文档视界 最新最全的文档下载
当前位置:文档视界 › 蛋白质组学生物信息学分析介绍

蛋白质组学生物信息学分析介绍

蛋白质组学生物信息学分析介绍
蛋白质组学生物信息学分析介绍

生物信息学分析FAQ

CHAPTER ONE ABOUT GENE ONTOLOGY ANNOTATION (3)

什么是GO? (3)

GO和KEGG注释之前,为什么要先进行序列比对(BLAST)? (3)

GO注释的意义? (3)

GO和GOslim的区别 (4)

为什么有些蛋白没有GO注释信息? (4)

为什么GO Level 2的统计饼图里蛋白数目和差异蛋白总数不一致? (4)

什么是差异蛋白的功能富集分析&WHY? (4)

GO注释结果文件解析 (5)

Sheet TopBlastHits (5)

Sheet protein2GO/protein2GOslim (5)

Sheet BP/MF/CC (6)

Sheet Level2_BP/Level2_MF/Level2_CC (6)

CHAPTER TWO ABOUT KEGG PATHWAY ANNOTATION (7)

WHY KEGG pathway annotation? (7)

KEGG通路注释的方法&流程? (7)

KEGG通路注释的意义? (7)

为什么有些蛋白没有KEGG通路注释信息? (8)

什么是差异蛋白的通路富集分析&WHY? (8)

KEGG注释结果文件解析 (8)

Sheet query2map (8)

Sheet map2query (9)

Sheet TopMapStat (9)

CHAPTER THREE ABOUT FEATURE SELECTION & CLUSTERING (10)

WHY Feature Selection? (10)

聚类分析(Clustering) (10)

聚类结果文件解析 (10)

CHAPTER FOUR ABOUT PROTEIN-PROTEIN INTERACTION NETWORK (12)

蛋白质相互作用网络分析的意义 (12)

蛋白质相互作用 VS生物学通路? (12)

蛋白质相互作用网络分析结果文件解析 (12)

CHAPTER ONE ABOUT GENE ONTOLOGY ANNOTATION

什么是GO?

随着多种生物基因组的相继解码,同时大量ESTs以及gene expression profile date的积累,使得annotation的工作量和复杂度大大增加。然而另一方面,大多数基因在不同真核生物中拥有共同的主要生物功能,通过在某些物种中获得的基因或者蛋白质(shared protein)的生物学信息,可以用以解释其他物种中对应的基因或蛋白(especially in comparative genomics)。由于这些繁复的功能信息主要是包含在积累的文献之中,如何有效的提取和综合这些信息就是我们面临的核心困难,这也是GO所要着力解决的问题。通过建立一套具有动态形式的控制字集(controlled vocabulary),来解释真核基因及蛋白在细胞内所扮演的角色,并随着生命科学研究的进步,不断积累和更新。一个ontology会被一个控制字集来描述并给予一定的名称,通过制定“本体”ontologies并运用统计学方法及自然语言处理技术,可以实现知识管理的专家系统控制。

到目前为止,Gene Ontology (GO) 数据库中有3大独立的ontology:biological process生物过程, molecular function分子功能,cellular component细胞组分。而这三个ontology下面又可以独立出不同的亚层次,层层向下构成一个ontologies的树型分支结构。可以说, GO是生物学的统一化工具。

由于GO是一种整合性的分类系统,其下的3类主ontology虽然说是独立的,但是无论是GOC原初的设计还是我们的使用中其实都还是存在一定的流程关系。一个基因/蛋白质或者一个ontology在注解的过程中,首先是考虑涉及在构成细胞内的组分和元件(cellular component),其次就是此组分/元件在分子水平上所行使的功能(molecular function),最后能够呈现出该分子功能所直接参与的生物过程(biological process)。由于这是一种存在反馈机制的注释过程,并且整个系统是动态开放实时更新的,因此在某种程度上说它具有纠错的能力。

GO和KEGG注释之前,为什么要先进行序列比对(BLAST)?

在进行功能注释和通路注释之前,我们会先将差异蛋白与合适的数据库中的蛋白序列进行比对。目的一:很多物种目前研究的程度还很有限,关于这些物种的蛋白注释信息还很不完善。根据相似性原理,具有相似序列的蛋白可能也具有相似的功能,因此,我们可以将BLAST所得的同源蛋白的注释信息转嫁到我们关注的差异蛋白上,来完成对于差异蛋白尤其是研究程度不足的物种的差异蛋白的注释。目的二:我们在查库过程中,为了得到更多的蛋白质鉴定信息,我们大多使用UniProt数据库(含SwissProt和TrEmbl:SwissProt中的蛋白均经过人工校验,数据可靠性高,注释完整;TrEmbl由基因组序列翻译而来,未经人工校验,注释信息不全)或NCBI Protein数据库(用户可任意提交序列,有冗余,信息不完善,质量很难保证),BLAST一方面可以帮我们提高后续的注释效率,另一方面也可以帮助客户大致了解所鉴定的蛋白可能的名称和功能(尤其对于uncharacterized protein,predicted protein,putative protein 等)。

GO注释的意义?

对鉴定到的蛋白或者差异蛋白进行GO注释,其宗旨是为了帮助我们了解这些蛋白。可能的应用包括:

一,例如,某客户对某差异蛋白A非常感兴趣,通过在GO注释的结果中(protein2GO表单)查询蛋白A的注释信息,即可得知蛋白A可能具有的功能、可能参与的生物学过程,以及该蛋白所在的亚细胞定位。

二,根据课题的设计和先验知识,客户可能对某个生物学过程(例如:离子运输)非常感兴趣,可以通过在结果中(BP表单)查询ion transport这个GO term下包含哪些蛋白,并对这些蛋白进行深入研究。

三,客户拿到质谱数据分析结果后,可能对于后续的分析没有方向,这种情况下可以通过在注释结果中查询哪些功能类别包含的蛋白数目较多,可以从这些功能类别和蛋白入手进行重点研究。

四,GO注释可以为课题的设计和实验结果的合理性提供证据。

GO和GOslim的区别

GOslim是简化的GO子集,是经过科学家人工筛选的一部分GO term。简单的说,GOslim去除了一些比较细枝末节的GO term,更着重研究level更高、相互关联的GO term,以及与物种更为相关的GO term(Plant,Candida albicans,Schizosaccharomyces pombe,Yeast,Aspergillus,Metagenomics)。GOslim对于大规模组学的研究很有意义(比如全基因组、全蛋白组),不至于相关的功能类别太多反而忽略了重点。通常情况下,我们的分析只针对几十个到几百个差异蛋白进行重点注释,GO和GOslim的结果差别不大。

为什么有些蛋白没有GO注释信息?

目前对于蛋白质的功能研究还有限,尤其是非模式生物。为了提高注释率,根据序列相似的蛋白可能具有相似的功能的原则,我们已经在注释前对目标蛋白序列进行了blast,并利用足够相似的比对序列的注释信息对目标序列进行注释。此外,我们还采用了查找InterPro数据库中的保守motif的方法对难以注释的蛋白进行注释。但是仍然有少数蛋白,对于该蛋白,或者同物种中也之相似的蛋白,或者其他物种中的同源蛋白的研究依然十分不足,所以以目前的研究水平难以获得注释信息。

为什么GO Level 2的统计饼图里蛋白数目和差异蛋白总数不一致?

一个蛋白可能参与多个生物过程(biological process),具有多种分子功能(molecular function),甚至存在于多个细胞组分(cellular component),因此GO Level 2的统计饼图里多个类别的蛋白数相加通常是大于差异蛋白数目的。此外,少数蛋白由于无法获得注释信息,不参与统计,也是造成统计数目和差异蛋白总数不一致的一个原因。

什么是差异蛋白的功能富集分析&WHY?

