文档视界 最新最全的文档下载
当前位置:文档视界 › 计算专项练习卷

计算专项练习卷

计算专项练习卷
计算专项练习卷

计算专项练习卷

答案:

11 9 23 19 9 17 91 9 11 76 11 15 13 39 68 11 15 13 39 68 61 31 79 27 38 11 9 21 29 13 11 27 49 25 64 19 11 9 59 90 51 81 37 23 58 11 9 27 13 75 25 17 11 69 6 9 9 19 15 72 51 34 21 41 28 11 9 23 19 9 17 91 9 11 76 11 15 13 39 68 61 31 79 79 27 38 11 9 21 29 13 11 27 49 25 64 19 11 9 59 50 51 81 37 23 58 11 9 27 13 75 25 17 11 69 6 9 9 19 15 72 51 34 21 41 28

河北工业大学_计算方法_期末考试试卷_C卷

2012 年(秋)季学期 课程名称:计算方法 C卷(闭卷)

2012 年(秋)季学期

2012 年(秋)季学期

2012 年(秋)季学期

2012 年 秋 季 (计算方法) (C) 卷标准答案及评分细则 一、 填空题 (每题2分,共20分) 1、 截断 舍入 ; 2、则 ()0n k k l x =∑= 1 ,()0 n k j k k x l x =∑= j x , 4、 12 。 4、 2.5 。 5、10 次。 6、A 的各阶顺序主子式均不为零。 7 、1A ρ=+() ,则6 A ∞ =。 二、综合题(共80分) 1. (本题10分)已知f (-1)=2,f (1)=3,f (2)=-4,求拉格朗日插值多项式)(2x L 及f (1,5)的近似值,取五位小数。 解: )12)(12() 1)(1(4)21)(11()2)(1(3)21)(11()2)(1(2)(2-+-+? --+-+?+------? =x x x x x x x L (6分) )1)(1(34 )2)(1(23)2)(1(32-+--+---= x x x x x x (2分) 04167.024 1 )5.1()5.1(2≈= ≈L f (2分) 2. (本题10分)用复化Simpson 公式计算积分()?=1 0sin dx x x I 的近似值,要求误差限为5105.0-?。 ()()0.9461458812140611=???? ??+??? ??+= f f f S (3分) ()()0.94608693143421241401212=???? ??+??? ??+??? ??+??? ??+= f f f f f S (4分) 5-12210933.0151 ?=-≈ -S S S I 94608693.02=≈S I (3分) 或利用余项:()() -+-+-==!9!7!5!31sin 8 642x x x x x x x f () -?+?-=!49!275142) 4(x x x f ()51 )4(≤ x f

《数值计算方法》试题集及答案

《数值计算方法》复习试题 一、填空题: 1、????? ?????----=410141014A ,则A 的LU 分解为 A ??? ?????????=? ?????????? ?。 答案: ?? ????????--??????????--=1556141501 4115401411A 2、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得 ?≈3 1 _________ )(dx x f ,用三点式求得≈')1(f 。 答案:, 3、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2 x 的系数为 , 拉格朗日插值多项式为 。 答案:-1, )2)(1(21 )3)(1(2)3)(2(21)(2--------= x x x x x x x L 4、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字; 5、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( ); ( 答案 )(1)(1n n n n n x f x f x x x '--- =+ 6、对1)(3 ++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 ); 7、计算方法主要研究( 截断 )误差和( 舍入 )误差; 8、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为 ( 1 2+-n a b ); 9、求解一阶常微分方程初值问题y '= f (x ,y ),y (x 0)=y 0的改进的欧拉公式为

