文档视界 最新最全的文档下载
当前位置:文档视界 › 高三物理复习专题六电场与磁场第1课时电场与磁场的理解讲义

高三物理复习专题六电场与磁场第1课时电场与磁场的理解讲义

高三物理复习专题六电场与磁场第1课时电场与磁场的理解讲义
高三物理复习专题六电场与磁场第1课时电场与磁场的理解讲义

专题六 电场与磁场

专题定位 本专题主要是综合应用动力学方法和功能关系解决带电粒子在电场和磁场中的运动问题.这部分的题目覆盖的内容多,物理过程多,且情景复杂,综合性强,常作为试卷的压轴题.高考对本专题考查的重点有以下几个方面:①对电场力的性质和能的性质的理解;②带电粒子在电场中的加速和偏转问题;③带电粒子在磁场中的匀速圆周运动问题;④带电粒子在电场和磁场的组合场中的运动问题;⑤带电粒子在电场和磁场的叠加场中的运动问题;⑥带电粒子在电场和磁场中运动的临界问题.

应考策略 针对本专题的特点,应“抓住两条主线、明确两类运动、运用两种方法”解决有关问题.两条主线是指电场力的性质(物理量——电场强度)和能的性质(物理量——电势和电势能);两类运动是指类平抛运动和匀速圆周运动;两种方法是指动力学方法和功能关系.

第1课时 电场与磁场的理解

1. 对电场强度的三个公式的理解

(1)E =F

q

是电场强度的定义式,适用于任何电场.电场中某点的场强是确定值,其大小和方向与试探电荷q 无关.试探电荷q 充当“测量工具”的作用.

(2)E =k Q r

是真空中点电荷所形成的电场的决定式.E 由场源电荷Q 和场源电荷到某点的距离r 决定.

(3)E =U d

是场强与电势差的关系式,只适用于匀强电场,注意:式中d 为两点间沿电场方向的距离. 2. 电场能的性质

(1)电势与电势能:φ=E p q

. (2)电势差与电场力做功:U AB =

W AB

q

=φA -φB . (3)电场力做功与电势能的变化:W =-ΔE p . 3. 等势面与电场线的关系

(1)电场线总是与等势面垂直,且从高电势的等势面指向低电势的等势面. (2)电场线越密的地方,等差等势面也越密.

(3)沿等势面移动电荷,电场力不做功,沿电场线移动电荷,电场力一定做功.

4.带电粒子在磁场中的受力情况

(1)磁场只对运动电荷有力的作用,对静止电荷无力的作用.磁场对运动电荷的作用力

叫洛伦兹力.

(2)洛伦兹力的大小和方向:其大小为F=qvB sin θ,注意:θ为v与B的夹角.F的

方向仍由左手定则判定,但四指的指向应为正电荷运动的方向或负电荷运动方向的反方向.

5.洛伦兹力做功的特点

由于洛伦兹力始终和速度方向垂直,所以洛伦兹力永不做功,但洛伦兹力的分力可以做功.

1.本部分内容的主要研究方法有:(1)理想化模型.如点电荷、电场线、等势面;(2)比值定义法.电场强度、电势的定义方法是定义物理量的一种重要方法;(3)类比的方法.电场和重力场的比较;电场力做功与重力做功的比较;带电粒子在匀强电场中的运动和平抛运动的类比.

2.静电力做功的求解方法:(1)由功的定义式W=Fs cos α来求;(2)利用结论“电场力做功等于电荷电势能增量的负值”来求,即W=-ΔE;(3)利用W AB=qU AB来求.

3.研究带电粒子在电场中的曲线运动时,采用运动合成与分解的思想方法;带电粒子在组合场中的运动实际是类平抛运动和匀速圆周运动的组合,类平抛运动的末速度就是匀速圆周运动的线速度.

题型1 对电场性质的理解

例1 (2013·江苏·6)将一电荷量为+Q的小球放在不带电的金属球附近,所形成的电场线分布如图1所示,金属球表面的电势处处相等.a、b为电场中的两点,则( )

图1

A.a点的电场强度比b点的大

B.a点的电势比b点的高

C.检验电荷-q在a点的电势能比在b点的大

D.将检验电荷-q从a点移到b点的过程中,电场力做负功

解析根据题图中电场线的疏密可知a点场强比b点的大,A项正确;由电场线的方向可知a点电势比b点的高,则B项正确;由电场力做功和电势能变化关系可判断C项错误,D项正确.

答案ABD

以题说法 1.在点电荷形成的电场中,通常利用电场线和等势面的两个关系分析电场的性质:一是二者一定处处垂直;二是电场线密的地方,等势面也密,且电场线由电势较高的等势面指向电势较低的等势面.

2.在分析电场性质时,要特别注意应用点电荷形成电场的对称性来分析电场的性质.如图2所示,真空中M、N处放置两等量异种电荷,a、b、c为电场中的三点,实线PQ为M、N连线的中垂线,a、b两点关于MN对称,a、c两点关于PQ对称.已知一带正电的试探电荷从a点移动到c点时,试探电荷的电势能增加,则以下判断正确的是

( )

图2

A.a点的电势高于c点的电势

B.a点的场强与c点的场强完全相同

C.M点处放置的是正电荷

D.若将带正电的试探电荷沿直线由a点移动到b点,则电场力先做正功,后做负功答案 D

解析带正电的试探电荷由a点移动到c点,电势能增大,电场

力做负功,是逆着电场线运动,因此M处电荷应为负电荷,选项

C错误;等量异种点电荷周围电场线的分布如图所示,由于沿着

电场线方向电势降低,可知a点电势低于c点电势,选项A错误;a点和c点场强大小相等、方向不同,选项B错误;将带正电的试探电荷沿直线由a点移到b点,电场力先做正功后做负功,选项D正确.

如图3所示,电场中的一簇电场线关于y轴对称分布,O点是坐标原点,M、N、P、Q 是以O为圆心的一个圆周上的四个点,其中M、N在y轴上,Q点在x轴上,则

( )

图3

A.M点电势比P点电势高

B.OM间的电势差等于NO间的电势差

C.一正电荷在O点的电势能小于在Q点的电势能

D.将一负电荷从M点移到P点,电场力做正功

答案 D

解析如题图所示的电场为带正电的点电荷形成的电场,所有电场线反向延长的交点即为该点电荷所在的位置,P点离该点电荷的距离比M点更近,所以P点的电势比M点电势高,选项A错误;NO之间的电场线比OM之间的电场线密,所以NO之间的场强大,

电势差也大,选项B 错误;O 点到该点电荷的距离比Q 点近,O 点电势高,正电荷在电势高的位置电势能大,故正电荷在O 点的电势能比在Q 点大,选项C 错误;P 点的电势比M 点电势高,将负电荷由电势低的位置移动到电势高的位置电场力做正功,选项D 正确.

题型2 电场矢量合成问题

例2 (2013·新课标Ⅱ·18)如图4,在光滑绝缘水平面上,三个带电小球a 、b 和c 分别位

于边长为l 的正三角形的三个顶点上;a 、b 带正电,电荷量均为q ,c 带负电.整个系统置于方向水平的匀强电场中.已知静电力常量为k .若三个小球均处于静止状态,则匀强电场场强的大小为

( )

图4

A.3kq 3l 2

B.3kq l

2

C.

3kq l

2

D.23kq l

2

审题突破 a 、b 对c 的静电力的合力方向如何?匀强电场场强的方向能确定吗? 解析 因为a 、b 小球对c 的静电力的合力方向垂直于a 、b 连线向 上,又因c 带负电,所以匀强电场的场强方向为垂直于a 、b 连线向 上.

分析a 球受力:b 对a 的排斥力F 1、c 对a 的吸引力F 2和匀强电场对a 的电场力F 3=qE .根据受力平衡可知,a 受力情况如图所示 利用正交分解法:

F 2cos 60°=F 1=k q 2l 2

F 2sin 60°=F 3=qE .

解得E =3kq

l 2

.

答案 B

以题说法 1.熟练掌握常见电场的电场线和等势面的画法. 2.对于复杂的电场场强、电场力合成时要用平行四边形定则.

3.电势的高低可以根据“沿电场线方向电势降低”或者由离正、负场源电荷的关系来确定.