差异蛋白的功能富集分析是将差异蛋白列表中的蛋白与参考物种的全部蛋白列表或实验鉴定到的所有蛋白列表根据GO 功能的注释结果进行对照比较,通过Fisher精确检验 (Fisher’s Exact Test),得出两者差异的显著性,从而找到这个差异蛋白列表中富集的功能类别条目,找到一个蛋白列表的功能特性。不同于蛋白功能注释以蛋白为单位进行注释,差异蛋白的功能富集分析以GO功能条目为单位,结果可以直接揭示整个差异蛋白列表中蛋白的整体功能富集特征。

GO注释结果文件解析

GO注释的结果文件包括GO.xlsx和GOslim.xlsx两个EXCEL表格,共计15个表单。

GO.xlsx:包含TopBlastHits,protein2GO,BP,MF,CC,Level2_BP,Level2_MF,Level2_CC等8个表单GOslim.xlsx:包含protein2GOslim,BP,MF,CC,Level2_BP,Level2_MF,Level2_CC等7个表单

Sheet TopBlastHits

Sequence name:目标蛋白ID

Sequence desc.:根据blast结果,目标蛋白可能的名称和描述

Sequence length:目标蛋白序列长度

Hit desc.:比对序列的蛋白名称和描述

Hit ACC:比对序列的蛋白ID号

E-Value:S值可靠性的评价,表明在随机的情况下,其它序列与目标序列相似度大于S值的可能性,越低越好Similarity:Positives/Alignment

Score:表示两序列的同源性,分值越高表明它们之间相似的程度越大

Alignment:比对上的蛋白序列部分的长度

Positives:相同或理化性质相似的氨基酸数目

Sheet protein2GO/protein2GOslim

SeqName:目标蛋白ID

Hit-Desc:比对序列的蛋白名称和描述

GO-Group:所注释GO term的类别(P:Biological Process,F:Molecular Function,C:Cellular Component)GO-ID:所注释GO term的ID

Term:所注释GO term的名称

Sheet BP/MF/CC

Level :GO term 在ontologies 的树型分支结构中所处的层次,BP 、MF 、CC 最高(Level 1)

GO-ID :所注释GO term 的ID

Term :所注释GO term 的名称

Type :GO term 所属类别(BP 、MF 、CC )

#Seqs :属于该GO term 的蛋白数目

Seqs :属于该GO term 的蛋白ID

Sheet Level2_BP/Level2_MF/Level2_CC

Data labels :GO term (Level 2), 属于该GO term 的蛋白数目

metabolic

process, 38

cellular process, 37

signaling, 2 multicellular organismal process,

3 developmental

process, 3 single-organism

process, 16 response to stimulus, 4 localization, 7 biological regulation, 8 cellular component organization or

biogenesis, 13 Biological Process

protein binding transcripti

on factor

activity, 1

catalytic

activity, 25

structural

molecule

activity, 8

transporte

r activity, 1 binding, 40 enzyme

regulator

activity, 4 Molecular Function extracellul ar region, 1 cell, 37 membrane , 8 extracellul ar matrix,

1 membrane -enclosed lumen, 4 macromole cular complex, 25 organelle, 28 Cellular Component

CHAPTER TWO ABOUT KEGG PATHWAY ANNOTATION

WHY KEGG pathway annotation?

在生物体中,蛋白质并不独立行使其功能,而是不同蛋白质相互协调完成一系列生化反应以行使其生物学功能。因此,通路分析有助于更系统、全面地了解细胞的生物学过程、性状或疾病的发生机理、药物作用机制,等等。

KEGG通路注释的方法&流程?

In the KEGG database, by adopting a web-based server called KAAS (KEGG Automatic Annotation Server: http://www.genome.jp/kegg/kaas/), the studied proteins are annotated with the KEGG orthology (KO) identifiers, or the K numbers, based on the best hit information using Smith–Waterman scores as well as by the manual curation. Each K number represents an ortholog group of genes, and it is directly linked to an object in the KEGG pathway map or the BRITE functional hierarchy. The method is based on sequence similarities, bi-directional best hit information and some heuristics, and has achieved a high degree of accuracy when compared with the manually curated KEGG GENES database.

KEGG通路注释的意义?

对鉴定到的蛋白或者差异蛋白进行KEGG通路注释,其宗旨是为了帮助我们了解这些蛋白可能参与的代谢或信号通路,从而显示蛋白质从细胞表面到细胞核的一系列变化过程,揭示参与该过程的一系列生物学事件和作用因子,提示某一过程的中断或变化可能导致的生物学后果等。对蛋白质进行通路注释可能的应用包括:

一,例如,某客户对某差异蛋白A非常感兴趣,通过在KEGG注释的结果中(query2map表单)查询蛋白A的注释信息,即可得知蛋白A可能参与的代谢或信号通路。

二,根据课题的设计和先验知识,客户可能对某条通路(例如:EGFR signaling pathway)非常感兴趣,可以通过在结果中(map2query表单)查询EGFR signaling pathway这条通路下包含哪些蛋白,并对这些蛋白进行深入研究。

三,客户拿到质谱数据分析结果后,可能对于后续的分析没有方向,这种情况下可以通过在注释结果中查询哪些通路包含的蛋白数目较多,可以从这些通路和蛋白入手进行重点研究。

四,KEGG通路注释可以为课题的设计和实验结果的合理性提供证据。

为什么有些蛋白没有KEGG通路注释信息?

目前对于通路的研究还有限,尤其是信号通路。为了提高注释率,我们已经在注释前对目标蛋白序列进行了blast,并利用同源蛋白的参与的通路信息对目标序列进行注释。但是仍然有部分蛋白,对于该蛋白,或者同物种中也之相似的蛋白,或者其他物种中的同源蛋白的研究依然十分不足,所以以目前的研究水平难以获得注释信息。

什么是差异蛋白的通路富集分析&WHY?

差异蛋白的通路富集分析是将差异蛋白列表中的蛋白与参考物种的全部蛋白列表或实验鉴定到的所有蛋白列表根据KEGG通路的注释结果进行对照比较,通过Fisher精确检验 (Fisher’s Exact Test),得出两者差异的显著性,从而找到这个差异蛋白列表中富集的通路。不同于蛋白通路注释以蛋白为单位进行注释,差异蛋白的通路富集分析以KEGG通路为单位,结果可以直接揭示整个差异蛋白列表中蛋白的整体通路富集特征。

KEGG注释结果文件解析

KEGG注释的结果文件包括KEGG.xlsx表格和map文件夹。

KEGG.xlsx:包含query2map,map2query,TopMapStat等3张表单

Map文件夹:包含所有和目标蛋白相关的KEGG通路图,目标蛋白以绿色标识

Sheet query2map

Protein ID:目标蛋白ID

KO:KEGG orthology identifier/K number,

Map ID:目标蛋白可能参与的通路ID

Map Name:目标蛋白可能参与的通路名称

URL:可直接链接到KEGG数据库中目标蛋白可能参与的通路图,目标蛋白以红色标识

Sheet map2query

Map ID:目标蛋白可能参与的通路ID

Map Name:目标蛋白可能参与的通路名称

Seqs:参与该通路的目标蛋白ID

#Seqs:参与该通路的目标蛋白数目

URL:可直接链接到KEGG数据库中目标蛋白可能参与的通路图,参与该通路的所有目标蛋白以红色标识Sheet TopMapStat

X Axis:目标蛋白可能参与的通路名称

Y Axis:参与该通路的目标蛋白数目

CHAPTER THREE ABOUT FEATURE SELECTION & CLUSTERING

WHY Feature Selection?

检验某种生物处理是否有效果的常规试验,通常的做法就是做两组数据,一组处理样本,一组阴性对照,然后用t检验,看看p-value是否小于0.05。但是由于蛋白组学实验的样本量通常都比较小(一般不多于3组生物学重复),那么您的“显著”究竟是确实反映了处理效果,还是本来处理没什么效果,您只是这次“运气好”而侥幸碰到一组产生显著的数据?如果生物处理确实有很强的效用,即便在每组只有三个样本的情况下,达到显著的可能性当然很大,如80%,那么这种通过是意料之中的。反之,如果其实处理几乎没有效果,同样每组三个样本,但是这种情况下依然有可能达到p-value小于0.05,只是可能性相当小,如5%,那么这个显著一般认为“只是运气好”而已。具体可参考https://www.docsj.com/doc/af16030254.html,/blog-338817-272318.html。

所以,在样本量有限这一事实无法改变的情况下,为了避免“运气好”的质疑,我们需要其他的统计学算法或模型帮助我们筛选有意义的关键marker。在统计学中,特征选取(Feature Selection) 是从所有特征中选取可有效区分样本的一小部分特征的过程,即利用统计学模型从所有鉴定到的蛋白质中选取可区分生物学样本的蛋白质集合的过程。我们利用WEKA软件包中的information gain attribute evaluator和correlation-based feature selection (CFS) 算法,并结合蛋白质的表达倍数比来筛选特征差异表达蛋白质。

聚类分析(Clustering)

用来检验所选取的差异蛋白或经Feature Selection筛选的特征差异蛋白的合理性和准确性,即所挑选的蛋白是否可以代表不同样本之间的差异,或者说利用这些蛋白是否可以准确将不同组样本进行分类。一般不建议用Fold Change/P value筛选的差异蛋白直接做聚类,分类的准确率不高。