( )] ,(),([2111+++++=n n n n n n y x f y x f h y y ); 10、已知f (1)=2,f (2)=3,f (4)=,则二次Newton 插值多项式中x 2系数为( ); 11、 两点式高斯型求积公式?1 d )(x x f ≈( ?++-≈1 )] 321 3()3213([21d )(f f x x f ),代数精 度为( 5 ); 12、 解线性方程组A x =b 的高斯顺序消元法满足的充要条件为(A 的各阶顺序主子式均 不为零)。 13、 为了使计算 32)1(6 )1(41310-- -+-+ =x x x y 的乘除法次数尽量地少,应将该表 达式改写为 11 ,))64(3(10-= -++=x t t t t y ,为了减少舍入误差,应将表达式 19992001-改写为 199920012 + 。 14、 用二分法求方程01)(3 =-+=x x x f 在区间[0,1]内的根,进行一步后根的所在区间 为 ,1 ,进行两步后根的所在区间为 , 。 15、 、 16、 计算积分?1 5 .0d x x ,取4位有效数字。用梯形公式计算求得的近似值为 ,用辛卜 生公式计算求得的近似值为 ,梯形公式的代数精度为 1 ,辛卜生公式的代数精度为 3 。 17、 求解方程组?? ?=+=+042.01532121x x x x 的高斯—塞德尔迭代格式为 ?????-=-=+++20/3/)51()1(1)1(2)(2)1(1 k k k k x x x x ,该迭 代格式的迭代矩阵的谱半径)(M ρ= 121 。 18、 设46)2(,16)1(,0)0(===f f f ,则=)(1x l )2()(1--=x x x l ,)(x f 的二次牛顿 插值多项式为 )1(716)(2-+=x x x x N 。 19、 求积公式 ?∑=≈b a k n k k x f A x x f )(d )(0 的代数精度以( 高斯型 )求积公式为最高,具 有( 12+n )次代数精度。

线性代数与计算方法期末试卷1

第 1 页 共 1 页 洛阳理工学院 线性代数与计算方法 期末考试试题卷1 一、 判断题(每小题2分,共10分) 1. A 为n 阶方阵,若n 元线性方程组0Ax =有非零解,则0A ≠. ( ) 2. 若矩阵A 经过有限次初等变换变成矩阵B ,则()()B R A R =. ( ) 3. 线性方程组有解的充分必要条件是系数矩阵的秩等于未知量的个数. ( ) 4. 对准确值进行四舍五入得到的近似值50.301210?有4位有效数字. ( ) 5. 梯形求积公式的代数精度是3. ( ) 二、 填空题(每空2分,共10分) 1. 排列41532的逆序数为 . 2. 设131042-??= ???A ,412534?? ?= ? ???B ,则AB = . 3. 已知三阶方阵A 的行列式3=A ,2=A . 4. 用二分法求方程()2 sin 4 =-x f x x 在区间[1.5,2]内的近似根,为使误差不超过-210,至少需要二分 次. 5. 已知()()1224==f f ,,则这两点的一阶差商[]1,2=f . 三、 计算题(每小题10分,共80分) 1. 求行列式1 11111051 3132413 -=----D 的值. 2. 已知123221343A ?? ?= ? ??? ,求1-A . 3. 已知向量组1234(1,0,2,1),(1,2,0,1),(2,1,3,0),(1,1,3,1)αααα====--,(1)求向量组的秩;(2)求向量组的一个极大无 关组;(3)将向量组中的其余向量用极大无关组线性表示. 4. 求方程组123412341 23428100 245032860x x x x x x x x x x x x +-+=??-++=??-++=?的基础解系和通解. 5. 取0 1.5=x ,用牛顿迭代法求方程324100+-=x x 根的近似值.(1)写出牛顿迭代公式;(2)计算四次迭代的结果. 6. 已知函数表 (1)构造差商表,求()x f 的二次牛顿插值多项式; (2)据此多项式求出()f x 的极值点和极值的近似值. 7. (1)写出辛普森公式; (2)用辛普森公式计算 1 0-?x e dx . 8. 用欧拉方法求初值问题()[0,1]01y x y x y '=+∈??=? 的数值解(取5.0=h ).

地方时计算方法及试题精选(DOC)

