文档视界 最新最全的文档下载
当前位置:文档视界 › 铸钢件材料及其熔炼

铸钢件材料及其熔炼

铸钢件材料及其熔炼
铸钢件材料及其熔炼

铸钢件材料及其熔炼

1铸造碳钢

我国多年来沿用的是以钢的含碳量作为分级的标准。表1列出铸造碳钢的国家标准中,关于钢的牌号,化学成份和机械性能的要求,牌号中的“ZG"表示铸钢,其后的数字表示钢中碳的重量分数的公称值,以万分之几表示。铸造碳钢依其杂质元素磷和硫含量的高低而分为三级,磷和硫单项质量分数各低于0.04%的特质(Ⅰ级)钢;低于0.05%的优质(Ⅱ级)钢.低于0.06%的为普通(Ⅲ级)钢。

表1 铸造碳钢的牌号、化学成分及机械性能

一般工程用铸造碳钢的标准(GB5676-85)将铸造碳钢按照室温下的机械性能分为5个牌号,即ZG200-400、ZG230-450、ZG270-500、ZG310-570和ZG340-640。对钢中的基本化学成分只规定其质量分数的上限,对钢中残余合金元素的限制比较宽。

2铸造低合金钢

2.1 通用铸造低合金钢系列钢种

在机械制造中,通用的铸造低合金钢主要包括锰系、铬系和镍系三个系列。这些系列钢种是在铸造碳钢的成分基础上进行合金化,并通过相就的热处理,以获得比铸造钢更高的常温机械性能的。

1)锰系低合金钢

以锰作为主要合金化元素,而以硅、钼等作为辅助强化元素,构成锰钢、锰硅钢、锰硅铬钢和锰钼钢。

2)铬系低合金钢

以铬作为主要合金化元素,而以钼、镍等作辅助强化元素,构成铬钢,铬镍钢。

3)镍系低合金钢

以镍作为主要合金化元素,而以铬或与作辅化元素构成镍钢、镍铬钢、镍铬钼系钢种。

2.2 具有特殊性能和用途的低合金钢种

根据对铸件提出的特殊使用性能要求,进行钢的合金设计,即是有专门用途的铸造低合金钢种,其中包括用于厚大截面而又不允许淬火处理的析出强化型低合金钢,耐热用低合金钢,低温用低合金钢以及抗磨用低合金钢等。

3 铸造高合金钢

在铸造高合金钢中,加入有合金元素总量在10%(质量分数)以上,加入的合金元素可以是一种,两种,或更多种。钢中含有大量合金元素后,组织发生了根本的变化。使得钢具有特殊的使用性能,例如ωMn=13%的奥氏体高锰钢,具有很高的抗冲击磨损的性能,又如ωcr=18%、ωNi=的奥氏体不锈钢,具有

很好的耐腐性能等,因此,高合金铸钢实际上是特种铸钢。

与特种铸铁相比,高合金铸钢具有更高的性能,特别是机械性能,如高铬抗磨白口铸铁,虽有很高的抗磨性,但其韧性则较差,不适于在高冲击力的作用下工作,而高锰钢则既有很高的抗磨性,又有很高的冲击韧性,能经受高冲击磨损。又如高硅铸铁在酸类公质中有强而蚀性,但其强度很低,极易脆裂。而奥氏体不锈钢则既具有而蚀性,又有较高的强度和很高的冲击韧性,适用于经受冲击或震动条件下的耐蚀铸件,如而酸泵的旰轮等。再如高铬铸铁虽有很高的耐热性,但也是低强度、高脆性的材料,而高铬镍钢和铬锰氮钢则具有很高的强度和韧性。因此,高合金铸钢比特种铸铁更适合于在重载荷、冲击和震动条件下工作的机器零件,比特种铸铁具有更大的可靠性和安全性。

由于高合金钢中含有大量合金元素,故在铸造性能、焊接性能以及切削加工性能方面均比碳钢和低合金钢差。在铸造性能方面,每种高合金钢均有其特点,生产上需要根据其铸造性能特点来制定相应的铸造工艺。在焊接方面,一般需要使用特定的合金焊条。有些钢种焊接时还需要采取惰性气体保护,必在时还需要在焊前进行铸件预热和在焊后进行的改善焊接部位组织以及消除焊接应力的热处理等。在切削加工方面,由于高合金钢种硬度很高,有的钢种韧性很强,以至于用加工一般碳钢及低合金所用的刀具和切削工具,不能进行加工,而必须采用特定的刀具切削工艺。

3.1 铸造抗磨钢(高锰钢)

在铸造抗磨钢中,高锰钢是最通用的一种。高锰钢中锰的公称含量为13%(质量分数),牌号为Z GMn13,钢经过热处理后具有单一奥氏体组织,韧性很好,但硬度并不高,但这种奥氏体有加工硬性,铸件在工作中经受强烈的冲击或挤压时,其表面层组织发生加工硬化,硬度大为提高,因而具有很高的抗磨性。

3.2 铸造耐蚀钢(不锈钢)

铸造耐蚀钢的钢种很多,但基本上都以铬作为耐蚀的主要合金元素。依照化学成分和组织可分为铬不锈钢和铬镍不锈钢两类。

1)铬不锈钢

铬不锈钢的公称含量为13%,是不锈钢钢种当中含铬量最低的一种。Cr13型钢是一个系列,按照钢含量不同而分为五种钢号,即0Cr13,1Cr13,2Cr13,3Cr13和4Cr13。作为铸造不锈钢使用的是耐蚀性较好的ZG 0Cr13和ZG1Cr13两种。

2)铬镍不锈钢

铬镍不锈钢中铬的公称含量ωcr=18%,其耐蚀性能优于Cr13钢。

3.3 抗磨耐蚀合金钢(不锈钢)

由于水力发电和其它工业的需要,近年来国内外发展了抗磨耐蚀合金钢,其中典型的是用于制造水轮机转子和单浆叶片所用的铬镍钼马氏体不锈钢和析出硬化型铸造不锈钢。

抗磨耐蚀不锈钢也是以铬为主要耐蚀合金元素的,为了使钢具有高硬度,应使钢具有马氏体组织。为此在钢中添加镍和钼,以便在铬镍的联合作用下,使钢具仍很高的淬透性,从而使大型厚壁铸件能在油淬或空泠条件下,得到沿全断面厚度的马氏体组织。在析出硬化型不锈钢中,由于有弥散硬化相在马氏体基体上析出,因而更进一步提高了钢的硬度和抗磨性。为了保证有良好的耐蚀性和焊接性,这类钢中碳的质量分数比较低,一般在0.1%以下。

3.4 铸造耐热钢

耐热用低于合金钢在400℃以下的温度具有抗氧化性,并能保持其强度,但在更高的温度下具有耐热性,就需要用高合金钢。

钢的高温性能包括抗氧化性及热强性两个方面,抗氧化性是钢在高温下具有对气体介质的氧化腐蚀的稳定性,热强性则是钢在高温下能长期保持承受机械负荷的能力。高温下使用的钢种即按照这两种性能而分为两类。

1)耐热不起皮钢(抗氧化钢),这是在高温下具有良好的抗氧化性的钢,但对钢的高温强度无严格要求。

2)热强钢,这是在高温下既具有良好的抗氧化性,又能长期保持高强度的钢。

生产上所用的耐热温度在800℃以上的钢有铬耐热钢、铬镍耐热钢、铬锰氮耐热钢和铝锰耐热钢等四大类。

3.5 铸造热强钢

1)钢在高温下的强度及热强性

钢在高温下受力时,发生两种现象,即软化和蠕变。软化的表现是强度降低,而塑性升高。蠕变的表现是钢在高温下受力时,在应力不变的条件下,其变形量不断增长,直至最后断裂。

2)低体热强钢

热强钢通常按其金相组织而分为珠光体型、马氏体型和奥氏体型。前两种含的强化元素较少,热强性较差,一般用于600℃以下的温度。奥氏体能固溶大量合金元素,有利于提高钢的热强性。因此,在60 0。C以上的温度使用的热强钢,基本上都是奥氏体型