聚类结果文件解析

层次聚类结果以树型热图表示,红色代表上调,绿色代表下调

横坐标:样本,纵坐标:差异蛋白

以M为参考线,样本被分为两类:C1-C3为一类m1,T1-T3为一类m2,分类准确率100%,表示挑选的差异蛋白可以有效区分样本,即挑选的差异蛋白合理、准确

以N为参考线,蛋白被分为两类:Q4G0N4-Q99584为一类n1,A8K2W3-B4DMR3为一类n2。通过查询原始数据可知,n1组蛋白在m1(C)组样本中下调,在m2(T)组样本中上调;n2组蛋白在m1(C)组样本中上调,在m2(T)组样本中下调---挑选的差异蛋白在两组样本中的表达模式,也可说明挑选的差异蛋白具有合理性。

树叉的长度表示样本或蛋白之间的亲缘关系,即差异,长度越长两者差异越大。例如,距离a表示样本T1和T3之间的差异,距离b表示C组样本和T组样本之间的差异。

亲缘关系较近的样本或蛋白较为相似,如C1-C3相似,T1-T3相似,C 和T 有明显差异;又例如n1组内蛋

白在两组样本中表达模式相似,而与n2组蛋白的表达模式截然不同。此外,在同一蛋白组内,如n2,同一

小簇内的蛋白可能具有更相似的功能或参与相同的途径等等。

b

a

M

m2 m1 Protein ID

N

n1

n2

CHAPTER FOUR ABOUT PROTEIN-PROTEIN INTERACTION NETWORK 蛋白质相互作用网络分析的意义

在生物体中,蛋白质并不是独立存在的,其功能的行使必须借助于其他蛋白质的调节和介导。这种调节或介导作用的实现首先要求蛋白质之间有结合作用或相互作用。我们通过查询蛋白质相互作用数据库和相关文献,确定鉴定到的蛋白质或差异表达蛋白质之间的相互作用和与之直接作用的其他蛋白质。通过构建以结点(node)和连线(link)表示的蛋白质相互作用网络可以从不同的系统尺度提取蛋白质的有效信息,得到单个蛋白质无法获得的综合信息。例如,高度聚集的蛋白质可能具有相同或相似的功能,连接度高的蛋白质可能是影响整个系统代谢或信号转导途径的关键点。

蛋白质相互作用 VS生物学通路?

蛋白质相互作用是生物学通路的基础,但是由于在构建相互作用网络时并不考虑时间、空间、理化条件等因素,所构建的网络中的相互作用并不一定会同时发生。因此,我们建议可以将蛋白质相互作用网络分析以及通路注释的结果相结合,进行后续分析。

蛋白质相互作用网络分析结果文件解析

蛋白质相互作用网络分析的结果文件包括两张相互作用网络图PPI1.png和PPI2.png,以及目标蛋白连接度文件gene_degree.txt。

PPI1.png:目标蛋白之间的直接相互作用

PPI2.png:由目标蛋白直接的相互作用以及可以和目标蛋白直接相互作用的其他蛋白连接的网络,其中黄色节点为目标蛋白,蓝色节点为与目标蛋白直接作用的其他蛋白质

Gene_degree.txt:在所形成的的相互作用网络中,某个蛋白A的连接度为与蛋白A直接相互作用的蛋白数目。通常来讲,在某个网络中,蛋白的连接度越大,该蛋白发生变化时整个系统受到的扰动就越大,该蛋白就可能是维持系统平衡和稳定的关键蛋白,应当重点研究。

医学免疫学实验教学大纲

《医学免疫学》实验教学大纲 实验名称:医学免疫学 学时:6学时 学分: 适应专业:护理学专业 执笔人:边藏丽 审定人:王恺兵 一、实验目的与任务 实验教学是医学免疫学教学的重要组成部分,通过实验教学加深对基础理论知识的理解,了解常用的免疫学检查方法,掌握免疫学基本实验技术(试管凝集、玻片凝集、对流免疫电泳、免疫细胞形态观察、淋巴细胞分离、ELISA等),培养学生严谨求实的科学态度以及观察、分析、综合能力、创造思维能力和初步的科研能力。 二、教学基本要求 医学免疫学实验对象多为具有传染性的材料,要求学生在实验教学中严格遵守实验室规则,牢固树立无菌观念,认真操作与观察实验结果,实事求是的记录实验结果,并对实验结果进行认真分析和讨论。 四、实验教学内容及学时分配 实验一凝集反应(试管凝集、玻片凝集) 3学时 1.目的要求 掌握体外抗原抗体反应的特点和影响因素;掌握凝集反应原理、方法和用途。 2.方法原理 颗粒性抗原与相应抗体在一定条件下特异性结合而出现肉眼可见的凝集现象。 3.主要实验仪器及材料 试管、玻片、水浴箱、吸管、伤寒杆菌“H”“O”诊断菌液、大肠埃希菌、大肠埃希菌

诊断血清等。 4.掌握要点 掌握凝集反应原理、方法和用途;血清效价;凝集现象的观察。 5.实验内容: (1)玻片凝集(抗原定性试验) (2)试管凝集(抗体定量试验) 实验二对流免疫电泳、血型鉴定 2学时1.目的要求 掌握沉淀的反应原理、方法和用途;了解对流免疫电泳的操作步骤,结果观察;掌握血型鉴定的反应原理、方法及结果判断。 2.方法原理 对流免疫电泳是将经典沉淀反应与电泳技术结合而设计的一项实验。沉淀反应是指可溶性抗原与相应抗体在一定条件下发生结合并出现肉眼可见的沉淀物的一种血清学反应。 带电的胶体颗粒可在电场中移动,其移动方向与胶体颗粒所带电荷有关。抗原在的缓冲带负电荷,将抗原加于琼脂板阴极端的小孔中,由阴极向阳极移动;抗体为球蛋因电渗作用而流向阴极。当抗原抗体在两孔间相遇时,在两者比例适当处形成白色沉淀线。此种在双向琼指扩散基础上加电泳的方法,称为对流免疫电泳。 血型鉴定属直接凝集反应。将已知标准抗A和抗B血型抗体分别与待测红细胞混合。如果抗原与抗体相对应,则引起红细胞凝集,反之则不凝集,据其凝集现象可判断血型。 3.主要实验仪器及材料 标准的抗A和抗B单克隆抗体(抗A为蓝色,抗B为黄色)、酒精棉球、采血针、载玻片、待测血清、甲胎蛋白诊断血清,肝癌病人阳性血清, L巴比妥缓冲液,琼脂对流免疫板、打孔器、加样器、电泳仪等。 4.掌握要点 (1)对流免疫电泳的操作步骤,结果观察; (2)血型鉴定的方法及结果判断。 5.实验内容: (1)讲述沉淀的反应原理、方法和用途;对流免疫电泳的操作步骤,结果观察;血型鉴定的反应原理、方法及结果判断; (2)对流免疫电泳的操作及结果观察; (3)血型鉴定的操作及结果观察; 实验三小鼠吞噬细胞及转化细胞形态观察 2学时 1.目的要求 观察吞噬细胞的吞噬现象;了解机体的非特异性免疫功能。观察转化细胞、淋巴母细胞的形态了解机体的特异性免疫功能。 2.方法原理 巨噬细胞可吞噬异种或异体细胞等体积较大的异物,中性粒细胞可吞噬多种细菌。观察这两类细胞的吞噬现象,可计算出吞噬异物的细胞数和吞噬细胞中吞入的异物数,用以评价机体的免疫状态。 淋巴细胞,在受抗原的刺激后,可转化为淋巴母细胞,淋巴细胞转化率的高低可反映机体细胞免疫水平。

高通量测序生物信息学分析(内部极品资料,初学者必看)

基因组测序基础知识 ㈠De Novo测序也叫从头测序,是首次对一个物种的基因组进行测序,用生物信息学的分析方法对测序所得序列进行组装,从而获得该物种的基因组序列图谱。 目前国际上通用的基因组De Novo测序方法有三种: 1. 用Illumina Solexa GA IIx 测序仪直接测序; 2. 用Roche GS FLX Titanium直接完成全基因组测序; 3. 用ABI 3730 或Roche GS FLX Titanium测序,搭建骨架,再用Illumina Solexa GA IIx 进行深度测序,完成基因组拼接。 采用De Novo测序有助于研究者了解未知物种的个体全基因组序列、鉴定新基因组中全部的结构和功能元件,并且将这些信息在基因组水平上进行集成和展示、可以预测新的功能基因及进行比较基因组学研究,为后续的相关研究奠定基础。 实验流程: 公司服务内容 1.基本服务:DNA样品检测;测序文库构建;高通量测序;数据基本分析(Base calling,去接头, 去污染);序列组装达到精细图标准 2.定制服务:基因组注释及功能注释;比较基因组及分子进化分析,数据库搭建;基因组信息展 示平台搭建 1.基因组De Novo测序对DNA样品有什么要求?