关于地方时的计算 一.地方时计算的一般步骤: 1.找两地的经度差: (1)如果已知地和要求地同在东经或同在西经,则: 经度差=经度大的度数—经度小的度数 (2)如果已知地和要求地不同是东经或西经,则: 经度差=两经度和(和小于180°时) 或经度差=(180°—两经度和)。(在两经度和大于180°时) 2.把经度差转化为地方时差,即: 地方时差=经度差÷15°/H 3.根据要求地在已知地的东西位置关系,加减地方时差,即:要求点在已知点的东方,加地方时差;如要求点在已知点西方,则减地方时差。 二.东西位置关系的判断: (1)同是东经,度数越大越靠东。即:度数大的在东。 (2)是西经,度数越大越靠西。即:度数大的在西。 (3)一个东经一个西经,如果和小180°,东经在东西经在西;如果和大于180°,则经度差=(360°—和),东经在西,西经在东;如果和等于180,则亦东亦西。 三.应用举例: 1、固定点计算 【例1】两地同在东经或西经 已知:A点120°E,地方时为10:00,求B点60°E的地方时。 分析:因为A、B两点同是东经,所以,A、B两点的经度差=120°-60°=60° 地方时差=60°÷15°/H=4小时 因为A、B两点同是东经,度数越大越靠东,要求B点60°E比A点120°E小,所以,B点在A点的西方,应减地方时差。 所以,B点地方时为10:00—4小时=6:00 【例2】两地分属东西经 A、已知:A点110°E的地方时为10:00,求B点30°W的地方时. 分析:A在东经,B在西经,110°+30°=140°<180°,所以经度差=140°,且A点东经在东,B 点西经在西,A、B两点的地方时差=140°÷15°/H=9小时20分,B点在西方, 所以,B点的地方时为10:00—9小时20分=00:40。 B、已知A点100°E的地方时为8:00,求B点90°W的地方时。 分析:A点为东经,B点为西经,100°+90°=190°>180°, 则A、,B两点的经度差=360°—190°=170°,且A点东经在西,B点西经在东。 所以,A、B两点的地方时差=170°÷15°/H=11小时20分,B点在A点的东方, 所以B点的地方时为8:00+11小时20分=19:20。 C、已知A点100°E的地方8:00,求B点80°W的地方时。 分析:A点为100°E,B点为80°W,则100°+80°=180°,亦东亦西,即:可以说B点在A 点的东方,也可以说B点在A点的西方,A,B两点的地方时差为180÷15/H=12小时。 所以B点的地方时为8:00+12小时=20:00或8:00—12小时,不够减,在日期中借一天24小时来,即24小时+8:00—12小时=20:00。 2、变化点计算 【例1】一架飞机于10月1日17时从我国上海(东八区)飞往美国旧金山(西八区),需飞行14小时。到达目的地时,当地时间是() A. 10月2日15时 B. 10月2日3时 C. 10月1日15时 D. 10月1日3时

数值计算方法试题及答案

【 数值计算方法试题一 一、 填空题(每空1分,共17分) 1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。 2、迭代格式)2(2 1-+=+k k k x x x α局部收敛的充分条件是α取值在( )。 3、已知?????≤≤+-+-+-≤≤=31)1()1()1(211 0)(2 33x c x b x a x x x x S 是三次样条函数, 则 a =( ), b =( ), c =( )。 4、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则 ∑== n k k x l 0)(( ), ∑== n k k j k x l x 0 )(( ),当2≥n 时 = ++∑=)()3(20 4x l x x k k n k k ( )。 ; 5、设1326)(2 47+++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[10n x x x f 和=?07 f 。 6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。 7、{}∞ =0)(k k x ?是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ?,则?= 1 4)(dx x x ? 。 8、给定方程组?? ?=+-=-2211 21b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。 9、解初值问题 00 (,)()y f x y y x y '=?? =?的改进欧拉法 ??? ??++=+=++++)],(),([2),(] 0[111] 0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是 阶方法。

计算方法 试题A 答案

计算方法试题A 答案

大连理工大学应用数学系 数学与应用数学专业2005级试A 卷答案 课 程 名 称: 计算方法 授课院 (系): 应 用 数 学 系 考 试 日 期:2007年11 月 日 试卷共 6 页 一 二 三 四 五 六 七 八 九 十 总分 标准分 42 8 15 15 15 5 / / / / 100 得 分 一、填空(每一空2分,共42分) 1.为了减少运算次数,应将表达式.543242 16171814131 1681 x x x x x x x x -+---++- 改写为 ()()()()()()()1 816011314181716-+++---+-x x x x x x x x x ; 2.给定3个求积节点:00=x ,5.01=x 和12=x ,则用复化梯形公式计算积分dx e x ?-1 02 求得的近似值为 () 15.0214 1 --++e e , 用Simpson 公式求得的近似值为 () 15.0416 1 --++e e 。 1. 设函数()1,0,1)(3-∈S x s ,若当1-

