文档视界 最新最全的文档下载
当前位置:文档视界 › 计算机图形学OpenGL实验一

计算机图形学OpenGL实验一

计算机图形学OpenGL实验一
计算机图形学OpenGL实验一

实验报告学院(系)名称:\

Welcome To Download !!!

欢迎您的下载,资料仅供参考!

计算机图形学实验一

实验一二维基本图元的生成与填充 实验目的 1.了解并掌握二维基本图元的生成算法与填充算法。 2.实现直线生成的DDA算法、中点算法和Bresenham算法。 3.实现圆和椭圆生成的DDA和中点算法, 对几种算法的优缺点有感性认识。 二.实验内容和要求 1.选择自己熟悉的任何编程语言, 建议使用VC++。 2.创建良好的用户界面,包括菜单,参数输入区域和图形显示区域。 3.实现生成直线的DDA算法、中点算法和Bresenham算法。 4.实现圆弧生成的中点算法。 5.实现多边形生成的常用算法, 如扫描线算法,边缘填充算法。 6.实现一般连通区域的基于扫描线的种子填充算法。 7.将生成算法以菜单或按钮形式集成到用户界面上。 8.直线与圆的坐标参数可以用鼠标或键盘输入。 6. 可以实现任何情形的直线和圆的生成。 实验报告 1.用户界面的设计思想和框图。 2.各种实现算法的算法思想。 3.算法验证例子。 4.上交源程序。 直线生成程序设计的步骤如下: 为编程实现上述算法,本程序利用最基本的绘制元素(如点、直线等),绘制图形。如图1-1所示,为程序运行主界面,通过选择菜单及下拉菜单的各功能项分别完成各种对应算法的图形绘制。 图1-1 基本图形生成的程序运行界面 2.创建工程名称为“基本图形的生成”单文档应用程序框架 (1)启动VC,选择“文件”|“新建”菜单命令,并在弹出的新建对话框中单击“工程”标签。 (2)选择MFC AppWizard(exe),在“工程名称”编辑框中输入“基本图形的生成”作为工程名称,单击“确定”按钮,出现Step 1对话框。 (3)选择“单个文档”选项,单击“下一个”按钮,出现Step 2对话框。 (4)接受默认选项,单击“下一个”按钮,在出现的Step 3~Step 5对话框中,接受默认选项,单击“下一个”按钮。

计算机图形学实验内容汇总

计算机图形学实验 肖加清

实验一图形学实验基础 一、实验目的 (1)掌握VC++绘图的一般步骤; (2)掌握OpenGL软件包的安装方法; (3)掌握OpenGL绘图的一般步骤; (4)掌握OpenGL的主要功能与基本语法。 二、实验内容 1、VC++绘图实验 (1)实验内容:以下是绘制金刚石图案。已给出VC++参考程序,但里面有部分错误,请改正,实现以下图案。 N=3 N=4

N=5 N=10 N=30

N=50 (2)参考程序 //自定义的一个类 //此代码可以放在视图类的实现文件(.cpp) 里class CP2 { public: CP2(); virtual ~CP2(); CP2(double,double); double x; double y; }; CP2::CP2() { this->x=0.0; this->y=0.0; } CP2::~CP2() { } CP2::CP2(double x0,double y0) { this->x=x0; this->y=y0; }

//视图类的一个成员函数,这个成员函数可以放在OnDraw函数里调用。 //在视图类的头文件(.h)里定义此函数 void Diamond(); //在视图类的实现文件(.cpp)里实现此函数 void CTestView::Diamond() { CP2 *P; int N; double R; R=300; N=10; P=new CP2[N]; CClientDC dc(this); CRect Rect; GetClientRect(&Rect); double theta; theta=2*PI/N; for(int i=0;i #include #include #include //定义输出窗口的大小 #define WINDOW_HEIGHT 300