(1) 对于细菌真菌,样品来源一定要单一菌落无污染,否则会严重影响测序结果的质量。基因组完整无降解(23 kb以上), OD值在1.8~2.0 之间;样品浓度大于30 ng/μl;每次样品制备需要10 μg样品,如果需要多次制备样品,则需要样品总量=制备样品次数*10 μg。 (2) 对于植物,样品来源要求是黑暗无菌条件下培养的黄化苗或组培样品,最好为纯合或单倍体。基因组完整无降解(23 kb以上),OD值在1.8~2.0 之间;样品浓度大于30 ng/μl;样品总量不小于500 μg,详细要求参见项目合同附件。 (3) 对于动物,样品来源应选用肌肉,血等脂肪含量少的部位,同一个体取样,最好为纯合。基因组完整无降解(23 kb以上),OD值在1.8~2.0 之间;样品浓度大于30 ng/μl;样品总量不小于500 μg,详细要求参见项目合同附件。 (4) 基因组De Novo组装完毕后需要构建BAC或Fosmid文库进行测序验证,用于BAC 或Fosmid文库构建的样品需要保证跟De Novo测序样本同一来源。 2. De Novo有几种测序方式 目前3种测序技术 Roche 454,Solexa和ABI SOLID均有单端测序和双端测序两种方式。在基因组De Novo测序过程中,Roche 454的单端测序读长可以达到400 bp,经常用于基因组骨架的组装,而Solexa和ABI SOLID双端测序可以用于组装scaffolds和填补gap。下面以solexa 为例,对单端测序(Single-read)和双端测序(Paired-end和Mate-pair)进行介绍。Single-read、Paired-end和Mate-pair主要区别在测序文库的构建方法上。 单端测序(Single-read)首先将DNA样本进行片段化处理形成200-500bp的片段,引物序列连接到DNA片段的一端,然后末端加上接头,将片段固定在flow cell上生成DNA簇,上机测序单端读取序列(图1)。 Paired-end方法是指在构建待测DNA文库时在两端的接头上都加上测序引物结合位点,在第一轮测序完成后,去除第一轮测序的模板链,用对读测序模块(Paired-End Module)引导互补链在原位置再生和扩增,以达到第二轮测序所用的模板量,进行第二轮互补链的合成测序(图2)。 图1 Single-read文库构建方法图2 Paired-end文库构建方法

生物信息学软件及使用概述

生物信息学软件及使 刘吉平 liujiping@https://www.docsj.com/doc/af16030254.html, 用概述 生 物秀-专心做生物! w w w .b b i o o .c o m

生物信息学是一门新兴的交叉学生物信息学的概念: 科,它将数学和计算机知识应用于生物学,以获取、加工、存储、分类、检索与分析生物大分子的信息,从而理解这些信息的生物学意义。 生 物秀-专心做生物! w w w .b b i o o .c o m

分析和处理实验数据和公共数据,生物信息学软件主要功能 1.2.提示、指导、替代实验操作,利用对实验数据的分析所得的结论设计下一阶段的实验 3.实验数据的自动化管理 4.寻找、预测新基因及其结构、功能 5.蛋白质高级结构及功能预测(三维建模,目前研究的焦点和难点) 生 物秀-专心做生物! w w w .b b i o o .c o m

功能1. 分析和处理实验数据和公共数据,加快研究进度,缩短科研时间 ?核酸:序列同源性比较,分子进化树构建,结构信息分析,包括基元(Motif)、酶切点、重复片断、碱基组成和分布、开放阅读框(ORF ),蛋白编码区(CDS )及外显子预测、RNA 二级结构预测、DNA 片段的拼接; ?蛋白:序列同源性比较,结构信息分析(包括Motif ,限制酶切点,内部重复序列的查找,氨基酸残基组成及其亲水性及疏水性分析),等电点及二级结构预测等等; ?本地序列与公共序列的联接,成果扩大。 生 物秀-专心做生物! w w w .b b i o o .c o m

Antheprot 5.0 Dot Plot 点阵图 Dot plot 点阵图能够揭示多个局部相似性的复杂关系 生 物秀-专心做生物! w w w .b b i o o .c o m

生物信息学分析实践

水稻瘤矮病毒(RGDV)外层衣壳蛋白 P8的同源模建 高芳銮(Raindy) 同源模建(homology modeling) ,也叫比较模建(Compatative modeling),其前提是一个或多个同源蛋白质的结构已知,当两个蛋白质的序列同源性高于35%,一般情况下认为它们的三维结构基本相同;序列同源性低于30%的蛋白质难以得到理想的结构模型。同源模建是目前最为成功且实用的蛋白质结构预测方法, SWISS-MODEL 是由SwissProt 提供的目前最著名的蛋白质三级结构预测服务器,创建于1993年,面向全世界的生物化学与分子生物学研究工作者提供免费的自动模建服务。SWISS-MODEL 服务器提供的同源模建有两种工作模式:首选模式(First Approach mode)和 项目模式(Project mode)。 本实例以RGDV P8蛋白为研究对象采用首选模式进行同源模建。 图1 SWISS-MODEL 的主界面 操作流程如下: 1.选择模式 单击左侧的“MENU ”菜单下方的“First Approach mode ”,右侧窗口自动SWISS-MODEL 工作窗口,在相应文本框中分别输入的E-mail 、项目标题、待模建的蛋白质序列,SWISS-MODEL 支持以FASTA 格式直接输入或提交UniProt 的登录号,如图2所示。 《生物信息学分析实践》样 稿

图2 SWISS-MODEL 的序列提交页面 2.参数设置 当前版本只有一个选项可设置,如果用户需要使用指定的模板,可在“Use a specific template ”后的输入框填入ExPDB 晶体图像数据库中的模板代码,其格式为“PDBCODE+ChainID ”,如“1uf2P ”。本例不使用指定模板,默认留空。完毕,点击“Submit Modeling Request ”提交模建请求,服务器返回提交成功的提示,如图3所示: 图3 成功提交 SWISS-MODEL WORKSPACEW 页面会自动刷新,直至模建完成,如图4所示,同时模建结果也会发送到指定的邮箱。 3结果解读 点击下图右上方的“Print/Save this page as ”后的图标,可以将整个结果以PDF 文档格式保存到本地计算机中。模建结果给出了五个部分的信息:模建详情(Model Details)、比对信息(Alignment)、模建评价 (Anolea/Gromos/Verify3D)、模建日志(Modelling log)、模板选择日志(Template Selection Log)。 《生物信息学分析实践》样稿

