文档视界 最新最全的文档下载
当前位置:文档视界 › 高分子凝胶球去除废水中重金属离子的研究

高分子凝胶球去除废水中重金属离子的研究

高分子凝胶球去除废水中重金属离子的研究
高分子凝胶球去除废水中重金属离子的研究

 万方数据

 万方数据

高分子凝胶球去除废水中重金属离子的研究林永波

从图2可以看出,[Pb2+]去除率随着吸附时间的增加而增加,当反应刚刚开始时,反应速度较快,三种凝胶球对溶液中铅离子的去除率在吸附时间为10min时就分别达到了80%、82%和88%,吸附时间为2h时,三种凝胶球的去除率分别达到91%、96%、98%,吸附量分别为5.738mg/g,5.850mg/g,6.005mg/g,对pbz+的吸附能力为SA—PEO>sA—PVA>SA。这是因为:海藻酸钠表面具有不饱和离子和具有孤电子对的羧基,羟基等化学基团,一方面海藻酸钠的不饱和离子与铅离子发生离子交换反应;另一方面海藻酸钠表面的羧基、羟基等基团与铅离子发生络合作用。PVA和PEO都属于高分子聚合物,其分子内都含有大量的羟基,所以海藻酸钠中加入了PVA和PEO,不仅提高了凝胶球的机械强度和韧性,而且使得吸附剂内能与金属离子反应的官能团也增加了,所以去除率要比海藻酸钠凝胶球对铅的去除率高。在吸附过程的最初10min内,吸附剂表面具有大量的吸附活性点,如羧基、羟基和不饱和离子等,因此反应速度快,吸附效率很高。

为了对三种凝胶球的反应速率进行研究,利用t/q灵于t作图,所得动力学方程及相关系数尺2见表1。

表l三种凝胶球的吸附动力学方程

从表1中看出,利用t/q对t作图线性关系良好,相关系数大于等于0.9999。所以,可以证明,该条件下三种凝胶球吸附铅离子的行为均符合庄国顺等[12]根据质量作用定律和单分子层吸附机理所提出的一级反应动力学方程:t/q=kt+6

2.3溶液pH值对吸附效果的影响

各取[Pb2+]=25mg/L的溶液50mI。,调节pH值为0.65、1、2、3、4、5、6,分别放入相同的三种凝胶球,振荡吸附2h后,测定剩余浓度,计算去除率,见图3。

从图3中我们可以很明显的看出,在其他条件不变的条件下,溶液初始pH值对吸附效果有较大的影响。随着溶液pH值的增加,三种凝胶球对pb2.+的去除率也随之增加。在pH值小于3时,三种凝胶球对Pb2+的去除率均小于60%,此时溶液中存在大量的H+占据了凝胶球表面的吸附活性

100

80

;60

鬟加

20

围3pH对吸附效果的影响

点,影响了凝胶球对pbz+的吸附;另外,H+和溶液中的Pb2+竞争与凝胶球中的不饱和离子发生离子交换反应,从而也降低了凝胶球对Pb2+的去除率。当pH大于3时,三种凝胶球对pbz+的去除率都明显上升;pH=4~6时,去除率达到最大,并基本保持不变。当pH值大于6时,溶液中产生金属离子沉淀而影响吸附效果.

2.4SA、SA—PVA.SA—PEO三种凝胶球对不同重金属吸附效果的比较

分别取一定质量的三种凝胶球,放人相同浓度[C]=25mg/I。的不同金属离子溶液中,吸附2h后,测定金属去除率,结果见图4。从图4中

围4三种凝胶球对不同金属的吸附效果

我们可以很明显的看出,三种凝胶球对不同金属的吸附能力不同,以Cu2+、Pb2+、Cd2+三种金属为例,凝胶球对它们的吸附能力为pbz+>Cu2+>Cd2+。三种凝胶球对铅离子的吸附能力均很强,去除率达到93%以上,而对铜离子和镉离子的吸附则弱于铅离子,去除率不到60%。由于SA的吸附主要以离子交换为主,而离子交换能力大小与离子所带电荷、水合离子半径和最外电子层结构有密切关系。由于铜和镉为过渡区金属,具有非惰性构型的电子层结构,在水溶液中易形成水合离子,且水合离子半径大于主族元素铅离子的水合半径,所以离子交换能力弱于铅。

一23—

 万方数据

环境保护科学第34卷第2期2008年4月

2.5凝胶球的解吸与吸附再生

分别将用于吸附实验后的三种凝胶球置于15mI,浓度为lM/I。的HCI溶液中,在搅拌器上搅拌20min,用大量的清水冲洗后,放入5%的caCl2溶液中固化12h,洗净、干燥后再次放人金属溶液中进行吸附。结果见图5。

图5三种凝胶球的吸附再生

从图5可以看出,去除效果随着降解再生次数的增加而降低,但降低的幅度不是很大,分别再生三次后的SA—PEO、SA—PVA和SA凝胶球在吸附时间为2h时对Pb2+的去除率分别为75%、74%和74.5%。

可见三次再生后,三种凝胶球对pb2+仍有较高的去除率。因此可以用来循环使用。

3结论

(1)固定化时间对金属去除率和吸附量的影响较小。随着固定化时间的增加,球的体积有所缩小,其紧密程度和机械强度均逐渐增强。添加PVA和PEO后,改善了凝胶球的机械强度和韧性。

(2)吸附反应速率较快,吸附时间在10min时,SA、SA—PVA,SA--PEO三种凝胶球对Pb2+的去除率就分别达到了80%、82%和88%,2h后基本达到吸附平衡,三种凝胶球的去除率分别达到91%、96%、98%。

(3)SA、SA—PVA、SA—PEO三种凝胶球对pb2+的吸附能力为:SA—PEO>SA-PVA>SA。

(4)---种凝胶球吸附铅离子的行为均符合一级反应动力学方程:t/q=kt+6

(5)溶液pH对吸附效果有较大的影响,pH=4~6时,较利于吸附反应的进行。

一24一

(6)三种凝胶球对不同的金属吸附能力不同,对金属的吸附能力大小为Pb2+>Cu2+>CA2+。

(7)饱和吸附后三种凝胶球均可以再生利用,对金属离子的去除效果随着降解再生次数的增加而有所降低。

参考文献

1.刘庆文.重金属离子废水的处理方法[J].天津化工。1995,(4),16~】8.

2.Wilkinson&C,GouldingKH.,RobinsonP.K.。etal.MercuryaccumulationandvolatilizationinimmobilizedgalcellsystemsBiotech.Letter[J].1989,ll(12):861~864.

3.严国安,李益健.固定化小球藻净化污水的初步研究.环境科学研究EJ].1994.7(1):39~42.

4.朱一民,沈岩柏,魏德洲.海藻酸钠吸附锕离子的研究[J].东北大学学报,1999,24(6):

5.Aflea肌Y.,KaarY.andGericO.EntrapmentofwhiterotfungusTrametcsversicolorinCaalginatebeadslPreparationandbiosorptionkineticanalysisforcadmiumremovalfroman8-qucoussolution[J].Bio嘲urceTeehnoi,2001,80(2)l121~129.

6.AricaM.Y.,ArpaC.-ErgeneA.,etal.Caalginate硝8upportforPb(II)andZn(II)biosorptionwithimmobilizedPhanerochaetechrysosporium口].Carhohyd.Poly,2003,52:167~174.

7.Afica帆Y.,BayramngluG.,YilmazM..etaLBiosorptionofH92+,Gd2+8ndZrl2十bycaalginateandimmobilizedwoodrot-ringfungusFunaliatrogiiHazard[J].Mater,2004.109l191—199.