计算机图形学OpenGL中绘制太阳_地球_月亮的运动模型源代码

#include static int day = 148; // day的变化:从0到359 void myDisplay(void) { glEnable(GL_DEPTH_TEST); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); glMatrixMode(GL_PROJECTION); glLoadIdentity(); gluPerspective(75, 1, 1, 400000000); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); gluLookAt(0, -200000000, 200000000, 0, 0, 0, 0, 0, 1); // 红色的“太阳” glColor3f(1.0, 0.0, 0.0); glutSolidSphere(69600000, 100, 100); // 蓝色的“地球” glColor3f(0.0, 0.0, 1.0); glRotatef(day/360.0*360.0, 0.0, 0.0, -1.0); glTranslatef(150000000, 0.0, 0.0); glutSolidSphere(15945000, 100, 100); // 黄色的“月亮” glColor3f(1.0, 1.0, 0.0); glRotatef(day/30.0*360.0 - day/360.0*360.0, 0.0, 0.0, -1.0); glTranslatef(38000000, 0.0, 0.0); glutSolidSphere(4345000, 100, 100); glFlush(); glutSwapBuffers(); } void myIdle(void) { ++day; if( day >= 360 ) day = 0; myDisplay(); } int main(int argc, char *argv[]) { glutInit(&argc, argv); glutInitDisplayMode(GLUT_RGB | GLUT_DOUBLE); glutInitWindowPosition(100, 100); glutInitWindowSize(450, 450);

秋双学位计算机图形学

2006年秋双学位计算机图形学作业题目 教材计算机图形学(第二版) 第一次P105 3.17 利用中点算法并考虑对称性,推导在区间-10<=x<=10上,对下列曲线进行扫描转换的有效算法:y=(1/12)*x3 3.20 考虑对称性,建立中点算法对形式为y=ax2-b的任意抛物线进行扫描转换,参数a,b及x的范围从输入值获得。 第二次P106 3.34 利用circle函数,编写一个程序,显示具有合适标记的饼图。程序的输入包括:在某些区间上给定数据分布的数据组,饼图的名称和区间的名称。每部分的标记将是显示在饼图边界外靠近对应饼图部分的地方。 第三次10.7 P139 4.20 编写一个程序,使用指定的图案对给定的椭圆内部进行填充。 第四次10.14 P168 5.12 确定对于任何直线y=mx+b的反射变换矩阵的形式。 第四次10.22 比较若干条相对于裁剪窗口的不同方向的线段的Cohen-Sutherland和梁友栋-Barsky裁剪算法的算术运算次数。 第五次10.29 6.18 将梁友栋-Barsky算法改称多边形裁剪算法。 第六次11.4 8.13 设计一个程序,该程序允许用户使用一个笔画设备交互式地画图。 第七次11.11 10.9 建立一个将给定的球、椭球或圆柱体变成多边形网格的一个算法。 第八次11.18 10.20 给出d=5的均匀周期性B-样条曲线的混合函数。 第九次11.25 11.13 设计关于任选平面反射的例程。 第十次 12.8 编写一个将透视投影棱台变换到规则平行六面体的程序。 上机 1.实现Cohen-Sutherland多边形裁剪算法,要求显示多边形被每一条窗口边裁剪后的结果。 2.编写一个程序,允许用户通过一个基本形状菜单并使用一个拾取设备,将每一个选取的 形状拖曳到指定位置,并提供保存和载入的功能。 3.. 写一篇综述性的调研报告,要求不少于3000字,独立完成。内容可以是计算机图形学理论或算法的研究。如:曲线、曲面拟合算法;几何造型方法的研究。如:分形树、分形山、树木、花草、云、瀑布、粒子系统等等。或任何你感兴趣的领域。 4.2006年秋双学位计算机图形学作业参考答案 P105 3.17 利用中点算法并考虑对称性,推导在区间-10<=x<=10上,对下列曲线进行扫描转换的有效算法:y=(1/12)*x3 解答:第一象限和第三象限中心对称

计算机图形学 实验 利用OpenGL实现图形的平移、旋转、缩放

XXXXXXXX大学(计算机图形学)实验报告 实验名称利用OpenGL实现图形的平移、旋转、缩放 实验时间年月日 专业姓名学号 预习操作座位号 教师签名总评 一、实验目的: 1.了解OpenGL下简单图形的平移、旋转、缩放变换的编程的基本思想; 2.掌握OpenGL下简单图形的平移、旋转、缩放变换的编程的基本步骤; 二、实验原理: 在OpenGL中,可以使用下面三个函数便捷地实现简单图形平移、旋转、缩放变换的功能: glRotatef(theta, vx, vy, vz); glTranslatef(dx, dy, dz); glScalef(sx,sy,sz); 三、实验内容: // 1.cpp : Defines the entry point for the console application. // #include "stdafx.h" #include "glut.h" #include "math.h" void display() { glClear( GL_COLOR_BUFFER_BIT); // Clear the frame buffer glColor3f( 0.0, 1.0, 1.0); // Set current color to green glBegin( GL_POLYGON); // Draw the triangle glV ertex2f( 0.0, -0.2); glV ertex2f( 0.2, 0.0); glV ertex2f( 0.0, 0.0); glEnd(); glFlush(); } void dsp()