蛋白质组学及其在疾病研究中的应用

综述摘要 创新中药及其在我国的发展 邓文龙(四川省中药研究所,成都610041)本文就创新中药的定义、标准及创新中药在我国的发展进行了讨论。作者认为一流的临床疗效或独特的作用机理是创新中药的首要条件,按药物有效成分的有效剂量进行质量控制是创新中药的基础。 蛋白质组学及其在疾病研究中的应用 段春燕综述,何涛审校 (泸州医学院生物化学教研室,四川泸州646000) 目前人类基因组计划已进入后基因组时代,1994年Mac Wilkins与Keith Williams首先提出了蛋白质组学(prot eomics)的概念。依赖于二向电泳、质谱技术及生物信息学等多种手段的蛋白质组学分析在肿瘤、心血管系统、内分泌系统、神经系统及感染性疾病等的研究中得到了充分的应用,从整体的蛋白质水平上,在一个更深入、更贴切生命本质的层次上来探讨和发现生命活动的规律和重要生理、病理现象的本质。 蜂毒的现代药理研究及临床应用概况 夏隆江 (成都中医药大学药理教研室2004级博士生,成都610075)蜂毒是蜜蜂科昆虫中华蜜蜂Apis cerana F abricus等之工蜂尾部蛰刺毒腺和副腺分泌出的具有芳香气味的淡黄色透明毒液,是具有多种药理学和生物学活性的复杂混合物,主要由多种肽和酶类活性物质组成。它具有较广泛的药理作用:1、对心血管的作用:蜂毒有明显的降血压作用,其作用类似于组胺,是通过扩血管实现的;同时,蜂毒对心肌具有正性频率和负性肌力作用。2、对神经系统的作用:蜂毒有明显的镇痛作用和调节神经系统紧张度的作用。3、对血液的作用:蜂毒具有溶血、抗凝血和降低血栓素的作用。4、对呼吸系统的作用:蜂毒可使呼吸加快,大量的蜂毒可导致呼吸肌麻痹。5、对消化系统的作用:蜂毒有抗肝纤维化和吸收肝纤维化作用。6、对内分泌系统的作用:蜂毒对垂体、肾上腺皮质系统有明显的兴奋作用。7、对免疫系统的作用:蜂毒具有免疫抑制作用。8、抗炎镇痛作用:蜂毒肽对前列腺素合成酶的抑制作用是吲哚美辛的70倍,具有极强的抗炎镇痛效果。另外,蜂毒还具有抗肿瘤、抗辐射、抗菌等作用。在临床运用方面,临床上蜂毒被广泛地用于治疗风湿性、类风湿性疾病、多发性硬化病、艾滋病、高血压、哮喘、白塞病、寻常型银屑病等,具有较大的研究前景和临床运用价值。 瘦素的研究现状 龙中奇(四川省达州中医学校,达州635000)本文对瘦素的生物学性质及生理生化功能作一综述。 帕金森病的研究进展 唐宗琼(四川省达州中医学校,达州635000)多种因素导致帕金森病(PD)发病,归纳起来有以下几种学说:1遗传因素学说;环境因素学说;氧化应激学说;免疫学说;细胞凋亡学说;o对PD治疗的探索:细胞替代疗法(CRT)治疗PD是目前研究PD的热点,CRT治疗PD的目的是重建纹状体受损的多巴胺(D A)能神经支配,重建脑功能。根据供体的不同,PD的CRT治疗可分为:自体肾上腺髓质移植、同种异体胎脑移植、异种胎脑移植和干细胞移植。其中,自体肾上腺髓质移植经临床研究证实嗜铬细胞植入脑内后存活率极低,无肯定的治疗作用而已被淘汰。 胃肠肽类激素对摄食活动的调节 孙玉锦(雅安职业技术学院,雅安625000)摄食是复杂的行为,是一种精神活动,它包括觅食、食物的摄取、消化、吸收和利用,摄食是人类以及所有动物维持生命活动的最基本最重要的功能之一,摄入的食物经过消化和吸收过程为机体提供必须的能量和营养物质。虽然摄食作用作为一种本能生来即有,但实际上摄食活动是受体内复杂的神经和体液因素调节的,涉及到神经中枢、传入传出神经以及许多神经递质和激素。本文仅讨论胃肠肽类激素对摄食活动的调节。 将饱食大鼠的血液注入饿鼠血管内,可抑制饿鼠的摄食活动,这个事实提示血液中含有控制摄食的信息。这种信息是什么?推想饥饿使人或动物在短时间内大量进食,在食物未完全消化吸收之前,就因产生饱感而停止继续进食,究其原因很可能是食物与胃肠粘膜接触后,引起胃肠肽类激素释放,胃肠肽类激素通过血液循环,作用于下丘脑,兴奋饱中枢)下丘脑腹内侧核(VMH),抑制摄食中枢)下丘脑的外侧区(LHA),从而停止摄食。影响摄食活动的胃肠肽类激素较多,但其中只有少数胃肠肽类激素对摄食调节有生理意义,大多数胃肠肽类激素需要给予药理剂量才对摄食活动发生影响。本文介绍了体内多种胃肠肽类激素:胆囊收缩素、阿片肽、铃蟾肽、胰高糖素、胰岛素、酪神经肽、胃动素、甘丙素、生长抑素、雨蛙肽等对摄食有促进或抑制作用,目前对它们作用的许多环节还不完全清楚,但随着研究的不断深入,其与摄食有关的许多问题将会逐渐得到阐明。 实验研究摘要 松龄血脉康胶囊对自发性高血压 大鼠的降压作用及机制初探(摘要) 万莉红,熊文碧,朱玲,刘蓉,谢芬,刘嘉琴,周黎明*,李崇前1,张顺华1 (四川大学华西基础与法医学院药理教研室,四川成都610041;1成都康弘集团#博士后工作站,四川成都610036)目的:探讨中药松龄血脉康胶囊胶囊对自发性高血压大鼠是否具有降压作用,并初步探讨起作用的机制。方法:雄性自发性高血压大鼠(SHR)60只,随机分为高血压模型组、卡托普利组、Vc 组、松龄血脉康胶囊组四组,并设立正常血压大鼠(WKY)15只作为对照组,用BP26动物无创血压测试仪试验前测定各组动物的基础血压。(1)各组分别给予生理盐水、卡托普利12.5mg#kg-1、Vc50mg#kg-1、松龄血脉康胶囊胶囊750mg#kg-1灌胃,每日一 133 四川生理科学杂志2005;27(3)

免疫药理学方法与技术简介

第六节免疫药理学实验方法与技术简介 免疫药理学是介于免疫学和药理学间的边缘学科,主要研究药物对机体免疫系统和免疫功能的作用及其机制,为某些疾病药物治疗提供理论基础。 免疫药理学方法一般是采用体外的试管内研究和体内的整体研究相结合,体外试验研究可澄清药物对免疫应答某一特定环节如T细胞增殖、细胞因子等产生的具体影响,而整体研究则可探讨药物对抗原介导的的免疫应答、正常的体液免疫及细胞免疫功能、同种异体移植排斥反应、异常免疫应答如超敏反应和自身免疫病以及初次及再次免疫应答等的影响。在未来免疫药理学的研究领域中,基因工程、基因治疗、细胞因子治疗以及其它各种生物治疗的研究和应用将是研究的热点和前沿区域。 一、免疫细胞的分离与纯化 体内外的免疫药理学实验研究都需要从动物或人的血液或淋巴组织中分离免疫细胞,获得高纯度的免疫细胞是进行本研究的最基本的前提条件。 外周血中白细胞的分离常用自然沉降法和高分子聚合物沉降法;外周血单个核细胞(peripheral mononuclear cells,PMNC)分离多采用密度梯度离心法。 从淋巴组织中分离淋巴细胞悬液---制备脾细胞悬液、淋巴结细胞悬液、胸腺细胞悬液。 淋巴细胞的分离纯化包括:①分离PMNC中的淋巴细胞和巨噬细胞常用方法有玻璃粘附法、磁铁吸引法、羰基铁乳胶分层液法、补体溶解法及葡聚糖凝胶过滤法等。②T细胞、B 细胞及T细胞亚群的分离纯化常用技术:E花结分离法、Percoll非连续性密度梯度离心分离法、洗淘法(panning)、补体细胞毒法、尼龙毛分离法、磁性激活细胞分离器(magnetic activated cell sorter,MACS)分离技术及流式细胞术(flow cytometry,FCM)。 二、药物对免疫系统功能影响的实验技术简介 1、对免疫细胞表面抗原分子的影响对细胞表面的CD(cluster of differentiation,分化簇)抗原的检测与分析可通过细胞毒法、葡萄菌体蛋白A法、免疫细胞化学法和免疫荧光染色分析法等,借助流式细胞仪进行的免疫荧光染色分析法使该项技术的标准化、定量化和自动化水平大大提高,体内外药理试验均可采用之。 2、对免疫细胞功能的影响常用:3H-TdR掺入试验、固相抗CD3单克隆抗体诱导细胞增殖的检测、混合淋巴细胞反应、抗原刺激的T细胞增殖反应、预激淋巴细胞对抗原的增殖反应等。 3、淋巴细胞功能的体内实验小鼠接触性超敏反应、移植物抗宿主反应(graft-versus-host disease,GVHD)、迟发性超敏反应(delayed-type hypersensitivity,DTH)、体内检测T H细胞活性。 4、对B细胞影响的体内外实验血清中IgG、IgA、IgM的测定(单向免疫扩散法、散射比浊法);抗体生成细胞检测(溶血空斑试验、溶血分光光度法)。 5、对单核巨噬细胞功能的影响实验巨噬细胞吞噬鸡红细胞实验、白色念珠菌3H葡萄糖掺入实验、单核巨噬细胞对肿瘤细胞的细胞毒反应测定、单核因子测定等。 6、对超敏反应影响的体内外实验总IgE水平测定:酶联免疫吸附试验(enzyme linked immunosorbent assay,ELISA)、放射免疫单扩散法(radioactive single radial diffusion,RSRD)、免疫斑点法(dot immunobinding assay,DIBA)、反向被动血凝法(reversed passive hemagllutination assay,RPHA)、纸片放射免疫吸附试验(paper radio immunosorbent test,PRIST)。特异性IgE抗体测定:ELISA、放射过敏原吸附试验(radioallergosorbent test,RAST)、P-K试验、被动皮肤过敏反应(passive cutaneous anaphylaxis,PCA)、皮内试验(intradermal test)。人外周血单个核细胞体外合成IgE的测定:微量固相放射免疫测定法(microtiter solid-phase

