ++-++=

⑷利用v -t 图象求a :求出A 、B 、C 、D 、E 、F 各点的即时速度,画出如图的v-t 图线,图线的斜率就是加速度a 。

试通过计算推导出的刹车距离s 的表达式:说明公路旁书写“严禁超载、超速及酒后驾车”以及“雨天路滑车辆减速行驶”的原理。

解:(1)、设在反应时间内,汽车匀速行驶的位移大小为1s ;刹车后汽车做匀减

速直线运动的位移大小为2s ,加速度大小为a 。由牛顿第二定律及运动学公式有:

????

??????????????><+=><=><+=><=4...............3...............22..........1..................

21220001s s s as v m mg F a t v s μ 由以上四式可得出:>

<++

=5..........)(

220

0g m

F

v t v s μ

①超载(即m 增大),车的惯性大,由><5式,在其他物理量不变的情况下刹车距离就会增长,遇紧急情况不能及时刹车、停车,危险性就会增加;

②同理超速(0v 增大)、酒后驾车(0t 变长)也会使刹车距离就越长,容易发生事故;

③雨天道路较滑,动摩擦因数μ将减小,由<五>式,在其他物理量不变的情况下刹车距离就越长,汽车较难停下来。

因此为了提醒司机朋友在公路上行车安全,在公路旁设置“严禁超载、超速及酒后

驾车”以及“雨天路滑车辆减速行驶”的警示牌是非常有必要的。

思维方法篇

1.平均速度的求解及其方法应用

① 用定义式:t

s

??=

v

普遍适用于各种运动;②v =只适用于加速度恒定的匀变速直线运动

2.巧选参考系求解运动学问题

3.追及和相遇或避免碰撞的问题的求解方法:

两个关系和一个条件:1两个关系:时间关系和位移关系;2一个条件:两者速度相等,往往是物体间能否追上,或两者距离最大、最小的临界条件,是分析判断的切入点。

关键:在于掌握两个物体的位置坐标及相对速度的特殊关系。

基本思路:分别对两个物体研究,画出运动过程示意图,列出方程,找出时间、速度、位移的关系。解出结果,必要时进行讨论。

追及条件:追者和被追者v 相等是能否追上、两者间的距离有极值、能否避免碰撞的临界条件。 讨论:

1.匀减速运动物体追匀速直线运动物体。

①两者v 相等时,S 追

③若位移相等时,V 追>V 被追则还有一次被追上的机会,其间速度相等时,两者距离有一个极大值

2.初速为零匀加速直线运动物体追同向匀速直线运动物体

①两者速度相等时有最大的间距 ②位移相等时即被追上

3.匀速圆周运动物体:同向转动:ωA t A =ωB t B +n 2π;反向转动:ωA t A +ωB t B =2π 4.利用运动的对称性解题 5.逆向思维法解题 6.应用运动学图象解题 7.用比例法解题

8.巧用匀变速直线运动的推论解题

①某段时间内的平均速度 = 这段时间中时刻的即时速度 ②连续相等时间间隔内的位移差为一个恒量 ③位移=平均速度?时间

解题常规方法:公式法(包括数学推导)、图象法、比例法、极值法、逆向转变法

3.竖直上抛运动:(速度和时间的对称)

分过程:上升过程匀减速直线运动,下落过程初速为0的匀加速直线运动. 全过程:是初速度为V 0加速度为-g 的匀减速直线运动。 (1)上升最大高度:H =

(2)上升的时间:t=

(3)从抛出到落回原位置的时间:t =2

g

V o

(4)上升、下落经过同一位置时的加速度相同,而速度等值反向 (5)上升、下落经过同一段位移的时间相等。 (6)匀变速运动适用全过程S = V o t -

g t 2 ;V t = V o -g t ; V t 2-V o 2 =-2gS (S 、V t 的正、负号的理解)

4.匀速圆周运动

线速度: V=

t

s ==ωR=2 f R 角速度:ω=

f T

t

ππ

θ

22==

向心加速度: a = 2 f 2 R=

v ?ω

向心力: F= ma = m 2 R= m

m42πn 2 R

追及(相遇)相距最近的问题:同向转动:ωA t A =ωB t B +n 2π;反向转动:ωA t A +ωB t B =2π 注意:(1)匀速圆周运动的物体的向心力就是物体所受的合外力,总是指向圆心. (2)卫星绕地球、行星绕太阳作匀速圆周运动的向心力由万有引力提供。

(3)氢原子核外电子绕原子核作匀速圆周运动的向心力由原子核对核外电子的库仑力提供。

5.平抛运动:匀速直线运动和初速度为零的匀加速直线运动的合运动

(1)运动特点:a 、只受重力;b 、初速度与重力垂直.尽管其速度大小和方向时刻在改变,但其运动

的加速度却恒为重力加速度g ,因而平抛运动是一个匀变速曲线运动。在任意相等时间内速度变化相等。

(2)平抛运动的处理方法:平抛运动可分解为水平方向的匀速直线运动和竖直方向的自由落体运动。

水平方向和竖直方向的两个分运动既具有独立性又具有等时性. (3)平抛运动的规律:

证明:做平抛运动的物体,任意时刻速度的反向延长线一定经过此时沿抛出方向水平总位移的中点。证:平抛运动示意如图

设初速度为V0,某时刻运动到A点,位置坐标为(x,y ),

所用时间为

t.

此时速度与水平方向的夹角为β,速度的反向延长线与水平轴的交点为'x,

位移与水平方向夹角为α.以物体的出发点为原点,沿水平和竖直方向建立坐标。

依平抛规律有:

速度: V

x

= V

V

y

=gt

2

2

y

x

v

v

v+

=

'

x

y

v

gt

v

v

tan

x

x

y

-

=

=

=

β①

位移: S

x

= V

o

t

2

y

gt

2

1

s=

2

2

y

x

s

s

s+

=

2gt

2

1

t

gt

tan2

1

v

v

x

y

=

=

=

α②

由①②得:β

αtan

2

1

tan=即

)

(

2

1

'

x

x

y

x

y

-

=③

所以: x

x

2

1

'=④

④式说明:做平抛运动的物体,任意时刻速度的反向延长线一定经过此时沿抛出方向水总位移的中点。“在竖直平面内的圆周,物体从顶点开始无初速地沿不同弦滑到圆周上所用时间都相等。”

一质点自倾角为α的斜面上方定点O沿光滑斜槽OP从静止开始下滑,如图所示。为了使质点在最短时间内从O点到达斜面,则斜槽与竖直方面的夹角β等于多少?

矢量式)或者∑F x = m a x∑F y = m a y

7.牛顿第二定律:F合= ma(是

理解:(1)矢量性(2)瞬时性(3)独立性(4)同体性(5)同系性(6)同单位制

●力和运动的关系

①物体受合外力为零时,物体处于静止或匀速直线运动状态;

②物体所受合外力不为零时,产生加速度,物体做变速运动.

③若合外力恒定,则加速度大小、方向都保持不变,物体做匀变速运动,匀变速运动的轨迹可以是直线,

也可以是曲线.

④物体所受恒力与速度方向处于同一直线时,物体做匀变速直线运动.

⑤根据力与速度同向或反向,可以进一步判定物体是做匀加速直线运动或匀减速直线运动;

3

22)(33R h R GT GT +==

远近

ππρ⑥若物体所受恒力与速度方向成角度,物体做匀变速曲线运动.

⑦物体受到一个大小不变,方向始终与速度方向垂直的外力作用时,物体做匀速圆周运动.此时,外力仅改变速度的方向,不改变速度的大小.

⑧物体受到一个与位移方向相反的周期性外力作用时,物体做机械振动.

表1给出了几种典型的运动形式的力学和运动学特征.

综上所述:判断一个物体做什么运动,一看受什么样的力,二看初速度与合外力方向的关系.

力与运动的关系是基础,在此基础上,还要从功和能、冲量和动量的角度,进一步讨论运动规律.

8.万有引力及应用:与牛二及运动学公式

1思路和方法:①卫星或天体的运动看成匀速圆周运动, ② F 心=F 万 (类似原子模型)

2公式:G 2r

Mm =ma n ,又a n =r )T 2(r r v 22

2π=ω=, 则v=

r GM ,3r GM =ω,T=GM r 23π 3求中心天体的质量M 和密度ρ

由G 2r

Mm ==m 2

ωr =m r

)T 2(2π?M=

2

3

2GT r 4π (恒量=23

T

r ) ρ=233

3

3

43T GR r R M ππ=(当r=R 即近地卫星绕中心天体运行时)?ρ=2

G T 3π

=

(M=

ρV

π3

4

r 3) s 球面=4πr 2 s=πr 2(光的垂直有效面接收,球体推进辐射) s 球冠

=2πRh

轨道上正常转: F 引=G 2r

Mm

= F 心=m a 心= m ωm R v =2 2 R= m m42πn 2 R

地面附近:G 2

R Mm = mg ?GM=gR 2

(黄金代换式) mg= m R v 2?gR =v =v

第一宇宙

=7.9km/s

题目中常隐含:(地球表面重力加速度为g);这时可能要用到上式与其它方程联立来求解。

轨道上正常转:G 2r

Mm

= m R v 2?r

GM

v =

【讨论】(v 或E K )与r 关系,r 最小时为地球半径时,v 第一宇宙=7.9km/s (最大的运行速度、最小的发射速度);

T 最小=84.8min=1.4h

①沿圆轨道运动的卫星的几个结论:v=

r

GM

,3

r GM =

ω,T=GM

r 23π

②理解近地卫星:来历、意义 万有引力≈重力=向心力、 r 最小时为地球半径、 最大的运行速度=v

第一宇宙

=7.9km/s (最小的发射速度);T 最小=84.8min=1.4h

③同步卫星几个一定:三颗可实现全球通讯(南北极仍有盲区)

轨道为赤道平面 T=24h=86400s 离地高h=3.56x104km(为地球半径的5.6倍) V 同步=3.08km/s ﹤V 第一宇宙=7.9km/s ω=15o /h (地理上时区)a =0.23m/s 2 ④运行速度与发射速度、变轨速度的区别