计算机图形学第二版课后习题答案

第一章绪论 概念:计算机图形学、图形、图像、点阵法、参数法、 图形的几何要素、非几何要素、数字图像处理; 计算机图形学和计算机视觉的概念及三者之间的关系; 计算机图形系统的功能、计算机图形系统的总体结构。 第二章图形设备 图形输入设备:有哪些。 图形显示设备:CRT的结构、原理和工作方式。 彩色CRT:结构、原理。 随机扫描和光栅扫描的图形显示器的结构和工作原理。 图形显示子系统:分辨率、像素与帧缓存、颜色查找表等基本概念,分辨率的计算 第三章交互式技术 什么是输入模式的问题,有哪几种输入模式。 第四章图形的表示与数据结构 自学,建议至少阅读一遍 第五章基本图形生成算法 概念:点阵字符和矢量字符; 直线和圆的扫描转换算法; 多边形的扫描转换:有效边表算法; 区域填充:4/8连通的边界/泛填充算法;

内外测试:奇偶规则,非零环绕数规则; 反走样:反走样和走样的概念,过取样和区域取样。 5.1.2 中点 Bresenham 算法(P109) 5.1.2 改进 Bresenham 算法(P112) 习题答案

习题5(P144) 5.3 试用中点Bresenham算法画直线段的原理推导斜率为负且大于1的直线段绘制过程(要求写清原理、误差函数、递推公式及最终画图过程)。(P111) 解: k<=-1 |△y|/|△x|>=1 y为最大位移方向 故有 构造判别式: 推导d各种情况的方法(设理想直线与y=yi+1的交点为Q): 所以有: y Q-kx Q-b=0 且y M=y Q d=f(x M-kx M-b-(y Q-kx Q-b)=k(x Q-x M) 所以,当k<0, d>0时,M点在Q点右侧(Q在M左),取左点 P l(x i-1,y i+1)。 d<0时,M点在Q点左侧(Q在M右),取右点 Pr(x i,y i+1)。 d=0时,M点与Q点重合(Q在M点),约定取右点 Pr(x i,y i+1) 。 所以有 递推公式的推导: d2=f(x i-1.5,y i+2) 当d>0时, d2=y i+2-k(x i-1.5)-b 增量为1+k =d1+1+k

计算机图形学实验三报告

计算机科学与通信工程学院 实验报告 课程计算机图形学 实验题目二维图形变换 学生姓名 学号 专业班级 指导教师 日期

成绩评定表

二维图形变换 1. 实验内容 完成对北极星图案的缩放、平移、旋转、对称等二维变换。 提示:首先要建好图示的北极星图案的数据模型(顶点表、边表)。另外,可重复调用“清屏”和“暂停”等函数,使整个变换过程具有动态效果。 2. 实验环境 软硬件运行环境:Windows XP 开发工具:visual studio 2008 3. 问题分析

4. 算法设计 程序框架: //DiamondView.h class CDiamondView : public CView { …… public: //参数输入和提示对话框 void Polaris();//北极星 …… }; //DiamondView.cpp void CDiamondView::OnMenuDiamond() { IsCutting = FALSE; if(dlgDiamond.DoModal()==IDOK) DrawDiamond(dlgDiamond.m_nVertex,dlgDiamond.

m_nRadius,100);//调用绘制金刚石的函数 } //北极星 void CDiamondView::Polaris() {......} 5. 源代码 //北极星 void hzbjx(CDC* pDC,long x[18],long y[18]) { CPen newPen1,*oldPen; newPen1.CreatePen(PS_SOLID,2,RGB(255,0,0)); oldPen = pDC->SelectObject(&newPen1); POINT vertex1[11]={{x[1],y[1]},{x[2],y[2]},{x[3],y[3]},{x[4],y[4]},{x[5],y[5]},{x[3],y[3]},{x[1],y[1]}, {x[6],y[6]},{x[3],y[3]},{x[7],y[7]},{x[5],y[5]}}; pDC->Polyline(vertex1, 11); newPen1.DeleteObject(); newPen1.CreatePen(PS_SOLID, 2, RGB(0,255,0)); oldPen = pDC->SelectObject(&newPen1); POINT vertex2[5]={{x[6],y[6]},{x[8],y[8]},{x[9],y[9]},{x[3],y[3]},{x[8],y[8]}}; pDC->Polyline(vertex2, 5); POINT vertex3[5]={{x[4],y[4]},{x[10],y[10]},{x[11],y[11]},{x[3],y[3]},{x[10],y[10]}}; pDC->Polyline(vertex3, 5);