生物信息学简介范文

1、简介 生物信息学(Bioinformatics)是在生命科学的研究中,以计算机为工具对生物信息进行储存、检索和分析的科学。它是当今生命科学和自然科学的重大前沿领域之一,同时也将是21世纪自然科学的核心领域之一。其研究重点主要体现在基因组学(Genomics)和蛋白质组学(Proteomics)两方面,具体说就是从核酸和蛋白质序列出发,分析序列中表达的结构功能的生物信息。 具体而言,生物信息学作为一门新的学科领域,它是把基因组DNA序列信息分析作为源头,在获得蛋白质编码区的信息后进行蛋白质空间结构模拟和预测,然后依据特定蛋白质的功能进行必要的药物设计。基因组信息学,蛋白质空间结构模拟以及药物设计构成了生物信息学的3个重要组成部分。从生物信息学研究的具体内容上看,生物信息学应包括这3个主要部分:(1)新算法和统计学方法研究;(2)各类数据的分析和解释;(3)研制有效利用和管理数据新工具。 生物信息学是一门利用计算机技术研究生物系统之规律的学科。 目前的生物信息学基本上只是分子生物学与信息技术(尤其是因特网技术)的结合体。生物信息学的研究材料和结果就是各种各样的生物学数据,其研究工具是计算机,研究方法包括对生物学数据的搜索(收集和筛选)、处理(编辑、整理、管理和显示)及利用(计算、模拟)。 1990年代以来,伴随着各种基因组测序计划的展开和分子结构测定技术的突破和Internet的普及,数以百计的生物学数据库如雨后春笋般迅速出现和成长。对生物信息学工作者提出了严峻的挑战:数以亿计的ACGT序列中包涵着什么信息?基因组中的这些信息怎样控制有机体的发育?基因组本身又是怎样进化的? 生物信息学的另一个挑战是从蛋白质的氨基酸序列预测蛋白质结构。这个难题已困扰理论生物学家达半个多世纪,如今找到问题答案要求正变得日益迫切。诺贝尔奖获得者W. Gilbert在1991年曾经指出:“传统生物学解决问题的方式是实验的。现在,基于全部基因都将知晓,并以电子可操作的方式驻留在数据库中,新的生物学研究模式的出发点应是理论的。一个科学家将从理论推测出发,然后再回到实验中去,追踪或验证这些理论假设”。 生物信息学的主要研究方向:基因组学- 蛋白质组学- 系统生物学- 比较基因组学,1989年在美国举办生物化学系统论与生物数学的计算机模型国际会议,生物信息学发展到了计算生物学、计算系统生物学的时代。 姑且不去引用生物信息学冗长的定义,以通俗的语言阐述其核心应用即是:随着包括人类基因组计划在内的生物基因组测序工程的里程碑式的进展,由此产生的包括生物体生老病死的生物数据以前所未有的速度递增,目前已达到每14个月翻一番的速度。同时随着互联网的普及,数以百计的生物学数据库如雨后春笋般迅速出现和成长。然而这些仅仅是原始生物信息的获取,是生物信息学产业发展的初组阶段,这一阶段的生物信息学企业大都以出售生物数据库为生。以人类基因组测序而闻名的塞莱拉公司即是这一阶段的成功代表。 原始的生物信息资源挖掘出来后,生命科学工作者面临着严峻的挑战:数以亿计的ACGT序列中包涵着什么信息?基因组中的这些信息怎样控制有机体的发育?基因组本身又是怎样进化的?生物信息学产业的高级阶段体现于此,人类从此进入了以生物信息学为中心的后基因组时代。结合生物信息学的新药创新工程即是这一阶段的典型应用。 2、发展简介 生物信息学是建立在分子生物学的基础上的,因此,要了解生物信息学,就必须先对分子生物学的发展有一个简单的了解。研究生物细胞的生物大分子的结构与功能很早就已经开始,1866年孟德尔从实验上提出了假设:基因是以生物成分存在,1871年Miescher从死的白细胞核中分离出脱氧核糖核酸(DNA),在Avery和McCarty于1944年证明了DNA是生命器官的遗传物质以前,人们仍然认为染色体蛋白质携带基因,而DNA是一个次要的角色。1944年Chargaff发现了著名的Chargaff规律,即DNA中鸟嘌呤的量与胞嘧定的量总是相等,腺嘌呤与胸腺嘧啶的量相等。与此同时,Wilkins与Franklin用X射线衍射技术测

蛋白质组学及其应用研究

现代商贸工业 2019年第16期 79 一间不了解,往往会错过报名时间而与心仪的证书擦肩 而过.2.4一学生缺乏清晰的职业规划 据调查,大多数的学生对自己的所学专业并不是很了解.并认为自己在大学期间对本专业的学习比较浅显,缺乏实践.对自身未来就业感到十分迷茫,对自己专业的就业前景知之甚少.这种没有结合自身实际的职业规划,就会对学生考取证书的选择有较大的影响.2.5一学生的考证成本较大 大学生目前的考证方式主要有两种:自学和报班.报班的话,费用和时间成本会较高.且社会上的考证机构参差不齐,学生较难判断.自学的话,难度较大.时间成本会更高.学生考取证书所付出的精力会更多.这可能会影响学校的正常学习.可能会出现本末倒置的情况.且社会上考取证书的参考资料品质不一.学生难以判断选择最适合的考证资料. 3一考证问题相应的对策 3.1一学生角度对策 (1)理性考证,切忌盲目跟风,证书并不是越多越好,分析自己所在的专业,了解与自己专业相关的证书,合理的安排考证和学校课程的时间,千万不要忽略学校授予的专业知识.证书或许能为你找工作提供一定的帮助,但真正让你立足于社会的是自身的能力,保持理智,不可本末倒置. (2 )做好自己的职业生涯规划,让自己对未来有一个明确的目标,然后根据这个目标,去选择能帮助到自己的证书,同时观察市场行情和国家形势,选择恰当的目标和时机去考取证书. (3)在考取证书的时候,一定要去了解该证书的详细信息,如考证费用二难易程度等,考取好的二知名度高的证书往往代表着你要投入大量的时间二金钱和精力,结合自身的实际情况来选择证书,适合自己的才是最好的.在选择培训机构的适合,一定要选择权威的二正式的机构,切勿贪小便宜而因小失大.3.2一学校角度对策 (1 )应帮助同学们建立起正确的三观二就业观,如东南大学成贤学院就应设立相应的讲座和课堂,为同学们讲解关于以后踏入社会的相关知识,培养大家独立二理性解决问题的能力. (2 )在校内设立与考证相关的导师机构,为同学们考证排忧解难,给出建议,避免学生盲目跟风,为考证不顾学业.同时要适当的疏导同学,避免对学习和就业产生过多的压力. (3 )学校需要做好一个合理引导的角色,应当不断完善学生的就业指导与服务体系,帮助学生树立正确的就业观念与明确的职业规划,端正考证动机,摒弃不良的考证心态,妥善处理好在校学习与考证学习的关系,让学生明白只有扎实提高自身能力与素质才会使自己终生获益.3.3一社会角度对策 (1 )用人单位应该完善用人的标准和要求,不以证书的数量来衡量学生的能力,用人标准和要求应多注重大学生的综合素质和实践能力. (2 )国家对于各种证书的认证要严格,对于各种培训机构要进行认真清理,不合法的要坚决取缔,考证不能成为不良居心的人利用应试考试赚取钱财的手段.同时加强考场管理,坚决反对作弊等现象的发生,为考证提供一个可信的平台,树立证书的权威性. (3)政府要做好用人单位和学校之间的沟通与交流,建立合作平台,保证人尽其用.优秀的大学生是社会紧缺的人力资源,为了避免这一人力资源的浪费,搭建企业与学校直接对接的桥梁是必不可少的,可以在为企业寻找需求的人才的同时,给予大学生实践和学习的机会. 参考文献 [1 ]关化少.我国本科应用型创新人才培养之特点二价值与理论期待[J ].北京教育,2015,(05).[2]舒程. 考证热 背景下大学生创业与就业能力培养分析[J ]. 赤峰学院学报,2017,(02). [3]费芳.大学生 考证热 亟需正确引导[J ].湘声报,2015,(01). [4]李晓娜.大学生 考证热 现象的经济学分析[J ]. 经济研究导刊,2014,(24). 蛋白质组学及其应用研究 魏东阳 (宝鸡中学,陕西宝鸡721000 )摘一要:蛋白质组学的概念最早是由澳大利亚学者W i l k i n s 和W i l l i a m s 于1994年提出, 细胞二组织或者机体的基因组所表达的全部蛋白就称为蛋白质组学.蛋白质组学是一个研究蛋白质组及大范围蛋白质的分离二分析二应用的学科.它不同于传统的利用生物化学的方法研究单个蛋白质或某一类蛋白,而是在大规模水平上研究体系内全部蛋白质及其动态变化规律.随着学科的发展,蛋白质组学的研究范围也在不断完善和补充,通过查阅大量文献,总结蛋白质组学技术,并研究蛋白组学在生物医学二转基因技术二生物制药技术等领域的. 关键词:蛋白质组;蛋白质组学;蛋白质组学应用 中图分类号:F 24一一一一一文献标识码:A一一一一一一d o i :10.19311/j .c n k i .1672G3198.2019.16.034一一蛋白质组(P r o t e o m e )是由蛋白质(P r o t e i n )和基因组(g e n o m i c )两个词的组合而来,是指生命体(包括细胞二组织等)的一个基因组所表达的所有蛋白质.其主 要研究内容就是能在大规模水平上研究蛋白质的表 达二翻译后的修饰以及蛋白质与蛋白质之间的相互作用,从而来了解蛋白质参与细胞二人体代谢及其他生命