如图5所示,真空中同一水平线上固定两等量异种点电荷A 、B ,其中A 带负电、B 带正电.C 、D 、O 是分布在AB 连线的垂线上的三个点,且AO >BO .下列判断正确的是

( )

图5

A .C 、D 两点的电势相等

B .

C 、

D 两点的电场强度的方向均水平向左

C .同一带负电的试探电荷在C 点的电势能大于在

D 点的电势能 D .同一试探电荷在C 点受到的电场力比在D 点受到的电场力小 答案 CD

解析 由等量异种点电荷的电场线和等势面分布可知,φO >φD >φC ,选项A 错误;在AB 连线中垂线上的各点电场强度方向水平向左,E C 和E D 的方向斜向左上,选项B 错误;负电荷在电势低处电势能大,所以E p C >E p D ,选项C 正确;E C

例3 (18分)如图6所示,在一个直角三角形区域ABC 内存在方向垂直于纸面向里、磁感应

强度为B 的匀强磁场,AB 、BC 、AC 为磁场边界,AC 边长为3l ,∠A =53°.一质量为m 、电荷量为+q 的粒子从AB 边上距A 点为l 的D 点垂直于磁场边界AB 射入匀强磁场.取sin 53°=0.8,cos 53°=0.6,求:

图6

(1)要使粒子从BC 边射出磁场区域,粒子速率应满足的条件; (2)粒子能从BC 边射出磁场区域,其在磁场中最短的运动时间.

审题突破 粒子速率较小时会从哪个边界射出?若速度很大又会从哪个边界射出?粒子能经过C 点吗?

解析 (1)粒子在磁场中做匀速圆周运动,洛伦兹力提供向心力,

则有qvB =mv 2

R

(2分)

设粒子速率为v 1时运动轨迹与BC 边相切,如图所示,由几何关 系可得

R 1

cos 53°+R 1+l =3l

cos 53°,解得R 1=1.5l

(3

分)

则v 1=1.5qBl m

(2

分)

设粒子速率为v 2时运动轨迹与AC 边相切,则切点为C 点,由几何关系可得

R 2=BC =BD =4l

(3分) 解得v 2=4qBl

m

(2分)

因此粒子从BC 边射出时速率满足的条件是 1.5qBl m

m

(1分)

(2)粒子在磁场中做匀速圆周运动,其周期为

T =

2πm qB

(2分)

由粒子运动轨迹可知,粒子从C 点射出磁场所用时间最短,最短时间

t =

37360

T

(2分) 解得t =37πm

180qB

(1分)

答案 (1)1.5qBl m

180qB

以题说法 1.解决带电粒子在磁场中运动的临界问题,关键在于运用动态思维,寻找临界点,确定临界状态,根据粒子的速度方向找出半径方向,同时由磁场边界和题设条件画好轨迹,定好圆心,建立几何关系.

2.粒子射出或不射出磁场的临界状态是粒子运动轨迹与磁场边界相切.

如图7所示,边界OA 与OC 之间分布有垂直纸面向里的匀强磁场,边界OA 上有一粒子源S .某一时刻,S 平行于纸面向各个方向发射出大量带正电的同种粒子(不计粒子的重力及粒子间的相互作用),所有粒子的初速度大小相同,经过一段时间有大量粒子从边界OC 射出磁场.已知∠AOC =60°,从边界OC 射出的粒子在磁场中运动的最短时间等于T

6(T 为粒子在磁场中运动的周期),则从边界OC 射出的粒子在磁场中运动的最长时

间为

( )

图7

A.T

3 B.T

2

C.2

3T D.56

T 答案 B

解析 由于从OC 边界射出的粒子在磁场中运动的最短时间为T

6,其轨迹圆弧的圆心角为

60°,则其弦与SO 的夹角为30°,弦的两端与圆心构成等边三角形,轨迹圆半径为r =OS cos 30°=

3

2

OS ,又过S 点的垂线与OC 的交点到垂足S 的距离为d =OS tan 60°

=3OS ,恰等于轨迹圆的直径,所以,沿SA 方向发出的粒子在磁场中做半个圆周运动后从OC 边射出,在磁场中运动时间最长,等于T

2,选项B 正确.

9. 带电粒子在匀强磁场中的多过程运动

审题示例

(2013·山东·23)(18分)如图8所示,在坐标系xOy 的第一、第三象限内存在相同的匀强

磁场,磁场方向垂直于xOy 平面向里;第四象限内有沿y 轴正方向的匀强电场,电场 强度大小为E .一带电量为+q 、质量为m 的粒子,自y 轴上的P 点沿x 轴正方向射入第四象限,经x 轴上的Q 点进入第一象限,随即撤去电场,以后仅保留磁场.已知OP =d ,

OQ =2d .不计粒子重力.

图8

(1)求粒子过Q 点时速度的大小和方向.

(2)若磁感应强度的大小为一确定值B 0,粒子将以垂直y 轴的方向进入第二象限,求B 0. (3)若磁感应强度的大小为另一确定值,经过一段时间后粒子将再次经过Q 点,且速度与第一次过Q 点时相同,求该粒子相邻两次经过Q 点所用的时间. 审题模板

答题模板

(1)设粒子在电场中运动的时间为t 0,加速度的大小为a ,粒子的初速度为v 0,过Q 点时速度的大小为v ,沿y 轴方向分速度的大小为v y ,速度与x 轴正方向间的夹角为θ,由牛顿第二定律得qE =ma ①(1

分)

由运动学公式得

d =12

at 20

2d =v 0t 0

③(1

分)

v y =at 0

④(1

分)

v =v 20+v 2

y

⑤(1

分)

tan θ=v y v 0

⑥(1分)

联立①②③④⑤⑥式得v =2 qEd m

θ=45°

⑧(1分)

(2)设粒子做圆周运动的半径为R 1,粒子在第一象限的运动 轨迹如图所示,O 1为圆心,由几何关系可知△O 1OQ 为等 腰直角三角形,得

R 1=22d ⑨(2分)

由牛顿第二定律得

qvB 0=m v 2

R 1

⑩(2分)

联立⑦⑨⑩式得

B 0=

mE 2qd

?(1

分)

(3)设粒子做圆周运动的半径为R 2,由几何分析知,粒子运动的轨迹如图所示,O 2、O 2′是粒子做圆周运动的圆心,Q 、F 、G 、H 是轨迹与两坐标轴的交点,连接O 2、O 2′,由几何关系知,O 2FGO 2′和O 2QHO 2′均为矩形,进而知FQ 、GH 均为直径,QFGH 也是矩形,又

FH ⊥GQ ,可知QFGH 是正方形,△QOF 为等腰直角三角形.可知,粒子在第一、第三象

限的轨迹均为半圆,得 2R 2=22d ?(2

分)

粒子在第二、第四象限的轨迹为长度相等的线段,得

FG =HQ =2R 2

?(1分)

设粒子相邻两次经过Q 点所用的时间为t ,则有

t =FG +HQ +2πR 2

v

?(2分)

联立⑦???式得

t =(2+π)

2md

qE

?

(2分)

答案 见解析

点睛之笔 解决带电粒子在匀强磁场中的多过程运动问题,首先要熟练掌握粒子进出不同边界(比如直线边界、圆形边界等)磁场时圆心、半径的确定方法,以及轨迹的特点,其次要灵活运用圆的几何知识,特别是圆的一些对称性.