在更高温度(800℃以上)使用的热强性材料已不是钢(铁基合金),而是镍基合金或钴基合金了。

4铸钢的熔炼

4.1 炼钢的目的和要求

炼钢的目的和要求包括以下四个方面:

1)将炉料熔化成钢液,并提高其过热温度,保证浇注的需要。

2)将钢液中的硅,锰和碳(治炼合金钢时,还包括有合金元素)的含量,控制在规则范围以内。

3)降低钢液中的有害元素硫和磷,使共含量降低到规定限度以下。

4)清除钢液中的非金属夹杂物和气体,使钢液纯净。

4.2 炼钢的方法,特点和应用

1)电弧炉炼钢

电弧炉的基本构造如图1所示。利用电弧产生的热量来熔化炉料和提高钢液过热温度。由于电弧炉不用燃料燃烧的方法加热,故容易控制炉气的性质。可按照冶炼的要求,使之成为氧化性或还原性。电弧炉成为在铸钢方面应用最普遍的炼钢炉。

2)感应电炉炼钢

炼钢采用无芯感应电炉,其工作原理和构造铸铁的电炉相同。炉体结构与外观如图2所示,主要包括感应器和坩埚两部分。但由于炼钢需要消耗更多的热量,故在输入功率方面比同样容量的熔炼铸铁用炉大。炼钢用的感应电炉依炉子容量(坩埚直径)的不同而采用不同的频率,容量在10kg左右的用高频(1 0000Hz以上),容量从100~500kg的用中频(1000~3000Hz),而容量在500kg以上的感应电炉采用工业用电频率(50Hz)。

3)平炉炼钢

平炉的构造如图2所示。用煤气或重油作燃料,与预热送风相混合,进行燃烧,产生的火焰直接喷射在炉料上,进行加热和熔化,由于是靠火焰加热,故炉气呈氧化性,炼钢过程中元素烧损较电炉重,平炉的容量大,一般自几十吨至数百吨,适用于浇注重型铸件。

4)钢包精炼炉

用电弧炉熔化炉料,然后将钢液倾入钢包精炼炉中(图3),用氩气进行吹炼,能有效地清除钢液中的气体和夹杂物,提高钢液的质量。在钢包精炼炉基础上发展起来的氩氧脱碳(AOD)法和真空氩氧脱碳(VOD)法是冶炼高纯净度钢液,特别是低碳的高纯净度钢液的先进方法,特别适用于生产高强度钢、超高强度钢等钢种。

图1 炼钢电弧炉结构示意图

1-倾炉液压缸 2-倾炉摇架 3-炉门 4-熔池 5-炉盖 6-电极 7-电极夹紧器 8-炉体 9-电弧 10-出钢槽

图2 感应电炉炉体结构和外观

1-水泥石棉盖板 2-坩埚 3-感应线圈 4-水泥石棉防护板 5-耐火砖底座 6-铝制边框

图3 钢包精炼炉示意图

1-氩气瓶 2-减压阀 3-耐压橡皮管 4-活接头 5-透气塞 6-盛钢筒支架

铸铁是含碳量大于2.11或者组织中具有共晶组织的铁碳合金。工业上所用的铸铁,实际上都不是简单的铁一碳二元合金,而是以铁、碳、硅为主要元素的多元合金。铸铁的成分范围大致为:C2.4-4. 0%,Si0.6-3.0%,Mn0.2-1.2%,P 0.1-1.2%,S 0.08-0.15%。有时还加入各种合金元素,以便获得具有各种性能的合金铸铁。

根据碳在铸铁中存在的形态不同,通常可将铸铁分为白口铸铁、灰口铸铁及麻口铸铁。而灰铸铁中又可根据石墨的形态不同而分为普通灰铸铁,蠕虫状石黑铸铁,球黑铸铁以及可锻铸铁。

5 灰铸铁

灰铸铁通常是指具有片状石墨的灰口铸铁,这中铸铁具有一定的机械性能、良好的铸造性能以及其它多方面的优良性能,因而在机械制造中业获得最广泛的应用。

表2为灰铸铁的新的国家标准。该标准是以灰铸铁的抗拉强度作为分级依据的。由于灰铸铁对冷却速率的敏感性(壁厚效应),同一种牌号铸铁在不同铸件壁厚条件下的实际强度有很大的差别(薄壁与厚壁之间在强度上的差别达50-80MPa)。

表2 灰铸铁分级

6 球墨铸铁及蠕墨铸铁

球墨铸铁和蠕墨铸铁一般是用稀土镁合金对铁液进行处理,以改善石墨形态,从而得到比灰铸铁有更高机械性能的铸铁。

球墨铸铁依照其基体和性能特点而分为六种:即铁素体(高韧性)球墨铸铁,珠光体(高强度)球墨铸铁,贝氏体(耐磨)球墨铸铁,奥氏体一贝氏体(耐磨)球墨铸铁,马氏体一奥氏体(抗磨)球墨铸铁及奥氏体(耐热、耐蚀)球墨铸铁。

蠕墨铸铁具有不同比例的珠光体—铁素体基体组织。铸铁性能与其石墨的蠕化程度(蠕化率)及基体有关。在石墨蠕化良好条件下,珠光体蠕墨铸铁的强度和硬度较高,耐磨性强。适于制造耐磨零件,如汽车的刹车鼓等。而铁素体蠕墨铸铁的导热性较好,在高温作用下,不存在珠光体分解问题,组织较稳定,适用于制造在高温下工作、需要有良好的抗热疲劳能力、导热性的零件,如内燃机汽缸盖、进排气岐管等。

7 可锻铸铁

可锻铸铁是将白口铸铁通过固态石墨化热处理(包括有或无脱碳过程)得到的具有团絮状石墨的铁碳合金。采用不同的热处理方法,可以得到具有不同组织和性能的可锻铸铁,即黑心可锻铸铁、珠光体可锻铸铁和白心可锻铸铁。

当将白口铸铁毛坯件在密封的退火炉中进行热处理,即在中性炉气条件下退火时,得到的铸铁组织中有呈团絮状的石墨(退火碳)存在。这种石墨虽不很圆整和紧密,但它对基体的割裂作用则比灰铸铁中

的片状石墨要小得多,因此它能使铸铁得到较高的强度及良好的韧性。铸铁的基体可以通过热处理来加以控制。使之成为铁素体或珠光体。用这种方法得到的铁素体基体可锻铸铁因组织中有石墨存在,因而铸铁的断面呈暗灰色,而在表层经常有薄的脱碳层呈浅灰色,故通称为黑心可锻铸铁。而珠光体可锻铸铁则是以其基体命名的。

当将白口铸铁毛坯件在氧化性质的炉气条件下进行退火时,铸件断面上从外层到心部,发生强烈的氧化和脱碳。在完全脱碳层中无石墨存在,铸铁的组织为铸素体。实际上,在小断面尺寸条件下,铸铁的组织基本上为单一的铁素体和退火碳。而在大断面尺寸条件下,表层为铁素体,中间区域为珠光体和铁素体及退火碳,而心部区域则为珠光体及退火碳(间或有少量铁素体)。这种铸铁断面由于其心部区域有发亮的光泽,而表层色泽较暗,故通称为白心可锻铸铁。

8 特种铸铁

特种铸铁是指具有特殊使用性能的铸铁材料,主要包括抗磨铸铁、耐热铸铁和耐腐蚀铸铁。为了使铸铁具有这些特殊使用性能,需要使铸铁有一定的组织。特种铸铁中既有非合金铸铁(例如普通白口抗磨铸铁),也有低合金铸铁、中合金铸铁和高合金铸铁(如中锰抗磨用球墨铸铁及高铬抗磨用白口铸铁等)。

对任何一种特种铸铁而言,首先是要求具备一定的使用性能,如抗磨、耐热等。但由于是用来制造机器零件,就需要保证有一定的机械性能,主要是强度和塑性,为此需要在铸铁的化学成分设计上,考虑同时满足特定的使用性能和一定的机械性能这两方面的要求。