蛋白质组学生物信息学分析介绍

生物信息学分析FAQ CHAPTER ONE ABOUT GENE ONTOLOGY ANNOTATION (3) 什么是GO? (3) GO和KEGG注释之前,为什么要先进行序列比对(BLAST)? (3) GO注释的意义? (3) GO和GOslim的区别 (4) 为什么有些蛋白没有GO注释信息? (4) 为什么GO Level 2的统计饼图里蛋白数目和差异蛋白总数不一致? (4) 什么是差异蛋白的功能富集分析&WHY? (4) GO注释结果文件解析 (5) Sheet TopBlastHits (5) Sheet protein2GO/protein2GOslim (5) Sheet BP/MF/CC (6) Sheet Level2_BP/Level2_MF/Level2_CC (6) CHAPTER TWO ABOUT KEGG PATHWAY ANNOTATION (7) WHY KEGG pathway annotation? (7) KEGG通路注释的方法&流程? (7) KEGG通路注释的意义? (7) 为什么有些蛋白没有KEGG通路注释信息? (8) 什么是差异蛋白的通路富集分析&WHY? (8) KEGG注释结果文件解析 (8) Sheet query2map (8) Sheet map2query (9) Sheet TopMapStat (9) CHAPTER THREE ABOUT FEATURE SELECTION & CLUSTERING (10) WHY Feature Selection? (10)

聚类分析(Clustering) (10) 聚类结果文件解析 (10) CHAPTER FOUR ABOUT PROTEIN-PROTEIN INTERACTION NETWORK (12) 蛋白质相互作用网络分析的意义 (12) 蛋白质相互作用 VS生物学通路? (12) 蛋白质相互作用网络分析结果文件解析 (12)

生物信息学分析

生物信息学分析 生物信息学难吗? 经常有人向我问这个问题,这有什么疑问吗?如果不难学,根本就不用问我这个问题。也无需投入那么多时间精力就能掌握,更无需花费三四千元参加线下的培训班,也不会月薪过万。所以,答案很肯定,道理很简单:生物信息比较难学。 为什么难学? 我总结里几点原因。首先,这是一个交叉学科,要求你既要有生物学的基础,又要有很强的计算机操作技能。这个就有点困难了。因为只是一个生物学就包括多个门类,有很多东西需要去学习,还需要学习计算机知识。很多人一门内容还没学明白,现在还得在加一门,这就属于祸不单行,雪上加霜,屋漏偏逢连夜雨。因此,这种既懂生物学,又懂计算机的复合型人才就比较短缺。而且,生物信息本质上属于数据挖掘,除了生物,计算机,到后面还需要极强的统计学知识才能做好数据分析,所以,还得加上统计学,也就是生物信息学=生物学+计算机科学+统计学三门学科的知识,这也就是为什么生物信息学比较难学。 第二个原因,生物信息本身就包括很多内容,比如DNA的分析,RNA的分析,甲基化的分析,蛋白质的分析等方面,每一

门类又完全不同,从物种方面来分,动物,植物,微生物,医学等有差别很大,很难有一劳永逸,放之四海而皆准的分析方法。 第三个原因就是生物信息是一门快速发展的学习,会出现很多新的测序方法,比如sanger测序,illumina,BGIseq,PacBio,IonTorrent,Nanopore等,每一个平台技术原理完全不同,因此数据特点也完全不同,这就需要针对每一个平台的数据做专门的学习,而且每个平台又在不断的推陈出现,可能今天你刚开发好的方法,产品升级了,都得推倒重来。还有很多新的技术,例如现在比较火的单细胞测序,Hi-C测序,Bionano测序等等内容,以后还出现更多新技术新方法,足够让你活到老,学到老。当然,你先要能活到老,吾生也有涯,而知也无涯。以有涯随无涯,殆已! 高风险才有高收益 当然啦,虽然你已经看到学习生物信息肯定是不容易了,门槛很高,但是呢,门槛高也有很多好处,就是挡住了一部分人,当你学会了,迈过门槛,你的身价就提高了。如果人人都很容易掌握了,那么也就不值钱了。所以,生物信息,前途是光明的,道路是曲折的。

蛋白质组学及其主要技术

蛋白质组学及其主要技术 朱红1 周海涛2 (综述) 何春涤1, (审校) (1.中国医科大学附属第一医院皮肤科,辽宁沈阳110001; 2.北京大学深圳医院核医学 科,广东深圳518036) 【摘要】蛋白质组是指一种细胞、组织或有机体所表达的全部蛋白质。蛋白质组学是以蛋白质组为研究对象的新兴学科,近年来发展迅速,已成为后基因组时代的研究热点。目前,蛋白质组学研究技术主要包括:样品的制备和蛋白质的分离、蛋白质检测与图像分析、蛋白质鉴定及信息查询。本文就蛋白质组学概念及主要技术进行综述。 【关键词】蛋白质组,蛋白质组学 1蛋白质组学的概念 随着人类基因组测序计划的完成,人们对生命科学的研究重点由结构基因组转向功能基因组,1994年Wilkins和Williams首先提出蛋白质组一词[1],蛋白质组是指一种细胞、组织或有机体所表达的全部蛋白质。从基因到蛋白质存在转录水平、翻译水平及翻译后水平的调控,组织中mRNA丰度与蛋白质丰度不完全符合[2]。蛋白质复杂的翻译后修饰、蛋白质的亚细胞定位或迁移、蛋白质-蛋白质相互作用等也无法从DNA/mRNA水平来判断。因此,只有将功能基因组学与蛋白质组学相结合,才能精确阐明生命的生理及病理机制。 蛋白质组学是以蛋白质组为研究对象,对组织、细胞的整体蛋白进行检测,包括蛋白质表达水平、氨基酸序列、翻译后加工和蛋白质的相互作用,在蛋白质水平上了解细胞各项功能、各种生理、生化过程及疾病的病理过程等[3,4]。蛋白质组学有两种研究策略。一种是高通量研究技术,把生物体内所有的蛋白质作为对象进行研究,并建立蛋白质数据库,从大规模、系统性的角度来看待蛋白质组学,更符合蛋白质组学的本质。但是,由于剪切变异和翻译后修饰,蛋白质数量极其庞大,且表达随空间和时间不断变化,所以分析生物体内所有的蛋白质是一个耗时费力,难以实现的理想目标。另一种策略是研究不同状态或不同时期细胞或组织蛋白质组成的变化,主要目标是研究有差异蛋白质及其功能,如正常组织与肿瘤组织间的差异蛋白质,寻找肿瘤等疾病标记物并为其诊断治疗提供依据。 2蛋白质组学的常用技术 2.1样品的制备和蛋白质的分离技术 2.1.1样品的制备样品制备包括细胞裂解与蛋白质溶解,以及去除核酸等非蛋白质成分。 激光捕获显微切割(Laser-captured microdissection, LCM)[5]技术可大量获得足够用于蛋白质组学研究的单一细胞成分,避免其他蛋白成分对电泳结果的干扰。尤其是肿瘤的蛋白质组学研究常用LCM技术来获取单一的肿瘤细胞。 2.1.2蛋白质的分离技术 ①双向凝胶电泳(Two-dimensional electrophoresis, 2-DE):双向电泳方法于 l975年由O'Farrell[6]首先提出,根据蛋白质等电点和分子量的差异,连续进行成垂直方向的两次电泳将其分离。 第一向为等电聚焦(Isoelectric focusing,IEF)电泳,其基本原理是利用蛋白质分子的等电点不同进行蛋白质的分离。较早出现的IEF是载体两性电解质pH梯度,即在电场中通过两性缓冲离子建立pH梯度;20世纪80年代初建立起来的固相pH梯度(Immobilized pH gradients,IPG)IEF,是利用一系列具有弱酸或弱碱性质的丙烯酰胺衍生物形成pH梯度并参与丙烯酰胺的共价聚合,形成固定的、不随环境电场条件变化的pH梯度。IPG胶实验的重复