8.KacarY.,ArpactTanS。etal.BiosorptionofHg(11)anCd(II)fromaqueoussolutions,ComparisonofBiosorptivecapacityofalginateandimmobilizedliveandheatinactivatedPhonerochaetechrysosporim[J].ProcessBiochemistry,2002,37(6)l601~610.

9.杨芬.固定化藻细胞对水中Cu(11)的吸附研究[J].曲靖师专学报。2000,19(6):46~48.

10.徐容?汤岳琴?王建华,等.固定化产黄表霉废菌体吸附铅与脱附平衡[J].环境科学,1998。19(4)72~75.

11.赵南霞,孙德智.用沸石去除饮用水中氨的研究.哈尔滨工业大学学报口].2001,33(3):385~388.

12.庄国顺,陈松.艾宏氟固液界面吸附活性能的测定及其原理

[J].化学学报.1984,(42):1085~1087. 万方数据

高分子凝胶球去除废水中重金属离子的研究

作者:林永波, 邢佳, 施云芬, 蔡体久

作者单位:林永波,邢佳(东北林业大学环境科学专业,哈尔滨,150040), 施云芬(东北电力大学化学工程学院,吉林市,132012), 蔡体久(东北林业大学生态学专业,哈尔滨,150040)

刊名:

环境保护科学

英文刊名:ENVIRONMENTAL PROTECTION SCIENCE

年,卷(期):2008,34(2)

被引用次数:4次

参考文献(12条)

1.朱一民;沈岩柏;魏德洲海藻酸钠吸附铜离子的研究[期刊论文]-东北大学学报(自然科学版) 1999(06)

2.严国安;李益健固定化小球藻净化污水的初步研究[期刊论文]-环境科学研究 1994(01)

3.Wilkinson S.C;Goulding K.H;Robinson P.K Mercury accumulation and volatilization in immobilized gal cell systems Biotech 1989(12)

4.杨芬固定化藻细胞对水中Cu(II)的吸附研究 2000(06)

5.KacarY;Arpac,TanS Biosorption of Hg(Ⅱ)an Cd(Ⅱ) from aqueous solutions:Comparison of Biosorptive capacity of alginate and immobilized live and heat in activated Phonerochaet echrysosporium[外文期刊] 2002(06)

6.Arica M.Y;Bayramoglu G;Yilmaz M Biosorption of Hg2+,Cd2+andZn2+byCa alginate and immobilized wood rotting fungus Funaliatrogii Hazard 2004

7.AricaM.Y;ArpaC;ErgeneA Ca alginate as a upport for Pb(Ⅱ)and Zn(Ⅱ) biosorption with immobilized Phanerochae techrysosporium 2003

8.Arica M.Y;Ka ar Y;Genc O Entrapment of white rot fungus Tramete sversi color in Ca alginate beads:Preparation and biosorption kinetic analysis for cadmium removal from an aqueous solution 2001(02)

9.刘庆文重金属离子废水的处理方法 1995(04)

10.庄国顺;陈松;艾宏韬固液界面吸附活性能的测定及其原理 1984(42)

11.赵南霞;孙德智用沸石去除饮用水中氨的研究[期刊论文]-哈尔滨工业大学学报 2001(03)

12.徐容;汤岳琴;王建华固定化产黄表霉废菌体吸附铅与脱附平衡 1998(04)

引证文献(4条)

1.孔祥宇.罗丽.赵云云.舒媛浩固定化活性污泥对景观水中重金属的吸附试验研究[期刊论文]-技术与市场

2010(1)

2.陈维璞.张恩浩.林永波海藻酸钠-钙-铁凝胶球对Cr2O2-7吸附的研究[期刊论文]-环境保护科学 2010(2)

3.张绘营.谢建军.黄凯.何新建.李晟.韩新强海藻酸盐树脂的制备及其吸液吸附性能研究进展[期刊论文]-精细化工中间体 2010(5)

4.朱婧莹.钱斯日古楞.王红英.胥雷改性大麦皮对Cr6+的吸附性[期刊论文]-大连工业大学学报 2009(5)

本文链接:https://www.docsj.com/doc/ac2548115.html,/Periodical_hjbhkx200802007.aspx

电镀废水中各种重金属废水处理反应原理及控制条件

重金属废水反应原理及控制条件 1.含铬废水 (2) 2.含氰废水 (3) 3.含镍废水 (4) 4.含锌废水 (5) 5.含铜废水 (6) 6.含砷废水 (8) 7.含银废水 (9) 8.含氟废水 (10) 9.含磷废水 (11) 10.含汞废水 (11) 11.氢氟酸回收 (14) 12.研磨废水 (14) 13.晶体硅废水 (15) 14.含铅废水 (17) 15.含镉废水 (17)

1.含铬废水 前处理废水包括镀前准备过程中的脱脂、除油等工序产生的清洗废水,主要污染物为有机物、悬浮物、石油类、磷酸盐以及表面活性剂等。 电镀含铬废水的铬的存在形式有Cr6+和Cr3+两种,其中以Cr6+的毒性最大。 含铬废水的处理方法较多,常用的有化学法、电解法、离子交换法等。 电镀废水中的六价铬主要以CrO 42-和Cr 2 O 7 2-两种形式存在,在酸性条件 下,六价铬主要以Cr 2O 7 2-形式存在,碱性条件下则以CrO 4 2-形式存在。六价铬 的还原在酸性条件下反应较快,一般要求pH<4,通常控制pH2.5~3。常用的还原剂有:焦亚硫酸钠、亚硫酸钠、亚硫酸氢钠、连二亚硫酸钠、硫代硫酸钠、硫酸亚铁、二氧化硫、水合肼、铁屑铁粉等。还原后Cr3+以Cr(OH) 3沉淀的最佳pH为7~9,所以铬还原以后的废水应进行中和。 (1)亚硫酸盐还原法 目前电镀厂含铬废水化学还原处理常用亚硫酸氢钠或亚硫酸钠作为还原剂,有时也用焦磷酸钠,六价铬与还原剂亚硫酸氢钠发生反应: 4H 2CrO 4 +6NaHSO 3 +3H 2 SO 4 ==2Cr 2 (SO 4 ) 3 +3Na 2 SO 4 +10H 2 O 2H 2CrO 4 +3Na 2 SO 3 +3H 2 SO 4 ==Cr 2 (SO 4 ) 3 +3Na 2 SO 4 +5H 2 O 还原后用NaOH中和至pH=7~8,使Cr3+生成Cr(OH) 3 沉淀。 采用亚硫酸盐还原法的工艺参数控制如下: ①废水中六价铬浓度一般控制在100~1000mg/L; ②废水pH为2.5~3 ③还原剂的理论用量为(重量比):亚硫酸氢钠∶六价铬=4∶1 焦亚硫酸钠∶六价铬=3∶1 亚硫酸钠∶六价铬=4∶1 投料比不应过大,否则既浪费药剂,也可能生成 [Cr 2(OH) 2 SO 3 ]2-而沉淀不下来; ORP= 250~300mv