如图9所示,在半径分别为r 和2r 的同心圆(圆心在O 点)所形成的圆环形区域内,存在垂直纸面向外的匀强磁场,磁感应强度大小为B .在大圆边界上A 点有一粒子源,垂直AO 向左发射一质量为m ,电荷量为+q ,速度大小为qBr /m 的粒子.求:

图9

(1)若粒子能进入磁场发生偏转,则该粒子第一次到达磁场小圆边界时,粒子速度相对于初始方向偏转的角度;

(2)若粒子每次到达磁场大圆边界时都未从磁场中射出,那么至少经过多长时间该粒子能够回到出发点A . 答案 (1)120° (2)

π+33

m

Bq

解析 (1)如图所示,粒子做匀速圆周运动,设初速度为v 0,轨迹半径为R =

mv 0

qB

=r 如图粒子将沿着AB 弧(圆心在O 1)运动,交内边界于B 点.△OO 1B 为等边三角形,则∠BO 1O =60°

粒子的轨迹AB 弧对应的圆心角为∠BO 1A =120° 则速度偏转角为120°

(2)粒子从B 点进入中间小圆区域沿直线BC 运动,又进入磁场区域,经偏转与外边界相切于D 点,在磁场中运动的轨迹如图所示,粒子在磁场区域运动的时间:t 1=3×4

3

π2π·T

=2T

T =

2πm

Bq

每通过一次无磁场区域,粒子在该区域运动的距离

s =2r cos 30°=3r

粒子在无磁场区域运动的总时间t 2=3s

v 0

代入v 0=

qBr m ,得:t 2=33m qB

则粒子回到A 点所用的总时间:

t =t 1+t 2=

π+33m

Bq

(限时:45分钟)

1. (2013·江苏·3)下列选项中的各1

4

圆环大小相同,所带电荷量已在图中标出,且电荷均

匀分布,各1

4

圆环间彼此绝缘.坐标原点O 处电场强度最大的是

( )

答案 B

解析 设1

4圆环的电荷在原点O 产生的电场强度为E 0,根据电场强度叠加原理,在坐标

原点O 处,A 图场强为E 0, B 图场强为2E 0 ,C 图场强为E 0,D 图场强为0,因此本题答案为B.

2. (2013·安徽·15)图1中a 、b 、c 、d 为四根与纸面垂直的长直导线,其横截面位于正

方形的四个顶点上,导线中通有大小相同的电流,方向如图所示.一带正电的粒子从正方形中心O 点沿垂直于纸面的方向向外运动,它所受洛伦兹力的方向是

( )

图1

A .向上

B .向下

C .向左

D .向右

答案 B

解析 据题意,由安培定则可知,b 、d 两通电直导线在O 点产生的磁场抵消,a 、c 两通电直导线在O 点产生的磁场方向均向左,所以四条通电直导线在O 点产生的合磁场方向向左.由左手定则可判断带电粒子所受洛伦兹力的方向向下.本题正确选项为B. 3. P 、Q 两电荷形成的电场的电场线分布如图2所示,a 、b 、c 、d 为电场中的四个点.一

个离子从a 运动到b (不计重力),轨迹如图中虚线所示.则下列判断正确的是 ( )

图2

A .离子带正电

B .c 点电势高于d 点电势

C .离子在a 点时的加速度大于在b 点时的加速度

D .离子在a 点时的电势能大于在b 点时的电势能 答案 BC

高三物理电场专题复习

电场复习指导意见 20XX 年课标版考试大纲本章特点 概念多、抽象、容易混淆。电场强度、电场力、电势、电势差、电势能、 电场力做功。 公式多。在帮助学生理解公式的来龙去脉、物理意义、适用条件的同时,可将其归类。 正负号含义多。在静电场中,物理量的正负号含义不同,要帮助学生正确理解物理量的正负值的含义。 知识综合性强。要把力学的所有知识、规律、解决问题的方法和能力应用 内 容要求说明 54.两种电荷.电荷守恒 55.真空中的库仑定律.电荷量 56.电场.电场强度.电场线.点电荷的场 强.匀强电场.电场强度的叠加 57.电势能.电势差.电势.等势面 58.匀强电场中电势差跟电场强度的关系 59.静电屏蔽 60.带电粒子在匀强电场中的运动 61.示波管.示波器及其应用 62.电容器的电容 63.平行板电容器的电容,常用的电容器 Ⅰ Ⅱ Ⅱ Ⅱ Ⅱ Ⅰ Ⅱ Ⅰ Ⅱ Ⅰ 带电粒子在匀强 电场中运动的计算,只 限于带电粒子进入电场时速度平行或垂直于场强的情况

到电场当中 具体复习建议 一.两种电荷,电荷守恒,电荷量(Ⅰ) 1.两种电荷的定义方式。(丝绸摩擦玻璃棒,定义玻璃棒带正点;毛皮 摩擦橡胶棒,定义橡胶棒带负电) 2.从物质的微观结构及物体带电方法 接触带电(所带电性与原带电体相同) 摩擦起电(两物体带等量异性电荷) 感应带电(两导体带等量异性电荷) 3.由于物体的带电过程就是电子的转移过程,所以带电过程中遵循电荷守恒。每个物体所带电量应为电子电量(基本电量)的整数倍。 4.知道相同的两金属球绝缘接触后将平分两球原来所带净电荷量。(注意电性)

二.真空中的库仑定律(Ⅱ)1.r r q kq F 2 2112 或 2 2121 12r q kq F F 方向在两点电荷连线上,满足同性相斥,异性相吸。2.规律在以下情况下可使用:(1)规定为点电荷;(2)可视为点电荷; (3)均匀带电球体可用点电荷等效处理,绝缘均匀带电球体间的库仑力可用库仑定律 2 21r q kq F 等效处理,但r 表示 两球心之间的距离。(其它形状的带电体不可用电荷中心等效) (4)用点电荷库仑定律定性分析绝缘带电金属球相互作用力的情况 两球带同性电荷时:2 21r q kq F r 表示两球心间距,方向在球心连线上 两球带异性电荷时:2 21r q kq F r 表示两球心间距,方向在球心连线上 3.点电荷库仑力参与下的平衡模型(两质量相同的带电通草球模型) 4.两相同的绝缘带电体相互接触后再放回原处 (1)相互作用力是斥力或为零(带等量异性电荷时为零) L mg F T α mgtg l q kq 2 2 1) sin 2(3 2 21sin 4cos l q kq mg T

电场与磁场在实际中的应用.

电场与磁场在实际中的应用 要点一 速度选择器 即学即用 1.如图所示,一束质量、速度和电荷量不同的正离子垂直地射入匀强磁场和 匀强电场正交的区域里,结果发现有些离子保持原来的运动方向,有些未发生任何偏转.如果让这些不偏转的离子进入另一匀强磁场中,发现这些离子又分裂成几束,对这些进入另一磁场的离子,可得出结论 ( ) A .它们的动能一定各不相同 B .它们的电荷量一定各不相同 C .它们的质量一定各不相同 D .它们的电荷量与质量之比一定各不相同 答案 D 要点二 质谱仪 即学即用 2.质谱仪是一种测定带电粒子质量和分析同位素的重要仪器,它的构造如图所 示.设从离子源S 产生出来的正离子初速度为零,经过加速电场加速后,进入一平行板电容器C 中,电场强度为E 的电场和磁感应强度为B 1的磁场相互垂直,具有某一速度的离子将沿图中所示的直线穿过两板间的空间而不发生偏转,再 进入磁感应强度为B 2的匀强磁场,最后打在记录它的照相底片上的P 点.若测得P 点到入口处S 1的距离为s ,证明离子的质量为m = E s B qB 221. 答案 离子被加速后进入平行板电容器,受到的水平的电场力和洛伦兹力平衡才能够竖直向上进入上面的匀强磁 场,由qvB 1=qE 得v =E/B 1,在匀强磁场中2 2 qB m s v ,将v 代入,可得m =E s B qB 221. 要点三 回旋加速器 即学即用 3.回旋加速器是用来加速一群带电粒子使它们获得很大动能的仪器,其核心部分是两个D 形金属盒,两盒分别和一高频交流电源两极相接,以便在盒间的窄缝中形成匀强电场,使粒子每次穿过狭缝都得到加速,两盒放在匀强磁场中,磁场 方向垂直于盒底面,离子源置于盒的圆心附近.若离子源射出的离子电荷量为q ,质量为m ,粒子

2021-2022年高考物理二轮复习专题突破3电场和磁场第1讲电场和磁场的基本性质

2021年高考物理二轮复习专题突破3电场和磁场第1讲电场和磁场 的基本性质 1.(xx·全国卷Ⅰ,14)一平行板电容器两极板之间充满云母介质,接在恒压直流电源上。若将云母介质移出,则电容器( ) A .极板上的电荷量变大,极板间电场强度变大 B .极板上的电荷量变小,极板间电场强度变大 C .极板上的电荷量变大,极板间电场强度不变 D .极板上的电荷量变小,极板间电场强度不变 解析 由C =εr S 4πkd 可知,当云母介质移出时,εr 变小,电容器的电容C 变小;因为电容器接在恒压直流电源上,故U 不变,根据Q =CU 可知,当C 减小时,Q 减小。再由E =U d ,由于U 与d 都不变,故电场强度E 不变,选项D 正确。 答案 D 2.(xx ·全国卷Ⅲ,15)关于静电场的等势面,下列说法正确的是( ) A .两个电势不同的等势面可能相交 B .电场线与等势面处处相互垂直 C .同一等势面上各点电场强度一定相等 D .将一负的试探电荷从电势较高的等势面移至电势较低的等势面,电场力做正功 解析 若两个不同的等势面相交,则在交点处存在两个不同电势数值,与事实不符,A