由于特种铸铁中含有大量合金元素,使得其在熔炼和铸造性能方面,与非合金化的铸铁有显著的差别。大多数合金元素降低铸铁的铸造性能,而含有大量合金元素的特种铸铁的铸造性能通常是很差的,在铸造过程中容易产生多种铸造缺陷,因此需要针对各种铸铁在熔炼和铸造方面的特性,采取适当的工艺措施,防止缺陷的发生,以保证铸件的质量。

9 铸铁的熔炼

9.1 熔炼对保证铸件质量的重要性

熔炼铁液是生产铸铁件的重要环节。铸件质量包括内在质量、外观质量以及是否形成缺陷等,这些都与铁液方面因素有直接的关系。如铁液的流动性、薄壁和结构复杂铸件的成型性以及冷隔缺陷等受铁液温度的影响,而熔炼的铁液化学成分是否符合要求,则对铸件的机械性能有直接的影响。铁液中的气体和非金属夹杂物含量不仅影响铸铁的强度和铸件的致密度,而且还与铸件形成气孔、裂纹等缺陷有关。随着机械制造科学的发展,对铸铁提出薄壁、高强度的要求,铸件的最小壁厚由过去4~6mm减小至2~3mm,这要求相应提高铁液浇注温度。铁液温度还对铸铁件的内在质量有重要的影响,如灰铸铁件的质量指标(GZ),即与铁液温度有显明的关系。在球墨铸铁生产方面,熔炼出铁液的温度及原始含硫量成为球化及孕育处理有否成功的先决条件。

9.2 对铁液质量的基本要求

1.出炉温度

不同牌号灰铸铁件的浇注温度范围大致为1330-14100C。在一般情况下,铁液的出炉温度至少比浇注温度提高500C,故根据铸铁牌号(自HT100至HT350)和铸件结构条件的具体情况,铁液出炉温度应不低于1380-14600C。当需要浇注特薄(2-4mm)铸件时,出炉温度还应提高20-300C。为了满足浇注铸件的需要,不同牌号可锻铸铁的出炉温度应不低于1460-14800C。对球墨铸铁及其它变质处理的铸铁,在其球化一孕育处理过程中铁液的温度会有显著的下降,为了补偿铁液的温度损失,需相应提高铁液的出炉温度。

2.化学成分

熔炼得到的铁液化学成分需要满足铸件的规格要求。

用冲天炉熔炼时,配料计算是保证铁水化学成分合乎要求的首要环节。即根据铁水化学成分的要求,

考虑冲天炉在熔炼过程中元素的变化和炉料的实际情况,计算出各种金属炉料的配合比例。

各种牌号铸铁要求的化学成分随铸件壁厚和铸造方法而异。例如,HT20-40铸铁的化学成分范围为:C3.3-3.5%、Si1.5-2.0%、Mn0.5-0.8%、S<0.12%、P<0.25%。用于配置HT20-40的金属料平均成分如表3。

表3 配置HT20-40的金属料平均成分

所用铁合金为含硅45%硅铁,含锰75%的锰铁。

熔炼过程中元素的变化为:Si –15%、Mn –20%、S +50%。

其配料计算如下:

(1)计算炉料中各元素的变化

a) 炉料含碳量: C铁水% = 1.8% + 0.5 C炉料%

已知铁水所需的平均含碳量为3.4%,按上式算得 C炉料%=3.2%;

b) 炉料含硅量: 已知铁水所需的平均含硅量1.75%,硅的熔炼烧损为15%,则

Si炉料=1.75/(1-0.15)=2.06%;

c) 炉料含锰量已知Mn铁水=0.65%,熔炼烧损20%,故Mn炉料=0.65/(1-0.20)=0.81%;

d) 炉料含硫量已知S铁水=0.12%,增硫50%,则:S炉料=0.12/(1+0.5)=0.08%;

e) 炉料含磷量磷在熔炼过程中变化不大,P炉料=P铁水<0.25%

综合上列计算结果,所需配置的炉料平均化学成分为:

C炉料3.2%、Si炉料2.06%、Mn炉料0.81%、S炉料<0.08%、P炉料<0.25% (2)初步确定炉料配比

a) 回炉料的配比:主要取决于废品率和成品率,它随具体生产情况而变化。此处取20%。

b) 新生铁和废钢配比:设新生铁为χ%,则废钢为80%-χ%。按炉料所需含碳量为3.2%,新生铁、废钢、

回炉料的含碳量各为4.19%、0.15%、3.28%,可列出下式:

4.19χ+0.15(80-χ)+3.28′20=3.2′100

得出χ=60.0%。故铁料配比为:Z15生铁60%、废钢20%、回炉料20%。

(3)然后按上述配比及各种炉料的成分,计算配合后的炉料成分如表4。

表4 炉料成分

(4)计算铁合金加入量

a) 硅铁加入量今缺硅量0.67%,亦即每100公斤炉料需加硅0.67公斤。所用硅铁含硅量为45%,故每100公斤炉料需加硅铁量为0.67/0.45=1.5公斤

b) 锰铁加入量同上法计算,每100公斤炉料需加入含锰75%的锰铁为:0.12/0.75=0.16公斤。

(5)制定配料单

根据配比和层铁量,确定每批炉料中各种炉料的重量,写出配料单。设已知层铁500公斤,可算得每批铁料的组成为:生铁:500′60%=300公斤、废钢:500′20%=100公斤、回炉料:500′20%=100公斤、45%硅铁:500′1.5%=7.5公斤、75%锰铁:500′0.16%=0.8公斤。

? ?? 3.有害成分

铸铁熔炼过程中,必须将有害的元素成分(磷、硫以及其它干扰铸铁正常结晶和组织控制的微量元素等),控制在限量以下。

1)脱硫冲天炉熔炼中铁液中硫的来源,一是炉料中固有的硫,二是从焦碳中吸收的硫。酸性冲天炉不具有脱硫能力,碱性冲天炉能在一定程度上起到脱硫的作用。

炉渣碱度在一定范围内提高时,有利于降低铁液含硫量;温度提高时,铁液在熔炼过程中增硫量减少;炉气氧化性强时,渣中FeO含量增高,不利于脱硫反应的进行。适当提高焦铁比,减小送风强度,有利于脱硫。但当生产球墨铸铁件时,除了用热风冲天炉进行炉内脱硫外,还常采用炉外脱硫的措施。炉外脱硫的基本要点是尽量扩大脱硫剂与铁液之间的接触面积,以加强脱硫效果。常用方法有:利用电石脱硫的摇动包脱硫法、喷射脱硫法、机械脱硫法、机械搅拌脱硫法和多空塞脱硫法等。

2)脱磷磷对铸铁的机械性能,特别是对球墨铸铁和可锻铸铁的韧性有害,因此要严格控制铸铁的含磷量。冲天炉熔炼的脱磷能力很弱。因此对铁液的含磷量只能通过配料来控制。应采用一定比例的低磷生铁和废钢进行配料。

4.铁液纯净,含有的渣、气体、夹杂物量少。

为了将冲天炉熔炼中形成的夹杂物从铁液中去除,常在熔炼过程中按照炉料重量,加入一定量的石灰石CaCO3 作为溶剂。石灰石在高温下分解,与泥沙、灰分等化合形成低熔点的复杂化合物——熔渣。熔渣易于与铁液分离便于去除。当熔渣粘度高时,可加入一些萤石(CaF2),以降低炉渣熔点。

9.3 铸铁的熔炼方法及其特点

熔炼铸铁的方法依照所用的熔炉设备而分为冲天炉熔炼,感应电炉熔炼,电孤炉熔炼,反射炉熔炼,以及由某些方法的联合,如冲天炉一电孤炉、冲天炉一感应电炉双联法等。

1.冲天炉熔炼法

(1)冲天炉构造冲天炉的基本构造示如图4。炉身、风箱及烟道等用钢板焊成。炉身内部通常砌以耐火砖层,以便抵御焦碳燃烧产生的高温作用。为了储存铁液,多数冲天炉都配有前炉。