絮凝剂

聚合氯化铝[PAC] 分子式:[Al2OH)n Cl6-n·xH2O]m,式中m≤10,n=3—5 一、特性 该产品分固体和液体两种,液体产品分为无色或淡黄色的透明或半透明液体。固体产品为黄色粉末状,易容于水,固体产品易吸潮结块。 二、用途 该产品在工业给水和生活饮用水的净化处理中,做为絮凝剂使用。最佳絮凝pH 范围在5-9以上,最好与碱性药剂或有机高分子絮凝剂联合使用效果最佳。 注:工业具有的聚合氯化铝不检验砷和重金属 四、使用方法 该产品腐蚀性较强,投加设备需做防腐处理,操作人员应配备劳动保护用具。 五、包装、贮运 固体用内衬塑料袋、外套编织袋双层包装,内袋扎口或热合,外袋牢固封口。液体用塑料桶包装或玻璃钢罐贮存及运输。

聚合氯化铝铁 分子式:[Al2(OH)n Cl6-n]m·[Fe2(OH)n Cl6-n]m,式中n.m.N.M为整数。 一、特性 该产品为黄色和黄褐色粉末状固体,易容于水,有较强的架桥、吸附性能。 二、用途 该产品在工业给水合生活饮用水的净化处理中,做为絮凝剂使用。集铝盐铁盐絮凝剂优点于一体,是聚合铝和聚合铁的良好替代品。最佳使用pH在4~10.投加量根据原水水质而定。 四、使用方法 该产品腐蚀性较强,设备需做防腐处理,操作人员应配备劳动保护用具。 五、包装、贮运 用内衬塑料薄膜的编织袋包装,净重25kg。运输及贮存时应注意防水、防潮。禁止与有毒有害物质同运。 聚合硫酸铁[PFS] 分子式:[Fe2(OH)n(SO4)3-n/2]m,式中n≤2m=f(n) 一、特性 本厂产品为液体聚合硫酸铁,为红褐色的粘稠液体,相对相对密度(d420)1.450,水解后可产生多种高价和多络离子,对水中悬浮胶体颗粒进行电性中合,降低其电位,促使颗粒相互凝聚,同时产生吸附、架桥、交联等作用。该产品使用pH

金属矿山废水处理新技术

金属矿山废水废渣处理新技术院系:城建给排水工程学号:111824224 :熊聪 摘要:随着经济建设的快速发展,我国金属矿山废水产生的环境问题日益严重,金属矿山废水的污染已成为制约矿业经济可持续发展的主要因素之一。概述了矿山酸性废水的形成及危害,重点介绍了几种常见的处理矿山酸性废水的处理技术如中和法、硫化物沉淀法、吸附法、离子交换法和人工湿地法,同时介绍了它们的原理、特点和存在的问题,在此基础上,对矿山酸性废水处理技术的研究,并介绍了几种金属矿山废水处理的新技术以及实例。 关键词:金属矿山废水废渣处理新技术 Abstract:With the rapid development of economic construction, the metal mine waste water environment problem is increasingly serious, metal mine waste water pollution has become one of the main factors restricting the sustainable development of mining economy. Formation and harm of the acidic mining waste water are summarized, mainly introduces several common treatment of acidic mining waste water treatment technologies such as neutralization, sulfide precipitation, adsorption, ion exchange method and the method of artificial wetland, and introduces the principle, characteristics and existing problems, and on this basis, the study of acidic mining waste water treatment technology, and introduces several kinds of metal mine wastewater treatment technology and examples. Keywords:Metal mine Waste water Conduct The new technology 一、金属矿山废水的形成及危害 1.1金属矿山废水的形成 在大部分金属矿物开采过程中会产生大量矿坑涌水。当矿石或围岩中含有的硫化物矿物与空气、水接触时,矿坑涌水就会被氧化成酸性矿坑废水。酸性矿坑水极易溶解矿石中的重金属,造成矿坑水中重金属浓度严重超标。同时在雨水的冲刷作用下废石堆和尾矿也产生大量含有高浓度重金属的酸性淋滤水。 1.2金属矿山废水的危害 金属矿山矿山酸性废水中含有大量的有害物质,一般不能直接循环利用,矿

三种常见重金属的处理方法的比较

三种常见的处理方法的比较 一、石灰中和法 1.1基本原理 石灰中和反应法是在含重金属离子废水中投加消石灰C a( O H ) : , 使它和水中的重金属离子反应生成离子溶度积很小的重金属氢氧化物。通过投药量控制水中P H 值在一定范围内, 使水中重金属氢氧化物的离子浓度积大于其离子溶度积而析出重金属氢氧化物沉淀, 达到去除重金属离子, 净化废水的目的。 将废水收集到废水均化调节池,通过耐腐蚀自吸泵将混合后的废水送至一次中和槽,并且在管路上投加硫酸亚铁溶液作为砷的共沉剂(添加量为Fe/As=10),同时投加石灰乳进行充分搅拌反应,搅拌反应时间为30 min,石灰乳投加量由pH 计自动控制,使一次中和槽出口溶液pH值为7.0;为了使二价铁氧化成三价铁,产生絮凝作用,在一次中和槽后设置氧化槽,进行曝气氧化,经氧化后的废水自流至二次中和槽,再投加石灰乳,石灰乳投加量由pH计自动控制,使二次中和槽出口溶pH值为9~11;在二次中和槽废水出口处投加3号凝聚剂(投加浓度为10 mg/L),处理废水自流至浓密机,进行絮凝、沉淀;上清液自流至澄清池,传统的石灰中和处理重金属废水流程如下: 石灰一段中和及氢氧化钠二段中和时,各种重金属去除率随pH不同而沉淀效果不同,不同的金属的溶度积随PH不同而不同。同一PH所以对重金属的沉淀效果不一样,而废水中的重金属通常不只一种,根据重金属的含量在进水时把配合调到某金属在较低ph溶度积最高时对应的PH。加石灰乳进行中和反应,沉淀废水中的大部分金属。上清液进入下一个调节池,进入调节PH ,进入二次中和反应池,除去剩余的重金属离子。 1.2 石灰中和沉淀的优缺点 采用石灰石作为中和剂有很强的适应性,还具有废水处理工艺流程短、设备简单石灰就地可取,价格低廉,废水处理费用很低,渣含水量较低并易于脱水等优点,但是,石灰中和处理废水后,生成的重金属氢氧化物———矾花,比重小,在强搅拌或输送时又易碎成小颗粒,所以它的沉降速度慢。往往会在沉降分离过程中随水流外溢,又使处理后的废水浊度升高,含重金属离子仍然超标。要求废水不含络合剂如C N 一、N H 。等, 否则水中的重金属离子就会和络合剂发生络合反应, 生成以重金属离子为中心离子以络合剂为配位体的复杂而又稳定的络离子, 使废水处理变得复杂和困难。已沉降的矾花中和渣泥的含水率极高(达99%以上),其过滤脱水性能又很差,加上组成复杂、含重金属品位又低,这给综合回收利用与处置带来了困难,甚至造成二次污染。此外,渣量大,不利于有价金属的回收,也易造成二次污染II。用石灰水处理的重金属废水。由于不同重金属与OH的结合在同一PH下不同,同一金属在不同PH下的溶度积不同。所以,用传统的石灰法处理重金属含量较多的复杂的废水,显然不行,首先某些重金属不能达标排放,其次,处理废水中含钙比较多。在冶炼厂,很难循环使用。 二、硫化沉淀法

重金属废水处理原理及控制条件

重金属废水反应原理及控制条件 1.含铬废水 前处理废水包括镀前准备过程中的脱脂、除油等工序产生的清洗废水,主要污染物为有机物、悬浮物、石油类、磷酸盐以及表面活性剂等。 电镀含铬废水的铬的存在形式有Cr6+和Cr3+两种,其中以Cr6+的毒性最大。含铬废水的处理方法较多,常用的有化学法、电解法、离子交换法等。 电镀废水中的六价铬主要以CrO 42-和Cr 2 O 7 2-两种形式存在,在酸性条件下,六价铬主 要以Cr 2O 7 2-形式存在,碱性条件下则以CrO 4 2-形式存在。六价铬的还原在酸性条件下反应较 快,一般要求pH<4,通常控制pH2.5~3。常用的还原剂有:焦亚硫酸钠、亚硫酸钠、亚

