文档视界 最新最全的文档下载
当前位置:文档视界 › 自振周期与特征周期

自振周期与特征周期

自振周期与特征周期
自振周期与特征周期

自振周期与特征周期

默认分类2010-01-24 20:59:28 阅读848 评论1 字号:大中小订阅

自振周期:是结构本身的动力特性。与结构的高度H,宽度B有关。当自振周期与地震作用的周期接近时,共振发生,对建筑造成很大影响,加大震害。

特征周期:是建筑场地自身的周期,抗震规范中是通过地震分组和地震烈度查表确定的。

结构的自振周期顾名思义是反映结构的动力特性,与结构的质量及刚度有关,具体对单自由度就只有一个周期,而对于多自由度就有同模型中采用的自由度相同的周期个数,周期最大的为基本周期,设计用的主要参考数据!

而特征周期是,在地震影响系数曲线中,水平段与下降段交点的横坐标,反映了地震震级,震源机制(包括震源深度)、震中距等地震本身方面的影响,同时也反映了场地的特性;如软弱土层的厚度,类型等场地类别,所以我认为特征周期同时反映了地震动及场地的特性!它在确定地震影响曲线时用到!

1.特征周期:是建筑物场地的地震动参数——由场地的地质条件决定;

2.自振周期有结构子身的结构特点决定——用结构力学方法求解;(主要指第一振型的主振周期)

3.结构的自振周期主要是避免与场地的卓越周期重合产生共振;

4.卓越周期与特征周期有关;卓越周期由场地的覆盖土层厚度和土层剪切波速计算求解(见工程地质手册)。

设计特征周期:抗震设计用的地震影响系数曲线中,反映地震等级,震中距和场地类别等因素的下降段起始点对应的周期值.-----根据其所在地的设计地震分组和场地类别确定.详见抗震规范.

自振周期:是结构本身的动力特性.与结构的H,B有关.当自振周期与地震作用的1/f接近时,共振发生,对建筑造成很大影响.

另外:

目前就场地的有关周期,经常出现场地脉动(卓越)周期,地震动卓越周期和反应谱特征周期等名词。就以上3个周期概念来说,其确切的含义是清楚的,场地脉动周期是在微小震动下场地出现的周期,也可以说是微震时的卓越周期;地震动卓越周期是在受到地震作用下场地出现的周期,一般情况下它大于脉动周期(一般1.2~2.0)。场地卓越周期反应场地特征,地震动卓越周期不但反应场地特征,而且反应地震特征(如近、远震则明显不同)。由此可见二者震动干扰源有区别,另外反映的特征也是不同的。反应谱特征周期一般是指规范反应谱平台段与下降衰减段的拐点周期,它表示规范反应谱值随周期变化的突变特征,是平均意义上的参数,它综合反映场地和地震环境的影响。三者之间有一定关系,但概念不一样,在工程上不能等同。

--------------

结构自振周期、设计特征周期、场地卓越周期和脉动周期之间的关系

自振周期T:结构按某一振型完成一次自由振动所需的时间,是结构固有的特性。

基本周期T1:结构按基本振型完成一次自由振动所需的时间。通常需要考虑两个主轴方向的和扭转方向的基本周期。

设计特征周期Tg:抗震设计用的地震影响系数曲线的下降阶段起始点所对应的周期值,与地震震级、震中距和场地类别等因素有关。

场地卓越周期Ts:根据场地覆盖层厚度H和土层平均剪切波速Vs计算的周期,表示场地土最主要的振动特征。场地卓越周期只反映场地的固有特征,不等同于设计特征周期。

场地脉动周期Tm:应用微震仪对场地的脉动、又称为”常时微动”进行观测所得到的振动周期。场地脉动周期反映了微震动情况下场地的动力特征,与强地震作用下场地的动力特性既有关系又有区别。