⑤卫星的能量:r 增?v 减小(E K 减小

⑥应该熟记常识:地球公转周期1年, 自转周期1天=24小时=86400s, 地球表面半径6.4x103km 表面重力加速度g=9.8 m/s 2 月球公转周期30天

力学助计图 有a v 会变化

受力

●典型物理模型及方法 ◆1.连接体模型:是指运动中几个物体或叠放在一起、或并排挤放在一起、或用细绳、细杆联系在一起

的物体组。解决这类问题的基本方法是整体法和隔离法。

整体法是指连接体内的物体间无相对运动时,可以把物体组作为整体,对整体用牛二定律列方程

隔离法是指在需要求连接体内各部分间的相互作用(如求相互间的压力或相互间的摩擦力等)时,把某物体从连接体中隔离出来进行分析的方法。

) 与运动方向和有无摩擦(μ相同)无关,及与两物体放置的方式都无关。

平面、斜面、竖直都一样。只要两物体保持相对静止

记住:N=21

12

12

m F m F m m ++(N 为两物体间相互作用力),

一起加速运动的物体的分子m 1F 2和m 2F 1两项的规律并能应用?F 2

12m m m N

+=

讨论:①F 1≠0;F 2=0 122F=(m +m )a N=m a

N=

2

12

m F m m +

m 2

m 1 F

m 1 m 2

结果

原因

原因

受力

② F 1≠0;F 2≠0

N=211212

m F m m m F ++

(2

0F

=就是上面的情况)

F=2

11221m m g)(m m g)(m m ++

F=122112

m (m )m (m gsin )m m g θ++

F=A B B 12

m (m )m F m m g ++

F 1>F 2 m 1>m 2 N 1

N 5对6=F M

m (m 为第6个以后的质量) 第12对13的作用力 N 12对13=F nm

12)m -(n

◆2.水流星模型(竖直平面内的圆周运动——是典型的变速圆周运动)

研究物体通过最高点和最低点的情况,并且经常出现临界状态。(圆周运动实例) ①火车转弯 ②汽车过拱桥、凹桥3

③飞机做俯冲运动时,飞行员对座位的压力。

④物体在水平面内的圆周运动(汽车在水平公路转弯,水平转盘上的物体,绳拴着的物体在光滑水平面上绕绳的一端旋转)和物体在竖直平面内的圆周运动(翻滚过山车、水流星、杂技节目中的飞车走壁等)。 ⑤万有引力——卫星的运动、库仑力——电子绕核旋转、洛仑兹力——带电粒子在匀强磁场中的偏转、重力与弹力的合力——锥摆、(关健要搞清楚向心力怎样提供的)

(1)火车转弯:设火车弯道处内外轨高度差为h ,内外轨间距L ,转弯半径R 。由于外轨略高于内轨,使

得火车所受重力和支持力的合力F 合提供向心力。

为转弯时规定速度)(得由合002

0sin tan v L

Rgh v R v m L h

mg mg mg F ===≈=θθR g v ?=θtan 0

(是内外轨对火车都无摩擦力的临界条件)

①当火车行驶速率V 等于V 0时,F 合=F 向,内外轨道对轮缘都没有侧压力 ②当火车行驶V 大于V 0时,F 合

2

m

v

③当火车行驶速率V 小于V 0时,F 合>F 向,内轨道对轮缘有侧压力,F 合-N'=R

2m

v

即当火车转弯时行驶速率不等于V 0时,其向心力的变化可由内外轨道对轮缘侧压力自行调节,但调节程度不宜过大,以免损坏轨道。火车提速靠增大轨道半径或倾角来实现

(2)无支承的小球,在竖直平面内作圆周运动过最高点情况:

受力:由mg+T=mv 2

/L 知,小球速度越小,绳拉力或环压力T 越小,但T 的最小值只能为零,此时小球以重力提供作向心力. 结论:通过最高点时绳子(或轨道)对小球没有力的作用(可理解为恰好通过或恰好通不过的条件),此时只有重力提供作向心力. 注意讨论:绳系小球从最高点抛出做圆周还是平抛运动。

能过最高点条件:V ≥V 临(当V ≥V 临时,绳、轨道对球分别产生拉力、压力) 不能过最高点条件:V

m

2临

v ,临界速度V 临=

gR ;

可认为距此点2

R h = (或距圆的最低点)2

5R h =处落下的物体。

☆此时最低点需要的速度为V 低临=

gR 5 ☆最低点拉力大于最高点拉

力ΔF=6mg

② 最高点状态: mg+T 1=L

2m

高v (临界条件T 1=0, 临界速度V 临=

gR , V ≥V 临才能通过)

最低点状态: T 2- mg = L

2m

低v 高到低过程机械能守恒:

mg2L m m 22

122

1+=高低v v T 2- T 1=6mg (g 可看为等效加速度)

② 半圆:过程mgR=

22

1

mv 最低点T-mg=R 2

v m ?绳上拉力T=3mg ; 过低点的速度为V

=

gR 2

小球在与悬点等高处静止释放运动到最低点,最低点时的向心加速度a=2g ③与竖直方向成θ角下摆时,过低点的速度为V 低 =)cos 1(2θ-gR ,

此时绳子拉力T=mg(3-2cos θ)

(3)有支承的小球,在竖直平面作圆周运动过最高点情况:

①临界条件:杆和环对小球有支持力的作用知)

(由R

U m N mg 2

=- 当V=0时,N=mg (可理解为小球恰好转过或恰好转不过最高点)

圆心。

增大而增大,方向指向随即拉力向下时,当④时,当③增大而减小,且向上且随时,支持力当②v N gR v N gR v N mg v N gR v )(0

00>

==>><<

作用

时,小球受到杆的拉力>,速度当小球运动到最高点时时,杆对小球无作用力,速度当小球运动到最高点时长短表示)

(力的大小用有向线段,但(支持)

时,受到杆的作用力,速度当小球运动到最高点时N gR v N gR v mg N N gR v 0

==

<<

恰好过最高点时,此时从高到低过程 mg2R=

22

1

mv

低点:T-mg=mv 2

/R ? T=5mg ;恰好过最高点时,此时最低点速度:V 低 =gR 2 注意物理圆与几何圆的最高点、最低点的区别: (以上规律适用于物理圆,但最高点,最低点, g 都应看成等效的情况)

2.解决匀速圆周运动问题的一般方法

(1)明确研究对象,必要时将它从转动系统中隔离出来。 (2)找出物体圆周运动的轨道平面,从中找出圆心和半径。 (3)分析物体受力情况,千万别臆想出一个向心力来。

(4)建立直角坐标系(以指向圆心方向为x 轴正方向)将力正交分解。 (5)??

???=∑===∑0222

2y x F R T

m R m R v m F )(建立方程组πω

3.离心运动

╰α

α在向心力公式F n=mv2/R中,F n是物体所受合外力所能提供的向心力,mv2/R是物

体作圆周运动所需要的向心力。当提供的向心力等于所需要的向心力时,物体将作圆

周运动;若提供的向心力消失或小于所需要的向心力时,物体将做逐渐远离圆心的运

动,即离心运动。其中提供的向心力消失时,物体将沿切线飞去,离圆心越来越远;

提供的向心力小于所需要的向心力时,物体不会沿切线飞去,但沿切线和圆周之间的某条曲线运动,逐渐远离圆心。

◆3斜面模型(搞清物体对斜面压力为零的临界条件)

斜面固定:物体在斜面上情况由倾角和摩擦因素决定

μ=tgθ物体沿斜面匀速下滑或静止μ> tgθ物体静止于斜面

μ< tgθ物体沿斜面加速下滑a=g(sinθ一μcosθ)

◆4.轻绳、杆模型

绳只能受拉力,杆能沿杆方向的拉、压、横向及任意方向的力。

如图:杆对球的作用力由运动情况决定只有θ=arctg(g a)时才沿杆方向

最高点时杆对球的作用力;最低点时的速度?,杆的拉力?若小球带电呢?

假设单B下摆,最低点的速度

V B=R

2g?mgR=2

2

1

B

mv

整体下摆2mgR=mg

2

R

+'2B

'2

A

mv

2

1

mv

2

1

+

'

A

'

B

V

2

V=?'

A

V=gR

5

3

;'

A

'

B

V

2

V==gR

2

5

6

> V B=R

2g

所以AB杆对B做正功,AB杆对A做负功

◆.通过轻绳连接的物体

①在沿绳连接方向(可直可曲),具有共同的v和a。

特别注意:两物体不在沿绳连接方向运动时,先应把两物体的v和a在沿绳方向分解,求出两物体的v和a的关系式,

②被拉直瞬间,沿绳方向的速度突然消失,此瞬间过程存在能量的损失。

讨论:若作圆周运动最高点速度V0

即是有能量损失,绳拉紧后沿圆周下落机械能守恒。而不能够整个过程用机械能守恒。

求水平初速及最低点时绳的拉力?

换为绳时:先自由落体,在绳瞬间拉紧(沿绳方向的速度消失)有能量损失(即v1突然消失),再v2下摆机械能守恒例:摆球的质量为m,从偏离水平方向30°的位置由静释放,设绳子为理想轻绳,求:小球运动到最低点A时绳子受到的拉力是多少?

E

m

L

·

F

m S

S

F

◆5.超重失重模型

系统的重心在竖直方向上有向上或向下的加速度(或此方向的分量a y )

向上超重(加速向上或减速向下)F=m(g+a);向下失重(加速向下或减速上升)F=m(g-a)

难点:一个物体的运动导致系统重心的运动 1到2到3过程中 (1、3除外)超重状态

绳剪断后台称示数

铁木球的运动

系统重心向下加速 用同体积的水去补充

斜面对地面的压力? 地面对斜面摩擦力? 导致系统重心如何运动?