硫酸氢钠、连二亚硫酸钠、硫代硫酸钠、硫酸亚铁、二氧化硫、水合肼、铁屑铁粉等。还原后Cr3+以Cr(OH) 3 沉淀的最佳pH为7~9,所以铬还原以后的废水应进行中和。 (1)亚硫酸盐还原法 目前电镀厂含铬废水化学还原处理常用亚硫酸氢钠或亚硫酸钠作为还原剂,有时也用焦磷酸钠,六价铬与还原剂亚硫酸氢钠发生反应: 4H 2CrO 4 +6NaHSO 3 +3H 2 SO 4 ==2Cr 2 (SO 4 ) 3 +3Na 2 SO 4 +10H 2 O 2H 2CrO 4 +3Na 2 SO 3 +3H 2 SO 4 ==Cr 2 (SO 4 ) 3 +3Na 2 SO 4 +5H 2 O 还原后用NaOH中和至pH=7~8,使Cr3+生成Cr(OH) 3 沉淀。 采用亚硫酸盐还原法的工艺参数控制如下: ①废水中六价铬浓度一般控制在100~1000mg/L; ②废水pH为2.5~3 ③还原剂的理论用量为(重量比):亚硫酸氢钠∶六价铬=4∶1 焦亚硫酸钠∶六价铬=3∶1 亚硫酸钠∶六价铬=4∶1 投料比不应过大,否则既浪费药剂,也可能生成 [Cr 2(OH) 2 SO 3 ]2-而沉淀不下来; ORP= 250~300mv ④还原反应时间约为30min; ⑤氢氧化铬沉淀pH控制在7~8,沉淀剂可用石灰、碳酸钠或氢氧化钠,可根据实际情况选用。 2.含氰废水 含氰废水来源于氰化镀铜、碱性氰化物镀金、中性和酸性镀金、氰化物镀银、氰化镀铜锡合金、仿金电镀等含氰电镀工序,废水中主要污染物为氰化物、重金属离子(以络合态存在)等。 氰化镀铜,氰化镀铜作为暂缓淘汰镀铜方式,主要组分,氰化亚铜,氰化钠,Cu(CN) 2- 以络离子形式存在,铜离子被氧化,氰化物也被氧化,而Fe(CN) 6 4- 被氧化后仍然以络离 子存在,所以氰离子并不能解离氧化,增加了破氰难度。 氰化物镀锌,在镀锌工艺中占比不高。采用碱性氯化法,分两阶段破氰,第一阶段为不完全氧化将氰氧化成氰酸盐: CN?+OCl?+H 2 O==CNCl+2OH??

吸附重金属离子

几种吸附材料处理重金属废水的效果 来源:考试吧(https://www.docsj.com/doc/ac2548115.html,)2006-3-5 13:27:00【考试吧:中国教育培训第一门户】论文大全 摘要用室内分析的方法研究了几种吸附材料对含铬、铜、锌、铅的废水的吸附处理效果。结果表明,在几种吸附材料中,以活性炭的吸附量和去除率比较高,且吸附量随废水中重金属含量的降低而减小,除铬外,其他离子的去除率则以低浓度时比较高。所有吸附材料均对铅的吸附量比较大,改性硅藻土和改性高岭土对重金属的吸附量也比较大,宜于在重金属处理中作为吸附剂推广使用。 关键词吸附材料重金属废水吸附率吸附量 近年来,含有重金属的废水对人类的生活环境造成了巨大的危害,重金属离子随废水排出,即使浓度很小,也能造成公害,严重污染环境,影响人们的健康。所以,研究如何降低废水中重金属的含量,减轻重金属对环境的污染具有重大意义。目前,去除废水中重金属的方法主要有三种:一是通过发生化学反应除去废水中重金属离子的方法[1];二是在不改变废水中的重金属的化学形态的条件下对其进行吸附、浓缩、分离的方法;三是借助微生物或植物的絮凝、吸收、积累、富集等作用去除废水中重金属的方法。其中吸附法是比较常用的方法之一。本试验采用物理吸附的方法研究几种吸附材料处理含重金属废水的效果,以便找出比较高效和便宜的吸附材料,为降低处理含重金属的废水成本和增加经济效益服务。 1 材料与方法 1.1 试验材料 1.1.1 吸附材料实验所用吸附剂除黄褐土外均来自于安徽科技学院资源与环境实验室,部分吸附材料在查阅文献的基础上进行了化学改性[3,4]。所用的吸附材料包括改性硅藻土、酸改性高岭土、改性高岭土、活性炭和黄褐土。改性硅藻土的处理过程为:将40 g硅藻土加入到0.1 mol/L的Na2CO3溶液中,边搅拌边慢慢地加入饱和的CaCl2溶液。反应结束后,过滤,置于烘箱内 105 ℃条件下干燥。酸改性高岭土的处理过程为:将高岭土过100目筛,在850 ℃煅烧5 h后,取一定量的高岭土加盐酸浸没,在90 ℃恒温下处

改性天然高分子重金属离子去除剂的研究现状

第22卷 第3期 吉首大学学报(自然科学版)V ol.22 N o.3 2001年9月Journal of Jishou University(Natural Science Edition)Sept.2001 文章编号:1007-2985(2001)03-0086-04 改性天然高分子重金属离子去除剂的研究现状Ξ 傅伟昌,王继徽 (湖南大学环境科学与工程系,湖南长沙 410082) 摘 要:综述了改性天然高分子物质作为重金属离子去除剂的独特优势和国内外研究、应用现状,并预测了改性天然高分子重金属离子去除剂的发展趋势. 关键词:改性天然高分子;重金属离子;废水治理 中图分类号:X703 文献标识码:A 含重金属离子的废水对环境特别是对人类自身的危害很大,例如20世纪50年代初期发生在日本的由汞污染引起的“水俣病”和由镉污染引起的“骨痛病”事件,以及在欧洲一些国家陆续出现的重金属污染事件,使得对重金属污染与防治的研究倍受关注.多年来,人们不断地开发、改进治理重金属离子废水的方法和技术.产生了如中和法、硫化法、离子交换法、还原法、吸附法、反渗透法、溶剂萃取法、生物法、浮选法等多种方法,各种方法各有其优缺点[1~19].其中离子交换法由于其处理容量大、出水水质好,可回收水和重金属资源,被公认为是一种重要的重金属离子废水治理方法.离子交换法是用离子交换树脂与重金属离 ,树脂性能对重金属离子去除有较大影响.螯合树脂具有螯合基团,对特定的重金属离子具有选择性,采用螯合树脂去除重金属离子的方法也归于离子交换法之内[1].离子交换树脂有全合成和天然物质改性2大类.改性的天然高分子物质,由于其自身一些独特的优秀品质,作为离子交换树脂和螯合树脂,越来越广泛地被应用在治理重金属离子废水上. 目前研究和应用的改性天然高分子物质主要有纤维素、淀粉、壳聚糖、瓜尔胶、香胶粉、角蛋白等[3,4].淀粉、壳聚糖、纤维素等可改性成为阴离子交换树脂或阳离子交换树脂,还可改性成为同时具备阴、阳离子基团的两性物质,称为两性高分子.两性高分子具有等电点现象、pH值影响、络合作用、挤出效应、耐电解质等特性.其捕获重金属离子的作用机理为螯合作用[3].当废水中的重金属离子以络合物存在时,中和、凝聚、沉淀等法是不能完全去除它们的,而采用两性高分子来处理,可将重金属离子除至排放标准以下[20],同时对阴离子(Cr2O72-,CrO42-等)也可吸附[21]. 1 天然高分子非两性化改性的重金属离子去除剂 111壳聚糖 用交联、接枝等化学方法对壳聚糖(CTS)进行改性,可以制备许多理化特性和用途不同的CTS衍生物.[22,23]汪玉庭[24]等将CTS在碱性条件下,经环氧氯丙烷交联制得水不溶性交联壳聚糖(CCTS),产物在酸性水溶液中不溶胀,在pH为7~8时,对Cu2+,Cr3+,Cd2+,Ni2+,Pb2+,Zn2+,Hg2+等有很好的吸附效果. Ξ收稿日期:2001-06-25 作者简介:傅伟昌(1969-),男,湖南省沅陵县人,湖南大学环境科学与工程系环境工程硕士研究生,主要从事食品化学和环境化学研究.