错;电场线一定与等势面垂直,B 对;同一等势面上的电势相同,但电场强度不一定相同,C 错;将一负电荷从电势较高的等势面移至电势较低的等势面,电场力做负功,故D 错。 答案 B 3.(xx·全国卷Ⅱ,15)如图1,P 是固定的点电荷,虚线是以P 为圆心的两个圆。带电粒子Q 在P 的电场中运动,运动轨迹与两圆在同一平面内,a 、b 、c 为轨迹上的三个点。若Q 仅受P 的电场力作用,其在a 、b 、c 点的加速度大小分别为a a 、a b 、a c ,速度大小分别为v a 、v b 、v c ,则( ) 图1 A .a a >a b >a c ,v a >v c >v b B .a a >a b >a c ,v b >v c >v a C .a b >a c >a a ,v b >v c >v a D .a b >a c >a a ,v a >v c >v b 解析 由库仑定律F =kq 1q 2r 2 可知,粒子在a 、b 、c 三点受到的电场力的大小关系为F b >F c >F a ,由a =F m 可知a b >a c >a a 。根据粒子的轨迹可知,粒子Q 与场源电荷P 的电性相同,二者之间存在斥力,由c →b →a 整个过程中,电场力先做负功再做正功,且W ba >|W cb |,结合动能定理可知,v a >v c >v b ,故选项D 正确。 答案 D 4.(xx·全国卷Ⅱ,14)如图2,两平行的带电金属板水平放置。若在两板中间a 点从静止释放一带电微粒,微粒恰好保持静止状态,现将两板绕过a 点的轴(垂直于纸面)逆时

电场与电磁场的区别

电场与电磁场 电场是电荷及变化磁场周围空间里存在的一种特殊物质。电场这种物质与通常的实物不同,它不是由分子原子所组成,但它是客观存在的。电场具有通常物质所具有的力和能量等客观属性。电场的力的性质表现为:电场对放入其中的电荷有作用力,这种力称为电场力。电场的能的性质表现为:当电荷在电场中移动时,电场力对电荷作功(这说明电 场具有能量)。 静止电荷在其周围空间产生的电场,称为静电场;随时间变化的磁场在其周围空间激发的电场称为有旋电场[1](也称感应电场或涡旋电场)。静电场是有源无旋场,电荷是场源;有旋电场是无源有旋场。普遍意义的电场则是静电场和有旋电场两者之和。 电场是一个矢量场,其方向为正电荷的受力方向。电场的力的性质用电场强度来描述。 对放入其中的小磁针有磁力的作用的物质叫做磁场。磁场是一种看不见,而又摸不着的特殊物质。磁体周围存在磁场,磁体间的相互作用就是以磁场作为媒介的。

电流、运动电荷、磁体或变化电场周围空间存在的一种特殊形态的物质。由于磁体的磁性来源于电流,电流是电荷的运动,因而概括地说,磁场是由运动电荷或变化电场产生的。磁场的基本特征是能对其中的运动电荷施加作用力,磁场对电流、对磁体的作用力或力距皆源于此。而现代理论则说明,磁力是电场力的相对论效应。 与电场相仿,磁场是在一定空间区域内连续分布的矢量场,描述磁场的基本物理量是磁感应强度矢量B ,也可以用磁感线形象地图示。然而,作为一个矢量场,磁场的性质与电场颇为不同。运动电荷或变化电场产生的磁场,或两者之和的总磁场,都是无源有旋的矢量场,磁力线是闭合的曲线族,不中断,不交叉。换言之,在磁场中不存在发出磁力线的源头,也不存在会聚磁力线的尾闾,磁力线闭合表明沿磁力线的环路积分不为零,即磁场是有旋场而不是势场(保守场),不存在类似于电势那样的标量函数。 电磁场(electromagnetic field)是有内在联系、相互依存的电场和磁场的统一体和总称。随时间变化的电场产生磁场,随时间变化的磁场产生电场,两者互为因果,形成电磁场。电磁场可由变速运动的带电粒子引起,也可由强弱变化的电流引起,不论原因如何,电磁场总是以光速向四周传播,

电场与磁场的对比

电场与磁场的对比 电场力、磁场力跟重力、弹力、摩擦力一样,都是中学物理常见的性质力,但在直观感受性上却不同,多数学生感到前者比较“疏远”,后者比较“亲近”。究其原因一则电场、磁场部分概念较多且比较抽象而多数学生还停留在形象、直观思维的阶段;二则多数学生缺乏良好的学习习惯和方法,不善于观察和积累,已有经验匮乏;不善于运用科学思维,严密推理,学习自主性、自觉性不高;不重视实验操作,缺乏探究意识;不注意学科思想方法和知识总结等。 为了使学生对电场和磁场的认识更确切、更明晰,更亲合学生实际,在高考复习备考的第一阶段,当结束了电场、磁场两部分的系统复习后,很有必要组织、引导学生:⑴、从万有引力定律与库仑定律的比较开始,将电场与重力场(万有引力场)相关概念、规律一一进行类比;⑵、将电场和磁场两部分内容的研究对象、研究思路和方法及重要概念如电场与磁场、电场强度与磁感强度、电场线与磁场线、匀强电场与匀强磁场、电场力与磁场力等的对比。现选择性对比如下: 一、研究对象、思路和方法对比:表1

二、 概念对比:表2 注意⒈用“比值”定义的物理量的共同特点是被定义的量与用来定义的量均无关; ⒉磁感应强度三种定义的条件。 表3 降低;电场线与等势面处处正交。 三、 对比规律、公式 Ⅰ、电场力 ⑴、F qE = (0q >时F 与E 同向),此式具有一般性,可计算点电荷在任何电场中的受到的电 场力。在n 个点电荷形成的静电场中1n i i E E == ∑(矢量式) 。在真空中,点电荷场强2 i i i Q E k r = ;在匀强电场中4U kQ E d S πε= = (Q 为电容器的电量,ε为介电常数)。 ⑵、库仑定律122Q Q F k r =(1Q 与2Q 同号相斥,异号相吸),可计算真空中两个点电荷间的静电力。 n 个点电荷之一q 所受库仑力大小1 2 1 n i i i qQ F k r -== ∑(矢量式) 注:对于电场力与磁场力的比较不要只停留在概念或性质、特点上,而应侧重于两者的本质区别。 Ⅱ、磁场力 ⑴、洛伦兹力 sin L f q B υθ =( L f 、υ、B 三者方向关系遵从左手定则, L f 垂直于υ和B 所决定

黄冈中学第二轮复习专题三电场和磁场

黄冈中学第二轮复习 专题三电场和磁场 【方法归纳】 一、场强、电势的概念 1、电场强度E ①定义:放入电场中某点的电荷受的电场力F与它的电量q的比值叫做该点的电场强度。 ②数学表达式:,单位: ③电场强度E是矢量,规定正电荷在电场中某点所受电场力的方向即为该点的电场强度的方向 ④场强的三个表达式 ⑤比较电场中两点的电场强度的大小的方法: 由于场强是矢量。比较电场强度的大小应比较其绝对值的大小,绝对值大的场强就大,绝对值小的场强就小。 Ⅰ在同一电场分布图上,观察电场线的疏密程度,电场线分布相对密集处,场强较大;电场较大;电场线分布相对稀疏处,场强较小。 Ⅱ形成电场的电荷为点电荷时,由点电荷场强公式可知,电场中距这个点电荷Q较近的点的场强比距这个点电荷Q较远的点的场强大。 Ⅲ匀强电场场强处处相等 Ⅳ等势面密集处场强大,等势面稀疏处场强小 2、电势、电势差和电势能 ①定义: 电势:在电场中某点放一个检验电荷q,若它具有的电势能为E,则该点的电势为电势能与电荷的比值。电场中某点的电势在数值上等于单位正电荷由该点移到零电势点时电场力所做的功。也等于该点相对零电势点的电势差。 电势差:电荷在电场中由一点A移到另一点B时,电场力做功与电荷电量q的比值,称为AB两点间的电势差,也叫电压。 电势能:电荷在电场中所具有的势能;在数值上等于将电荷从这一点移到电势能为零处电场力所做的功。 ②定义式:或,单位:V 单位:J ③说明:Ⅰ电势具有相对性,与零电势的选择有关,一般以大地或无穷远处电势为零。 Ⅱ电势是标量,有正负,其正负表示该的电势与零电势的比较是高还是低。 Ⅲ电势是描述电场能的物理量,