(2)冲天炉熔炼原理在熔炼过程中,炉身的下部装满焦碳,称为底焦。在底焦的上面交替装有一批批的铁料(生铁、废钢、回炉料、铁合金等)、焦碳及熔剂(石灰石、萤石等)。通过鼓风,使底焦强烈燃烧,产生的高温炉气沿炉身高度方向上升,使其上面一层铁料熔化。

(3)冲天炉熔炼的优缺点及其应用冲天炉是最普遍应用的铸铁熔炼设备。它用焦炭作燃料,焦炭燃烧产生的热量直接用来熔化炉料和提高铁液温度,在能量消耗方面比电孤炉和其它熔炉节省。而且设备比较简单,大小工厂皆可采用。但冲天炉也存在一定的缺点,主要是由于铁液直接与焦炭接触,故在熔炼过程中会发生铁液增碳和增硫的过程。

采用了冲天炉一电孤炉双联熔炼法或冲天炉一感应电炉双联熔炼法,以充分利用冲天炉熔化效率较高、电孤炉和感应电炉对铁液过热能力强及化学成分控制容易的优点。

图4 冲天炉结构简图

2.感应电炉熔炼

(1)感应电炉构造及工作原理感应电炉是利用电流感应产生热量来加热和熔化铁料的熔炉。炉子的构造分为有芯式(图5)和无芯式两种,在无芯式感应电炉中,坩埚内的铁料在交变磁场的作用下产生感应电流,并因此产生热量,而将其自身熔化和使铁液过程热。在有芯式感应电炉中,需要加入用其它熔炉(如冲天炉)熔化的铁液,在环形铁芯内产生的交变磁场使沟槽内的铁液过程,并利用沟槽中铁液与其上面熔池中的铁液循环作用而加热全部铁液。无芯式感应电炉具有熔化固体炉料的能力,而有芯感应电炉只能过热已熔化的铁液,但在过热铁液的电能消耗方面,则以有芯感应电炉更为节省。

图5 有芯感应电炉炉体部分构造图(容量20t)

1—感应线圈 2—轭铁 3—耐火材料 4—铁液 5—熔渣

(2)感应电炉熔炼的优缺点及其应用与冲天炉熔炼相比,感应电炉熔炼的优点是熔炼过程中不会有增碳和增硫现象,而且熔炼过程可以造渣覆盖铁液,在一定程度上能防止铁液中硅、锰及合金元素的氧化,并减少铁液从炉气中吸收气体,从而使铁液比较纯净。这种熔炼方法的缺点是电能耗费大。

感应电炉适用于熔炼高质量灰铸铁、合金铸铁、球墨铸铁及蠕墨铸铁等。无芯感应电炉能够直接熔化固体炉料,而且开炉及停炉比较方便,适合于间断性生产条件。有芯感应电炉开炉及停炉不便,适合于连续性生产。这种炉子熔化固体炉料的热效率低,而对过热铁液的热效率高,故适于与冲天炉配合使用。目前这两种形式的感应电炉在铸铁生产上都得到应用。

3.电弧炉熔炼

(1)电弧炉构造及工作原理电弧炉熔炼是利用石墨电极与铁料(铁液)之间产生电弧所发生的热量来熔化铁料和使铁液进行过热的。生产上普遍使用的是三相电弧炉,其炉体部分的构造示于图6。在电弧炉熔炼过程中,当铁料熔清后,进一步地提高温度及调整化学成分的冶炼操作是在熔渣覆盖铁液的条件下进行。电弧炉依照炉渣和炉衬耐火材料的性质而分为酸性和碱性两种。碱性电弧炉具有脱硫和脱磷的能力。

(2)弧炉熔炼的优缺点及其应用电弧炉熔炼的优点是熔化固体炉料的能力强,而且铁液是在熔渣覆盖条件下进行过热和调整化学成分的,故在一定程度上能避免铁液吸气和元素的氧化。这为熔炼低碳铸铁和合金铸铁创造了良好的条件。电弧炉的缺点是耗电能多,从熔化的角度看不如冲天炉经济,故铸铁生产上常采用冲天一电弧炉双联法熔炼。由于碱性电弧炉衬耐急冷急热性差,在间歇式熔炼条件下,炉衬寿命短,导致熔炼成本高,故多采用酸性电弧炉与冲天炉相配合。

图6 三相电弧炉体剖面简图

10 铸造铝合金

10.1 铝合金的性能及应用

铸造铝合金的密度比铸铁和铸钢小,而比强度则较高。因此在承受同样载荷条件下采用铝合金铸件,可以减轻结构的重量,故在航空工业及动力机械和运输机械制造中,铝合金铸件得到广泛的应用。

铝合金有良好的表面光泽,在大气及淡水中具有良好的耐腐蚀性,故在民用器皿制造中,具有广泛的用途。纯铝在硝酸及醋酸等氧化性酸类介质中具有良好的耐蚀性,因而铝铸件在化学工业中也有一定的用途。纯铝及铝合金有良好的导热性能,放在化工生产中使用的热交换装置,以及动力机械上要求具有良好导热性能的零件,如内燃机的汽缸盖和活塞等,也适于用铝合金来制造。

铝合金具有良好的铸造性能。由于熔点较低(纯铝熔点为660.230C,铝合金的浇注温度一般约在7 30~750oC左右),故能广泛采用金属型及压力铸造等铸造方法,以提高铸件的内在质量,尺寸精度和表面光洁程度以及生产效率。铝合金由于凝固潜热大,在重量相同条件下,铝液的凝固过程时间延续比铸钢和铸铁长得多,放流动性良好,有利于铸造薄壁和结构复杂的铸件。

10.2 铸法铝合会的分类、牌号

铝合金按照加工方法的不同分为两大类,即压力加工铝合金和铸造铝合金(分别以YL和ZL表示)。在铸造铝合金中又依主要加入的合金元素的不同而分为四个系列,即铸造铝硅合金、造铝铜合金、铸造铝镁合金和铸造铅锌合金(分别以 ZL1X X,ZL2 X X,ZL3 X X和ZL4 X X表示),在每个系列中又按照化学成分及性能的不同而分为若干牌号。表3中列出了铸造铝合金国家标准所包括的几种铝合金的牌号。

表3铸造铝合金的牌号

11 铸造铜合金

铸造铜合金是工业上广泛应用的一种铸造合金材料。铜基合金因具有良好的对淡水、海水及某些化学溶液的耐蚀性能而大量用于造船及化学工业。铜基合金又由于具有良好的导热性及耐磨性,故也常用于制造各种机器上承受重负荷及高速运转轴的滑动轴瓦轴套等。

铸造铜合金分为两大类,即黄铜与青铜。黄铜是以锌为主加合金元素的铜合金。在铸造黄铜中又因加入其它合金元素而形成锰黄铜、铝黄铜、硅黄铜、铅黄铜等。在铜合金中不以锌为主加元素的统称为青铜,如锡青铜、铝青铜、铅青铜、铍青铜等。在国家标准中规定铸造铜合金共有9种,计29个牌号。

12 其他有色合金

除了铸铝合金和铸铜合金以外,还有很多种铸造有色合金。其中比较常用的是铸造镁合金、铸造钛合金和铸造锌合金。镁合金和钛合金由于具有高的比强度,故多用于航空工业。其中钛合金还对多种腐蚀性介质具有很强的耐蚀性,故也用于制造石油化工设备上经受腐蚀作用的铸件。锌合金具有比较高的强度和优良的铸造性能,故广泛用于制造薄壁的和结构复杂的铸件。