重金属废水处理方法

1.3 重金属废水处理方法 现代水处理技术,按原理可分为化学处理法,物理处理法和生物化学处理法3大类[6]。生物法处理无机重金属离子废水的技术正在积极的研究和试用中。 化学法是利用化学反应的作用,分离回收污水中处于各种形态的污染物质(包括悬浮的、溶解的、胶体的等)。主要方法有中和、混凝、电解、氧化还原等。 ⑴中和沉淀法:投加碱中和剂,使废水中重金属离子形成溶解度较小的氢氧化物或碳酸盐沉淀而去除的方法。碱石灰(CaO)等石灰类中和剂,价格低廉,可去除汞以外的重金属离子,工艺简单,处理成本低[7]。但沉渣量大,含水率高,易二次污染,有些重金属废水处理后难以达到排放标准。 ⑵硫化物沉淀法:硫化物沉淀法的沉淀机理是:废水中的重金属离子与S2-结合生成溶解度很小的盐。操作中应该注意以下几个方面:①硫化物沉淀一般比较细小,易形成胶体,为便于分离应加入高分子絮凝剂协助沉淀沉降;②硫化物沉淀中沉淀剂会在水中部分残留,残留沉淀剂也是一种污染物,会产生恶臭等,而且遇到酸性环境产生有害气体,将会形成二次污染[8]。 ⑶铁氧体沉淀法:FeSO4可使各种重金属离子形成铁氧体晶体而沉淀析出。经典铁氧体法能一次脱除多种重金属离子,设备简单,操作方便[9]。但不能单独回收重金属。铁氧体法工艺流程技术关键在于:①Fe3+:Fe2+ =2:1,因此,Fe2+的加入量,应是废水中除铁以外各种重金属离子当量数的2倍或2倍以上;②NaOH或其碱的投入量应等于废水中所含酸根的0.9~1.2倍浓度;③碱化后应立即通蒸汽加热,加热至60~70℃或更高温度;④在一定温度下,通入空气氧化并进行搅拌,待氧化完成后再分离出铁氧体。 铁氧体法处理含重金属离子的废水,能一次脱除废水中的多种金属离子,对脱除Cu, Zn,Cd,Hg,Cr等离子均有很好的效果。 物理法是利用物理作用分离污水中呈悬浮固体状态的污染物质。主要方法有离子交换法,沉淀法,上浮法,气浮法,过滤法和反渗透法等。 ⑴离子交换法:离子交换法是重金属离子与离子交换树脂发生离子交换的过程。螯合树脂具有螯合基团,对特定重金属离子具有选择性。腐植酸树脂是由腐植酸和交联剂交联而成的高分子材料,具有阳离子交换和络合能力。这两类树脂实质上开拓了阴阳离子树脂的应用范围。

重金属离子捕捉剂使用与理解方面的一些误区

重金属离子捕捉剂使用与理解方面的一些误区 纳森化工技术部 摘要:本文针对高分子重金属离子捕捉剂市场状况和人们对重捕剂的认识误区,分析了以下几方面的问题:关于破络和处理六价铬的问题、关于重捕剂使用PH值范围的问题、关于用药量的问题、关于与其他混凝剂絮凝剂配合使用的问题、关于使用高分子重捕剂与其他的重金属废水处理方法的一些比较。 用高分子重金属离子捕捉剂处理重金属离子废水是一种效果非常好的方法,但目前来说重捕剂市场还很不规范,蛇龙混杂,人们对重捕剂的认识也存在一些误区。 在《重金属离子捕捉剂及其性能、合成技术分析论述》一文中,已对高分子重捕剂的合成技术、性能理解、成本分析等问题作了相关的论述。在此对高分子重金属离子捕捉剂应用方面的问题作一些分析。 1.关于破络和处理六价铬的问题; 破络指的是采用一定的方法破坏废水中的CN-、NH3、EDTA等络合剂,以利于重金属离子的进一步去除。MCP因为有极性极强的鳌合基团,能够直接从其他络合剂中竞争鳌合沉淀出重金属。因此可以不必先进行破络处理。 氰化物是一种剧毒物质,虽然高分子重金属离子捕捉剂能够从氰络合物中竞争出金属离子,但破氰还是必须的。 六价铬一般是经过先还原以后再处理。黄原酸酯类和DTC类高分子重金属离子捕捉剂都能够还原六价铬,但其前提条件还是要在酸性环境中,PH为4-5左右即可。从成本方面来考虑,用而硫代氨基甲酸盐类高分子重捕剂来还原六价铬是不经济的。 常规的六价铬废水处理方法是在较强的酸性条件下用还原剂将六价铬先还原为三价再调PH,使之形成氢氧化物沉淀形式。操作过程比较麻烦。 用固体重金属捕捉粉(黄原酸酯类)产品处理六价铬是一种比较好的选择,它能够在较高的PH 值(微酸性)条件下直接处理含六价铬废水,同时可以去除其他重金属。 2.关于使用的PH值范围问题; 高分子重金属离子捕捉剂能够在很宽的PH范围(PH3-12)内应用,在此PH范围内确实可以使用重捕剂处理且都能取得较好效果。但不调PH值而直接使用重捕剂处理在成本上来说是不经济的,一般应该先调PH值到一定范围,使一部分重金属离子以氢氧化物的形式沉淀,剩下的重金属不能形成氢氧化物的形式沉淀完全,再加重金属捕捉剂处理,从而减少重捕剂的使用量,降低处理成本。 3.关于用药量的问题; 对于任何一种水处理药剂来说,用药量都是一个关键问题,用药量关系到水处理成本和处理效果。

重金属废水处理原理及控制条件(20200831054011)

重金属废水反应原理及控制条件 1. 含铬废水 ......................... 2. 含氰废水 ......................... 3. 含镍废水 ......................... 4. 含锌废水......................... 5. 含铜废水......................... 6. 含砷废水......................... 7. 含银废水......................... 8. 含氟废水......................... 9. 含磷废水......................... 10. 含汞废水 ........................ 11. 氢氟酸回收 ........................ 12. 研磨废水 ........................ 13. 晶体硅废水 ........................ 14. 含铅废水 ........................ 15. 含镉废水 ........................ 1. 含铬废水 前处理废水包括镀前准备过程中的脱脂、除油等工序产生的清洗废水,主要污染物为有机物、悬浮物、石油类、磷酸盐以及表面活性剂等。 电镀含铬废水的铬的存在形式有Cr6+和Cr3+两种,其中以Cr6+的毒性最大。含铬废水的处理方法较多,常用的有化学法、电解法、离子交换法等。