◆6.碰撞模型:

两个相当重要典型的物理模型,后面的动量守恒中专题讲解

◆7.子弹打击木块模型: ◆8.人船模型:

一个原来处于静止状态的系统,在系统内发生相对运动的过程中,

在此方向遵从①动量守恒方程:mv=MV ;ms=MS ;②位移关系方程 s+S=d

?s=

d M

m M

+M/m=L m /L M

◆9.弹簧振子模型:F=-Kx (X 、F 、a 、v 、A 、T 、f 、E K 、E P 等量的变化规律)水平型或竖直型 ◆10.单摆模型:T=2π

g l / (类单摆)利用单摆测重力加速度

◆11.波动模型:特点:传播的是振动形式和能量,介质中各质点只在平衡位置附近振动并不随波迁移。

①各质点都作受迫振动,

②起振方向与振源的起振方向相同, ③离源近的点先振动,

④没波传播方向上两点的起振时间差=波在这段距离内传播的时间 ⑤波源振几个周期波就向外传几个波长。

⑥波从一种介质传播到另一种介质,频率不改变, 波速v=s/t=λ/T=λf

波速与振动速度的区别 波动与振动的区别:波的传播方向?质点的振动方向(同侧法) 知波速和波形画经过Δt 后的波形(特殊点画法和去整留零法)

◆12.图象模形:识图方法: 一轴、二线、三斜率、四面积、五截距、六交点 明确:点、线、面积、斜率、截距、交点的含义 中学物理中重要的图象

20m

M

m

O R

a

图9

θ

⑴运动学中的s-t 图、v-t 图、振动图象x-t 图以及波动图象y-x 图等。

⑵电学中的电场线分布图、磁感线分布图、等势面分布图、交流电图象、电磁振荡i-t 图等。

⑶实验中的图象:如验证牛顿第二定律时要用到a-F 图象、F-1/m 图象;用“伏安法 ”测电阻时要画I-U 图象;测电源电动势和内电阻时要画U-I 图;用单摆测重力加速度时要画的图等。

⑷在各类习题中出现的图象:如力学中的F-t 图、电磁振荡中的q-t 图、电学中的P-R 图、电磁感应中的Φ-t 图、E-t 图等。 ●模型法常常有下面三种情况

(1)“对象模型”:即把研究的对象的本身理想化. 用来代替由具体物质组成的、代表研究对象的实体系统,称为对象模型(也可称为概念模型),

实际物体在某种条件下的近似与抽象,如质点、光滑平面、理想气体、理想电表等;

常见的如“力学”中有质点、点电荷、轻绳或杆、轻质弹簧、单摆、弹簧振子、弹性体、绝热物质等; (2)条件模型:把研究对象所处的外部条件理想化.排除外部条件中干扰研究对象运动变化的次要因素,突出外部条件的本质特征或最主要的方面,从而建立的物理模型称为条件模型.

(3)过程模型:把具体过理过程纯粹化、理想化后抽象出来的一种物理过程,称过程模型

理想化了的物理现象或过程,如匀速直线运动、自由落体运动、竖直上抛运动、平抛运动、匀速圆周运动、简谐运动等。

有些题目所设物理模型是不清晰的,不宜直接处理,但只要抓住问题的主要因素,忽略次要因素,恰当的将复杂的对象或过程向隐含的理想化模型转化,就能使问题得以解决。

解决物理问题的一般方法可归纳为以下几个环节:

原始的物理模型可分为如下两类:

物理解题方法:如整体法、假设法、极限法、逆向思维法、物理模型法、等效法、物理图像法等.

● 知识分类举要

力的瞬时性(产生a )F=ma 、?运动状态发生变化?牛顿第二定律

1.力的三种效应:时间积累效应(冲量)I=Ft 、?动量发生变化?动量定理

空间积累效应(做功)w=Fs ?动能发生变化?动能定理

2.动量观点:动量(状态量):p=mv=

K

mE 2 冲量(过程量):I = F t

动量定理:内容:物体所受合外力的冲量等于它的动量的变化。

公式: F 合t = mv ’一mv (解题时受力分析和正方向的规定是关键)

I=F 合t=F 1t 1+F

2t 2+---=?p=P 末-P 初=mv 末-mv 初

动量守恒定律:内容、守恒条件、不同的表达式及含义:'p p =;0p =?;21p -p ?=?

内容:相互作用的物体系统,如果不受外力,或它们所受的外力之和为零,它们的总动量保持不变。

(研究对象:相互作用的两个物体或多个物体所组成的系统) 守恒条件:①系统不受外力作用。(理想化条件)

对象模型(质点、轻杆、轻绳、弹簧振子、单摆、理想气体、点电荷、理想电表、

理想变压器、匀强电场、匀强磁场、点光源、光线、原子模型等)

过程模型(匀速直线运动、匀变速直线运动、匀速圆周运动、平抛运动、简谐运

动、简谐波、弹性碰撞、自由落体运动、竖直上抛运动等) 物理模型

②系统受外力作用,但合外力为零。

③系统受外力作用,合外力也不为零,但合外力远小于物体间的相互作用力。 ④系统在某一个方向的合外力为零,在这个方向的动量守恒。 ⑤全过程的某一阶段系统受合外力为零,该阶段系统动量守恒,

即:原来连在一起的系统匀速或静止(受合外力为零),分开后整体在某阶段受合外力仍为零,可用动量守恒。 例:火车在某一恒定牵引力作用下拖着拖车匀速前进,拖车在脱勾后至停止运动前的过程中(受合外力为零)动量守恒

“动量守恒定律”、“动量定理”不仅适用于短时间的作用,也适用于长时间的作用。

不同的表达式及含义(各种表达式的中文含义):

P =P ′ 或 P 1+P 2=P 1′+P 2′ 或 m 1V 1+m 2V 2=m 1V 1′+m 2V 2′

(系统相互作用前的总动量P 等于相互作用后的总动量P ′)

ΔP =0 (系统总动量变化为0) ΔP =-ΔP ' (两物体动量变化大小相等、方向相反)

如果相互作用的系统由两个物体构成,动量守恒的实际应用中的具体表达式为 m 1v 1+m 2v 2='

22'

11v m v m +; 0=m 1v 1+m 2v 2 m 1v 1+m 2v 2=(m 1+m 2)v 共

原来以动量(P)运动的物体,若其获得大小相等、方向相反的动量(-P),是导致物体静止或反向运动的临界条件。即:P+(-P)=0

注意理解四性:系统性、矢量性、同时性、相对性 系统性:研究对象是某个系统、研究的是某个过程 矢量性:对一维情况,先.

选定某一方向为正方向,速度方向与正方向相同的速度取正,反之取负, 再.

把矢量运算简化为代数运算。,引入正负号转化为代数运算。不注意正方向的设定,往往得出错误结果。一旦方向搞错,问题不得其解

相对性:所有速度必须是相对同一惯性参照系。

同时性:v 1、v 2是相互作用前同一时刻的速度,v 1'、v 2'是相互作用后同一时刻的速度。

解题步骤:选对象,划过程,受力分析.所选对象和过程符合什么规律?用何种形式列方程(先要规定正方向)求解并讨论结果。

动量定理说的是物体动量的变化量跟总冲量的矢量相等关系;

动量守恒定律说的是存在内部相互作用的物体系统在作用前后或作用过程中各物体动量的矢量和保持不变的关系。

◆7.碰撞模型和◆8子弹打击木块模型专题:

3x

x A

O m

碰撞模型

其它的碰撞模型:

证明:完全非弹性碰撞过程中机械能损失最大。 证明:碰撞过程中机械能损失表为:△E=

21m 1υ12+21m 2υ22―21m 1u 12―2

1

m 2u 22 由动量守恒的表达式中得: u 2=

2

1

m (m 1υ1+m 2υ2-m 1u 1) 代入上式可将机械能的损失△E 表为u 1的函数为:

△E=-2

2112)(m m m m +u 12-222111)(m m m m υυ+u 1+[(21m 1υ12+21m 2υ22)-221m ( m 1υ1+m 2υ2)2]

这是一个二次项系数小于零的二次三项式,显然:当 u 1=u 2=2

12

211m m m m ++υυ时,

即当碰撞是完全非弹性碰撞时,系统机械能的损失达到最大值

△ E m =2

1m 1υ12+21m 2υ22-22

1221121)

)(

(2

1

m m m m m m +++υυ 历年高考中涉及动量守量模型的计算题都有:(对照图表) 一质量为M 的长木板静止在光滑水平桌面上.一质量为m 的小滑块以水平速度v 0从长木板的一端开始在木板上滑动,直到离开木板.滑块刚离开木板时速度为V 0/3,若把此木板固定在水平面上,其它条件相同,求滑块离开木板时速度?