在铸造方法上,铜合金及其它有色合金除了采用砂型铸造外,还广泛采用金属型铸造、离心铸造、低压铸造以及石墨型铸造等多种特种铸造方法。

在铜合金铸造中,采用金属型铸造方法,以加速合金的凝固,对提高铸件质量,减少铸造缺陷,具有重要的作用。金属型铸造可细分晶粒(特别对于铝青铜和锰黄铜),减少气孔,提高合金的机械性能和气密性(对锡青铜特别重要),在铅青铜等高含铅量铜合金中,采用金属型(以及水冷金属型)铸造,能防止铜成分的偏析。又由于铜合金铸件中,筒形零件(轴承、衬套)等较多,故采用离心铸造方法较多。此外,大型铸铜件(如大型船用螺旋桨)还可采用低压铸造方法,以提高合金的致密度,并减少铸件在浇注过程中产生的夹杂物。某些铜合金(如铅黄铜)还可采用压力铸造方法。

镁合金由于铸造性能较差,特别是容易产生热裂,故大部分镁合金铸件仍是采用砂型铸造,仅小部分形状简单的铸件,可用金属型铸造。压力铸造方法在镁合金铸造中用得很少。

锌合金具良好的铸造性能,充填铸型能力强,且不产生热裂,故特别适宜于采用金属型和压力铸造。在大量生产中常用压力铸造方法生产薄壁和结构复杂的锌合金铸件。

钛合金由于化学活泼性极强,在铸造过程中钛液与大多数铸型材料(包括各种型砂及钢铁)都发生相互作用,致使铸件被沾污,故只能用特殊的铸型材料(如氧化钍或石墨)来铸造。

13 铸造有色合金的熔炼

熔炼工艺对有色合金铸件的性能和缺陷有很大影响。多数有色合金易产生气孔和夹杂,尤其是钛合金、铝合金、镁合金和某些铜合金。一般的熔炼工艺流程是:

1)根据铸件技术要求所规定的合金牌号,可查出合金的化学成分范围,从中选定化学成分;

2)根据元素的烧损率和成分要求,进行配料计算,得出各种炉料的加入量,并选择炉料。若炉料受到污染,则需要进行处理,保证所有的炉料清洁、无锈,并在投料前进行预热;

3)检查和准备化用具,涂刷涂料,并预热,防止气体、夹杂物和有害元素的污染;

4)加料。一般加料顺序为:回炉料、中间合金和金属料,低熔点易氧化的金属料,如镁,在炉料熔化之后加入;

5)为了减少合金液的吸气和氧化的污染,应尽快熔化,防止过热,根据需要,有的合金液须加覆盖剂保护;

6)炉料熔化后,进行精炼处理,以净化合金液,并进行精炼效果的检验;

7)根据需要,进行变质处理和细分组织处理以提高性能,并检验处理效果;

8)调整温度,进行浇注。有的合金在浇注前要进行搅拌,以防发生比重偏析。

铸钢件生产工艺中造型工艺的要点分析与总结

铸钢件生产工艺中造型工艺的要点分析与总结 造型工艺要点: (一)基本原则: 1、质量要求高的面或主要加工面应放在下面。 2、大平面应放在下面。 3、薄壁部分应放在下面。 4、厚大部分应放在上面。 5、应尽量减少砂芯的数量。 6、应尽量采用平直的分型面。 (二)基本要求: 1、木模:要求轮廓完整,无裂纹、无破损、无残缺,表面光洁,尺寸符合铸造工艺图纸要求,并经常进行尺寸校验。 2、砂箱:砂箱的尺寸大小应根据木模规格确定,大、中型砂箱应焊接箱筋。 3、浇注系统:根据铸件的结构特点的工艺要求,选择适宜的浇注系统,通常采用顶注式、底注式。 (1)浇注系统设置基本原则:浇口、冒口安放位置合理,大小适宜不妨碍铸件收缩,便于排气、落砂和清理,应使铸型尺寸尽量减少,简化造型操作,节省型砂用量和降低劳动强度。

(2)内浇道位置的注意事项。 1)内浇道不应设在铸件重要部位。 2)应使金属液流至型腔各部位的距离最短。 3)应不使金属液正面冲击铸型和砂芯。 4)应使金属液能均匀分散,快速地充满型腔。 5)不要正对铸型中的冷铁和芯撑。 4、冒口 (1)冒口设置基本原则: 1)根据铸件的结构和工艺要求正确选择冒口的形状、大小和安放位置。 2)根据冒口的有效补缩范围合理地确定冒口数量。 (2)冒口设置基本要求: 1)对于壁厚不均匀的铸件,每个热节部位都必须设置冒口。 2)应尽量设置在铸件被补缩部位的顶部或近旁。 3)当铸件在不同高度上有热节需要补缩时,可设置多个冒口,但各冒口的补缩区必须隔开。4)冒口最好不设置在铸件重要的或受力较大的部位。 5)应尽量使内浇道通过冒口。 6)冒口应尽量不设置在铸件应力集中处。

中频炉熔炼灰铁的工艺样本

中频炉熔炼灰铁工艺、质量控制浅论(二) 3.1 增碳率控制和增碳剂使用 对于中频炉熔炼灰铁,许多人都觉得只要炉前控制住铁水化学成分和温度,就能熔炼出优质铁水,但事实并非如此简朴。中频炉熔炼灰铁重中之重是控制增碳剂核心作用,核心技术是铁水增碳。增碳率越高,铁水冶金性能越好。这里所说增碳率,是铁水中以增碳剂形式加入碳,而不是炉料中带入碳。生产实践表白,在炉料配比中生铁比例高,白口倾向大;增碳剂比例增大,白口倾向减小。这就规定在配料中要多用便宜废钢和回炉料,少用或不用新生铁,这种采用废钢增碳工艺铁水中存在大量细小弥散分布非均质晶核,减少了铁水过冷度,促使了以 A 型石墨为主石墨组织形成。同步,生铁用量减少,也减小了生铁粗大石墨不良遗传作用,并且灰铁性能也随着废钢用量增长而提高。在实际生产中就曾发现,在废钢用量约为 30% 状况下,同样用废钢、回炉料、新生铁做炉料,在化学成分基本相似时,中频炉熔炼灰铁比冲天炉熔炼性能低,强化孕育效果也不明显,这就是废钢用量少、增碳率低缘故。由此足见增碳对于保证灰铁熔炼质量、改进铸铁组织与性能重要性。 灰铁性能是由基体组织和石墨形态、大小、数量及分布决定,变化石墨形态是变化铸铁性能重要途径。相比而言,基体组织较容易控制,它重要取决于铁水化学成分和冷却速度。但石墨形态却不容易控制,它规定铁水石墨化限度要好。而奇怪是只有新增碳才参加石墨化,炉

料中原始碳并不参加石墨化。如果不用增碳剂,熔炼出铁水虽然化学成分合格,温度也适当,孕育也合理,但铁水却体现不佳:看似温度较高,流动性却不太好,缩孔、缩松倾向大,易吸气,易产生白口,截面敏感性大,铁水夹杂物多。这些都是铁水增碳率和石墨化限度低导致。 碳在原铁水中存在形式重要为细小石墨和碳原子,从细化石墨角度考虑,原铁水中不希望有过多碳原子,其势必会减少石墨核心数,并且碳原子在冷却过程中更易形成渗碳体,而细小石墨可以直接作为非均质形核核心。细化石墨、增长核心是实现铸铁高性能核心,增大增碳剂用量可以增长形核核心数量,进而为细化石墨打下坚实基本。因而,在实际生产中应强调增碳剂使用和增碳效果:①增碳剂吸取率与其 C 含量直接有关,C 含量越高,则吸取率越高。②增碳剂粒度是影响其溶入铁水重要因素,实践证明,增碳剂粒度应以 1~4mm 为好,有微粉和粗粒增碳效果都不好。③硅对增碳效果有较大影响,高硅铁水增碳性差,增碳速度慢,故硅铁应在增碳到位后加入,要遵循先增碳后增硅原则。④硫能阻碍碳吸取,高硫铁水比低硫铁水增碳速度迟缓诸多。⑤石墨增碳剂能提高铁水形核能力,吸取率也比非石墨增碳剂高 10%以上,故应选用低氮石墨增碳剂。⑥增碳剂用法推荐使用随炉装入法,即先在炉底加入一定量小块回炉料和废钢,然后把增碳剂按配料量需要所有加入,上面再压一层小块废钢和生铁,之后再边熔化边加炉料。此法简便易行,生产效率高,吸取率可达 90%。如果增碳剂加入量很大,可以分两批加入,先加 60%~70%