计算机图形学试验指导一–OpenGL基础

计算机图形学实验指导(一) –OpenGL基础 1.综述 这次试验的目的主要是使大家初步熟悉OpenGL这一图形系统的用法,编程平台是Visual C++,它对OpenGL提供了完备的支持。 尽管OpenGL包括渲染命令,但却独立于任何窗口系统和操作系统。因此,OpenGL并不包括用来打开窗口以及从键盘或鼠标读取事件的命令。在这里,我们应用GLUT库简化Windows窗口操作。 2.准备GLUT库 下载glut压缩包后,解压,把glut32.dll放在Windows的system32目录下,将glut32.lib 放在C:\program files\Microsoft Visual Studio\VC98\Lib目录中,将glut.h放在C:\program files\Microsoft Visual Studio\VC98\Include\GL目录中 2.在VC中新建项目 新建一个项目。 选择菜单File中的New选项,弹出一个分页的对话框,选中页Projects中的Win32 Console Application项,然后填入你自己的Project name,回车即可。VC为你创建一个工作区(WorkSpace),你的项目就放在这个工作区里。 为项目添加文件 为了使用OpenGL,我们需要在项目中加入相关的Lib文件:glut32.lib 选中菜单Project->Settings项,在link选项卡中的Object/Library modules栏中加入glut32.lib。 选择菜单File中的New选项,弹出一个分页的对话框,选中页Files中的C++sourcefile,填入文件名,钩选添加到刚才建的那个工程里,然后就可以开始编程了。 3.一个OpenGL的例子 #include //初始化OpenGL void init(void) { glClearColor(0.0f, 0.0f, 0.0f, 0.0f);//设置背景颜色 glShadeModel(GL_FLAT);//设置明暗处理 } //主要的绘制过程 void display(void) { glClear(GL_COLOR_BUFFER_BIT);//清除颜色缓存 glBegin(GL_LINES);//开始画直线 glColor3f(1.0f, 1.0f, 1.0f);//设置颜色为白色 glVertex2f(30.0f, 30.0f);//第一根线的两个端点 glVertex2f(200.0f, 400.0f);

计算机图形学基础教程习题课1(第二版)(孙家广-胡事民编著)

1.列举计算机图形学的主要研究内容。 计算机中图形的表示方法、图形的计算、图形的处理和图形的显示。 图形硬件、图形标准、图形交互技术、光栅图形生成算法、曲线曲面造型、实体造型、真实感图形计算与显示算法,以及科学计算可视化、计算机动画、自然景物仿真、虚拟现实等。 2.常用的图形输出设备是什么? 显示器(CRT、LCD、等离子)、打印机、绘图仪等。 2.常用的图形输入设备是什么? 键盘、鼠标、跟踪球、空间球、数据手套、光笔、触摸屏、扫描仪等。 3.列出3种图形软件工具。 AutoCAD、SolidWorks、UG、ProEngineer、CorelDraw、Photoshop、PaintShop、Visio、3DMAX、MAYA、Alias、Softimage等。 错误:CAD 4.写出|k|>1的直线Bresenham画线算法。 d d d d 设直线方程为:y=kx+b,即x=(y-b)/k,有x i+1=x i+(y i+1-y i)/k=x i+1/k,其中k=dy/dx。因为直线的起始点在象素中心,所以误差项d的初值d0=0。y下标每增加1,d的值相应递增1/k,即d=d+1/k。一旦d≥1,就把它减去1,这样保证d在0、1之间。 ●当d≥0.5时,最接近于当前象素的右上方象素(xi+1,y i+1),x方向加1,d减 去1; ●而当d<0.5时,更接近于上方象素(x i,yi+1)。

为方便计算,令e=d-0.5,e的初值为-0.5,增量为1/k。 ●当e≥0时,取当前象素(x i,y i)的右上方象素(xi+1,y i+1),e减小1; ●而当e<0时,更接近于上方象素(xi,yi+1)。 voidBresenhamline (int x0,int y0,intx1, inty1,int color) { int x,y,dx,dy; float k,e; dx= x1-x0, dy = y1-y0,k=dy/dx; e=-0.5, x=x0, y=y0; for (i=0; i≤dy; i++) {drawpixel(x, y,color); y=y+1,e=e+1/k; if (e≥0) { x++, e=e-1;} } } 4.写出|k|>1的直线中点画线算法。 构造判别式:d=F(M)=F(xp+0.5,y p+1)=a(x p+0.5)+b(yp+1)+c ●当d<0,M在Q点左侧,取右上方P2为下一个象素; ●当d>0,M在Q点右侧,取上方P1为下一个象素; ●当d=0,选P1或P2均可,约定取P1为下一个象素;