1996年全国广东(24题) 1995年全国广东(30题压轴题) 1997年全国广东(25题轴题12分) 1998年全国广东(25题轴题12分)

试在下述简化情况下由牛顿定律导出动量守恒定律的表达式:系统是两个质点,相互作用力是恒力,不受其他力,沿直线运动要求说明推导过程中

质量为M 的小船以速度V 0行驶,船上有

两个质量皆为m 的小孩a 和b ,分别静止站在船头和船尾. 现小孩a 沿水平方向以

速率v (相对于静止水面)向前跃入水中, v 0 A B

A

B

v 0 v s

M v

L 1

A

v 0

A

H O O B L P C

2

L M 2 1 N

B

每步的根据,以及式中各符号和最后结果中各项的意义。

1999年全国广东(20题12分) 2000年全国广东(22压轴题) 2001年广东河南(17题12分)

2002年广东(19题)

2003年广东(19、20题)

2004年广东(15、17题)

2005年广东(18题) 2006年广东(16、18题) 2007年广东(17题)

2008年广东( 19题、第20题 )

子弹打木块模型:物理学中最为典型的碰撞模型 (一定要掌握)

子弹击穿木块时,两者速度不相等;子弹未击穿木块时,两者速度相等.这两种情况的临界情况是:当子弹从木块一端到达另一端,相对木块运动的位移等于木块长度时,两者速度相等. 例题:设质量为m 的子弹以初速度v 0射向静止在光滑水平面上的质量为M 的木块,并留在木块中不再射

出,子弹钻入木块深度为d 。求木块对子弹的平均阻力的大小和该过程中木块前进的距离。

解析:子弹和木块最后共同运动,相当于完全非弹性碰撞。

从动量的角度看,子弹射入木块过程中系统动量守恒:

()v m M mv +=0

从能量的角度看,该过程系统损失的动能全部转化为系统的内能。设平均阻力大小为f ,设子弹、木块的位移大小分别为s 1、s 2,如图所示,显然有s 1-s 2=d

A N B

C

R R

D P P L

L

E A

O B

P P v (

T 23456E

t

E

0 (

3.功与能观点:

求功方法 单位:J ev=1.9×10-19J 度=kwh=3.6×106J 1u=931.5Mev

⊙力学: ①W = Fs cos θ(适用于恒力功的计算)①理解正功、零功、负功②功是能量转化的量度

②W= P ·t (?p=

t w =t

FS

=Fv)功率:P = (在t 时间内力对物体做功的平均功率) P = F v

(F 为牵引力,不是合外力;V 为即时速度时,P 为即时功率.V 为平均速度时,P 为平均功率.P 一定时,F 与V 成正比)

动能: E K =m

2p mv 2122

=重力势能E p = mgh (凡是势能与零势能面的选择有关)

③动能定理:外力对物体所做的总功等于物体动能的变化(增量)

公式:W 合=W 合=W 1+ W 2+…+W n = ?E k = E k2一E k1 = 1212

2212mV mV - ⑴W 合为外力所做功的代数和.(W 可以不同的性质力做功)

⑵外力既可以有几个外力同时作用,也可以是各外力先后作用或在不同过程中作用: ⑶既为物体所受合外力的功。

④功是能量转化的量度(最易忽视)“功是能量转化的量度”这一基本概念含义理解。

⑴重力的功------量度------重力势能的变化

物体重力势能的增量由重力做的功来量度:W G = -ΔE P ,这就是势能定理。

与势能相关的力做功特点:如重力,弹力,分子力,电场力它们做功与路径无关,只与始末位置有关. 除重力和弹簧弹力做功外,其它力做功改变机械能; 这就是机械能定理。 只有重力做功时系统的机械能守恒。 ⑵电场力的功-----量度------电势能的变化 ⑶分子力的功-----量度------分子势能的变化

⑷合外力的功------量度-------动能的变化;这就是动能定理。 ⑸摩擦力和空气阻力做功W =fd 路程?E 内能(发热)

⑹一对互为作用力反作用力的摩擦力做的总功,用来量度该过程系统由于摩擦而减小的机械能,

也就是系统增加的内能。f d=Q (d 为这两个物体间相对移动的路程)。

⊙热学: ΔE=Q+W (热力学第一定律)

⊙电学: W AB =qU AB =F 电d E =qEd E ? 动能(导致电势能改变)

W =QU =UIt =I 2Rt =U 2t/R Q =I 2Rt

E=I(R+r)=u 外+u 内=u 外+Ir P 电源t =uIt+E 其它 P 电源=IE=I U +I 2Rt

⊙磁学:安培力功W =F 安d =BILd ?内能(发热) d R

V L B Ld R BLV B 22== ⊙光学:单个光子能量E =h γ 一束光能量E 总=Nh γ(N 为光子数目)

光电效应2

2

1m km

mv E =

=h γ-W 0跃迁规律:h γ=E 末-E 初 辐射或吸收光子 ⊙原子:质能方程:E =mc 2ΔE =Δmc 2注意单位的转换换算

机械能守恒定律:机械能=动能+重力势能+弹性势能(条件:系统只有内部的重力或弹力做功).

守恒条件:(功角度)只有重力和弹簧的弹力做功;(能转化角度)只发生动能与势能之间的相互转化。

“只有重力做功”≠“只受重力作用”。

在某过程中物体可以受其它力的作用,只要这些力不做功,或所做功的代数和为零,就可以认为是“只有重力做功”。

列式形式: E 1=E 2(先要确定零势面) P 减(或增)=E 增(或减) E A 减(或增)=E B 增(或减)

mgh 1 +

或者?E p 减 = ?E k 增

除重力和弹簧弹力做功外,其它力做功改变机械能;滑动摩擦力和空气阻力做功W =fd 路程?E 内能(发热)

4.功能关系:功是能量转化的量度。有两层含义:

(1)做功的过程就是能量转化的过程, (2)做功的多少决定了能转化的数量,即:功是能量转化的量度 强调:功是一种过程量,它和一段位移(一段时间)相对应;而能是一种状态量,它与一个时刻相对应。

高中物理重要知识点详细全总结(史上最全)

【精品文档,百度专属】完整的知识网络构建,让复习备考变得轻松简单! (注意:全篇带★需要牢记!) 高 中 物 理 重 要 知 识 点 总 结 (史上最全)

高中物理知识点总结 (注意:全篇带★需要牢记!) 一、力物体的平衡 1.力是物体对物体的作用,是物体发生形变和改变物体的运动状态(即产生加速度)的原因. 力是矢量。 2.重力(1)重力是由于地球对物体的吸引而产生的. [注意]重力是由于地球的吸引而产生,但不能说重力就是地球的吸引力,重力是万有引力的一个分力. 但在地球表面附近,可以认为重力近似等于万有引力 (2)重力的大小:地球表面G=mg,离地面高h处G/=mg/,其中g/=[R/(R+h)]2g (3)重力的方向:竖直向下(不一定指向地心)。 (4)重心:物体的各部分所受重力合力的作用点,物体的重心不一定在物体上. 3.弹力(1)产生原因:由于发生弹性形变的物体有恢复形变的趋势而产生的. (2)产生条件:①直接接触;②有弹性形变. (3)弹力的方向:与物体形变的方向相反,弹力的受力物体是引起形变的物体,施力物体是发生形变的物体.在点面接触的情况下,垂直于面; 在两个曲面接触(相当于点接触)的情况下,垂直于过接触点的公切面. ①绳的拉力方向总是沿着绳且指向绳收缩的方向,且一根轻绳上的张力大小处处相等. ②轻杆既可产生压力,又可产生拉力,且方向不一定沿杆. (4)弹力的大小:一般情况下应根据物体的运动状态,利用平衡条件或牛顿定律来求解.弹簧弹力可由胡克定律来求解. ★胡克定律:在弹性限度内,弹簧弹力的大小和弹簧的形变量成正比,即F=kx.k为弹簧的劲度系数,它只与弹簧本身因素有关,单位是N/m. 4.摩擦力 (1)产生的条件:①相互接触的物体间存在压力;③接触面不光滑;③接触的物体之间有相对运动(滑动摩擦力)或相对运动的趋势(静摩擦力),这三点缺一不可. (2)摩擦力的方向:沿接触面切线方向,与物体相对运动或相对运动趋势的方向相反,与物体运动的方向可以相同也可以相反. (3)判断静摩擦力方向的方法: ①假设法:首先假设两物体接触面光滑,这时若两物体不发生相对运动,则说明它们原来没有相对运动趋势,也没有静摩擦力;若两物体发生相对运动,则说明它们原来有相对运动趋势,并且原来相对运动趋势的方向跟假设接触面光滑时相对运动的方向相同.然后根据静

人教版高一物理知识点归纳总结

质点参考系和坐标系

时间和位移

实验:用打点计时器测速度 知识点总结 了解打点计时器的构造;会用打点计时器研究物体速度随时间变化的规律;通过分析纸带测定匀变速直线运动的加速度及其某时刻的速度;学会用图像法、列表法处理实验数据。 一、实验目的 1.练习使用打点计时器,学会用打上的点的纸带研究物体的运动。 3.测定匀变速直线运动的加速度。 二、实验原理 ⑴电磁打点计时器 ①工作电压:4~6V的交流电源 ②打点周期:T=0.02s,f=50赫兹 ⑵电火花计时器 ①工作电压:220V的交流电源 ②打点周期:T=0.02s,f=50赫兹 ③打点原理:它利用火花放电在纸带上打出小孔而显示点迹的计时器,当接通220V的交流电源,按下脉冲输出开关时,计时器发出的脉冲电流经接正极的放电针、墨粉纸盘到接负极的纸盘轴,产生电火花,于是在纸带上就打下一系列的点迹。 ⑵由纸带判断物体做匀变速直线运动的方法 0、1、2…为时间间隔相等的各计数点,s1、s2、s3、…为相邻两计数点间的距离,若△s=s2-s1=s3-s2=…=恒量,即若连续相等的时间间隔内的位移之差为恒量,则与纸带相连的物体的运动为匀变速直线运动。 ⑶由纸带求物体运动加速度的方法

三、实验器材 小车,细绳,钩码,一端附有定滑轮的长木板,电火花打点计时器(或打点计时器),低压交流电源,导线两根,纸带,米尺。 四、实验步骤 1.把一端附有定滑轮的长木板平放在实验桌上,并使滑轮伸出桌面,把打点计时器固定在长木板上没有滑轮的一端,连接好电路,如图所示。 2.把一条细绳拴在小车上,细绳跨过滑轮,并在细绳的另一端挂上合适的钩码,试放手后,小车能在长木板上平稳地加速滑行一段距离,把纸带穿过打点计时器,并把它的一端固定在小车的后面。 3.把小车停在靠近打点计时器处,先接通电源,再放开小车,让小车运动,打点计时器就在纸带上打下一系列的点, 取下纸带, 换上新纸带, 重复实验三次。 4.选择一条比较理想的纸带,舍掉开头的比较密集的点子, 确定好计数始点0, 标明计数点,正确使用毫米刻度尺测量两点间的距离,用逐差法求出加速度值,最后求其平均值。也可求出各计数点对应的速度, 作v-t图线, 求得直线的斜率即为物体运动的加速度。 五、注意事项 1.纸带打完后及时断开电源。 2.小车的加速度应适当大一些,以能在纸带上长约50cm的范围内清楚地取7~8个计数点为宜。 3.应区别计时器打出的轨迹点与人为选取的计数点,通常每隔4个轨迹点选1个计数点,选取的记数点不少于6个。 4.不要分段测量各段位移,可统一量出各计数点到计数起点0之间的距离,读数时应估读到毫米的下一位。 常见考法 纸带处理时高中遇到的第一个实验,非常重要,在平时的练习中、月考、期中、期末考试均会高频率出现,以致在学业水平测试和高考中也做为重点考察内容,是选择、填空题的形式出现,同学们要引起重视。 误区提醒 要注意的就是会判断纸带的运动形式、会计算某点速度、会计算加速度,在运算的过