电镀废水中的六价铬主要以CrQ2_和两种形式存在,在酸性条件下,六价铬主要以CwQ2-形式存 在,碱性条件下则以CrQ2「形式存在。六价铬的还原在酸性条件下反应较快,一般要求pHv4,通常控制pH2.5?3。常用的还原剂有:焦亚硫酸钠、亚硫酸钠、亚硫酸氢钠、连二亚硫酸钠、硫代 硫酸钠、硫酸亚铁、二氧化硫、水合肼、铁屑铁粉等。还原后Cr3+以Cr (OH 3沉淀的最佳pH为 7?9,所以铬还原以后的废水应进行中和。 (1)亚硫酸盐还原法 目前电镀厂含铬废水化学还原处理常用亚硫酸氢钠或亚硫酸钠作为还原剂,有时也用焦磷酸钠,六价铬与还原剂亚硫酸氢钠发生反应: 4HCrO+6NaHSO3HSO==26 (SO) 3+3NaSO+10HO 2HCrO+3NaSO+3HSO==Cr2 (SQ) 3+3NaSO+5HO 还原后用NaOH中和至pH=7?8,使Cr3+生成Cr (OH 3沉淀。 采用亚硫酸盐还原法的工艺参数控制如下: ①废水中六价铬浓度一般控制在100?1000mg/L; ②废水pH为2.5?3 ③还原剂的理论用量为(重量比):亚硫酸氢钠:六价铬=4 :1 焦亚硫酸钠:六价铬=3 :1 亚硫酸钠:六价铬=4 :1 投料比不应过大,否则既浪费药剂,也可能生成 2— [Cr2 (OH 2SO]—而沉淀不下来; ORP= 25?300mv ④还原反应时间约为30min; ⑤氢氧化铬沉淀pH控制在7?8,沉淀剂可用石灰、碳酸钠或氢氧化钠,可根据实际情况选用。 2. 含氰废水 含氰废水来源于氰化镀铜、碱性氰化物镀金、中性和酸性镀金、氰化物镀银、氰化镀铜锡合金、仿金电镀等含氰电镀工序,废水中主要污染物为氰化物、重金属离子(以络合态存在)等。 氰化镀铜,氰化镀铜作为暂缓淘汰镀铜方式,主要组分,氰化亚铜,氰化钠,Cu (CN 2-以络离子形式存在,铜离子被氧化,氰化物也被氧化,而Fe(CN)64-被氧化后仍然以络离子存在,所以氰离子并不能解离氧化,增加了破氰难度。氰化物镀锌,在镀锌工艺中占比不高。采用碱性氯化法,分两阶段破氰,第一阶段为不完全氧化将氰氧化成氰酸盐: CN+OCI+H2O==CNCI+2OH

高分子絮凝剂处理含铬_废水的研究

高分子絮凝剂处理含铬(Ⅲ)废水的研究 王碧,彭万仁 (四川职业技术学院,四川遂宁629000) 摘要:用多胺类物质制备了高分子絮凝剂PXM ,用于对含Cr 3+废水的处理,考察了反应时间、pH 值、絮凝剂加入量对含Cr 3+废水处理的影响.实验表明:在pH 值为6.5、PXM 加量31.5mg/L.处理时间为9min 的条件下,对铬的去除率可达98.0%以上,处理后的废水可以直接排放.并对去除Cr 3+的反应机理做了初步探讨. 关键词:高分子絮凝剂;铬;废水处理中图分类号:X703 文献标识码:A 文章编号:1672-2094(2011)03-0117-02 四川职业技术学院学报 2011年6月Journal of Sichuan Vocational and Technical College Jun .2011 第21卷第3期vol.21No.3 收稿日期:2011-04-11 作者简介:王碧(1965-),女,四川遂宁人,四川职业技术学院建筑与环境工程系副教授,博士。研究方向:有机合成和环境化学。 彭万仁(1964-),男,四川遂宁人,四川职业技术学院建筑与环境工程系高级实验师。 铬是对人体、生物和环境有严重危害的重金属,主要存在于矿冶、 电镀、制革、印染等工业废水中,可通过消化道、呼吸道、皮肤和黏膜侵入人体,引起变态反应并有致癌作用.在水中主要有铬(Ⅵ)和铬(Ⅲ)两种价态,铬(Ⅲ)的毒性低于铬(Ⅵ),但可以氧化成具有强致癌性的六价铬.目前含铬废水的处理方法主要有三大类:化学法(沉淀法、铁氧体法、电解还原法),物化法(膜分离法、离子交换、吸附法),生物法[1-6].用高分子絮凝剂将重金属离子螯合而沉淀除去是近年研究较多的方法. 本研究用自制的高分子重金属絮凝剂PXM处理模拟含Cr3+的废水,对絮凝处理的条件和反应机理作了探讨.1实验部分1.1仪器与试剂 HJ—6A型磁力加热搅拌器(金坛市医疗仪器厂);722S可见分光光度计(上海菁华科技仪器有限公司);pH-25型pH计(上海精科有限公司). 絮凝剂PXM(实验室自制);丙酮,盐酸,氢氧化钠,硫酸铬,二苯碳酰二肼,高锰酸钾,硫酸,磷酸,尿素,亚硝酸钠,重铬酸钾,二苯碳酰二肼,都为分析纯(成都科龙化学试剂厂).1.2实验方法 1.2.1絮凝剂的制备及配制 PXM是一种高分子絮凝剂,用多胺类物质在碱性条件下与二硫化物反应一定时间制得,过滤,减压烘干,得橙红色固体.将其配制成2.63g/L的溶液,用以处理含铬废水.1.2.2含Cr3+废水处理实验方法 取含Cr3+质量浓度为50mg/L的模拟废水溶液,用NaOH或HCl调节pH值,加入不同量的PXM溶液,磁力搅拌,先快搅(250转/分)3分钟,再慢搅(100转/分)数分钟(二者之和为反应时间).静置澄清后,取滤液用分光光度计按照国家标准方法GB7466—87水质-总铬的测定(二苯碳酰二肼法)测Cr3+的残余浓度. 1.2.3测定Cr3+的标准曲线的绘制 按照国家标准方法GB7466—87的第一法“水质-总铬的测定(二苯碳酰二肼法) ”,得标准曲线如图1所示.图1Cr 3+的标准曲线 2实验结果及讨论 2.1反应的pH 值对铬去除率的影响 取100ml的模拟含铬废水,调节pH值分别为4.0〈10.0,絮凝剂PXM加量为31.5mg/L,搅拌反应9min,有少量浅绿色絮状沉淀出现,静置,过滤,测定滤液中铬残余浓度,以考察pH值对铬去除效果的影响.实验结果如图2所示. 图2pH 值对三价铬去除率的影响 由图2可知,不同pH值下絮凝剂对Cr3+的去除效果不同.pH值在4〈6.5范围内,去除率急剧上升;当pH值为 6.5 ·117·