计算方法2006-2007试卷

计算方法2006-2007第一学期 1 填空 1). 近似数253.1*=x 关于真值249.1=x 有几位有效数字 ; 2). 设有插值公式)()(1 1 1 k n k k x f A dx x f ?∑-=≈,则∑=n k k A 1 =______ 3) 设近似数0235.0*1=x ,5160.2*2 =x 都是有效数,则相对误差≤)(*2 *1 x x e r ____ 4) 求方程x x cos =的根的牛顿迭代格式为 5) 矛盾方程组?????-=+=-=+1211212121x x x x x x 与??? ??-=+=-=+1 2122221 2121x x x x x x 得最小二乘解是否相同。 2 用迭代法(方法不限)求方程1=x xe 在区间(0,1)内根的近似值,要求先论证收敛性,误差小于210-时迭代结束。 3 用最小二乘法x be ax y +=2中的常数a 和b ,使该函数曲线拟合与下面四个点 (1,-0.72)(1.5, 0.02),(2.0, 0.61),(2.5, 0.32) (结果保留到小数点后第四位) 4.(10分)用矩阵的直接三角分解法求解线性方程组 ???? ? ? ? ??=??????? ????????? ??717353010342110100201 4321x x x x 5.(10分)设要给出()x x f cos =的如下函数表 用二次插值多项式求)(x f 得近似值,问 步长不超过多少时,误差小于3 10- 6. 设有微分方程初值问题 ?? ?=≤<-='2 )0(2 .00,42y x x y y - )

《计算方法》期末考试试题

《计算方法》期末考试试题 一 选 择(每题3分,合计42分) 1. x* = 1.732050808,取x =1.7320,则x 具有 位有效数字。 A 、3 B 、4 C 、5 D 、6 2. 取7 3.13≈(三位有效数字),则 ≤-73.13 。 A 、30.510-? B 、20.510-? C 、10.510-? D 、0.5 3. 下面_ _不是数值计算应注意的问题。 A 、注意简化计算步骤,减少运算次数 B 、要避免相近两数相减 C 、要防止大数吃掉小数 D 、要尽量消灭误差 4. 对任意初始向量)0(x 及常向量g ,迭代过程g x B x k k +=+)() 1(收敛的充分必要条件是_ _。 A 、11< B B 、1<∞ B C 、1)(

数值计算方法》试题集及答案

《计算方法》期中复习试题 一、填空题: 1、已知3.1)3(,2.1)2(,0.1)1(===f f f ,则用辛普生(辛卜生)公式计算求得 ?≈3 1 _________ )(dx x f ,用三点式求得≈')1(f 。 答案:2.367,0.25 2、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2 x 的系数为 ,拉 格朗日插值多项式为 。 答案:-1, )2)(1(21 )3)(1(2)3)(2(21)(2--------= x x x x x x x L 3、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字; 4、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( ); 答案 )(1)(1n n n n n x f x f x x x '--- =+ 5、对1)(3 ++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 ); 6、计算方法主要研究( 截断 )误差和( 舍入 )误差; 7、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为 ( 1 2+-n a b ); 8、已知f (1)=2,f (2)=3,f (4)=5.9,则二次Newton 插值多项式中x 2系数为( 0.15 ); 11、 两点式高斯型求积公式?1 d )(x x f ≈( ?++-≈1 )] 321 3()3213([21d )(f f x x f ),代数精度 为( 5 ); 12、 为了使计算 32)1(6 )1(41310-- -+-+ =x x x y 的乘除法次数尽量地少,应将该表达 式改写为 11 ,))64(3(10-= -++=x t t t t y ,为了减少舍入误差,应将表达式1999 2001-

数值计算方法试题

数值计算方法试题 重庆邮电大学数理学院 一、填空题(每空2分,共20分) 1、用列主元消去法解线性方程组 1、解非线性方程f(x)=0的牛顿迭代法具有 ,,,,,,,收 敛 2、迭代过程(k=1,2,…)收敛的充要条件是 2、已知y=f(x)的数据如下 ,,, x 0 2 3 3、已知数 e=2.718281828...,取近似值 x=2.7182,那麽x具有的有 f(x) 1 3 2 效数字是,,, 4、高斯--塞尔德迭代法解线性方程组求二次插值多项式及f(2.5) 3、用牛顿法导出计算的公式,并计算,要求迭代误差不超过 。 4、欧拉预报--校正公式求解初值问题的迭代格式中求 ,,,,,,,,,,,,, ,