初中物理知识点总结(最新最全)

初中物理知识点总结(大全) 第一章声现象知识归纳 1 . 声音的发生:由物体的振动而产生。振动停止,发声也停止。 2.声音的传播:声音靠介质传播。真空不能传声。通常我们听到的声音是靠空气传来的。 3.声速:在空气中传播速度是:340米/秒。声音在固体传播比液体快,而在液体传播又比空气体快。 4.利用回声可测距离:S=1/2vt 5.乐音的三个特征:音调、响度、音色。(1)音调:是指声音的高低,它与发声体的频率有关系。(2)响度:是指声音的大小,跟发声体的振幅、声源与听者的距离有关系。 6.减弱噪声的途径:(1)在声源处减弱;(2)在传播过程中减弱; (3)在人耳处减弱。 7.可听声:频率在20Hz~20000Hz之间的声波:超声波:频率高于20000Hz的声波;次声波:频率低于20Hz的声波。 8.超声波特点:方向性好、穿透能力强、声能较集中。具体应用有:声呐、B超、超声波速度测定器、超声波清洗器、超声波焊接器等。 9.次声波的特点:可以传播很远,很容易绕过障碍物,而且无孔不入。一定强度的次声波对人体会造成危害,甚至毁坏机械建筑等。它主要产生于自然界中的火山爆发、海啸地震等,另外人类制造的火箭发射、飞机飞行、火车汽车的奔驰、核爆炸等也能产生次声波。 第二章物态变化知识归纳 1. 温度:是指物体的冷热程度。测量的工具是温度计, 温度计是根据液体的热胀冷缩的原理制成的。 2. 摄氏温度(℃):单位是摄氏度。1摄氏度的规定:把冰水混合物温度规定为0度,把一标准大气压下沸水的温度规定为100度,在0度和100度之间分成100等分,每一等分为1℃。 3.常见的温度计有(1)实验室用温度计;(2)体温计;(3)寒暑表。 体温计:测量范围是35℃至42℃,每一小格是0.1℃。 4. 温度计使用:(1)使用前应观察它的量程和最小刻度值;(2)使用时温度计玻璃泡要全部浸入被测液体中,不要碰到容器底或容器壁;(3)待温度计示数稳定后再读数;(4)读数时玻璃泡要继续留在被测液体中,视线与温度计中液柱的上表面相平。 5. 固体、液体、气体是物质存在的三种状态。

高中物理重要知识点详细全总结(史上最全)

完整的知识网络构建,让复习备考变得轻松简单! (注意:全篇带★需要牢记!) 物 理 重 要 知 识 点 总 结 (史上最全) 高中物理知识点总结 (注意:全篇带★需要牢记!) 一、力物体的平衡

1.力是物体对物体的作用,是物体发生形变和改变物体的运动状态(即产生加速度)的原因. 力是矢量。 2.重力(1)重力是因为地球对物体的吸引而产生的. [注意]重力是因为地球的吸引而产生,但不能说重力就是地球的吸引力,重力是万有引力的一个分力. 但在地球表面附近,能够认为重力近似等于万有引力 (2)重力的大小:地球表面G=mg,离地面高h处G/=mg/,其中g/=[R/(R+h)]2g (3)重力的方向:竖直向下(不一定指向地心)。 (4)重心:物体的各部分所受重力合力的作用点,物体的重心不一定在物体上. 3.弹力(1)产生原因:因为发生弹性形变的物体有恢复形变的趋势而产生的. (2)产生条件:①直接接触;②有弹性形变. (3)弹力的方向:与物体形变的方向相反,弹力的受力物体是引起形变的物体,施力物体是发生形变的物体.在点面接触的情况下,垂直于面; 在两个曲面接触(相当于点接触)的情况下,垂直于过接触点的公切面. ①绳的拉力方向总是沿着绳且指向绳收缩的方向,且一根轻绳上的张力大小处处相等. ②轻杆既可产生压力,又可产生拉力,且方向不一定沿杆. (4)弹力的大小:一般情况下应根据物体的运动状态,利用平衡条件或牛顿定律来求解.弹簧弹力可由胡克定律来求解. ★胡克定律:在弹性限度内,弹簧弹力的大小和弹簧的形变量成正比,即F=kx.k为弹簧的劲度系数,它只与弹簧本身因素相关,单位是N/m. 4.摩擦力 (1)产生的条件:①相互接触的物体间存有压力;③接触面不光滑;③接触的物体之间有相对运动(滑动摩擦力)或相对运动的趋势(静摩擦力),这三点缺一不可. (2)摩擦力的方向:沿接触面切线方向,与物体相对运动或相对运动趋势的方向相反,与物体运动的方向能够相同也能够相反. (3)判断静摩擦力方向的方法: ①假设法:首先假设两物体接触面光滑,这时若两物体不发生相对运动,则说明它们原来没有相对运动趋势,也没有静摩擦力;若两物体发生相对运动,则说明它们原来有相对运动趋势,并且原来相对运动趋势的方向跟假设接触面光滑时相对运动的方向相同.然后根据静摩擦力的方向跟物体相对运动趋势的方向相反确定静摩擦力方向. ②平衡法:根据二力平衡条件能够判断静摩擦力的方向. (4)大小:先判明是何种摩擦力,然后再根据各自的规律去分析求解. ①滑动摩擦力大小:利用公式f=μF N实行计算,其中F N是物体的正压力,不一

最详细的高中物理知识点总结(最全版)

高中物理知识点总结(经典版)

第一章、力 一、力F:物体对物体的作用。 1、单位:牛(N) 2、力的三要素:大小、方向、作用点。 3、物体间力的作用是相互的。即作用力与反作用力,但它们不在同一物体上,不是平衡力。作用力与 反作用力是同性质的力,有同时性。 二、力的分类: 1、按按性质分:重力G、弹力N、摩擦力f 按效果分:压力、支持力、动力、阻力、向心力、回复力。 按研究对象分:外力、内力。 2、重力G:由于受地球吸引而产生,竖直向下。G=mg 重心的位置与物体的质量分布与形状有关。质量均匀、形状规则的物体重心在几何中心上,不一定在物体上。 弹力:由于接触形变而产生,与形变方向相反或垂直接触面。F=k×Δx 摩擦力f:阻碍相对运动的力,方向与相对运动方向相反。 滑动摩擦力:f=μN(N不是G,μ表示接触面的粗糙程度,只与材料有关,与重力、压力无关。) 相同条件下,滚动摩擦<滑动摩擦。 静摩擦力:用二力平衡来计算。 用一水平力推一静止的物体并使它匀速直线运动,推力F与摩擦力f的关系如图所示。 力的合成与分解:遵循平行四边形定则。以分力F1、F2为邻边作平行四边形,合力F的大小和方向可用这两个邻边之间的对角线表示。 |F1-F2|≤F合≤F1+F2 F合2=F12+F22+ 2F1F2cosQ 平动平衡:共点力使物体保持匀速直线运动状态或静止状态。 解题方法:先受力分析,然后根据题意建立坐标 系,将不在坐标系上的力分解。如受力在三个以 内,可用力的合成。 利用平衡力来解题。 F x合力=0 F y合力=0 注:已知一个合力的大小与方向,当一个分力的 方向确定,另一个分力与这个分力垂直是最小 值。 转动平衡:物体保持静止或匀速转动状态。 解题方法:先受力分析,然后作出对应力的力臂(最长力臂是指转轴到力的作用点的直线距离)。分析正、负力矩。 利用力矩来解题:M合力矩=FL合力矩=0 或M正力矩= M负力矩 第二章、直线运动

高中物理高考必背知识点

一、直线运动 1.机械运动:一个物体相对于另一个物体的位置的改变叫做机械运动,简称运动,它包括平动,转动和振动等运动形式.为了研究物体的运动需要选定参照物(即假定为不动的物体),对同一个物体的运动,所选择的参照物不同,对它的运动的描述就会不同,通常以地球为参照物来研究物体的运动. 2.质点:用来代替物体的只有质量没有形状和大小的点,它是一个理想化的物理模型.仅凭物体的大小不能做视为质点的依据。 3.位移和路程:位移描述物体位置的变化,是从物体运动的初位置指向末位置的有向线段,是矢量.路程是物体运动轨迹的长度,是标量. 路程和位移是完全不同的概念,仅就大小而言,一般情况下位移的大小小于路程,只有在单方向的直线运动中,位移的大小才等于路程. 4.速度和速率 (1)速度:描述物体运动快慢的物理量.是矢量. ①平均速度:质点在某段时间内的位移与发生这段位移所用时间的比值叫做这段时间(或位移)的平均速度v ,即v=s/t ,平均速度是对变速运动的粗略描述. ②瞬时速度:运动物体在某一时刻(或某一位置)的速度,方向沿轨迹上质点所在点的切线方向指向前进的一侧.瞬时速度是对变速运动的精确描述. (2)速率:①速率只有大小,没有方向,是标量. ②平均速率:质点在某段时间内通过的路程和所用时间的比值叫做这段时间内的 平均速率.在一般变速运动中平均速度的大小不一定等于平均速率,只有在单方向的直线运动,二者才相等. 5.加速度 (1)加速度是描述速度变化快慢的物理量,它是矢量.加速度又叫速度变化率. (2)定义:在匀变速直线运动中,速度的变化Δv 跟发生这个变化所用时间Δt 的比值,叫做匀变速直线运动的加速度,用a 表示. 00 t v v v a t t t -?==?- (3)方向:与速度变化Δv 的方向一致.但不一定与v 的方向一致. [注意]加速度与速度无关.只要速度在变化,无论速度大小,都有加速度;只要速度不变化(匀速),无论速度多大,加速度总是零;只要速度变化快,无论速度是大、是小或是零,物