计算机图形学实验

实验1 直线的绘制 实验目的 1、通过实验,进一步理解和掌握DDA和Bresenham算法; 2、掌握以上算法生成直线段的基本过程; 3、通过编程,会在TC环境下完成用DDA或中点算法实现直线段的绘制。实验环境 计算机、Turbo C或其他C语言程序设计环境 实验学时 2学时,必做实验。 实验内容 用DDA算法或Besenham算法实现斜率k在0和1之间的直线段的绘制。 实验步骤 1、算法、原理清晰,有详细的设计步骤; 2、依据算法、步骤或程序流程图,用C语言编写源程序; 3、编辑源程序并进行调试; 4、进行运行测试,并结合情况进行调整; 5、对运行结果进行保存与分析; 6、把源程序以文件的形式提交; 7、按格式书写实验报告。 实验代码:DDA: # include # include

void DDALine(int x0,int y0,int x1,int y1,int color) { int dx,dy,epsl,k; float x,y,xIncre,yIncre; dx=x1-x0; dy=y1-y0; x=x0; y=y0; if(abs(dx)>abs(dy)) epsl=abs(dx); else epsl=abs(dy); xIncre=(float)dx/(float)epsl; yIncre=(float)dy/(float)epsl; for(k=0;k<=epsl;k++) { putpixel((int)(x+0.5),(int)(y+0.5),4); x+=xIncre; y+=yIncre; } } main(){ int gdriver ,gmode ;

研究生计算机图形学课程室内场景OpenGL--实验报告

《高级计算机图形学》实验报告 姓名:学号:班级: 【实验报告要求】 实验名称:高级计算机图形学室内场景 实验目的:掌握使用OpenGL生成真实感复杂对象的方法,进一步熟练掌握构造实体几何表示法、扫描表示法、八叉树法、BSP树法等建模方法。 实验要求:要求利用OpenGL生成一个真实感的复杂对象及其周围场景,并显示观测点变化时的几何变换,要具备在一个纹理复杂的场景中漫游功能。要求使用到光线跟踪算法、 纹理映射技术以及实时绘制技术。 一、实验效果图 图1:正面效果图

图2:背面效果图 图4:背面效果图

图4:室内场景细节效果图 图5:场景角度转换效果图

二、源文件数据代码: 共6个文件,其实现代码如下: 1、DlgAbout.cpp #include "StdAfx.h" #include "DlgAbout.h" CAboutDlg::CAboutDlg() : CDialog(CAboutDlg::IDD) { } void CAboutDlg::DoDataExchange(CDataExchange* pDX) { CDialog::DoDataExchange(pDX); } BEGIN_MESSAGE_MAP(CAboutDlg, CDialog) END_MESSAGE_MAP() 2、FormCommandView.cpp #include "stdafx.h" #include "Tool.h" #include "MainFrm.h" #include "FormCommandView.h" #include "ToolDoc.h" #include "RenderView.h" // Download by https://www.docsj.com/doc/9d17964462.html, #ifdef _DEBUG #define new DEBUG_NEW #undef THIS_FILE static char THIS_FILE[] = __FILE__; #endif // CFormCommandView IMPLEMENT_DYNCREA TE(CFormCommandView, CFormView) CFormCommandView::CFormCommandView() : CFormView(CFormCommandView::IDD) { //{{AFX_DATA_INIT(CFormCommandView)

计算机图形学实验报告

《计算机图形学》实验报告姓名:郭子玉 学号:2012211632 班级:计算机12-2班 实验地点:逸夫楼507 实验时间:15.04.10 15.04.17

实验一 1 实验目的和要求 理解直线生成的原理;掌握典型直线生成算法;掌握步处理、分析实验数据的能力; 编程实现DDA 算法、Bresenham 中点算法;对于给定起点和终点的直线,分别调用DDA 算法和Bresenham 中点算法进行批量绘制,并记录两种算法的绘制时间;利用excel 等数据分析软件,将试验结果编制成表格,并绘制折线图比较两种算法的性能。 2 实验环境和工具 开发环境:Visual C++ 6.0 实验平台:Experiment_Frame_One (自制平台) 3 实验结果 3.1 程序流程图 (1)DDA 算法 是 否 否 是 是 开始 计算k ,b K<=1 x=x+1;y=y+k; 绘点 x<=X1 y<=Y1 绘点 y=y+1;x=x+1/k; 结束