高三物理专题复习电场

专题四静电场 1、某静电场的电场线分布如图所示,P、Q为该电场中的两点, 下列说法正确的是 A.P点电势高于Q点电势 B.P点场强小于Q点场强 C.将负电荷从P点移动到Q点,其电势能减少 D.将负电荷从P点移动到Q点,电场力做负功 2、水平线上的O点放置一点电荷,图中画出电荷周围对称分布的 几条电场线,如图所示。以水平线上的某点O'为圆心画一个圆,与 电场线分别相交于a、b、c、d、e,则下列说法正确的是( ) A.b、e两点的电场强度相同B.a点电势低于c点电势 C.b、c两点间电势差等于e、d两点间电势差D.电子沿圆周由d到b,电场力做正功3、图中虚线为一组间距相等的同心圆,圆心处固定一带负电的点电荷。 一带电粒子以一定初速度射入电场,实线为粒子仅在电场力作用下的运 动轨迹,a、b、c三点是实线与虚线的交点。则该粒子() A.带负电B.在c点受力最大 C.在b点的电势能大于在c点的电势能 D.由a点到b点的动能变化小于有b点到c点的动能变化 4、如图所示,虚线是两个等量点电荷所产生的静电场中的一簇等势 线,若不计重力的带电粒子从a点射入电场后恰能沿图中的实线运 动,b点是其运动轨迹上的另一点,则下述判断正确的是 A.由a到b的过程中电场力对带电粒子做正功 B.由a到b的过程中带电粒子的电势能在不断减小 C.若粒子带正电,两等量点电荷均带正电 D.若粒子带负电,a点电势高于b点电势 5、一质子从A点射入电场,从B点射出,电场的等差等势面和 质子的运动轨迹如图所示,图中左侧前三个等势面彼此平行,不 计质子的重力。下列说法正确的是 A.A点的电势高于B点的电势 B.质子的加速度先不变,后变小 C.质子的动能不断减小 D.质子的电势能先减小,后增大 6、如图,在点电荷Q产生的电场中,将两个带正电的检验电荷q1、 q2分别置于A、B两点,虚线为等势线。取无穷远处为零电势点, 若将q1、q2移动到无穷远的过程中外力克服电场力做的功相等,则 下列说法正确的是 A.B点电势高于A点电势B.q1在A点的电势能大于q2在B点的电势能 C.点电荷Q带负电D.q1的电荷量大于q2的电荷量 7、如图所示,虚线为某一带电粒子只在电场力作用下的运动轨迹,M、N为运动轨迹上两

高中物理引力场电场磁场经典解题技巧专题辅导

高中物理引力场、电场、磁场经典解题技巧专题辅导 【考点透视】 一万有引力定律 万有引力定律的数学表达式:2 21r m m G F =,适用条件是:两个质点间的万有引力的计算。 在高考试题中,应用万有引力定律解题常集中于三点:①在地球表面处地球对物体的万有引力近似等于物体的重力,即mg R Mm G =2,从而得出2gR GM =,它在物理量间的代换时非常有用。②天体作圆周运动需要的向心力来源于天体之间的万有引力,即r mv r Mm G 22=;③圆周运动的有关公式:T πω2=,r v ω=。 二电场 库仑定律:221r Q kQ F =,(适用条件:真空中两点电荷间的相互作用力) 电场强度的定义式:q F E = (实用任何电场),其方向为正电荷受力的方向。电场强度是矢量。 真空中点电荷的场强:2r kQ E =,匀强电场中的场强:d U E =。 电势、电势差:q W U AB B A AB = -=??。 电容的定义式:U Q C =,平行板电容器的决定式kd S C πε4=。 电场对带电粒子的作用:直线加速 221mv Uq = 。偏转:带电粒子垂直进入平行板间的 匀强电场将作类平抛运动。 提醒注意:应熟悉点电荷、等量同种、等量异种、平行金属板等几种常见电场的电场线

和等势面,理解沿电场线电势降低,电场线垂直于等势面。 三磁场 磁体、电流和运动电荷的周围存在着磁场,其基本性质是对放入其中的磁体、电流、运动电荷有力的作用。 熟悉几种常见的磁场磁感线的分布。 通电导线垂直于匀强磁场放置,所受安培力的大小:BIL F =,方向:用左手定则判定。 带电粒子垂直进入匀强磁场时所受洛伦兹力的大小: qvB F =,方向:用左手定则判定。若不计带电粒子的重力粒子将做匀速圆周运动,有qB mv R =,qB m T π2=。 【例题解析】 一万有引力 例1地球(看作质量均匀分布的球体)上空有许多同步卫星,同步卫星绕地球近似作匀速圆周运动,根据所学知识推断这些同步卫星的相关特点。 解析:同步卫星的周期与地球自转周期相同。因所需向心力由地球对它的万有引力提供,轨道平面只能在赤道上空。设地球的质量为M ,同步卫星的质量为m ,地球半径为R ,同步 卫星距离地面的高度为h ,由向万F F =,有 )(4)(22 2h R T m h R GmM ++π=,得R GMT h -=3224π;又由h R v m h R GmM +=+22)(得h R GM v +=;再由ma h R GmM =+2)(得2 )(h R GM a +=。由以分析可看出:地球同步卫星除质量可以不同外,其轨道平面、距地面高度、线速度、向心加速度、角速度、周期等都应是相同的。 点拨:同步卫星、近地卫星、双星问题是高考对万有引力定律中考查的落足点,对此应引起足够的重视,应注意准确理解相关概念。 例2某星球的质量为M ,在该星球表面某一倾角为θ的山坡上以初速度0v 平抛一个物体,经t 时间该物体落到山坡上。欲使该物体不再落回该星球的表面,至少应以多大的速度

高考物理二轮复习专题三电场和磁场课时作业新人教

课时作业八 一、选择题 1.(多选)(2020·河北唐山一模)如图所示,匀强电场中的A 、B 、C 、D 点构成一位于纸面内的平行四边形,电场强度的方向与纸面平行.已知A 、B 两点的电势分别为φA =12 V 、φB =6 V ,则C 、D 两点的电势可能分别为( ) A .9 V 、15 V B .9 V 、18 V C .0 V 、6 V D .6 V 、0V AC 已知ABCD 为平行四边形,则AB 与CD 平行且等长,因为匀强电场的电场强度的方向与纸面平行,所以U AB =U DC =6 V ,分析各选项中数据可知,A 、C 正确,B 、D 错误. 2.如图所示,Q 1、Q 2为两个等量同种带正电的点电荷,在两者的电场中有M 、N 和O 三点,其中M 和O 在Q 1、Q 2的连线上(O 为连线的中点),N 为过O 点的垂线上的一点.则下列说法中正确的是( ) A .在Q 1、Q 2连线的中垂线位置可以画出一条电场线 B .若将一个带正电的点电荷分别放在M 、N 和O 三点,则该点电荷在M 点时的电势能最大 C .若将一个带电荷量为-q 的点电荷从M 点移到O 点,则电势能减少 D .若将一个带电荷量为-q 的点电荷从N 点移到O 点,则电势能增加 B 根据等量同种正电荷形成的电场在点电荷连线和中垂线上的电场强度和电势的特点可判定A 错;M 、N 、O 三点电势大小的关系为φM >φO >φN ,可判定带正电的点电荷在M 点时的电势能最大,B 正确;从M 点到O 点,电势是降低的,故电场力对带电荷量为-q 的点电荷做负功,则电势能增加, C 错;从N 点到O 点,电势是升高的,故电场力对带电荷量为-q 的点电荷做正功,则电势能减少, D 错. 3.(2020· 河北冀州2月模拟)我国位处北半球,某地区存在匀强电场E 和可看作匀强磁场的地磁场B ,电场与地磁场的方向相同,地磁场的竖直分量和水平分量分别竖直向下和水平指北,一带电小球以速度v 在此区域内沿垂直场强方向在水平面内做直线运动,忽略空气阻力,此地区的重力加速度为g ,则下列说法正确的是( ) A .小球运动方向为自南向北 B .小球可能带正电 C .小球速度v 的大小为E B D .小球的比荷为 g E 2 + vB 2