关于高二物理知识点汇总高二上学期物理知识点总结归纳

高二物理知识点汇总2017高二上学期物理知识点总结高二物理中所涉及到的物理知识是物理学中的最基本的知识,学好高二物 理的相关知识点尤其重要,下面是学而思的2017高二上学期物理知识点总结,希望对你有帮助。 高二上学期物理知识点 一、三种产生电荷的方式: 1、摩擦起电:(1)正点荷:用绸子摩擦过的玻璃棒所带电荷;(2)负电荷:用毛皮摩擦过的橡胶棒所带电荷;(3)实质:电子从一物体转移到另一物体; 2、接触起电:(1)实质:电荷从一物体移到另一物体;(2)两个完全相同的物体相互接触后电荷平分;(3)、电荷的中和:等量的异种电荷相互接触,电荷相合抵消而对外不显电性,这种现象叫电荷的中和; 3、感应起电:把电荷移近不带电的导体,可以使导体带电;(1)电荷的基本性质:同种电荷相互排斥、异种电荷相互吸引;(2)实质:使导体的电荷从一部分移到另一部分;(3)感应起电时,导体离电荷近的一端带异种电荷,远端带同种电荷; 4、电荷的基本性质:能吸引轻小物体; 二、电荷守恒定律:电荷既不能被创生,亦不能被消失,它只能从一个物体转移到另一物体,或者从物体的一部分转移到另一部分;在转移过程中,电荷的总量不变。 三、元电荷:一个电子所带的电荷叫元电荷,用e表示。1、e=1.610-19c;2、一个质子所带电荷亦等于元电荷;3、任何带电物体所带电荷都是元电荷的整数倍; 四、库仑定律:真空中两个静止点电荷间的相互作用力,跟它们所带电荷量的乘积成正比,跟它们之间距离的二次方成反比,作用力的方向在它们的连线上。电荷间的这种力叫库仑力,1、计算公式:F=kQ1Q2/r2(k=9.0109N.m2/kg2)2、库仑定律只适用于点电荷(电荷的体积可以忽略不计)3、库仑力不是万有引力; 五、电场:电场是使点电荷之间产生静电力的一种物质。1、只要有电荷存在,在电荷周围就一定存在电场;2、电场的基本性质:电场对放入其中的电荷(静止、运动)有力的作用;这种力叫电场力;3、电场、磁场、重力场都是一种物质

高中物理必修1知识点汇总(带经典例题)

高中物理必修1 运动学问题是力学部分的基础之一,在整个力学中的地位是非常重要的,本章是讲运动的初步概念,描述运动的位移、速度、加速度等,贯穿了几乎整个高中物理内容,尽管在前几年高考中单纯考运动学题目并不多,但力、电、磁综合问题往往渗透了对本章知识点的考察。近些年高考中图像问题频频出现,且要求较高,它属于数学方法在物理中应用的一个重要方面。 第一章运动的描述 专题一:描述物体运动的几个基本本概念 ◎知识梳理 1.机械运动:一个物体相对于另一个物体的位置的改变叫做机械运动,简称运动,它包括平动、转动和振动等形式。 2.参考系:被假定为不动的物体系。 对同一物体的运动,若所选的参考系不同,对其运动的描述就会不同,通常以地球为参考系研究物体的运动。 3.质点:用来代替物体的有质量的点。它是在研究物体的运动时,为使问题简化,而引入的理想模型。仅凭物体的大小不能视为质点的依据,如:公转的地球可视为质点,而比赛中旋转的乒乓球则不能视为质点。’ 物体可视为质点主要是以下三种情形: (1)物体平动时; (2)物体的位移远远大于物体本身的限度时; (3)只研究物体的平动,而不考虑其转动效果时。 4.时刻和时间 (1)时刻指的是某一瞬时,是时间轴上的一点,对应于位置、瞬时速度、动量、动能等状态量,通常说的“2秒末”,“速度达2m/s时”都是指时刻。 (2)时间是两时刻的间隔,是时间轴上的一段。对应位移、路程、冲量、功等过程量.通常说的“几秒内”“第几秒内”均是指时间。 5.位移和路程 (1)位移表示质点在空间的位置的变化,是矢量。位移用有向线段表示,位移的大小等于有向线段的长度,位移的方向由初位置指向末位置。当物体作直线运动时,可用带有正负号的数值表示位移,取正值时表示其方向与规定正方向一致,反之则相反。 (2)路程是质点在空间运动轨迹的长度,是标量。在确定的两位置间,物体的路程不是唯一的,它与质点的具体运动过程有关。 (3)位移与路程是在一定时间内发生的,是过程量,二者都与参考系的选取有关。一般情况下,位移的大小并不等于路程,只有当质点做单方向直线运动时,二者才相等。6.速度 (1).速度:是描述物体运动方向和快慢的物理量。 (2).瞬时速度:运动物体经过某一时刻或某一位置的速度,其大小叫速率。

高中物理知识点汇总

高考物理基本知识点汇总 一. 教学内容: 知识点总结 1. 摩擦力方向:与相对运动方向相反,或与相对运动趋势方向相反 静摩擦力:0gR 注意:若到最高点速度从零开始增加,杆对球的作用力先减小后变大。 3. 传动装置中,特点是:同轴上各点ω相同,A ω=C ω,轮上边缘各点v 相同,v A =v B 4. 同步地球卫星特点是:①_______________,②______________ ①卫星的运行周期与地球的自转周期相同,角速度也相同; ②卫星轨道平面必定与地球赤道平面重合,卫星定点在赤道上空36000km 处,运行速度3.1km/s 。 5. 万有引力定律:万有引力常量首先由什么实验测出:F =G 2 2 1r m m ,卡文迪许扭秤实验。 6. 重力加速度随高度变化关系: 'g =GM/r 2

说明:为某位置到星体中心的距离。某星体表面的重力加速度。 r g G M R 02 = g g R R h R h ' () = +2 2 ——某星体半径为某位置到星体表面的距离 7. 地球表面物体受重力加速度随纬度变化关系:在赤道上重力加速度较小,在两极,重力加速度较大。 8. 人造地球卫星环绕运动的环绕速度、周期、向心加速度'g =2 r GM 、r mv r GMm 2 2 = 、v = r GM 、 r mv r GMm 2 2 = =m ω2R =m (2π/T )2R 当r 增大,v 变小;当r =R ,为第一宇宙速度v 1=r GM =gR gR 2 =GM 应用:地球同步通讯卫星、知道宇宙速度的概念 9. 平抛运动特点: ①水平方向______________ ②竖直方向____________________ ③合运动______________________ ④应用:闪光照 ⑤建立空间关系即两个矢量三角形的分解:速度分解、位移分解 相位,求?y t x y t gT v S T v x v t v v y gt v gt S v t g t v v g t tg gt v tg gt v tg tg == =====+=+== =2 0002 02 2 24 0222 00 1214 21 2αθα θ ⑥在任何两个时刻的速度变化量为△v =g △t ,△p =mgt ⑦v 的反向延长线交于x 轴上的x 2处,在电场中也有应用 10. 从倾角为α的斜面上A 点以速度v 0平抛的小球,落到了斜面上的B 点,求:S AB

高一物理必修一全知识点梳理

高一物理必修一(全)知识点梳理 第一章运动的描述 概念: 机械运动:一个物体相对于另一个物体的位置的改变叫做机械运动,简称运动,它包括平动、转动和振动等形式。 参考系:被假定为不动的物体系。 对同一物体的运动,若所选的参考系不同,对其运动的描述就会不同,通常以地球为参考系研究物体的运动。 质点:用来代替物体的有质量的点。它是在研究物体的运动时,为使问题简化,而引入的理想模型。仅凭物体的大小不能视为质点的依据,如:公转的地球可视为质点,而比赛中旋转的乒乓球则不能视为质点。’ 物体可视为质点主要是以下三种情形: (1)物体平动时; (2)物体的位移远远大于物体本身的限度时; (3)只研究物体的平动,而不考虑其转动效果时。 时刻和时间 (1)时刻指的是某一瞬时,是时间轴上的一点,对应于位置、瞬时速度、动量、动能等状态量,通常说的“2秒末”,“速度达2m/s时”都是指时刻。 (2)时间是两时刻的间隔,是时间轴上的一段。对应位移、路程、冲量、功等过程量.通常说的“几秒内”“第几秒内”均是指时间。 位移和路程 (1)位移表示质点在空间的位置的变化,是矢量。位移用有向线段表示,位

移的大小等于有向线段的长度,位移的方向由初位置指向末位置。当物体作直线运动时,可用带有正负号的数值表示位移,取正值时表示其方向与规定正方向一致,反之则相反。 (2)路程是质点在空间运动轨迹的长度,是标量。在确定的两位置间,物体的路程不是唯一的,它与质点的具体运动过程有关。 (3)位移与路程是在一定时间内发生的,是过程量,二者都与参考系的选取有关。一般情况下,位移的大小并不等于路程,只有当质点做单方向直线运动时,二者才相等。 速度 (1).速度:是描述物体运动方向和快慢的物理量。 (2).瞬时速度:运动物体经过某一时刻或某一位置的速度,其大小叫速率。(3).平均速度:物体在某段时间的位移与所用时间的比值,是粗略描述运动快慢的。 ①平均速度是矢量,方向与位移方向相同。 ②平均速度的大小与物体不同的运动阶段有关。 s是平均速度的定义式,适用于所有的运动, ③v= t (4).平均速率:物体在某段时间的路程与所用时间的比值,是粗略描述运动快慢的。 ①平均速率是标量。 s是平均速率的定义式,适用于所有的运动。 ②v= t ③平均速度和平均速率往往是不等的,只有物体做无往复的直线运动时二者才相等。