(2)Mid_Bresenham 算法 是 否 否 是 是 是 否 是 否 开始 计算dx,dy dx>dy D=dx-2*dy 绘点 D<0 y=y+1;D = D + 2*dx - 2*dy; x=x+1; D = D - 2*dy; x=x+1; x

3.2程序代码 //-------------------------算法实现------------------------------// //绘制像素的函数DrawPixel(x, y); (1)DDA算法 void CExperiment_Frame_OneView::DDA(int X0, int Y0, int X1, int Y1) { //----------请实现DDA算法------------// float k, b; float d; k = float(Y1 - Y0)/float(X1 - X0); b = float(X1*Y0 - X0*Y1)/float(X1 - X0); if(fabs(k)<= 1) { if(X0 > X1) { int temp = X0; X0 = X1; X1 = temp; }

计算机图形学实验报告 (2)

中南大学信息科学与工程学院 实验报告实验名称 实验地点科技楼四楼 实验日期2014年6月 指导教师 学生班级 学生姓名 学生学号 提交日期2014年6月

实验一Window图形编程基础 一、实验类型:验证型实验 二、实验目的 1、熟练使用实验主要开发平台VC6.0; 2、掌握如何在编译平台下编辑、编译、连接和运行一个简单的Windows图形应用程序; 3、掌握Window图形编程的基本方法; 4、学会使用基本绘图函数和Window GDI对象; 三、实验内容 创建基于MFC的Single Document应用程序(Win32应用程序也可,同学们可根据自己的喜好决定),程序可以实现以下要求: 1、用户可以通过菜单选择绘图颜色; 2、用户点击菜单选择绘图形状时,能在视图中绘制指定形状的图形; 四、实验要求与指导 1、建立名为“颜色”的菜单,该菜单下有四个菜单项:红、绿、蓝、黄。用户通过点击不同的菜单项,可以选择不同的颜色进行绘图。 2、建立名为“绘图”的菜单,该菜单下有三个菜单项:直线、曲线、矩形 其中“曲线”项有级联菜单,包括:圆、椭圆。 3、用户通过点击“绘图”中不同的菜单项,弹出对话框,让用户输入绘图位置,在指定位置进行绘图。

五、实验结果: 六、实验主要代码 1、画直线:CClientDC *m_pDC;再在OnDraw函数里给变量初始化m_pDC=new CClientDC(this); 在OnDraw函数中添加: m_pDC=new CClientDC(this); m_pDC->MoveTo(10,10); m_pDC->LineTo(100,100); m_pDC->SetPixel(100,200,RGB(0,0,0)); m_pDC->TextOut(100,100); 2、画圆: void CMyCG::LineDDA2(int xa, int ya, int xb, int yb, CDC *pDC) { int dx = xb - xa; int dy = yb - ya; int Steps, k; float xIncrement,yIncrement; float x = xa,y= ya; if(abs(dx)>abs(dy))

计算机图形学实验一_画直线

大学实验报告 学院:计算机科学与技术专业:计算机科学与技术班级:计科131

如果 d<0,则M在理想直线下方,选右上方P1点; 如果 d=0,则M在理想直线上,选P1/ P2点。 由于d是xi和yi的线性函数,可采用增量计算提高运算效率。 1.如由pi点确定在是正右方P2点(d>0).,则新的中点M仅在x方向加1,新的d值为: d new=F(xi+2,yi+0.5)=a(xi+2)+b(yi+0.5)+c 而 d old=F(xi+1,yi+0.5)=a(xi+1)+b(yi+0.5)+c d new=d old+a= d old-dy 2.如由pi点确定是右上方P1点(d<0),则新的中点M在x和y方向都增加1,新的d值为 d new=F(xi+2,yi+1.5)=a(xi+2)+b(yi+1.5)+c 而 d old=F(xi+1,yi+0.5)=a(xi+1)+b(yi+0.5)+c d new=d old+a+b= d old-dy+dx 在每一步中,根据前一次第二迭中计算出的d值的符号,在正右方和右上方的两个点中进行选择。d的初始值: d0=F(x0+1,y0+0.5)=F(x0,y0)+a+b/2=a+b/2=-dy+dx/2 F(x0,y0)=0,(x0,y0)在直线上。 为了消除d的分数,重新定义 F(x,y)=2(ax+by+c) 则每一步需要计算的d new 是简单的整数加法 dy=y1-y0,dx=x1-x0 d0=-2dy+dx d new=d old-2*dy,当 d old>=0 d new=d old-2(dy-dx),当d old<0 Bresenham画线算法 算法原理: 与DDA算法 相似,Bresenham 画线算法也要在 每列象素中找到 与理想直线最逼 近的象素点。 根据直线的 斜率来确定变量 在x或y方向递 增一个单位。另 一个方向y或x