附录F:结构基本自振周期的经验公式

1 附录F 结构基本自振周期的经验公式 F.1 高耸结构 F.1.1 一般高耸结构的基本自振周期,钢结构可取下式计算的较大值,钢筋混 凝土结构可取下式计算的较小值: (F.1.1) T,(0.007,0.013)H1 式中:H——结构的高度(m)。 F.1.2 烟囱和塔架等具体结构的基本自振周期可按下列规定采用: 1,烟囱的基本自振周期可按下列规定计算: 1)高度不超过60m的砖烟囱的基本自振周期按下式计算: 2H,2T,0.23,0.22,10 (F.1.2-1) 1d 2)高度不超过150m的钢筋混凝土烟囱的基本自振周期按下式计算: 2H,2T,0.41,0.10,10 (F.1.2-2) 1d 3)高度超过150m,但低于210m的钢筋混凝土烟囱的基本自振周期按下式计算: 2H,2T,0.53,0.08,10 (F.1.2-3) 1d 式中:H——烟囱高度(m); d——烟囱1/2高度处的外径(m)。 2,石油化工塔架(图F.1.2)的基本自振周期可按下列规定计算: 图F.1.2 设备塔架的基础形式

(a)圆柱基础塔;(b)圆筒基础塔; (c)方形(板式)框架基础塔;(d)环形框架基础塔 1)圆柱(筒)基础塔(塔壁厚不大于30mm)的基本自振周期按下列公式计算: 2当H/D,700时 0 2H3,T (F.1.2-4) ,0.35,0.85,101D0 2 2当H/D?700时 0 2H3,T (F.1.2-5) ,0.25,0.99,101D0 ——从基础底板或柱基顶面至设备塔顶面的总高度(m); 式中:H D——设备塔的外径(m);对变直径塔,可按各段高度为权,取外径的加权平0 均值。 2)框架基础塔(塔壁厚不大于30mm)的基本自振周期按下式计算: 2H3,T (F.1.2-6) ,0.56,0.40,101D0 3)塔壁厚大于30mm的各类设备塔架的基本自振周期应按有关理论公式计算。 4)当若干塔由平台连成一排时,垂直于排列方向的各塔基本自振周期T可采1用主塔(即周期最长的塔)的基本自振周期值;平行于排列方向的各塔基本自振周期T可采用主塔基本自振周期乘以折减系数0.9。 1 F.2 高层建筑 F.2.1 一般情况下,高层建筑的基本自振周期可根据建筑总层数近似地按下列规定采用: 1,钢结构的基本自振周期按下式计算: T=(0.10,0.15)n (F.2.1-1) 1 式中:n——建筑总层数。 2,钢筋混凝土结构的基本自振周期按下式计算:

结构自振周期

场地土类别、结构自振周期、设计特征周期的概念解读常有众智平台朋友来询问场地土类别与地震力是什么关系,结构自振周期折减对结构的地震力有什么影响,设计特征周期是什么概念,土的卓越周期又是怎么回事,本文结合规范对这些内容进行了整理,对这几个概念的相关关系也做了一些论述,期望与大家一起交流学习,具体综述如下: 一、场地土类别 《建筑抗震设计规范》第4.1.6对场地土类别是这样划分的:建筑的 场地类别,应根据土层等效剪切波速和场地覆盖层厚度按表4.1.6划分为四类,其中Ⅰ类分为Ⅰ0、Ⅰ1两个亚类。当有可靠的剪切波速和覆盖层厚度且其值处于表4.1.6所列场地类别的分界线附近时,应允许按插值方法确定地震作用计算所用的特征周期。 《抗规》第4.1.4条、4.1.5条对场地覆盖层的厚度及图层的等效剪切波束分别作了规定。 相关概念:

场地--工程群体所在地,具有相似的反应谱特征。其范围相当于厂区、居民小区和自然村或不小于1.0km2的平面面积。 与震害的关系:土质愈软覆盖层厚度愈厚,建筑震害愈严重,反之愈轻,软弱土层对地震力具有放大作用。历次大地震的经验表明,同样或相近的建筑,建造于Ⅰ类场地时震害较轻,建造于Ⅲ、Ⅳ类场地震害较重。 规范采取的相应措施:《抗规》第4.1.1条将场地划分为对建筑抗震有利、一般、不利和危险的地段。具体设计时,结构设计师对不利地段,应提出避开要求;当无法避开时应采取有效的措施。对危险地段,严禁建造甲、乙类的建筑,不应建造丙类的建筑。 另外《抗规》第3.3.2、4.1.8,、4.1.9对相关措施提出了严格要求,设计人员不应忽视。 二、结构自振周期 概念: 结构自振周期是结构按某一振型完成一次自由振动所需的时间,是结构本身固有的动力特性,只与自身质量及刚度有关,结构有几个振型就有几个自振周期,一一对应。 应用:

附录F:结构基本自振周期的经验公式

附录F 结构基本自振周期的经验公式 F.1 高耸结构 F.1.1 一般高耸结构的基本自振周期,钢结构可取下式计算的较大值,钢筋混凝土结构可取下式计算的较小值: H T )013.0~007.0(1= (F.1.1) 式中:H ——结构的高度(m)。 F.1.2 烟囱和塔架等具体结构的基本自振周期可按下列规定采用: 1,烟囱的基本自振周期可按下列规定计算: 1)高度不超过60m 的砖烟囱的基本自振周期按下式计算: d H T 2 2 110 22.023.0-?+= (F.1.2-1) 2)高度不超过150m 的钢筋混凝土烟囱的基本自振周期按下式计算: d H T 2 2 110 10.041.0-?+= (F.1.2-2) 3)高度超过150m ,但低于210m 的钢筋混凝土烟囱的基本自振周期按下式计算: d H T 2 2 110 08.053.0-?+= (F.1.2-3) 式中:H ——烟囱高度(m); d ——烟囱1/2高度处的外径(m)。 2,石油化工塔架(图F.1.2)的基本自振周期可按下列规定计算: 图F.1.2 设备塔架的基础形式 (a)圆柱基础塔;(b)圆筒基础塔; (c)方形(板式)框架基础塔;(d)环形框架基础塔 1)圆柱(筒)基础塔(塔壁厚不大于30mm)的基本自振周期按下列公式计算: 当H 2/D 0<700时 2 3 110 85.035.0D H T -?+= (F.1.2-4)

当H 2/D 0≥700时 2 3 110 99.025.0D H T -?+= (F.1.2-5) 式中:H ——从基础底板或柱基顶面至设备塔顶面的总高度(m); D 0——设备塔的外径(m);对变直径塔,可按各段高度为权,取外径的加权平均值。 2)框架基础塔(塔壁厚不大于30mm)的基本自振周期按下式计算: 2 3 110 40.056.0D H T -?+= (F.1.2-6) 3)塔壁厚大于30mm 的各类设备塔架的基本自振周期应按有关理论公式计算。 4)当若干塔由平台连成一排时,垂直于排列方向的各塔基本自振周期T 1可采用主塔(即周期最长的塔)的基本自振周期值;平行于排列方向的各塔基本自振周期T 1可采用主塔基本自振周期乘以折减系数0.9。 F.2 高层建筑 F.2.1 一般情况下,高层建筑的基本自振周期可根据建筑总层数近似地按下列规定采用: 1,钢结构的基本自振周期按下式计算: T 1=(0.10~0.15)n (F.2.1-1) 式中:n ——建筑总层数。 2,钢筋混凝土结构的基本自振周期按下式计算: T 1=(0.05~0.lO)n (F.2.1-2) F.2.2 钢筋混凝土框架、框剪和剪力墙结构的基本自振周期可按下列规定采用: 1,钢筋混凝土框架和框剪结构的基本自振周期按下式计算: 3 2 3 110 53.025.0B H T -?+= (F.2.2-1) 2,钢筋混凝土剪力墙结构的基本自振周期按下式计算: 3 103 .003.0B H T += (F.2.2-2) 式中:H ——房屋总高度(m); B ——房屋宽度(m)。