(完整版)高中高考物理专题复习专题4电场、磁场和能量转化

考点4 电场、磁场和能量转化 山东 贾玉兵 命题趋势 电场、磁场和能量的转化是中学物理重点内容之一,分析近十年来高考物理试卷可知,这部分知识在高考试题中的比例约占13%,几乎年年都考,从考试题型上看,既有选择题和填空题,也有实验题和计算题;从试题的难度上看,多属于中等难度和较难的题,特别是只要有计算题出现就一定是难度较大的综合题;由于高考的命题指导思想已把对能力的考查放在首位,因而在试题的选材、条件设置等方面都会有新的变化,将本学科知识与社会生活、生产实际和科学技术相联系的试题将会越来越多,而这块内容不仅可以考查多学科知识的综合运用,更是对学生实际应用知识能力的考查,因此在复习中应引起足够重视。 知识概要 能量及其相互转化是贯穿整个高中物理的一条主线,在电场、磁场中,也是分析解决问题的重要物理原理。在电场、磁场的问题中,既会涉及其他领域中的功和能,又会涉及电场、磁场本身的功和能,相关知识如下表: 如果带电粒子仅受电场力和磁场力作用,则运动过程中,带电粒子的动能和电势能之间相互转化,总量守恒;如果带电粒子受电场力、磁场力之外,还受重力、弹簧弹力等,但没有摩擦力做功,带电粒子的电势能和机械能的总量守恒;更为一般的情况,除了电场力做功外,还有重力、摩擦力等做功,如选用动能定理,则要分清有哪些力做功?做的是正功还是负功?是恒力功还是变力功?还要确定初态动能和末态动能;如选用能量守恒定律,则要分清有哪种形式的能在增加,那种形式的能在减少?发生了怎样的能量转化?能量守恒的表达式可以是:①初态和末态的总能量相等,即E 初=E 末;②某些形势的能量的减少量等于其他形式的能量的增加量,即ΔE 减=ΔE 增;③各种形式的能量的增量(ΔE =E 末-E 初)的代数和为零,即ΔE 1+ΔE 2+…ΔE n =0。 电、磁场中的功和能 电场中的 功和能 电势能 由电荷间的相对位置决定,数值具有相对性,常取无限远处或大地为电势能的零点。重要的不是电势能的值,是其变化量 电场力的功 与路径无关,仅与电荷移动的始末位置有关:W =qU 电场力的功和电势能的变化 电场力做正功 电势能 → 其他能 电场力做负功 其他能 → 电势能 转化 转化 磁场中的 功和能 洛伦兹力不做功 安培力的功 做正功:电能 → 机械能,如电动机 做负功:机械能 → 电能,如发电机 转化 转化

高三物理第二轮复习专题四电场和磁场

专题四 电场和磁场 一、电场和磁场中的带电粒子 1、知识网络 2、方法点拨: 分析带电粒子在电场、磁场中运动,主要是两条线索: (1)力和运动的关系。根据带电粒子所受的力,运用牛顿第二定律并结合运动学规律求解。 (2)功能关系。根据场力及其它外力对带电粒子做功引起的能量变化或全过程中的功能关系,从而可确定带电粒子的运动情况,这条线索不但适用于均匀场,也适用于非均匀场。因此要熟悉各种力做功的特点。 处理带电粒子在场中的运动问题应注意是否考虑带电粒子的重力。这要依据具体情况而定,质子、α粒子、离子等微观粒子,一般不考虑重力;液滴、尘埃、小球等宏观带电粒子由题设条件决定,一般把装置在空间的方位介绍的很明确的,都应考虑重力,有时还应根据题目的隐含条件来判断。 处理带电粒子在电场、磁场中的运动,还应画好示意图,在画图的基础上特别注意运用几何知识寻找关系。 3、典型例题 【例题1】如图1所示,图中虚线MN 是一垂直纸面的平面与纸面的交线,在平面右侧的半空间存在一磁感应强度为B 的匀强磁场,方向垂直纸面向外。O 是MN 上的一点,从O 点可以向磁场区域发射电量为+q 、质量为m 、速率为v 的粒子,粒子射入磁场时的速度可在纸面内各个方向。已知先后射入的两个粒子恰好在磁场中给定的P 点相遇,P 到O 的距离为L ,不计重力及粒子间的相互作用。 (1)求所考察的粒子在磁场中的轨道半径; (2)求这两个粒子从O 点射入磁场的时间间隔。 半径公式: qB mv R = 周期公式: qB m T π2= 带电粒子在电场磁场中的运动 带电粒子在电场中的运动 带电粒子在磁场中的运动 带电粒子在复合场中的运动 直线运动:如用电场加速或减速粒子 偏转:类似平抛运动,一般分解成两个分运动求解 圆周运动:以点电荷为圆心运动或受装置约束运动 直线运动(当带电粒子的速度与磁场平行时) 圆周运动(当带电粒子的速度与磁场垂直时) 直线运动:垂直运动方向的力必定平衡 圆周运动:重力与电场力一定平衡,由洛伦兹力提 供向心力 一般的曲线运动

电磁场与电磁波第四版课后思考题答案

点电荷的严格定义是什么? 点电荷是电荷分布的一种极限情况,可将它看做一个体积很小而电荷密度很的带电小球的极限。当带电体的尺寸远小于观察点至带电体的距离时,带电体的形状及其在的电荷分布已无关紧要。就可将带电体所带电荷看成集中在带电体的中心上。即将带电体抽离为一个几何点模型,称为点电荷。 研究宏观电磁场时,常用到哪几种电荷的分布模型?有哪几种电流分布模型?他们是如何定义的? 常用的电荷分布模型有体电荷、面电荷、线电荷和点电荷;常用的电流分布模型有体电流模型、面电流模型和线电流模型,他们是根据电荷和电流的密度分布来定义的。 2,3点电荷的电场强度随距离变化的规律是什么?电偶极子的电场强度又如何呢? 点电荷的电场强度与距离r的平方成反比;电偶极子的电场强度与距离r的立方成反比。 简述和所表征的静电场特性 表明空间任意一点电场强度的散度与该处的电荷密度有关,静电荷是静电场的通量源。 表明静电场是无旋场。 表述高斯定律,并说明在什么条件下可应用高斯定律求解给定电荷分布的电场强度。 高斯定律:通过一个任意闭合曲面的电通量等于该面所包围的所有电量的代数和除以与闭合面外的电荷无关,即在电场(电荷)分布具有某些对称性时,可应用高斯定律求解给定电荷分布的电场强度。 简述和所表征的静电场特性。 表明穿过任意闭合面的磁感应强度的通量等于0,磁力线是无关尾的闭合线, 表明恒定磁场是有旋场,恒定电流是产生恒定磁场的漩涡源 表述安培环路定理,并说明在什么条件下可用该定律求解给定的电流分布的磁感应强度。 安培环路定理:磁感应强度沿任何闭合回路的线积分等于穿过这个环路所有电流的代数和倍,即如果电路分布存在某种对称性,则可用该定理求解给定电流分布的磁感应强度。 简述电场与电介质相互作用后发生的现象。 在电场的作用下出现电介质的极化现象,而极化电荷又产生附加电场 极化强度的如何定义的?极化电荷密度与极化强度又什么关系? 单位体积的点偶极矩的矢量和称为极化强度,P与极化电荷密度的关系为极化强度P与极化电荷面的密度 电位移矢量是如何定义的?在国际单位制中它的单位是什么 电位移矢量定义为其单位是库伦/平方米(C/m2) 简述磁场与磁介质相互作用的物理现象?在磁场与磁介质相互作用时,外磁场使磁介质中的分子磁矩沿外磁场取向,磁介质被磁化,被磁化的介质要产生附加磁场,从而使原来的磁场分布发生变化,磁介质