计算机图形学实验报告

目录

实验一直线的DDA算法 一、【实验目的】 1.掌握DDA算法的基本原理。 2.掌握DDA直线扫描转换算法。 3.深入了解直线扫描转换的编程思想。 二、【实验内容】 1.利用DDA的算法原理,编程实现对直线的扫描转换。 2.加强对DDA算法的理解和掌握。 三、【测试数据及其结果】 四、【实验源代码】 #include

#include #include #include GLsizei winWidth=500; GLsizei winHeight=500; void Initial(void) { glClearColor(1.0f,1.0f,1.0f,1.0f); glMatrixMode(GL_PROJECTION); gluOrtho2D(0.0,200.0,0.0,150.0); } void DDALine(int x0,int y0,int x1,int y1) { glColor3f(1.0,0.0,0.0); int dx,dy,epsl,k; float x,y,xIncre,yIncre; dx=x1-x0; dy=y1-y0; x=x0; y=y0; if(abs(dx)>abs(dy)) epsl=abs(dx); else epsl=abs(dy); xIncre=(float)dx/(float)epsl; yIncre=(float)dy/(float)epsl; for(k=0;k<=epsl;k++) { glPointSize(3); glBegin(GL_POINTS); glV ertex2i(int(x+0.5),(int)(y+0.5)); glEnd(); x+=xIncre; y+=yIncre; } } void Display(void) { glClear(GL_COLOR_BUFFER_BIT); DDALine(100,100,200,180); glFlush(); }

《计算机图形学实验报告》

一、实验目的 1、掌握中点Bresenham直线扫描转换算法的思想。 2掌握边标志算法或有效边表算法进行多边形填充的基本设计思想。 3掌握透视投影变换的数学原理和三维坐标系中几何图形到二维图形的观察流程。 4掌握三维形体在计算机中的构造及表示方法 二、实验环境 Windows系统, VC6.0。 三、实验步骤 1、给定两个点的坐标P0(x0,y0),P1(x1,y1),使用中点Bresenham直线扫描转换算法画出连接两点的直线。 实验基本步骤 首先、使用MFC AppWizard(exe)向导生成一个单文档视图程序框架。 其次、使用中点Bresenham直线扫描转换算法实现自己的画线函数,函数原型可表示如下: void DrawLine(CDC *pDC, int p0x, int p0y, int p1x, int p1y); 在函数中,可通过调用CDC成员函数SetPixel来画出扫描转换过程中的每个点。 COLORREF SetPixel(int x, int y, COLORREF crColor ); 再次、找到文档视图程序框架视图类的OnDraw成员函数,调用DrawLine 函数画出不同斜率情况的直线,如下图:

最后、调试程序直至正确画出直线。 2、给定多边形的顶点的坐标P0(x0,y0),P1(x1,y1),P2(x2,y2),P3(x3,y3),P4(x4,y4)…使用边标志算法或有效边表算法进行多边形填充。 实验基本步骤 首先、使用MFC AppWizard(exe)向导生成一个单文档视图程序框架。 其次、实现边标志算法或有效边表算法函数,如下: void FillPolygon(CDC *pDC, int px[], int py[], int ptnumb); px:该数组用来表示每个顶点的x坐标 py :该数组用来表示每个顶点的y坐标 ptnumb:表示顶点个数 注意实现函数FillPolygon可以直接通过窗口的DC(设备描述符)来进行多边形填充,不需要使用帧缓冲存储。(边标志算法)首先用画线函数勾画出多边形,再针对每条扫描线,从左至右依次判断当前像素的颜色是否勾画的边界色,是就开始填充后面的像素直至再碰到边界像素。注意对顶点要做特殊处理。 通过调用GDI画点函数SetPixel来画出填充过程中的每个点。需要画线可以使用CDC的画线函数MoveTo和LineTo进行绘制,也可以使用实验一实现的画直线函数。 CPoint MoveTo(int x, int y ); BOOL LineTo(int x, int y ); 实现边标志算法算法需要获取某个点的当前颜色值,可以使用CDC的成员函数 COLORREF GetPixel(int x, int y ); 再次、找到文档视图程序框架视图类的OnDraw成员函数,调用FillPolygon 函数画出填充的多边形,如下: void CTestView::OnDraw(CDC* pDC) { CTestcoodtransDoc* pDoc = GetDocument(); ASSERT_VALID(pDoc);