铸钢件生产工艺要求及质量标准

铸钢件生产工艺要求及质量标准 一、混砂工艺标准 (一)材料要求: 1、造型砂:符合GB9442-88 、JB435-63细粒砂要求,一般选用二氧化硅含量较高的天然砂或石英砂,原砂粒度根据铸件大小及壁厚确定,原砂的含泥质量分数应小于2%,原砂中的水份必须严格控制,且一般应进行烘干。 2、水玻璃:水玻璃模应根据铸件大小来确定。 (1)小砂型(芯)为加速硬化采用选用M=2.7—3.2的高模数水玻璃。 (2)中型砂型(芯)可选用M=2.3—2.6的水玻璃。 (3)生产周期长的大型砂型(芯)选用M=2.0—2.2的低模数水玻璃。 (二)混制比例(质量分数%) 造型砂/水玻璃=100:6~8 (三)混制时间:一般情况下混制5分钟,室温或水玻璃密度较大时可适当延长混砂时间。 (四)混制后要求:混制好的造型砂要求无块状或团状,流动性较好。 二、造型工艺要点: (一)基本原则: 1、质量要求高的面或主要加工面应放在下面。

2、大平面应放在下面。 3、薄壁部分应放在下面。 4、厚大部分应放在上面。 5、应尽量减少砂芯的数量。 6、应尽量采用平直的分型面。 (二)基本要求: 1、木模:要求轮廓完整,无裂纹、无破损、无残缺,表面光洁,尺寸符合铸造工艺图纸要求,并经常进行尺寸校验。 2、砂箱:砂箱的尺寸大小应根据木模规格确定,大、中型砂箱应焊接箱筋。 3、浇注系统:根据铸件的结构特点的工艺要求,选择适宜的浇注系统,通常采用顶注式、底注式。 (1)浇注系统设置基本原则:浇口、冒口安放位置合理,大小适宜不妨碍铸件收缩,便于排气、落砂和清理,应使铸型尺寸尽量减少,简化造型操作,节省型砂用量和降低劳动强度。 (2)内浇道位置的注意事项。 1)内浇道不应设在铸件重要部位。 2)应使金属液流至型腔各部位的距离最短。 3)应不使金属液正面冲击铸型和砂芯。 4)应使金属液能均匀分散,快速地充满型腔。 5)不要正对铸型中的冷铁和芯撑。 4、冒口 (1)冒口设置基本原则:

铸钢件的制作方案

铸钢件的制作方案 一. 概述 xxX主体育场并非简单构筑物,其中的铸钢件要求尺寸精度高且加工制作难度大,其既为一件精密的机械零件,又是一件精美的艺术品。 在xxX主体育场铸钢件的设计、模型制造、铸造、加工及质检等过程中,始终贯彻下述原则:我们在设计、生产制作过程中,认真执行相关国家、行业及特定验收标准。严格控制每一生产过程,确保提供外型尺寸符合图纸要求;化学成分、机械性能达到设计要求;铸钢件内外质量满足检测要求的高品质铸钢件。 xxX主体育场铸钢件是集计算机辅助设计(CAD)、计算机辅助制造(CAM)、计算机辅助测量(CAM)及先进的铸造凝固模拟分析技术(CAE)为一体的高科技产品。 本内容详细介绍xxX主体育场铸钢件在设计、制作过程各个环节:难点及解决方案;铸钢件主要结构形式;制作工艺流程;铸钢件制作;质量控制;检验标准。 二. 关键点、难点及解决方案 (一)铸钢件的关键点 关键点:xxX主体育场铸钢件结构形式需要满足下列要求: 首先:铸钢件保证原设计的外部造型及整体受力要求。 其次:铸钢件保证尺寸精度及表面粗制度的设计要求。 最后:铸钢件内部结构符合铸造工艺的要求。 解决方案:针对以上铸钢件的关键点,利用三维造型软件、有限元受力分析软件、计算机凝固模拟分析软件相互协调,在原设计的基础上深化设计满足上述要求的铸钢件结构形式(铸钢件三维实体模型)。 (二)铸钢件的难点 难点:由于xxX主体育场铸钢件的特点种类多、数量多、分枝多,导致大量的模型制作工作量。如何解决模型制作在满足设计的结构形式的前提下保证工期的要求是本工程的难点。 解决方案:针对以上铸钢件的难点。利用三维造型软件。

中频炉熔炼工艺操作规程

中频炉熔炼工艺操作规程 1、中频炉范围 本标准规定了中频感应电炉,熔炼技术操作规程。 本标准适用于阳极组装车间生产。 2、设备主要技术性能 2.1 产品型号KGPS—1250 额定容量2t 额定功率1250KW 额定频率500HZ 额定温度1500℃ 感应器电压2000V 熔化效率1.8t/h 2.2 冷却水系统 冷却水压力0.1~0.25MPa 冷却水进水温度≤35℃ 冷却水耗量12t/h 冷却水出口温度≤55℃ 冷却水PH 值7-8.5 总硬度不大于10度 导电率<500u.s/cm 3、生产前的检查 3.1操作人员必须认真了解中频炉系统设备的结构、性能。 3.2生产前仔细检查炉体及部件是否完好。 3.3仔细检查炉衬、炉口烧损情况,如发现问题及时处理 3.4检查和维修熔炼时所用的工器具是否齐全。 3.5检查冷却水系统及液压系统管路是否有滴漏现象。 3.6检查各个部位的仪表和显示是否正常。 3.7检查炉料是否清理干净和数量充足,配比是否合理。 3.8检查铁水包及输送电胡芦是否完好。 3.9检查各控制系统是否正常,灵活可靠。 3.10检查漏炉报警装置是否灵敏、可靠,电气绝缘情况是否达到要求。 3.11检查倾炉系统是否灵活、可靠。 3.12检查中频炉电源系统及纯水冷却系统是否正常完好。 4、熔炼操作

4.1检查无误后,如是冷炉或空炉,必须先加入干净炉料,成份必须符合要求。 4.2炉料要干燥,严禁潮湿料及杂物入炉,一般情况炉料入炉前应予热,加料时应小心操作,不能砸伤炉口炉衬,空心料更应该小心加,防止炉气和铁水喷出飞溅伤人。 4.3开通冷却水,先用低功率进行炉料预热。几分钟后,改用高功率熔炼、炉料开始熔化,此时注意冷却水、根据水温和经验进行调整。 4.4熔炼过程中要经常检查炉衬的烧损情况电源功率表。检查炉口是否有凝结现象。炉膛里不准有炉料架空棚料现象,有应及时处理。 4.7在熔炼过程中、铁水不能溢出,应与炉沿保持50mm 的距离。 4.8铁料彻底熔化浇铸前,观测铁水温度是否达到1450℃,用渣耙除渣。按要求每周取样一次进行分析,参照分析结果及时调整配料。 4.9正确操作炉子液压倾炉系统,倒出铁水至铁水包。铁水距离包沿50mm. 4.10出炉后炉内应留有少量铁水,并及时添加新炉料,继续通电熔炼。 4.11根据浇铸组装块任务量熔化铁水,待生产结束后炉内不应留有铁水。为保护炉衬,一般情况下趁热加入炉料,准备下一班次的生产。 4.12停炉后冷却水不能停,仍继续循环24小时。 4.13待炉子冷却后,用照明灯或手电照明检查炉衬情况如有破损及时修理。 4.14停炉必须停掉电源,清理现场,做好所有记录。 5、中频炉突发事件 5.1当熔炼过程中中频炉产生报警或漏液时,应立即关掉电源停止熔化,倒出已熔化铁水、按应急预案处理故障。 5.2熔炼过程中,突然停水或停电时间又长时,应立即停掉中频电源,开启备用泵或备用水箱及自来水直接引至炉冷却管路,按应急预案处理故障,绝不能扩大事故范围