重金属废水治理技术

重金属废水治理技术 电镀是利用化学和电化学方法在金属或在其它材料表面镀上各种金属。电镀技术广泛应用于机器制造、轻工、电子等行业。 电镀废水的成分非常复杂,除含氰(CN-)废水和酸碱废水外,重金属废水是电镀业潜在危害性极大的废水类别。根据重金属废水中所含重金属元素进行分类,一般可以分为含铬(Cr)废水、含镍(Ni)废水、含镉(Cd)废水、含铜(Cu)废水、含锌(Zn)废水、含金(Au)废水、含银(Ag)废水等。电镀废水的治理在国内外普遍受到重视,研制出多种治理技术,通过将有毒治理为无毒、有害转化为无害、回收贵重金属、水循环使用等措施消除和减少重金属的排放量。随着电镀工业的快速发展和环保要求的日益提高,目前,电镀废水治理已开始进入清洁生产工艺、总量控制和循环经济整合阶段,资源回收利用和闭路循环是发展的主流方向。1、电镀重金属废水治理技术的现状 1.1化学沉淀 化学沉淀法是使废水中呈溶解状态的重金属转变为不溶于水的重金属化合物的方法,包括中和沉法和硫化物沉淀法等。 1.1.1中和沉淀法 在含重金属的废水中加入碱进行中和反应,使重金属生成不溶于水的氢氧化物沉淀形式加以分离。中和沉淀法操作简单,是常用的处理废水方法。实践证明在操作中需要注意以下几点[1]:(1)中和沉淀后,废水中若pH值高,需要中和处理后才可排放;(2)废水中常常有多种重金属共存,当废水中含有Zn、Pb、Sn、Al等两性金属时,pH值偏高,可能有再溶解倾向,因此要严格控制pH值,实行分段沉淀;(3)废水中有些阴离子如:卤素、氰根、腐植质等有可能与重金属形成络合物,因此要在中和之前需经过预处理;(4)有些颗粒小,不易沉淀,则需加入絮凝剂辅助沉淀生成。 1.1.2硫化物沉淀法 加入硫化物沉淀剂使废水中重金属离子生成硫化物沉淀除去的方法。

重金属离子有哪些

重金属离子有哪些?重金属离子主要是Cr6+、U6+、Te3+、Co3+、Se6+、Pu3+、Hg2+,Mn4+等 备注:重金属,特别是汞、镉、铅、铬等具有显著和生物毒性。它们在水体中不能被微生物降解,而只能发生各种形态相互转化和分散、富集过程(即迁移)。 哪些重金属离子可以使蛋白质变性 下面一段是我从我的化学选修书上摘下来的(自己打上来的): 蛋白质受热到一定温度就会发生不可逆的凝固,凝固后不能在水中溶解,这种变化叫做变性。除了加热以外,在紫外线、X射线、强酸、强碱,铅、铜、汞等重金属的盐类,以及一些有机化合物如甲醛、酒精、苯甲酸等作用下,蛋白质均能发生变性。蛋白质变性后,不仅丧失了原有的可溶性,同时也失去了生理活性。 重金属指比重大于5的金属,(一般指密度大于4.5克每立方厘米的金属)约有45种,如铜、铅、锌、铁、钴、镍、锰、镉、汞、钨、钼、金、银等。尽管锰、铜、锌等重金属是生命活动所需要的微量元素,但是大部分重金属如汞、铅、镉等并非生命活动所必须,而且所有重金属超过一定浓度都对人体有毒。 铁锰同时存在的地下水中,要测锰离子浓度,如何消除铁离子对它的影响? 最近在测定地下水锰离子浓度的时候,铁离子发生很大的干扰,我不知道如何消除,我用的方法是高碘酸钾分光光度法测定锰,不过高碘酸钾好像和铁也反应,导致测试结果偏高!有没有高手能解决这个问题的?小弟先谢谢了!注意:曝气除铁在测定锰,这种方法不能用,因为氢氧化铁会吸附锰离子,导致测试结果偏低。

这是典型的共存离子的干扰和消除。常采用A 控制酸度B 加掩蔽剂C 分离干扰离子 所以建议:可加入氟化钠,使其与铁离子生成无色络合物[FeF6]3- 来消除干扰。 1楼的方法是看到3价铁离子可以和铁单质反应生成亚铁离子,但这种方法不推荐,因为高碘酸存在强氧化性,即使不存在氧化性,亚铁离子本身也存在绿颜色 重金属捕捉剂 一、重金属捕捉剂别名: 重金属离子捕捉剂、重金属离子捕集剂、重金属离子去除剂、重金属离子吸附剂、重金属离子螯合剂等 二、应用范围: 在常温下与较宽的PH范围内能与废水中Hg 、Cd 、Cu 、Pb 、Mn 、Ni 、Zn 、Cr3+等多种重金属离子迅速反应,生成不溶于水的絮状沉淀物,并能生成较大的矾花,从而达到捕集去除重金属离子的目的。 1、常规重金属废水处理,矿山、电镀、电子、线路板等行业排放废水重金属离子捕捉。 2 、核电站反应堆、铀钍的湿法冶金厂、医院、同位素试验堆及生产堆等放射性废水金属离子捕捉。 3、应用在垃圾焚烧发电方面的飞灰重金属治理方面有独特功效。 三、稳定性与灵敏性 1、稳定性: 本品与重金属离子形成稳定的聚合物,在强酸和强碱性环境下均不会析出重金属离子,在-100度至300度的温度范围内重金属螯合物也非常稳定,在自然环境条件下,可保持长达数百年的聚合物稳定性。

重金属废水处理技术

新型高效重金属废水资源化 处理技术研发与应用 陶 琨 廖志民 (江西金达莱环保研发中心有限公司,江西 南昌 330100) 摘 要 重金属废水处理回用及重金属资源化回收技术的应用,有利于保护环境、节约资源、提高社会经济效益。化学沉法、离子交换法、吸附法、生物法等传统处理的方法已不能满足新标准的要求。金达莱公司成功开发新型JDL重金属废水资源化处理新技术工艺,研制出技术先进、高效低耗JDL处理器,固液分离功能强,效果好。实测表明,对线路板废水中的铜、镍、铬、锌等去除率可达到99.6%以上,回收的污泥中铜含量高达55%~60%。解决了重金属废水处理关键技术,实现了真正意义上的重金属废水处理回用和重金属资源化回收,技术值得推广应用。 关键词 重金属废水;废水回用;重金属回收;污泥; 资源化 中图分类号:TN41 文献标识码:A 文章编号:1009-0096(2011)11-0064-04 Heavy metal waste water reclamation treatment technology research and application Abstract The application of heavy metal waste water treatment and recycling technology is bene? cial to environmental protection, saves resources and also brings great social and economical bene? ts. Now the traditional treatment processes, such as chemical precipitation, ion exchange, adsorption, biological and so on, can no longer meet the new discharge standard. The advanced JDL heavy metal waste water treatment and recycling technology can solve this problem well. It has many virtues, such as high ef? ciency, low consumption and good separation effect. In practical application to PCB waste water, the result show that the removal rate of Cu, Ni, Cr and Zn is above 99.6%, the content of Cu in recycled sludge can reach 55%~60%. For this technology can realize the real waste water reuse and heavy metal resource recycling, it must has important practical significance and broad application prospect. Key words heavy metal waste water; waste water reuse; heavy metal recycling; sludge; reclamation 随着我国经济、社会发展,水资源短缺、水污染问题日趋严重。重金属是水环境中的主要污染物之一,有关统计表明,我国金属废水约占废水排放总量的10%[1],主要来自电镀、线路板、采矿、冶金、化工等工业,具有潜在的危害性,特别是汞、镉、铅、铬等重金属具有显著的生物毒性,微量浓度即可产生毒性,在微生物作用下会转化为毒性更强的有机金属化合物(如甲基汞),或被生物富集通过食物链进入人体,造成慢性中毒[2]。日本水俣湾由汞中毒造成的“水俣病”和神通川流域因镉造成的“疼痛病”,我国陕西凤翔等地铅污染造成的“血铅事件”、福建紫金矿业渗漏事故造成的铜污 TAO Kun Zhi-min LIAO