5、通过四个互异节点的插值多项式p(x),只要满足,,,,,,取步长k=0.1,计算 y(0.1),y(0.2)的近似值,小数点后保留5位. ,,则p(x)是不超过二次的多项式 三、证明题 (20分每题 10分 ) 6、对于n+1个节点的插值求积公式 1、明定 积分近似计算的抛物线公式 具有三次代数精度至少具有,,,次代 数精度. 7、插值型求积公式的求积 2、若,证明用梯形公式计算积分所 系数之和,,, 得结果比准确值大,并说明这个结论的几何意义。 参考答案: T8、 ,为使A可分解为A=LL, 其中L一、填空题 1、局部平方收敛 2、< 1 3、 4 为对角线元素为正的下三角形,a的取值范围, 4、

5、三阶均差为0 6、n 7、b-a 9、若则矩阵A的谱半径(A)= ,,, 8、 9、 1 10、二阶方法 10、解常微分方程初值问题的梯形二、计算题 格式 1、是,,,阶方法 二、计算题(每小题15分,共60分) 修德博学求实创新 李华荣 1 重庆邮电大学数理学院 2、 右边: 3、 ?1.25992 (精确到 ,即保留小数点后5位) 故具有三次代数精度 4、y(0.2)?0.01903 A卷三、证明题

计算方法试题

计算方法试题 1.有效数字位数越多,相对误差越小。() 2.若A是n×n阶非奇异阵,则必存在单位下三角阵L和上三角阵U,使A=LU唯一成立。() 3.当时,型求积公式会产生数值不稳定性。() 4.不适合用牛顿-莱布尼兹公式求定积分的情况有的原函数不能用有限形式表示。() 5.中矩形公式和左矩形公式具有1次代数精度。() 1.数的六位有效数字的近似数的绝对误差限是() 2.用二分法求方程在区间[0,1]内的根,进行一步后根的所在区间为()。 3.求解线性代数方程组的高斯-赛德尔迭代格式为( ) 4.已知函数在点=2和=5处的函数值分别是12和18,已知,则()。 5.5个节点的牛顿-柯特斯求积公式的代数精度为()。 1.不是判断算法优劣的标准是()。 A、算法结构简单,易于实现 B、运算量小,占用内存少 C、稳定性好 D、计算误差大 2.计算(),取,采用下列算式计算,哪一个得到的结果最好? ()。 A、 ()B、99-70C、D、 () 3.计算的Newton迭代格式为()。 A、B、C、D、4.雅可比迭代法解方程组的必要条件是()。 A、A的各阶顺序主子式不为零 B、 C、,,,, D、

5.设求方程的根的切线法收敛,则它具有()敛速度。 A、线性 B、超越性 C、平方 D、三次 6.解线性方程组的主元素消元法中选择主元的目的是()。 A、控制舍入误差 B、减小方法误差 C、防止计算时溢出 D、简化计算 7.设和分别是满足同一插值条件的n次拉格朗日和牛顿插值多项式,它们的插值余项分别为和,则()。 A、, B、, C、, D、, 8.求积公式至少具有0次代数精度的充要条件是:() A、B、 C、D、 9.数值求积公式中Simpson公式的代数精度为()。 A、0B、1 C、2D、3 10.在牛顿-柯特斯求积公式:中,当系数是负值时,公式的稳定性不能保证,所以实际应用中,当()时的牛顿-柯特斯求积公式不使用。 A、B、C、D、 1.简述误差的四个来源。(10分) 2.简述分析法对的根进行隔离的一般步骤。 1.已知方程有一个正根及一个负根。 a)估计出有根区间; b)分别讨论用迭代公式求这两个根时的收敛性; c)如果上述格式不迭代,请写出一个收敛的迭代格式。(不需要证明)

数值计算方法试题一

数值计算方法试题一

数值计算方法试题一 一、 填空题(每空1分,共17分) 1、如果用二分法求方程043 =-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。 2、迭代格式)2(2 1 -+=+k k k x x x α局部收敛的充分条件是α取值在( )。 3、已知?????≤≤+-+-+-≤≤=31)1()1()1(2 110)(2 33x c x b x a x x x x S 是三次样条函数,则 a =( ),b =( ),c =( )。 4、)(,),(),(1 x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则 ∑== n k k x l 0)(( ), ∑== n k k j k x l x 0 )(( ),当 2 ≥n 时 = ++∑=)()3(20 4 x l x x k k n k k ( )。 5、设1326)(2 4 7 +++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[1 n x x x f 和=?0 7 f 。 6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。 7、{}∞ =0 )(k k x ?是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0 =x ?,则 ?= 1 4 )(dx x x ? 。 8、给定方程组?? ?=+-=-2 21121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。