铸造生产的工艺流程

铸造生产的工艺流程 铸造生产是一个复杂的多工序组合的工艺过程,它包括以下主要工序: 1)生产工艺准备,根据要生产的零件图、生产批量和交货期限,制定生产工艺方案和工艺文件,绘制铸造工艺图; 2)生产准备,包括准备熔化用材料、造型制芯用材料和模样、芯盒、砂箱等工艺装备; 3)造型与制芯; 4)熔化与浇注; 5)落砂清理与铸件检验等主要工序。 成形原理 铸造生产是将金属加热熔化,使其具有流动性,然后浇入到具有一定形状的铸型型腔中,在重力或外力(压力、离心力、电磁力等)的作用下充满型腔,冷却并凝固成铸件(或零件)的一种金属成形方法。

图1 铸造成形过程 铸件一般作为毛坯经切削加工成为零件。但也有许多铸件无需切削加工就能满足零件的设计精度和表面粗糙度要求,直接作为零件使用。 型砂的性能及组成 1、型砂的性能 型砂(含芯砂)的主要性能要求有强度、透气性、耐火度、退让性、流动性、紧实率和溃散性等。 2、型砂的组成 型砂由原砂、粘接剂和附加物组成。铸造用原砂要求含泥量少、颗粒均匀、形状为圆形和多角形的海砂、河砂或山砂等。铸造用粘接剂有粘土(普通粘土和膨润土)、水玻璃砂、树脂、合脂油和植物油等,分别称为粘土砂,水玻璃砂、树脂砂、合脂油砂和植物油砂等。为了进一步提高型(芯)砂的某些性能,往往要在型(芯)砂中加入一些附加物,如煤粉、锯末、纸浆等。型砂结构,如图2所示。 图2 型砂结构示意图 工艺特点 铸造是生产零件毛坯的主要方法之一,尤其对于有些脆性金属或合金材料(如各种铸铁件、有色合金铸件等)的零件毛坯,铸造几乎是唯一的加工方法。与其它加工方法相比,铸造工艺具有以下特点: 1)铸件可以不受金属材料、尺寸大小和重量的限制。铸件材料可以是各种铸铁、铸钢、铝合金、铜合金、镁合金、钛合金、锌合金和各种特殊合金材料;铸件可以小至几克,大到数百吨;铸件壁厚可以从0.5毫米到1米左右;铸件长度可以从几毫米到十几米。 2)铸造可以生产各种形状复杂的毛坯,特别适用于生产具有复杂内腔的零件毛坯,如各种箱体、缸体、叶片、叶轮等。 3)铸件的形状和大小可以与零件很接近,既节约金属材料,又省切削加工工时。4)铸件一般使用的原材料来源广、铸件成本低。 5)铸造工艺灵活,生产率高,既可以手工生产,也可以机械化生产。 铸件的手工造型

技术质量指标铸钢件生产工艺分析

1、生产工艺流程 模具、芯骨、工装、夹具、专用检测器具、专用加工设备 原辅材料、备品、备件 检验 检验冶炼造型 浇注 铸件待冷却铸件出型清砂铸件清理铸件热处理铸件毛坯精整机加工 发运 包装 油漆 抛丸 检验 检验 检验 检验 检验 检验检验 检验检验检验

2、产品主要成份、性能、技术质量指标 (1)材质要求具体化学成份为(%):C 0.17~0.23;Si≤0.60;Mn 1.0~1.50;P≤0.020;S≤0. 015;Cr≤0. 30;Mo≤0. 15;Ni≤0.40;Al≤0.020 ; Re0.2~0.35(加入量) (2)机械性能要求 屈服强度≥230Mpa 抗拉强度≥450Mpa 延伸率≥22% 冲击功≥40J 1)按GB11352标准要求随炉提取试样,每一个炉号制备二组试样,其中一组备查。 2)为确保具有良好的焊接性能,节点铸件碳当量控制在CE≤0.42。 3)铸件表面质量符合设计要求,表面粗糙度达到GB6060.1标准要求。 4)铸件的探伤要求,按GB7233探伤, 采用6㎜探测头,管口焊 缝区域150mm以内范围超声波100%探伤,质量等级为Ⅱ级, 其余外表面10%超声波探伤,质量等级为IV级。不可超声波 探伤部位采用GB9444磁粉表面探伤,质量等级为III级。 5)节点的外形尺寸符合图样要求,管口外径尺寸公差按负偏差 控制。 6)热处理按照Q/32182HQA05-2002标准要求,铸件进行正火处 理(920±20℃,出炉空冷,加640±20℃回火处理)。 7)涂装处理要求:表面采用抛丸或喷砂除锈,除锈等级Sa2.5

级,随即涂水性无机富锌底漆,厚度50μm,环氧云铁中间漆 2×30μm。 3、铸造工艺参数 (1)加工余量按照GB/T11350-89,CT12H/J级。 (2)模样线收缩率2.0% 铸件毛坯尺寸偏差符合GB6414-86中CT12要求。 4、铸造工艺说明 (1)为保证叉管与杆件相交处质量,考虑尽可能将支管水平放置,分二箱造型,在铸件上平面分型,整体分两半实模。 (2)冒口采用标准保温冒口套Φ400×h600,5件, (3)型砂:铸型和泥芯均采用树脂砂,表面涂锆英粉涂料二遍,用煤油喷枪辅助烘干。 (4)铸件毛重约6000㎏,浇冒口约重3000kg,工艺出品率 66.7%。

铸钢件生产工艺技术

铸钢件生产工艺技术 铸钢件是用铸造方法获得的金属物件,即把熔炼好的液态金属,用浇注、压射、吸入或其他方法注入预先预备好的铸型中,冷却后经落砂、清理(见铸件清理)和后处理(见铸件后处理),所得到的具有一定外形,尺寸和性能的物件。对于强度、塑性和韧性要求更高的机器零件,需要采用铸钢件。铸钢件的产量仅次于铸铁,约占铸件总产量的15%。 一、按照化学成分,铸钢可分为碳素铸钢和合金铸钢两大类。其中以碳素铸钢应用最广,占铸钢总产量的80%以上。 1、碳素铸钢一般的,低碳钢ZG15的熔点较高、铸造性能差,仅用于制造电机零件或渗碳零件;中碳钢ZG25~ZG45,具有高于各类铸铁的综合性能,即强度高、有优良的塑性和韧性,因此适于制造形状复杂、强度和韧性要求高的零件,如火车车轮、锻锤机架和砧座、轧辊和高压阀门等,是碳素铸钢中应用最多的一类;高碳钢ZG55的熔点低,其铸造性能较中碳钢的好,但其塑性和韧性较差,仅用于制造少数的耐磨件。 2、合金铸钢根据合金元素总量的多少,合金铸钢可分为两低合金钢和高合金钢大类。 1)低合金铸钢,我国主要应用锰系、锰硅系及铬系等。如ZG40Mn、ZG30MnSi1、ZG30Cr1MnSi1等。用来制造齿轮、水压机工作缸和水轮机转子等零件,而ZG40Cr1常用来制造高强度齿轮和高强度轴等重要受力零件。 2)高合金铸钢,具有耐磨、耐热或耐腐蚀等特殊性能。如高锰钢ZGMn13,是一种抗磨钢,主要用于制造在干磨擦工作条件下使用的零件,如挖掘机的抓斗前壁和抓斗齿、拖拉机和坦克的履带等;铬镍不锈钢ZG1Cr18Ni9和铬不锈钢ZG1Cr13和ZGCr28等,对硝酸的耐腐蚀性很高,主要用于制造化工、石油、化纤和食品等设备上的零件。 二、铸钢的铸造工艺特点铸钢的机械性能比铸铁高,但其铸造性能却比铸铁差。因为铸钢的熔点较高,钢液易氧化、钢水的流动性差、收缩大,其体收缩率为10~14%,线收缩为1.8~2.5%。为防止铸钢件产生浇不足、冷隔、缩孔和缩松、裂纹及粘砂等缺陷,必须采取比铸铁复杂的工艺措施: 1、由于钢液的流动性差,为防止铸钢件产生冷隔和浇不足,铸钢件的壁厚不能小于8mm;浇注系统的结构力求简单、且截面尺寸比铸铁的大;采用干铸型或热铸型;适当提高浇注温度,一般为1520°~1600℃,因为浇注温度高,钢水的过热度大、保持液态的时间长,流动性可得到改善。但是浇温过高,会引起晶粒粗大、热裂、气孔和粘砂等缺陷。因此一般小型、薄壁及形状复杂的铸件,其浇注温度约为钢的熔点温度+150℃;大型、