高中理科物理知识点全

高考物理知识点总结 一、力和物体的平衡 1.力是物体对物体的作用,是物体发生形变和改变物体的运动状态(即产生加速度)的原因. 力是矢量。 2.重力(1)重力是由于地球对物体的吸引而产生的. [注意]重力是由于地球的吸引而产生,但不能说重力就是地球的吸引力,重力是万有引力的一个分力. 但在地球表面附近,可以认为重力近似等于万有引力 (2)重力的大小:地球表面G=mg,离地面高h处G/=mg/,其中g/=[R/(R+h)]2g (3)重力的方向:竖直向下(不一定指向地心)。 (4)重心:物体的各部分所受重力合力的作用点,物体的重心不一定在物体上. 3.弹力(1)产生原因:由于发生弹性形变的物体有恢复形变的趋势而产生的. (2)产生条件:①直接接触;②有弹性形变. (3)弹力的方向:与物体形变的方向相反,弹力的受力物体是引起形变的物体,施力物体是发生形变的物体.在点面接触的情况下,垂直于面; 在两个曲面接触(相当于点接触)的情况下,垂直于过接触点的公切面. ①绳的拉力方向总是沿着绳且指向绳收缩的方向,且一根轻绳上的张力大小处处相等. ②轻杆既可产生压力,又可产生拉力,且方向不一定沿杆. (4)弹力的大小:一般情况下应根据物体的运动状态,利用平衡条件或牛顿定律来求解.弹簧弹力可由胡克定律来求解. ★胡克定律:在弹性限度内,弹簧弹力的大小和弹簧的形变量成正比,即F=kx.k为弹簧的劲度系数,它只与弹簧本身因素有关,单位是N/m. 4.摩擦力 (1)产生的条件:①相互接触的物体间存在压力;③接触面不光滑;③接触的物体之间有相对运动(滑动摩擦力)或相对运动的趋势(静摩擦力),这三点缺一不可. (2)摩擦力的方向:沿接触面切线方向,与物体相对运动或相对运动趋势的方向相反,与物体运动的方向可以相同也可以相反. (3)判断静摩擦力方向的方法: ①假设法:首先假设两物体接触面光滑,这时若两物体不发生相对运动,则说明它们原来没有相对运动趋势,也没有静摩擦力;若两物体发生相对运动,则说明它们原来有相对运动趋势,并且原来相对运动趋势的方向跟假设接触面光滑时相对运动的方向相同.然后根据静摩擦力的方向跟物体相对运动趋势的方向相反确定静摩擦力方向. ②平衡法:根据二力平衡条件可以判断静摩擦力的方向. (4)大小:先判明是何种摩擦力,然后再根据各自的规律去分析求解. ①滑动摩擦力大小:利用公式f=μF N进行计算,其中F N是物体的正压力,不一定等于物体的重力,甚至可能和重力无关.或者根据物体的运动状态,利用平衡条件或牛顿定律来求解.

高一物理知识点归纳大全

高一物理知识点归纳大全 从初中进入高中以后,就会慢慢觉得物理公式比以前更难学习了,其实学透物理公式并不是难的事情,以下是我整理的物理公式内容,希望可以给大家提供作为参考借鉴。 基本符号 Δ代表'变化的 t代表'时间等,依情况定,你应该知道' T代表'时间' a代表'加速度' v。代表'初速度' v代表'末速度' x代表'位移' k代表'进度系数' 注意,写在字母前面的数字代表几倍的量,写在字母后面的数字代表几次方. 运动学公式 v=v。+at无需x时 v2=2ax+v。2无需t时 x=v。+0.5at2无需v时 x=((v。+v)/2)t无需a时 x=vt-0.5at2无需v。时 一段时间的中间时刻速度(匀加速)=(v。+v)/2

一段时间的中间位移速度(匀加速)=根号下((v。2+v2)/2) 重力加速度的相关公式,只要把v。当成0就可以了.g一般取10 相互作用力公式 F=kx 两个弹簧串联,进度系数为两个弹簧进度系数的倒数相加的倒数 两个弹簧并联,进度系数连个弹簧进度系数的和 运动学: 匀变速直线运动 ①v=v(初速度)+at ②x=v(初速度)t+?at平方=v+v(初速度)/2×t ③v的平方-v(初速度)的平方=2ax ④x(末位置)-x(初位置)=a×t的平方 自由落体运动(初速度为0)套前面的公式,初速度为0 重力:G=mg(重力加速度)弹力:F=kx摩擦力:F=μF(正压力)引申:物体的滑动摩擦力小于等于物体的最大静摩擦 匀变速直线运动 1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as 3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at 5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t 7.加速度a=(Vt-Vo)/t{以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0} 8.实验用推论Δs=aT2{Δs为连续相邻相等时间(T)内位移之差} 9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;

高三物理高考必考知识点归纳

高三物理高考必考知识点归纳 与高一高二不同之处在于,此时复习力学部分知识是为了更好的与高考考纲相结合,尤其水平中等或中等偏下的学生,此时需要进行查漏补缺,但也需要同时提升能力,填补知识、技能的空白。下面就是给大家带来的高三物理高考知识点,希望能帮助到大家! 高三物理高考知识点1 1.力是物体对物体的作用,是物体发生形变和改变物体的运动状态(即产生加速度)的原因。力是矢量。 2.重力 (1)重力是由于地球对物体的吸引而产生的。 [注意]重力是由于地球的吸引而产生,但不能说重力就是地球的吸引力,重力是万有引力的一个分力。 但在地球表面附近,可以认为重力近似等于万有引力 (2)重力的大小:地球表面G=mg,离地面高h处G/=mg/,其中g/=[R/(R+h)]2g (3)重力的方向:竖直向下(不一定指向地心)。 (4)重心:物体的各部分所受重力合力的作用点,物体的重心不一定在物体上。 3.弹力 (1)产生原因:由于发生弹性形变的物体有恢复形变的趋势而产生的。

(2)产生条件:①直接接触;②有弹性形变。 (3)弹力的方向:与物体形变的方向相反,弹力的受力物体是引起形变的物体,施力物体是发生形变的物体。在点面接触的情况下,垂直于面; 在两个曲面接触(相当于点接触)的情况下,垂直于过接触点的公切面。 ①绳的拉力方向总是沿着绳且指向绳收缩的方向,且一根轻绳上的张力大小处处相等。 ②轻杆既可产生压力,又可产生拉力,且方向不一定沿杆。 (4)弹力的大小:一般情况下应根据物体的运动状态,利用平衡条件或牛顿定律来求解。弹簧弹力可由胡克定律来求解。 4.摩擦力 (1)产生的条件:①相互接触的物体间存在压力;③接触面不光滑; ③接触的物体之间有相对运动(滑动摩擦力)或相对运动的趋势(静摩擦力),这三点缺一不可。 (2)摩擦力的方向:沿接触面切线方向,与物体相对运动或相对运动趋势的方向相反,与物体运动的方向可以相同也可以相反。 (3)判断静摩擦力方向的方法: ①假设法:首先假设两物体接触面光滑,这时若两物体不发生相对运动,则说明它们原来没有相对运动趋势,也没有静摩擦力;若两物体发生相对运动,则说明它们原来有相对运动趋势,并且原来相对运动趋势的方向跟假设接触面光滑时相对运动的方向相同。然后根据

高中物理知识点总结大全

高考总复习知识网络一览表物理

高中物理知识点总结大全 一、质点的运动(1)------直线运动 1)匀变速直线运动 1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as 3.中间时刻速度Vt/2=V平=(Vt+Vo)/2 4.末速度Vt=Vo+at 5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t 7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则aF2) 2.互成角度力的合成: F=(F12+F22+2F1F2cosα)1/2(余弦定理)F1⊥F2时:F=(F12+F22)1/2 3.合力大小范围:|F1-F2|≤F≤|F1+F2| 4.力的正交分Fx=Fcosβ,Fy=Fsinβ(β为合力与x轴之间的夹角tgβ=Fy/Fx) 注: (1)力(矢量)的合成与分解遵循平行四边形定则; (2)合力与分力的关系是等效替代关系,可用合力替代分力的共同作用,反之也成立; (3)除公式法外,也可用作图法求解,此时要选择标度,严格作图; (4)F1与F2的值一定时,F1与F2的夹角(α角)越大,合力越小; (5)同一直线上力的合成,可沿直线取正方向,用正负号表示力的方向,化简为代数运算. 四、动力学(运动和力) 1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止 2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致} 3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动} 4.共点力的平衡F合=0,推广{正交分解法、三力汇交原理} 5.超重:FN>G,失重:FNr} 3.受迫振动频率特点:f=f驱动力 4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕 5.机械波、横波、纵波〔见第二册P2〕 6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定} 7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波) 8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大 9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同) 10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册P21〕} 注: (1)物体的固有频率与振幅、驱动力频率无关,取决于振动系统本身;

(完整版)人教版高中物理选修3-5知识点总结

人教版高中物理选修3-5知识点总结 一.量子论的建立黑体和黑体辐射Ⅰ (一)量子论 1.创立标志:1900年普朗克在德国的《物理年刊》上发表《论正常光谱能量分布定律》的论文,标志着量子论的诞生。 2.量子论的主要内容: ①普朗克认为物质的辐射能量并不是无限可分的,其最小的、不可分的能量单元即“能量子”或称“量子”,也就是说组成能量的单元是量子。 ②物质的辐射能量不是连续的,而是以量子的整数倍跳跃式变化的。 3.量子论的发展 ①1905年,爱因斯坦奖量子概念推广到光的传播中,提出了光量子论。 ②1913年,英国物理学家玻尔把量子概念推广到原子内部的能量状态,提出了一种量子化的原子结构模型,丰富了量子论。 ③到1925年左右,量子力学最终建立。 4.量子论的意义 ①与量子论等一起,引起物理学的一场重大革命,并促进了现代科学技术的突破性发展。 ②量子论的革命性观念揭开了微观世界的奥秘,深刻改变了人们对整个物质世界的认识。 ③量子论成功的揭示了诸多物质现象,如光量子论揭示了光电效应 ④量子概念是一个重要基石,现代物理学中的许多领域都是从量子概念基础上衍生出来的。 量子论的形成标志着人类对客观规律的认识,开始从宏观世界深入到微观世界;同时,在量子论的基础上发展起来的量子论学,极大地促进了原子物理、固体物理和原子核物理等科学的发展。(二)黑体和黑体辐射