第二轮专题三:电场和磁场

物理第二轮复习 专题三:电场和磁场
一、知识网络
1.带电粒子在电场、磁场中的运动可分为下列几种情况:
带电粒子 在电场中 的运动
直线运动:如用电场加速或减速粒子 偏转:类似平抛运动,一般分解成两个分运动求解 圆周运动:以点电荷为圆心运动或受装置约束运动
带电粒子在 电场磁场中 的运动
带电粒子 在磁场中 的运动
带电粒子 在复合场 中的运动
直线运动(当带电粒子的速度与磁场平行时)
圆周运动(当带电粒子的速度与磁场垂直时)
半径公式: R mv
2m 周期公式:T
qB
qB
直线运动:垂直运动方向的力必定平衡
圆周运动:重力与电场力一定平衡,由洛伦兹力提 供向心力
一般的曲线运动
.带电粒子在匀强电场、匀强磁场中运动的比较
在场强为E的匀强电场中
在磁感应强度为B的匀强磁场中
初速度为零
做初速度为零的匀加速直线运动
保持静止
初速度∥场线 做匀变速直线运动
做匀速直线运动
初速度⊥场线 做匀变速曲线运动(类平抛运动)
做匀速圆周运动
共同规律
受恒力作用,做匀变速运动
洛伦兹力不做功,动能不变
(1)带电粒子在匀强电场中做类平抛运动。这类题的解题关键是画出示意图。
运动特点分析:在垂直电场方向做匀速直线运动 vx v0
x v0t
在平行电场方向,做初速度为零的匀加速直线运动 v y at
y 1 at 2 2
a Eq Uq 通过电场区的时间: t L
UqL2 粒子通过电场区的侧移距离: y
m dm
v0
2mdv02
粒子通过电场区偏转角: tg UqL
mdv
2 0
带电粒子从极板的中线射入匀强电场,其出射时速度方向的反向延长线交于入射线的中点。所以侧移距离
也可表示为: y L tg 2
(2) 不计重力的带电粒子在匀强磁场中做匀速圆周运动。这类题的解题关键是画好示意图, 画示意图的要点是找圆心、找半径和用对称。在画图的基础上特别注意使用几何知识寻找关系。
用几何知识确定圆心并求半径:画出粒子运动轨迹中任意两点(大多是射入点和出射点)的 F 或半径方向,其延长线的交点即为圆心,再用几何知识求其半径与弦长的关系;确定轨迹所 对的圆心角,求运动时间:先利用圆心角与弦切角的关系,或者是四边形内角和等于 360°(或 2)计算出圆心角 的大小,再由公式 t=T/3600(或 T/2)可求出运动时间。
向心力公式: Bqv m v 2 运动轨道半径公式: R mv ; 运动周期公式:T 2m
R
Bq
Bq
T 或 f 、 的两个特点:T、 f 和 的大小与轨道半径(R)和运行速率( v )无关,只与磁场的磁感
q
应强度(B)和粒子的荷质比( )相关。
m
(3)处理带电粒子在场中的运动问题应注意是否考虑带电粒子的重力。这要依据具体情况而 定,质子、α粒子、离子等微观粒子,一般不考虑重力;液滴、尘埃、小球等宏观带电粒子由
题设条件决定,一般把装置在空间的方位介绍的很明确的,都应考虑重力,有时还应根据题目

高考物理试题——电场专题(含标准答案)

高考物理试题——电场(课堂) (全国卷1)16.关于静电场,下列结论普遍成立的是( ) A .电场中任意两点之间的电势差只与这两点的场强有关 B .电场强度大的地方电势高,电场强度小的地方电势低 C .将正点电荷从场强为零的一点移动到场强为零的另一点,电场力做功为零 D .在正电荷或负电荷产生的静电场中,场强方向都指向电势降低最快的方向 (全国卷2)17. 在雷雨云下沿竖直方向的电场强度为V/m.已知一半径为1mm 的雨滴在此电场中不会下落,取重力加速度大小为10m/,水的密度为kg/。这雨滴携带的电荷量的最小值约为( ) A .2 C B. 4 C C. 6 C D. 8 C (天津卷)5.在静电场中,将一正电荷从a 点移到b 点,电场力做了负功,则( ) A .b 点的电场强度一定比a 点大 B .电场线方向一定从b 指向a C .b 点的电势一定比a 点高 D .该电荷的动能一定减小 (天津卷)12.(20分)质谱分析技术已广泛应用 于各前沿科学领域。汤姆孙发现电子的质谱装置示意 如图,M 、N 为两块水平放置的平行金属极板,板长为 L ,板右端到屏的距离为D ,且D 远大于L ,O’O 为垂直 于屏的中心轴线,不计离子重力和离子在板间偏离O’O 的距离。以屏中心O 为原点建立xOy 直角坐标系,其中x 轴沿水平方向,y 轴沿竖直方向。 (1)设一个质量为m 0、电荷量为q 0的正离子以速度v 0沿O’O 的方向从O’点射入,板间不加电场和磁场时,离子打在屏上O 点。若在两极板间加一沿+y 方向场强为E 的匀强电场,求离子射到屏上时偏离O 点的距离y 0; 4 102s 3103m ?910-?910-?910-?910-

2019届高考物理专题三电场和磁场18年真题汇编

考点十一 磁场 1.(2018·全国卷II ·T20)如图,纸面内有两条互相垂直的长直绝缘导线L 1、L 2,L 1中的电流方向向左,L 2中的电流方向向上;L 1的正上方有a 、b 两点,它们相对于L 2对称。整个系统处于匀强外磁场中,外磁场的磁感应强度大小为B 0,方向垂直于纸面向外。已知a 、b 两点的磁感应强度大小分别为13B 0和1 2 B 0,方向也垂直于纸面向外。则( ) A.流经L 1的电流在b 点产生的磁感应强度大小为 0127 B B.流经L 1的电流在a 点产生的磁感应强度大小为0121 B C.流经L 2的电流在b 点产生的磁感应强度大小为01 12B D.流经L 2的电流在a 点产生的磁感应强度大小为07 12 B 【命题意图】本题意在考查右手螺旋定则的应用和磁场叠加的规律。 【解析】选A 、C 。设L 1在a 、b 两点产生的磁感应强度大小为B 1,设L 2在a 、b 两点产生的磁感应强度大小为B 2,根据右手螺旋定则,结合题意B 0-(B 1+B 2)=13B 0,B 0+B 2-B 1=1 2 B 0, 联立可得B 1= 712B 0,B 2=1 12 B 0,选项A 、 C 正确。 2.(2018·北京高考·T6)某空间存在匀强磁场和匀强电场。一个带电粒子(不计重力)以一定 初速度射入该空间后,做匀速直线运动;若仅撤除电场,则该粒子做匀速圆周运动,下列因素与完成上述两类运动无关的是 ( ) A.磁场和电场的方向 B.磁场和电场的强弱 C.粒子的电性和电量 D.粒子入射时的速度 【解析】选C 。由题可知,当带电粒子在复合场内做匀速直线运动,即Eq=qvB ,则v= E B ,若仅撤除电场,粒子仅在洛伦兹力作用下做匀速圆周运动,说明要满足题意,对磁场与电场的方向以及强弱程度都要有要求,但是对电性和电量无要求,根据F=qvB 可知,洛伦兹力的方向与速度方向有关,故对入射时的速度也有要求,故选C 。 3.(2018·全国卷I ·T25) 如图,在y>0的区域存在方向沿y 轴负方向的匀强电场,场强大小为E ;在y<0的区域存在方向垂直于xOy 平面向外的匀强磁场。一个氕核11H 和一个氘核21H 先后从y 轴上y=h 点以相同的动能射出,速度方向沿x 轴正方向。已知11H 进入磁场时,速度方向与x 轴正方向的夹角为60°,并从坐标原点O 处第一次射出磁场。11H 的质量为m ,电荷量为q 。不计重力。求