9、解初值问题 00 (,)()y f x y y x y '=?? =?的改进欧拉法 ?? ? ??++=+=++++)],(),([2),(] 0[111] 0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是 阶方法。 10、设?? ?? ? ?????=11001a a a a A ,当∈a ( )时,必有分解式T LL A =,其中L 为下三角阵,当其对角线元素)3,2,1(=i l ii 满足( )条件时,这种分解是唯一的。 二、 选择题(每题2分) 1、解方程组b Ax =的简单迭代格式g Bx x k k +=+) () 1(收敛的充要条件是( )。 (1)1)(A ρ, (4) 1)(>B ρ 2、在牛顿-柯特斯求积公式: ?∑=-≈b a n i i n i x f C a b dx x f 0 )() ()()(中,当系数) (n i C 是负值时,公式的稳定性不能保证,所以实际应用中,当( )时的牛顿-柯特斯求积公式不使用。 (1)8≥n , (2)7≥n , (3)10≥n , (4)6≥n , x 0 0.5 1 1.5 2 2.5

计算方法试题

计算方法考试题(一) 满分70分 一、选择题:(共3道小题,第1小题4分,第2、3小题3分,共10分) 1、将A 分解为U L D A --=,其中),,(2211nn a a a diag D =,若对角阵D 非奇异(即),1,0n i a ii =≠,则b Ax =化为b D x U L D x 1 1)(--++=(1) 若记b D f U L D B 111 1),(--=+= (2) 则方程组(1)的迭代形式可写作 ) 2,1,0(1 )(1)1( =+=+k f x B x k k (3) 则(2)、(3)称 【 】 (A)、雅可比迭代。(B)、高斯—塞德尔迭代 (C)、LU 分解 (D)、Cholesky 分解。 2、记*x x e k k -=,若0lim 1≠=+∞→c e e p k k k (其中p 为一正数)称序列}{k x 是 【 】 (A)、p 阶收敛; (B)、1阶收敛; (C)、矩阵的算子范数; (D)、p 阶条件数。 3、牛顿切线法的迭代公式为 【 】 (A)、 ) () (1k x f x f x x k k k '- =+ (B)、 )()())((111--+--- =k k k k k k k x f x f x x x f x x 1 )() ()1()()()(x x f x f x f k i k i k i ??+=+ (D)、 )() ()()1(k k k x f x x -=+ 二、填空题:(共2道小题,每个空格2分,共10分) 1、设0)0(f =,16)1(f =,46)2(f =,则一阶差商 ,二阶差商=]1,2,0[f ,)x (f 的二次牛顿 插值多项式为 2、 用二分法求方程 01x x )x (f 3 =-+=在区间]1,0[内的根,进行第一步后根所在的区间为 ,进行第二步后根所在的区间 为 。 三、计算题:(共7道小题,第1小题8分,其余每小题7分,共50分) 1、表中各*x 都是对准确值x 进行四舍五入得到的近似值。试分别指出试用抛物插值计算115的近似值,并估计截断误差。 3、确定系数101,,A A A -,使求积公式 ) ()0()()(101h f A f A h f A dx x f h h ++-≈? -- (1) 具有尽可能高的代数精度,并指出所得求积公式的代数精度。

计算方法试题库讲解

计算方法 一、填空题 1.假定x ≤1,用泰勒多项式?+??+++=! !212n x x x e n x ,计算e x 的值,若要求截断误差不超过0.005,则n=_5___ 2. 解 方 程 03432 3=-+x -  x x 的牛顿迭代公式 )463/()343(121121311+--+--=------k k k k k k k x x x x x x x 3.一阶常微分方程初值问题 ?????= ='y x y y x f y 0 0)() ,(,其改进的欧拉方法格式为)],(),([21 1 1 y x y x y y i i i i i i f f h +++++= 4.解三对角线方程组的计算方法称为追赶法或回代法 5. 数值求解初值问题的四阶龙格——库塔公式的局部截断误差为o(h 5 ) 6.在ALGOL 中,简单算术表达式y x 3 + 的写法为x+y ↑3 7.循环语句分为离散型循环,步长型循环,当型循环. 8.函数)(x f 在[a,b]上的一次(线性)插值函数= )(x l )()(b f a b a x a f b a b x --+-- 9.在实际进行插值时插值时,将插值范围分为若干段,然后在每个分段上使用低阶插值————如线性插值和抛物插值,这就是所谓分段插值法 10、数值计算中,误差主要来源于模型误差、观测误差、截断误差和舍入误差。 11、电子计算机的结构大体上可分为输入设备 、 存储器、运算器、控制器、 输出设备 五个主要部分。 12、算式2 cos sin 2x x x +在ALGOL 中写为))2cos()(sin(2↑+↑x x x 。 13、ALGOL 算法语言的基本符号分为 字母 、 数字 、 逻辑值、 定义符四大