1.热辐射现象 任何物体在任何温度下都要发射各种波长的电磁波,并且其辐射能量的大小及辐射能量按波长的分布都与温度有关。 这种由于物质中的分子、原子受到热激发而发射电磁波的现象称为热辐射。 ①.物体在任何温度下都会辐射能量。 ②.物体既会辐射能量,也会吸收能量。物体在某个频率范围内发射电磁波能力越大,则它吸收该频率范围内电磁波能力也越大。 辐射和吸收的能量恰相等时称为热平衡。此时温度恒定不变。 实验表明:物体辐射能多少决定于物体的温度(T)、辐射的波长、时间的长短和发射的面积。 2.黑体 物体具有向四周辐射能量的本领,又有吸收外界辐射 来的能量的本领。 黑体是指在任何温度下,全部吸收任何波长的辐射的 物体。 3.实验规律: 1)随着温度的升高,黑体的辐射强度都有增加; 2)随着温度的升高,辐射强度的极大值向波长较短方向移动。 二.光电效应光子说光电效应方程Ⅰ 1、光电效应

苏教版初中物理知识点归纳

初中物理知识点总结 第一章声现象知识归纳 1 、声音得发生:由物体得振动而产生。振动停止,发声也停止。 2.声音得传播:声音靠介质传播。真空不能传声。通常我们听到得声音就是靠空气传来得。 3.声速:在空气中传播速度就是:340米/秒。声音在固体传播比液体快,而在液体传播又比空气体快。 4.利用回声可测距离:S=1/2vt 5.乐音得三个特征:音调、响度、音色。(1)音调:就是指声音得高低,它与发声体得频率有关系。(2)响度:就是指声音得大小,跟发声体得振幅、声源与听者得距离有关系。 6.减弱噪声得途径:(1)在声源处减弱;(2)在传播过程中减弱;(3)在人耳处减弱。 7.可听声:频率在20Hz~20000Hz之间得声波:超声波:频率高于20000Hz得声波;次声波:频率低于20Hz得声波。 8. 超声波特点:方向性好、穿透能力强、声能较集中。具体应用有:声呐、B超、超声波速度测定器、超声波清洗器、超声波焊接器等。 9.次声波得特点:可以传播很远,很容易绕过障碍物,而且无孔不入。一定强度得次声波对人体会造成危害,甚至毁坏机械建筑等。它主要产生于自然界中得火山爆发、海啸地震等,另外人类制造得火箭发射、飞机飞行、火车汽车得奔驰、核爆炸等也能产生次声波。 第二章物态变化知识归纳 1、温度:就是指物体得冷热程度。测量得工具就是温度计, 温度计就是根据液体得热胀冷缩得原理制成得。 2、摄氏温度(℃):单位就是摄氏度。1摄氏度得规定:把冰水混合物温度规定为0度,把一标准大气压下沸水得温度规定为100度,在0度与100度之间分成100等分,每一等分为1℃。 3.常见得温度计有(1)实验室用温度计;(2)体温计;(3)寒暑表。 体温计:测量范围就是35℃至42℃,每一小格就是0、1℃。 4、温度计使用:(1)使用前应观察它得量程与最小刻度值;(2)使用时温度计玻璃泡要全部浸入被测液体中,不要碰到容器底或容器壁;(3)待温度计示数稳定后再读数;(4)读数时玻璃泡要继续留在被测液体中,视线与温度计中液柱得上表面相平。 5、固体、液体、气体就是物质存在得三种状态。 6、熔化:物质从固态变成液态得过程叫熔化。要吸热。 7、凝固:物质从液态变成固态得过程叫凝固。要放热、 8、熔点与凝固点:晶体熔化时保持不变得温度叫熔点;。晶体凝固时保持不变得温度叫凝固点。晶体得熔点与凝固点相同。 9、晶体与非晶体得重要区别:晶体都有一定得熔化温度(即熔点),而非晶体没有熔点。 10、熔化与凝固曲线图:

(完整版)最新人教版高中物理知识点总结汇总

高中物理知识点总结人教版 一、质点的运动(1)------直线运动 1)匀变速直线运动 1.平均速度V平=s/t(定义式) 2.有用推论Vt2-Vo2=2as 3.中间时刻速度Vt/2=V平=(Vt+V o)/2 4.末速度Vt=Vo+at 5.中间位置速度Vs/2=[(Vo2+Vt2)/2]1/2 6.位移s=V平t=Vot+at2/2=Vt/2t 7.加速度a=(Vt-Vo)/t {以Vo为正方向,a与Vo同向(加速)a>0;反向则a<0} 8.实验用推论Δs=aT2 {Δs为连续相邻相等时间(T)内位移之差} 9.主要物理量及单位:初速度(Vo):m/s;加速度(a):m/s2;末速度(Vt):m/s;时间(t)秒(s);位移(s):米(m);路程:米;速度单位换算:1m/s=3.6km/h。 注:(1)平均速度是矢量;(2)物体速度大,加速度不一定大;(3)a=(Vt-Vo)/t只是量度式,不是决定式; (4)其它相关内容:质点、位移和路程、参考系、时间与时刻〔见第一册P19〕/s--t图、v--t图/速度与速率、瞬时速度〔见第一册P24〕。 2)自由落体运动 1.初速度Vo=0 2.末速度Vt=gt 3.下落高度h=gt2/2(从Vo位置向下计算) 4.推论Vt2=2gh 注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律; (2)a=g=9.8m/s2≈10m/s2(重力加速度在赤道附近较小,在高山处比平地小,方向竖直向下)。 (3)竖直上抛运动 1.位移s=Vot-gt2/2 2.末速度Vt=Vo-gt (g=9.8m/s2≈10m/s2) 3.有用推论Vt2-Vo2=-2gs 4.上升最大高度Hm=Vo2/2g(抛出点算起) 5.往返时间t=2Vo/g (从抛出落回原位置的时间) 注:(1)全过程处理:是匀减速直线运动,以向上为正方向,加速度取负值; (2)分段处理:向上为匀减速直线运动,向下为自由落体运动,具有对称性; (3)上升与下落过程具有对称性,如在同点速度等值反向等。 二、质点的运动(2)----曲线运动、万有引力 1)平抛运动 1.水平方向速度:Vx=Vo 2.竖直方向速度:Vy=gt 3.水平方向位移:x=Vot 4.竖直方向位移:y=gt2/2 5.运动时间t=(2y/g)1/2(通常又表示为(2h/g)1/2) 6.合速度Vt=(Vx2+Vy2)1/2=[Vo2+(gt)2]1/2 合速度方向与水平夹角β:tgβ=Vy/Vx=gt/V0 7.合位移:s=(x2+y2)1/2, 位移方向与水平夹角α:tgα=y/x=gt/2Vo 8.水平方向加速度:ax=0;竖直方向加速度:ay=g 注: (1)平抛运动是匀变速曲线运动,加速度为g,通常可看作是水平方向的匀速直线运与竖直方向的自由落 体运动的合成; (2)运动时间由下落高度h(y)决定与水平抛出速度无关; (3)θ与β的关系为tgβ=2tgα;

高中物理所有知识点总结[1]2资料

高考物理基本知识点总结 一. 教学内容: 知识点总结 1. 摩擦力方向:与相对运动方向相反,或与相对运动趋势方向相反 静摩擦力:0gR 注意:若到最高点速度从零开始增加,杆对球的作用力先减小后变大。 3. 传动装置中,特点是:同轴上各点ω相同,A ω=C ω,轮上边缘各点v 相同,v A =v B 4. 同步地球卫星特点是:①_______________,②______________ ①卫星的运行周期与地球的自转周期相同,角速度也相同; ②卫星轨道平面必定与地球赤道平面重合,卫星定点在赤道上空36000km 处,运行速度3.1km/s 。 5. 万有引力定律:万有引力常量首先由什么实验测出:F =G 2 2 1r m m ,卡文迪许扭秤实验。 6. 重力加速度随高度变化关系: 'g =GM/r 2 说明:为某位置到星体中心的距离。某星体表面的重力加速度。r g GM R 02=

g g R R h R h ' () = + 2 2 ——某星体半径为某位置到星体表面的距离 7. 地球表面物体受重力加速度随纬度变化关系:在赤道上重力加速度较小,在两极,重力加速度较大。 8. 人造地球卫星环绕运动的环绕速度、周期、向心加速度'g=2r GM 、r mv r GMm2 2 = 、v=r GM 、r mv r GMm2 2 = =mω2R=m(2π/T)2R 当r增大,v变小;当r=R,为第一宇宙速度v1=r GM = gR gR2=GM 应用:地球同步通讯卫星、知道宇宙速度的概念 9. 平抛运动特点: ①水平方向______________ ②竖直方向____________________ ③合运动______________________ ④应用:闪光照 ⑤建立空间关系即两个矢量三角形的分解:速度分解、位移分解 相位,求 ? y t x y t gT v S T v x v t v v y gt v gt S v t g t v v g t tg gt v tg gt v tg tg == == == =+=+ == = 2 00 2 2224 222 00 1 2 1 4 2 1 2 αθ α θ ⑥在任何两个时刻的速度变化量为△v=g△t,△p=mgt ⑦v的反向延长线交于x轴上的 x 2处,在电场中也有应用 10. 从倾角为α的斜面上A点以速度v0平抛的小球,落到了斜面上的B点,求:S AB

相关文档
相关文档 最新文档