高考物理热门考点聚焦专题4电场、磁场和能量转化

考点4 电场、磁场和能量转化 命题趋势 电场、磁场和能量的转化是中学物理重点内容之一,分析近十年来高考物理试卷可知,这部分知识在高考试题中的比例约占13%,几乎年年都考,从考试题型上看,既有选择题和填空题,也有实验题和计算题;从试题的难度上看,多属于中等难度和较难的题,特别是只要有计算题出现就一定是难度较大的综合题;由于高考的命题指导思想已把对能力的考查放在首位,因而在试题的选材、条件设置等方面都会有新的变化,将本学科知识与社会生活、生产实际和科学技术相联系的试题将会越来越多,而这块内容不仅可以考查多学科知识的综合运用,更是对学生实际应用知识能力的考查,因此在复习中应引起足够重视。 知识概要 能量及其相互转化是贯穿整个高中物理的一条主线,在电场、磁场中,也是分析解决问题的重要物理原理。在电场、磁场的问题中,既会涉及其他领域中的功和能,又会涉及电场、磁场本身的功和能,相关知识如下表: 如果带电粒子仅受电场力和磁场力作用,则运动过程中,带电粒子的动能和电势能之间相互转化,总量守恒;如果带电粒子受电场力、磁场力之外,还受重力、弹簧弹力等,但没有摩擦力做功,带电粒子的电势能和机械能的总量守恒;更为一般的情况,除了电场力做功外,还有重力、摩擦力等做功,如选用动能定理,则要分清有哪些力做功?做的是正功还是负功?是恒力功还是变力功?还要确定初态动能和末态动能;如选用能量守恒定律,则要分清有哪种形式的能在增加,那种形式的能在减少?发生了怎样的能量转化?能量守恒的表达式可以是:①初态和末态的总能量相等,即E 初=E 末;②某些形势的能量的减少量等于其他形式的能量的增加量,即ΔE 减=ΔE 增;③各种形式的能量的增量(ΔE =E 末-E 初)的代数和为零,即ΔE 1+ΔE 2+…ΔE n =0。 电磁感应现象中,其他能向电能转化是通过安培力的功来量度的,感应电流在磁场中受到的安培力作了多少功就有多少电能产生,而这些电能又通过电流做功转变成其他能,如电阻上产生的内能、电动机产生的机械能等。从能量的角度看,楞次定律就是能量转化和守恒定律在电磁感应现象中的具体表现。电磁感应过程往往涉及多种能量形势的转化,因此从功和能的观点入手,分析清楚能量转化的关系,往往是解决电磁感应问题的重要途径;在运用功能关系解决问题时,应注意能量转化的来龙去脉,顺着受力分析、做功分析、能量分析的思路严格进行,并注意功和能的对应关系。 电、磁场中的功和能 电场中的 功和能 电势能 由电荷间的相对位置决定,数值具有相对性,常取无限远处或大地为电势能的零点。重要的不是电势能的值,是其变化量 电场力的功 与路径无关,仅与电荷移动的始末位置有关:W =qU 电场力的功和电势能的变化 电场力做正功 电势能 → 其他能 电场力做负功 其他能 → 电势能 转化 转化 磁场中的 功和能 洛伦兹力不做功 安培力的功 做正功:电能 → 机械能,如电动机 做负功:机械能 → 电能,如发电机 转化 转化

2017年高三物理一模 电场专题汇编

上海市各区县2017届高三物理试题电场专题分类精编 一、选择题 1、(2017崇明第12题)如图所示的直线是真空中某电场的一条电场线,A 、B 是这条直线上的两点,一 带正电粒子以速度υA 向右经过A 点向B 点运动,经过一段时间后,粒子以速度υB 经过B 点,且υB 与υA 方向相反,不计粒子重力,下面判断正确的是 A .A 点的场强一定大于B 点的场强 B .A 点的电势一定高于B 点的电势 C .粒子在A 点的速度一定大于在B 点的速度 D .粒子在A 点的电势能一定小于在B 点的电势能 2、(2017虹口第5题)三个点电荷附近的电场线分布如图所示,c 是电量相等的两个负电荷连线的中点, d 点在正电荷的正上方,c 、d 到正电荷的距离相等,则( ) (A )c 点的电场强度为零 (B )b 、d 两点的电场强度不同 (C )a 点的电势比b 点的电势高 (D )c 点的电势与d 点的电势相等 3、(2017虹口第8题)如图所示,一带正电的点电荷固定于O 点,两虚线圆均以O 为圆心。两实线分别为带电粒子M 和N 先后在电场中运动的轨迹,a 、b 、c 、d 、e 为轨迹和虚线圆 的交点,不计重力。下列说法中正确的是( ) (A )M 、N 均带负电荷 (B )M 在b 点的速度小于它在a 点的速度 (C )N 在c 点的电势能小于它在e 点的电势能 (D )N 在从e 点运动到d 点的过程中电场力先做正功后做负功 4、(2017嘉定、长宁第8题)带电粒子仅在电场力作用下,从电场中a 点以初速度v 0进入电场并沿虚线所示的轨迹运动到b 点,如图所示,实线是电场线,关于粒子,下列说法正确的是( ) (A )在a 点的加速度大于在b 点的加速度 (B )在a 点的电势能小于在b 点的电势能 (C )在a 点的速度小于在b 点的速度 (D )电场中a 点的电势一定比b 点的电势高 v A v B A B

我总结(电场能量守恒与磁场)

电场 1.电荷周围存在电场.:库仑定律。 2.电场的大小:单位电量的电荷在电场中受到的电场力。检验电荷受到的力越大那 。电场线越密集电场越大。 3.场强是描述电场性质的物质的物理量,只由电场决定,与检验电荷无关.例如在 A q的大小无关, .不能理解为 ,. 4. 场强是矢量., 其方向为正电荷的受力方向为该点场强方向. 5.电场强度和电场力是两个不同的物理量,就像速度和位移是完全不同的两个 概念.最 根本不同的是:场强是表示电场的性质的物理量 ,电场力是电荷在电场中受的电场的作用力. 注意 .而 . 6.场强可以合成分解,并遵守平行四边形法则,如图示2 所示.Q A与Q B在C处的场强分别为E A、E B,E即是E A与 E B的合成场强.若在C处放一个-q点电荷,所受电场力方 向应与E反方向. 7.电荷守恒定律:系统与外界无电荷交换时,系统的电荷代数和守恒。 8. 三.电场线 1.电场线是描述电场强度分布的一族曲线.描述方法:用曲线的疏密描述电场的强弱,用曲线某点的切线方向表示该点场强方向. 2.电场的特点: (1).在静电场中,电场线从正电荷起,终于负电荷,不闭合曲线. (2).电场线不能相交,否则一点将有两个场强方向. (3).电场线不是电场里实际存在的线,是为使电场形象化的假想线.

3. 点电荷的电场线. 图3、图4为正、负点电荷电场线的分布,应熟悉. 从图5可看出,E 1为+Q 在A 处的场强,E 2为-Q 在A 处的场强,E 为E 1与E 2的 合场强,正好为电场线在A 的切线。两个点电荷形成的电场中,每条电场线上 每个点符合上述的关系。 4.匀强电场 (1) .定义:在电场的某一区域里,如果各点场强大小和方向都相同,这个区域的 电场叫匀强电场. (2) .电场线如图6所示.电场线互相平行的直线,线间距离相等. (3) .两块靠近、正对且等大平行的金属板,分别带等量 正负电荷时,它们之间的电场是匀强电场.边缘附近除 外. 5、公式 四.电场中的导体. 1. 导体的特征:导体内部有大量可以自由移动的电荷.金属导体可自由移动是自由电子. 2. 静电感应:导体内的自由电荷是电场的作用而重新分布的现象. 认真分析如图所示的物理过程:把金属导体置于匀强电 场中.金 属导体中自由电子在电场力作用向左运动,达到左外表面,而 右外表面带正电.金属导体外表面带的等量正负电荷称为感 应电荷,感应电荷形成电场E '的方向与电场E 方向相反向 左,E '随着感应电荷增加而变大,当E '=E 时,导体内场强为零, 自由电子不受电场力作用,停止定向运动.达到静电平衡. 静电平衡:导体中(包括表面)没有电荷走向移动的状态叫静电平衡. 3. 在导体处于静电平衡状态时有 (1) .在导体内部的场强处处为零 (2) .导体表面任何一点场强方向与该点表面垂直. (3) .电荷只能分布在外表面上. 4. 利用处于静电平衡状态时,导体内部场强处处为零的特点,利用金属网罩(金 属包皮)把外 电场遮住,使内部不受电场影响即静电屏数. 3. 深刻理解电场的能的性质。 (1)电势φ:是描述电场能的性质的物理量。

相关文档
相关文档 最新文档