吉林大学 研究生 数值计算方法期末考试 样卷

1.已知 ln(2.0)=0.6931;ln(2.2)=0.7885,ln( 2.3)=0.8329,试用线性插值和抛物插值计算.ln2.1的值并估计误差 2.已知x=0,2,3,5对应的函数值分别为y=1,3,2,5.试求三次多项式的插值 3. 分别求满足习题1和习题2 中插值条件的Newton插值 (1) x ] i (2)

1,] i i x x - 3()1(2)(2)(3) 310 N x x x x x x x =+--+--4.给出函数f(x)的数表如下,求四次 Newton 插值多项式,并由此计算f(0.596)的值 解:

5.已知函数y=sinx的数表如下,分别用前插和后插公式计算sin0.57891的值 6.求最小二乘拟合一次、二次和三次多项式,拟合如下数据并画出数据点以及拟合函数的图形。 (a) (b)

73 7.试分别确定用复化梯形、辛浦生和中 矩形求积公式计算积分2 014dx x +?所需的步 长h ,使得精度达到5 10 -。 8.求A 、B 使求积公式 ?-+-++-≈1 1)] 21 ()21([)]1()1([)(f f B f f A dx x f 的代数精度尽量高,并求其代数精度;利用此公式求? =2 1 1dx x I (保留四位小数)。 9.已知

5 4 分别用拉格朗日插值法和牛顿插值法求)(x f的三次插值多项式)(3x P,并求)2(f的近似值(保留四位小数)。 10.已知 2 5 求)(x f的二次拟合曲线)(2x p,并求)0(f 的近似值。 [0.4,0.8]的函数表 11.已知x sin区间

《数值计算方法》试题集及答案

《数值计算方法》复习试题 一、填空题: 1、????? ?????----=410141014A ,则A 的LU 分解为 A ??? ?????????=? ?????????? ?。 答案: ?? ????????--??????????--=1556141501 4115401411A 3、1)3(,2)2(,1)1(==-=f f f ,则过这三点的二次插值多项式中2 x 的系数 为 ,拉格朗日插值多项式为 。 答案:-1, )2)(1(21 )3)(1(2)3)(2(21)(2--------= x x x x x x x L 4、近似值*0.231x =关于真值229.0=x 有( 2 )位有效数字; 5、设)(x f 可微,求方程)(x f x =的牛顿迭代格式是( ); 答案 )(1)(1n n n n n x f x f x x x '--- =+ 6、对1)(3 ++=x x x f ,差商=]3,2,1,0[f ( 1 ),=]4,3,2,1,0[f ( 0 ); 7、计算方法主要研究( 截断 )误差和( 舍入 )误差; 8、用二分法求非线性方程 f (x )=0在区间(a ,b )内的根时,二分n 次后的误差限为 ( 1 2+-n a b ); 10、已知f (1)=2,f (2)=3,f(4)=5.9,则二次Ne wton 插值多项式中x 2系数为 ( 0.15 ); 11、 解线性方程组A x =b 的高斯顺序消元法满足的充要条件为(A 的各阶顺序主子式均 不为零)。 12、 为了使计算 32)1(6 )1(41310-- -+-+ =x x x y 的乘除法次数尽量地少,应将该

-计算方法试卷

《计算方法》2012年试题 一、填空题 1、设f(x)x=f(x)的牛顿迭代公式为 2、设矩阵A有如下分解: 则a=,b= 3、已知函数 是以-1,0,1为样条节点的三次样条函数,则a=,b= 4、A1=,A2= 5、下列数据取自一个次数不超过5次的多项式P(x) 则P(x)是次多项式。 6、设A=x(n)表示用幂法求A的按模最大特征值所对应的特征向量的第n 次近似值,若取x(0)=(0,1)T,则x(2011)= 二、选择题 1、设A为n阶实对称矩阵,P为n阶可逆矩阵,B=PAP-1,||A||r表示矩阵A的 r-A的谱半径,以下结论不正确的是 (A) (B) (C) (D)