计算机图形学 opengl 文字显示

#include #include #include #pragma comment(linker, "/subsystem:console") using namespace std; void myReshape(GLsizei w,GLsizei h) { glViewport(0,0,w,h); glMatrixMode(GL_PROJECTION); glLoadIdentity(); if(w<=h) glOrtho(-20.0,20.0,-20.0*(GLfloat)h/(GLfloat)w, 20.0*(GLfloat)h/(GLfloat)w,-50.0,50.0); else glOrtho(-20.0*(GLfloat)h/(GLfloat)w, 20.0*(GLfloat)h/(GLfloat)w,-20.0,20.0,-50.0,50.0); glMatrixMode(GL_MODELVIEW); glLoadIdentity(); } void drawCNString(const char* str) { int len=0, i; wchar_t* wstring; HDC hDC = wglGetCurrentDC(); GLuint list = glGenLists(1); for(i=0; str[i]!='\0'; ++i) { if( IsDBCSLeadByte(str[i]) ) ++i; ++len; } wstring = (wchar_t*)malloc((len+1) * sizeof(wchar_t)); MultiByteToWideChar(CP_ACP, MB_PRECOMPOSED, str, -1, wstring, len); wstring[len] = L'\0'; for(i=0; i

计算机图形学上机实验指导

计算机图形学上机实验指导 指导教师:张加万老师 助教:张怡 2009-10-10

目录 1.计算机图形学实验(一) – OPENGL基础 ..................................... - 1 - 1.1综述 (1) 1.2在VC中新建项目 (1) 1.3一个O PEN GL的例子及说明 (1) 2.计算机图形学实验(二) – OPENGL变换 ..................................... - 5 - 2.1变换 (5) 3.计算机图形学实验(三) - 画线、画圆算法的实现....................... - 9 - 3.1MFC简介 (9) 3.2VC6的界面 (10) 3.3示例的说明 (11) 4.计算机图形学实验(四)- 高级OPENGL实验...................... - 14 - 4.1光照效果 (14) 4.2雾化处理 (16) 5.计算机图形学实验(五)- 高级OPENGL实验........................ - 20 - 5.1纹理映射 (20) 5.2反走样 (24) 6.计算机图形学实验(六) – OPENGL IN MS-WINDOWS .......... - 27 - 6.1 实验目标: (27) 6.2分形 (28)

1.计算机图形学实验(一) – OpenGL基础 1.1综述 这次试验的目的主要是使大家初步熟悉OpenGL这一图形系统的用法,编程平台是Visual C++,它对OpenGL提供了完备的支持。 OpenGL提供了一系列的辅助函数,用于简化Windows操作系统的窗口操作,使我们能把注意力集中到图形编程上,这次试验的程序就采用这些辅助函数。 本次实验不涉及面向对象编程,不涉及MFC。 1.2在VC中新建项目 1.2.1新建一个项目 选择菜单File中的New选项,弹出一个分页的对话框,选中页Projects中的Win32 Console Application项,然后填入你自己的Project name,如Test,回车即可。VC为你创建一个工作区(WorkSpace),你的项目Test就放在这个工作区里。 1.2.2为项目添加文件 为了使用OpenGL,我们需要在项目中加入三个相关的Lib文件:glu32.lib、glaux.lib、opengl32.lib,这三个文件位于c:\program files\microsoft visual studio\vc98\lib目录中。 选中菜单Project->Add To Project->Files项(或用鼠标右键),把这三个文件加入项目,在FileView中会有显示。这三个文件请务必加入,否则编译时会出错。或者将这三个文件名添加到Project->Setting->Link->Object/library Modules 即可。 点击工具条中New Text File按钮,新建一个文本文件,存盘为Test.c作为你的源程序文件,再把它加入到项目中,然后就可以开始编程了。 1.3一个OpenGL的例子及说明 1.3.1源程序 请将下面的程序写入源文件Test.c,这个程序很简单,只是在屏幕上画两根线。 #include

相关文档