3.7 结构自振周期的计算

职业技术学院一、能量法计算基本周期 3.7结构自振周期的计算设体系按i振型作自由振动。速度为应用抗震设计反应谱计算地震作用下的结构反应,除砌体结构、底部框架抗震墙砖房和内框架房屋采用底部剪力法不需要计算自振周期外,其余均需计算自振周期。计算方法: 矩阵位移法解特征问题、近似公式、经验公式。t时刻的位移为重力荷载代表值作用下的水平位移解: 例.已知: 求结构的基本周期。G2G1 (1)计算各层层间剪力 (2)计算各楼层处的水平位移 (3)计算基本周期二、等效质量法(折算质量法)将多质点体系用单质点体系代替。多质点体系的最大动能为单质点体系的最大动能为---体系按第一振型振动时,相应于折算质点处的最大位移;---单位水平力作用下顶点位移。重力荷载代表值作用下的水平位移解: 例.已知: 求结构的基本周期。G2G1能量法的结果为T1 0.508s三、顶点位移法对于顶点位移容易估算的建筑结构,可直接由顶点位移估计基本周期。1体系按弯曲振动时抗震墙结构可视为弯曲型杆。无限自由度体系,弯曲振动的运动方程为悬臂杆的特解为振型基本周期为重力作为水平荷载所引起的位移为2体系按剪切振动时框架结构可近似视为剪切型杆。无限自由度体系,剪切杆的的运动方程为悬臂杆的特解为振型基本周期为重力作为水平荷载所引起的位移为3体系按剪弯振动时框架-抗震墙结构可近似视为剪弯型杆。基本周期为四、自振周期的经验公式根据实测统计,忽略填充墙布置、质量分布差异等,初步设计时可按下列公式估算 (1)高度低于25m且有较多的填充墙框架办公楼、旅馆的基本周期

(2)高度低于50m的钢筋混凝土框架-抗震墙结构的基本周期H---房屋总高度;B---所考虑方向房屋总宽度。 (3)高度低于50m的规则钢筋混凝土抗震墙结构的基本周期 (4)高度低于35m的化工煤炭工业系统钢筋混凝土框架厂房的基本周期

结构自振周期是结构自由振动的周期

predominant period 地震时,从震源发出的地震波在土层中传播时,经过不同性质地质界面的多次反射,将出现不同周期的地震波。若某一周期的地震波与地基土层固有周期相近,由于共振的作用,这种地震波的振幅将得到放大,此周期称为卓越周期。由多层土组成的厚度很大的沉积层,当深部传来的剪切波通过它向地面传播时就会发生多次反射,由于波的叠加而增强,使长周期的波尤为卓越。卓越周期的实质是波的共振,即当地震波的振动周期与地表岩土体的自振周期相同时,由于共振作用而使地表振动加强。巨厚冲积层上低加速度的远震,可以使自振周期较长的高层建筑物遭受破坏的主要原因就是共振。 卓越周期按地震记录统计得到,地基土随软硬程度的不同有不同的卓越周期,可划分为四级:一级——稳定基岩,卓越周期是0.1-0.2s,平均为0.15s。二级——一般土层,卓越周期为0.21-0.4s,平均为0.27s。三级为松软土层,卓越周期在二级和四级之间。四级——为异常松软的土层,卓越周期为0.3-0.7s,平均为0.5s. 自振周期T:结构按某一振型完成一次自由振动所需的时间,是结构本身的动力特性,与结构的高度H、宽度B有关。

基本周期T1:是指结构按基本振型完成一次自由振动所需的时间。 基本振型:单质点体系在谐波的作用下的振型称为基本振型:任一地震波都可以分解为若干谐波的叠加,多质点体系按振型分解法计算地震作用时,可以简化为具有基本振型的等效单质点体系进行分析。而对建筑结构而言,有时又称为主振型,一般是指每个主轴方向以平动为主的第一振型。 高阶振型:相对于低阶振型而言。一般来说,低阶振型对结构振动的影响要大于高阶振型的影响。对一般较规则的建筑物,选择的振型个数可以取其地震作用计算时的质点数(大多数情况下为楼层数),若质点数较多时,根据计算结果可以只取前几个振型(即低阶振型)进行叠加。 特征周期Tg:即建筑场地自身的周期,是建筑物场地的地震动参数,在地震影响系数曲线中,水平段与下降段交点的横坐标,反映了地震震级,震源机制(包括震源深度)、震中距等地震本身方面的影响,同时也反映了场地的特性;如软弱土层的厚度,类型等场地类别等。 在抗震设计规范中,设计特征周期Tg与场地类别有关:场地类别越高(场地越软),Tg越大;地震震级越大、震中距离越远,Tg越大。Tg越大,地震影响系数α的平台越宽,对于高层建筑或大跨度结构,基本周期较大,计算的地震作用越大。

相关文档
相关文档 最新文档