重金属废水处理方法

在环境与人类健康领域,重金属主要指汞(Hg)、镉(Cd)、铅(Pb)、铬(cr)、砷(As)、铜(Cu)、锌(Zn)、钴(Co)、镍(Ni)等重金属。他们以不同的形态存在于环境之中,并 在环境中迁移、积累。采矿、冶金、化工等行业是水体中主要的人为污染源。重金属在食物链中的过量富集会对自然环境和人体健康造成很大的危害。 1.1 沉淀法 1.1.1 氢氧化物沉淀法 往重金属废水中加入碱性溶液,利用OH一与重金属离子反应生成难溶的金属氢氧化物沉淀,通过过滤予以分离。氢氧化物沉淀法包括分步沉淀法和一次沉淀法两种。分步沉淀法是分段加入石灰乳,利用不同的金属氢氧化物在不同的pH值下沉淀析出的特性,依次回收各金属氢氧化物。一次沉淀法则是一次性投加石灰乳,使溶液达到额定的pH值,从而使废 水中的各种重金属离子同时以氢氧化物沉淀的形式析出。 1.1.2 硫化物沉淀法 将重金属废水pH值凋节为一定碱性后,再通过向重金属废水中投加硫化钠或硫化钾等硫化物,或者直接通人硫化氢气体,使重金属离子同硫离子反应生成难溶的金属硫化物沉淀,然后被过滤分。由于金属硫化物的溶度积比相应的金属氢氧化物的溶度积小得多,因此。硫化物沉淀法比氢氧化物沉淀法具有更多的优点,比如沉渣量少,容易脱水,沉渣金属品位高,有利于金属的回收。可是硫化物沉淀法也有不足之处,比方说硫化物结晶比较细小,难以沉降,因而应用也不是很广。 1.1.3 还原一沉淀法 这种方法的原理是,用还原剂将重金属废水中的重金属离子还原为金属单质或者价态较低的金属离子,先将金属过滤收集,然后再往处理液中加入石灰乳,使得还原态的重金属离子以氢氧化物的形式沉淀收集。铜和汞等的回收可以利用这种方法。该法也常用于含铬废水的处理。较常使用的还原剂有硫酸亚铁、亚硫酸氢钠、铁粉等。 1.1.4 絮凝浮选沉淀法 通过添加絮凝剂使得重金属废水中的小胶体颗粒稳定性变差,聚集形成大颗粒胶体物质,最终通过重力作用沉淀下来。为增大胶体颗粒的尺寸,采用浮选的办法,用于将不稳定的胶体粒子变为固相絮凝物。这一浮选过程一般包括两个重要的步骤,一是调节pH值,二是加入含铁或铝盐的絮凝剂,以克服离子间静电排斥导致的稳定作用。 1.2 物理化学法 1.2.1 吸附法 (1)物理吸附法。活性炭是最早使用的吸附剂,也是目前使用最广泛的吸附剂。之所以能够进行物理吸附,是因为活性炭具有高的比表面积以及高度发达的孔隙结构。后来在此基础上又出现了活性炭纤维等衍生物,去除效率高,但价格比较昂贵。能够用于物理吸附的材料还有各种矿物质以及分子筛等。 (2)树脂吸附。环保是树脂吸附法的一个重要的特点t41,这种方法能够分离、纯化、回收重金属,效果显着。主要是由于树脂中含有各种活性基团,比较典型的有羟基、羧基、氨基等,能够与重金属离子进行螯合,因而这些功能性树脂材料能有效的吸附重金属离子。根据活性基团的种类不同,分为阳离子交换树脂和阴离子交换树脂。 (3)生物吸附。近些年来,很多研究者将各种生物(如植物、细菌、真菌、藻类以及酵母)经处理加工成生物吸附剂,用于处理含重金属废水。生物体具有特定的化学结构以及成分特征,而生物吸附法的主要原理,就是利用生物体的这些特性来吸附溶于水中的重金属离子。生物吸附法具有几个特点:①生物吸附剂可以降解,一般不会发生二次污染;②来源广泛,容易获取并且价格便宜;③生物吸附剂容易解析,能够有效地回收重金属。 1.2.2 浮选法

含重金属废水处理技术介绍

含重金属废水处理技术介绍 一、废水情况简介 1.1 含重金属废水处理难点 ◆ 重金属种类多,一些重金属需要特殊的处理方法 ◆ 含重金属废水一般可生化性不高,污泥需要特别处理 ◆ 国内当前的一些处理方法(加碱沉淀法)运行成本高,企业负担重 1.2含重金属废水处理方法 含重金属离子废水的处理方法主要有:氧化还原法、 离子交换法、 电解法、 反渗透法、气浮法、化学沉淀法等。这些处理方法在净化效率及经济效益方面都存在一些问题,而吸附法的研发可以很好的解决效率和经济效益问题,值得重视。 二、我们的工艺 2.1 工艺流程 调节池 微电解反应器 混合沉淀综合池 达标排放或循环使用 含重金属废水 煤质改良活性炭吸附器 污泥处理 固化处理 活性炭再生 重金属回收 重金属提取回收

2.2工艺说明 通过微电解反应器对水中Cr6+有很好的去除效果,在混合沉淀综合池投加石灰乳或氢氧化钠,进行沉淀,沉淀物送入干化机 煤质改良活性炭是一种专门吸附悬浮态重金属物质的活性炭,保证出水达标,吸附饱和的煤质改良活性炭通过廉价的再生过程,可以重复使用 沉淀物通过板框压滤机干化后,再经过集中的处理回收重金属。处理后污泥达到《国家危险废物填埋污染控制标准》(GB18598-2001)中规定的危险废物进入填埋区的标准后,进行无害化填埋,或采用水泥作为固化基材进行稳定化 吸附饱和的煤质改良活性炭的再生处理过程中通过浸出回收重金属、热解等过程将煤质改良活性炭再生,循环利用 根据不同的水质可进行优化设计,在水中六价铬含量符合国家排放标准的情况下,工艺中可不需要微电解反应器 2.3 煤质活性炭介绍 煤质类吸附剂主要指泥炭、褐煤等,资源丰富的低品质煤质类矿物。经过适当处理如炭化、活化等能改善煤质类吸附剂的吸附性能。泥炭和褐煤是一种天然腐殖酸类物质,它们与活性炭等吸附剂相似,具有微孔结构和较大的比表面积,有优异的吸附性能。专家研究表明,它们可用于金属离子的吸附。褐煤和泥炭含有羟基、羧基等活性基团,其吸附性能与这些活性基团有关,金属离子在其表面既有物理吸附,又有化学吸附。天然泥炭不需要任何预处理就能用于吸附去除水中的重金属离子。但其机械强度较低,对水的亲合力强,化学稳定性较低,较容易收缩与膨胀, 这些对吸附效果都有一定的影响,故使用前一般需进行预处理,最常用的有热处理与化学处理,预处理后的泥炭称为煤质活性炭。煤质活性炭用硫酸改性后,活性炭上的可离解基团如磺酸基团的数量增加,从而对金属离子的吸附容量增加。 煤质改良活性炭吸附的特点: 无需添加任何氧化剂絮凝剂等化学试剂

相关文档