免疫学实验整理

免疫学实验整理 一、凝集试验、吞噬试验 (一)凝集试验 1、直接凝集反应(ABO血型鉴定) 2、间接凝集反应(类风湿因子测定) 3、金黄色葡萄球菌协同凝集试验 (二)吞噬试验(示教) 1、中性粒细胞的吞噬作用(小吞噬) 2、巨噬细胞的吞噬作用(大吞噬) 名解: 1.免疫学检测技术:利用免疫学原理来检测抗原、免疫分子(抗体、补体、细胞因子和粘附分子等)及免疫细胞等免疫学研究对象的实验过程。如凝集反应可用于检测抗原抗体,吞噬十堰可用于检测免疫细胞等。 2.凝集反应(agglutination reaction):在一定浓度的电解质溶液中,颗粒性抗原与相应抗体结合后,出现肉眼可见的凝集块,称为凝集反应。 3.直接凝集反应(direct agglutination reaction):细菌、细胞等颗粒性抗原,在适当电解质参与下可直接与相应抗体结合出现凝集,称为直接凝集反应。 4.间接凝集反应(indirect agglutination reaction):将可溶性抗原或抗体先吸附于适当大小的颗粒性载体表面(这种载体与免疫无关),然后与相应抗体或抗原结合,在适量的电解质存在下,出现特异性凝集现象,称为间接凝集反应。 5.协同凝集实验(coagglutination):利用金黄色葡萄球菌A蛋白(SPA)能与人和多种哺乳动物IgG的Fc段结合而不影响其Fab段功能的特性,将已知的特异性抗体吸附于金黄色葡萄球菌上,与相应的抗原发生的凝集反应即为协同凝集试验。 6.滴度(titer)、效价:The maximum dilution that gives obviously visible agglutination (++) is called the titer. 实验及注意点: 1、检测抗原抗体的基本原则:根据抗原抗体结合反应的高度特异性,用已知抗体(抗原) 检测未知抗原(抗体),有现象则说明有相应抗原,无现象则无相应抗原。

蛋白质组学的研究进展及应用

《蛋白质工程》 (课程论文)题目名称:蛋白质组学技术的研究进展及应用 所在学院:生命科学与技术学院 专业(班级):生技131班 学生姓名:梁健 授课教师:韩晓菲

蛋白质组学技术的研究进展及应用 生技131班梁健13772025 摘要:随着人类基因组计划全部测序的初步完成,研究重点转到对基因功能的研究上。蛋白质作为基因功能的主要体现者,对其表达模式和功能的研究成为热点,出现了蛋白质组学。研究蛋白质组学有助于了解蛋白的结构、细胞的功能、生命的本质及活动规律,为疾病的诊断、治疗、疫苗及新药开发提供科学依据。关键词:蛋白质组学;进展;应用 蛋白质组学(proteomics)是产生于20世纪90年代中期的一门新兴学科,以 细胞内全部蛋白质的存在及其活动方式为研究对象,是后基因组时代生命科学研究的核心内容。蛋白质组学的产生与发展经历了一个漫长的过程,在这个过程中,研究者不断修正蛋白质组学的发展方向和推进蛋白质组学相关支撑技术的快速 发展,进而拓展蛋白质组学在整个生命科学和生物医学研究中的应用,成为后基因组时代重要的研究新领域,并成功地应用到基础研究及医学研究等各个领域,推进其迅速发展。 1 蛋白质组学的概念及研究内容 1.1蛋白质组学的概念 蛋白质组(proteome)源于protein和genome两词的杂合,最早是由澳大利亚 的WILKINS等于1995年提出,其定义为“一种基因组所表达的全部蛋白质”。早期相对狭义的蛋白质组的概念是指在某一特定的时间和空间条件下,1个细胞的基因组所表达的蛋白质数目的总和。随着研究的深入,人们提出了广义的蛋白质组的概念,用来描述1个细胞、组织、器官或1个物种的生命个体,在其不同的生存及发育条件下所表达的各种蛋白数目的总和。所以蛋白质组所含的蛋白数目及其表达量是随着时间和空间的不同而不断发生变化的。蛋白质组学最有价值的优势是它可以观察在特定的时间下一个完整的蛋白质组或蛋白亚型在某种生理 或病理状态中,发生的相应的变化。 1.2 研究内容 根据研究内容的不同,蛋白质组学可分为差异蛋白质组学(或称表达蛋白质 组学)、结构蛋白质组学和功能蛋白质组学,其中差异蛋白质组学在蛋白质组学 研究中十分常用且应用广泛。差异蛋白质组学主要是研究比较在2种或多种不同条件下蛋白质组表达的差异变化。结构蛋白质组学主要是蛋白质表达模式的研究,包括蛋白质氨基酸序列分析及空间结构的解析。蛋白质表达模式的研究是蛋白质组学研究的基础内容,主要研究特定条件下某一细胞或组织的所有蛋白质的表征问题。功能蛋白质组学主要是蛋白质功能模式的研究,包括蛋白质的功能和蛋白

免疫学实验

实验一、免疫细胞的形态观察 一、实验目的 1、掌握微量采血及血涂片的制作方法。 2、在光学显微镜下观察免疫细胞。 二、实验原理 血涂片是临床化验中最常规的技术,也是血液学研究中的最基本技术。将血液样品制成单层细胞的涂片标本,经瑞氏(Wright)染液染色后,不同免疫细胞中的颗粒可以呈现不同的颜色。根据细胞中颗粒的颜色大小及多少,再结合细胞的大小及细胞核的形态,就可以将免疫细胞进行分类计数。 三、实验器材 1、器材:医用一次性采血针、酒精棉球、经脱脂洗净的载玻片。 2、试剂:瑞氏(Wright)染液,瑞特氏染料0.1克溶于60mL甲醇中,过滤。贮藏褐色瓶中备用。(配制时,要先将瑞特氏染料置研钵内边研磨边滴加甲醇,使染料溶解的更好。) 四、实验步骤 1、采血 采血前用75%酒精棉球消毒人的指腹或耳垂,干后用采血针刺破指腹或耳垂的皮肤;动物采血时先将耳部剪毛,酒精消毒后刺破动物耳部皮肤,挤去第一滴血不要(因含单核细胞较多)。 2、涂片 挤出第二滴血置于载玻片的一端,再取另一张边缘光滑的载玻片,斜置于血涂片的前缘,先向后稍移动轻轻触及血滴,使血液沿玻片端展开成线状,两玻片的角度以30~40度为宜(角度过大血膜较厚,角度小则血膜薄),轻轻将载玻片向前推进,即涂成血液薄膜(如图),推进时速度要一致,否则血膜成波浪形,厚薄不匀。

3、染色 待涂片在空气中完全干燥后,滴加数滴瑞氏染液盖满血膜为止,染色1~3min。然后滴加等量的缓冲液(pH6.4)或蒸馏水冲去染液,吸水纸吸干,镜检。 4、封片 经染色的涂片完全干燥后,用中性树胶保存。 5、观察 分别用低倍、高倍和油镜观察血涂片,分辨不同的血细胞类型。 五、实验结果 拍摄血细胞照片,标出并分析比较各种免疫细胞类型和形态特征。

相关文档
相关文档 最新文档