2、可以用Jacobi迭代法解线性方程组Ax=b的必要条件是 (A) 举证A的各阶顺序主子式全不为零(B) A (C) 举证A的对角元素全不为零(D) 矩阵A 3、设A=(1,2,2)T,若存在Household矩阵H,使得Hx=σ(1,0,0)T,则 4、对于具有四个求积点(n=3)牛顿科特斯(Newton-Cotes)公式 如果已知Cotes系数,则其余三个系数为 (A) (B) (C) (D) 5、用二阶Runge-Kutta方法 求解常微分方程初值问题,其中:h>0为步长,x n=x0+nh 为保证格式稳定,则步长h的取值范围是 (A) (B) (C) (D)

三、计算解答题 1、设f(x)=e2x。 (1) 写出或导出最高幂次系数为1的且次数不超过2的Legendre多项式L0(x),L1(x),L2(x); (2) 求出在P2(x)。 2、,给如下的数值积分公式: 其中:表示在x=1处的到数值。 (1) 求常数A1、A2、A3使上述求积公式的代数精度最高; (2) 导出上述求积公式的余项(或截断误差)R[f]=I-I n 3、 (1) 找出参数的最大范围,使得求解以A为系数矩阵的线性代数方程的Gauss-Sidle迭代法收敛; (2) 取何值时,Gauss-Sidle迭代法经有限次迭代后得到方程的精确解 4、[0.5,0.6]内有唯一的实根 (1) 试判断一下两种求上述方程的迭代格式的局部收敛性,并说明理由。 格式1x0>0;格式2x0>0 (2) 方程f(x)=0的根就是y=f(x)的反函数x=g(y)在y=0时x的值。已知下列数据是

数值计算方法期末考试题

一、单项选择题(每小题3分,共15分) 1. 3.142和3.141分别作为π的近似数具有( )和( )位有效数字. A .4和3 B .3和2 C .3和4 D .4和4 2. 已知求积公式 ()()2 1 121 1()(2)636f x dx f Af f ≈ ++? ,则A =( ) A . 16 B .13 C .12 D .2 3 3. 通过点 ()()0011,,,x y x y 的拉格朗日插值基函数()()01,l x l x 满足( ) A . ()00l x =0, ()110l x = B . ()00l x =0, ()111 l x = C .() 00l x =1,()111 l x = D . () 00l x =1, ()111 l x = 4. 设求方程 ()0 f x =的根的牛顿法收敛,则它具有( )敛速。 A .超线性 B .平方 C .线性 D .三次 5. 用列主元消元法解线性方程组 1231231 220223332 x x x x x x x x ++=?? ++=??--=? 作第一次消元后得到的第3个方程( ). A . 232 x x -+= B .232 1.5 3.5 x x -+= C . 2323 x x -+= D . 230.5 1.5 x x -=- 单项选择题答案 1.A 2.D 3.D 4.C 5.B 二、填空题(每小题3分,共15分)

1. 设T X )4,3,2(-=, 则=1||||X ,2||||X = . 2. 一阶均差 ()01,f x x = 3. 已知3n =时,科茨系数()()() 33301213,88C C C ===,那么 () 33C = 4. 因为方程 ()420 x f x x =-+=在区间 []1,2上满足 ,所以()0f x =在区间内有根。 5. 取步长0.1h =,用欧拉法解初值问题 ()211y y y x y ?'=+?? ?=? 的计算公式 . 填空题答案 1. 已知函数21 1y x = +的一组 数据: 求分段线性插值函数, 并计算 () 1.5f 的近似值. 计算题1.答案

(完整版)数学05级计算方法试题A

大连理工大学应用数学系 数学与应用数学专业2005级试卷 课 程 名 称: 计算方法 授课院 (系): 应 用 数 学 系 考 试 日 期:2007年11 月 日 试卷共 6 页 一、填空(每一空2分,共42分) 1.为了减少运算次数,应将表达式.543242 16171814131 1681 x x x x x x x x -+---++- 改写为_______; 2.给定3个求积节点:00=x ,5.01=x 和12=x ,则用复化梯形公式计算积分dx e x ?-1 02 求得的近似值为 , 用Simpson 公式求得的近似值为 。 1.设函数()1,0,1)(3-∈S x s ,若当1-