中频炉熔炼灰铁的工艺(二)

中频炉熔炼灰铁的工艺、质量控制浅论(二) 增碳率的控制和增碳剂的使用 对于中频炉熔炼灰铁,许多人都以为只要炉前控制住铁水的化学成分和温度,就能熔炼出优质铁水,但事实并非如此简单。中频炉熔炼灰铁的重中之重是控制增碳剂的核心作用,核心技术是铁水增碳。增碳率越高,铁水的冶金性能越好。这里所说的增碳率,是铁水中以增碳剂形式加入的碳,而不是炉料中带入的碳。生产实践表明,在炉料配比中生铁比例高,白口倾向大;增碳剂比例增大,白口倾向减小。这就要求在配料中要多用廉价的废钢和回炉料,少用或不用新生铁,这种采用废钢增碳工艺的铁水中存在大量细小的弥散分布的非均质晶核,降低了铁水的过冷度,促使了以 A 型石墨为主的石墨组织的形成。同时,生铁用量的减少,也减小了生铁粗大石墨的不良遗传作用,而且灰铁的性能也随着废钢用量的增加而提高。在实际生产中就曾发现,在废钢用量约为30%的情况下,同样用废钢、回炉料、新生铁做炉料,在化学成分基本相同时,中频炉熔炼的灰铁比冲天炉熔炼的性能低,强化孕育效果也不明显,这就是废钢用量少、增碳率低的缘故。由此足见增碳对于保证灰铁的熔炼质量、改善铸铁的组织与性能的重要性。 灰铁的性能是由基体组织和石墨的形态、大小、数量及分布决定的,改变石墨形态是改变铸铁性能的重要途径。相比而言,基体组织较容易控制,它主要取决于铁水的化学成分和冷却速度。但石墨形态

却不容易控制,它要求铁水的石墨化程度要好。而奇怪的是只有新增碳才参与石墨化,炉料中的原始碳并不参与石墨化。如果不用增碳剂,熔炼出的铁水虽然化学成分合格,温度也合适,孕育也合理,但铁水却表现不佳:看似温度较高,流动性却不太好,缩孔、缩松倾向大,易吸气,易产生白口,截面敏感性大,铁水夹杂物多。这些都是铁水增碳率和石墨化程度低造成的。 碳在原铁水中的存在形式主要为细小的石墨和碳原子,从细化石墨的角度考虑,原铁水中不希望有过多的碳原子,其势必会减少石墨的核心数,并且碳原子在冷却过程中更易形成渗碳体,而细小的石墨可以直接作为非均质形核核心。细化石墨、增加核心是实现铸铁高性能的关键,增大增碳剂用量可以增加形核核心数量,进而为细化石墨打下坚实的基础。因此,在实际生产中应强调增碳剂的使用和增碳效果:①增碳剂的吸收率与其 C 含量直接相关,C 含量越高,则吸收率越高。②增碳剂的粒度是影响其溶入铁水的主要因素,实践证明,增碳剂的粒度应以1~4mm 为好,有微粉和粗粒增碳效果都不好。③硅对增碳效果有较大影响,高硅铁水增碳性差,增碳速度慢,故硅铁应在增碳到位后加入,要遵循先增碳后增硅的原则。④硫能阻碍碳的吸收,高硫铁水比低硫铁水的增碳速度迟缓很多。⑤石墨增碳剂能提高铁水的形核能力,吸收率也比非石墨增碳剂高10%以上,故应选用低氮石墨增碳剂。⑥增碳剂的使用方法推荐使用随炉装入法,即先在炉底加入一定量的小块回炉料和废钢,然后把增碳剂按配料量需要全部加入,上面再压一层小块废钢和生铁,之

铸造生产过程控制程序

铸造生产过程控制程序 1.目的 为使产品铸件的整个生产过程的质量、环境、职业健康安全处于受控状态。 2.适用范围 铸造车间所生产的本公司铸件的生产全过程。 3.职责 3.1车间主任负责各工序的生产管理,组织贯彻实施质量管理、环境管理、职业健康安全管理各控制程序,对铸件生产中的质量、环境、职业健康安全负责。 3.2车间计划调度员根据公司生产技术部下达的生产指令安排组织生产活动。3.3车间技术组负责编制工艺文件,并对工艺文件的正确性、完整性、适用性负责。 3.4车间安全员负责车间生产的环境管理和职业健康安全管理的日常工作。 3.5各班组长对本班组的产品质量、生产作业计划及进度、环境管理、职业健康安全管理的完成情况负责。 4.工作程序 4.1过程准备 4.1.1车间计划调度员按照生产技术部下发的项目计划编制各班组的生产计划,及时下发到各班组,完成调度指令兑现率,准备好各种工装器具及原材料。 4.1.2车间生产所需各种工装器具及原材料放在有明显标识的指定区域,由车间统一管理。 4.1.3车间技术组由专人负责管理图纸和技术资料,进行分类、标识、定址存放,建立文件资料目录及管理规定。

4.1.4技术组的技术人员根据当月车间生产计划准备技术资料、图纸,并保证这些资料正确、清晰、完整、有效。 4.1.5原料、辅料和工艺装备上场前有关人员应检验其是否符合规定要求,检验结果应记录并明确标识。 4.1.6车间设备员要做好设备的日常管理和检查,其结果应记录备案。 4.1.7操作者上岗前应经过培训,培训合格后持证上岗,特殊过程(熔炼、浇注、造型、焊接、热处理、机动车司机)必须经过专门培训,考试结果记录备案。 4.2过程控制 4.2.1图纸资料的控制 4.2.1.1车间技术组负责图纸、技术文件的收发、归档、管理和更改。 4.2.1.2车间技术组签收图纸、资料后,加盖本车间专用标记章,填写《收图登记》,分类放置。 4.2.1.3车间技术组收到改图通知后,按要求更改,保证零件图、工艺图、工装图的有效性,做出更改标识并通知到相关技术人员。车间技术组对车间图纸、资料的正确性、完整性负责,保证在生产过程中使用的图纸资料为有效版本。 4.2.1.4归口本部门管理的定型产品工艺改进、工装设计及新增零件的工艺、工装设计、履行审核、批准手续。 4.2.1.5车间的图纸、资料一律不外借,外部门人员借用需经主管主任批准,并填写《借阅登记》,当日归还,特殊情况当日不能归还的,需经车间主任签字批准限期归还。 4.2.2工艺设计控制 4.2.2.1车间技术组负责铸件铸造工艺的编制,并对其正确性、适用性负责,主管技术人员校对、审核、标准化后,主管主任签字批准,并正确执行冶炼工艺。

中频炉熔炼作业指导书

1.目的:规范熔炼操作,保证产品质量和生产的顺利进行。 2.范围:本公司的高、低铬合金铸铁熔炼操作。 3.内容: 3.1 生产准备:在炉料、工具、记录文件及人员的准备齐全后开始生产。如果准备不齐全,应准备齐全 后再开始生产。 3.1.1 炉料的准备:准备足够一个班次使用的炉料。废钢、和回炉料不能潮湿,不能严重锈蚀;回 炉料要求除净残砂。锰铁、铬铁、增碳剂、孕育剂和聚渣剂等,必须保持干燥无杂物。 3.1.2 工具、记录的准备:检查电炉、加料天车、加料车、测温枪和其它称量仪器,确保它们能够正常 工作。准备足够一个班次使用的除渣工具、孕育剂处理工具等。准备各种记录表格。扒渣、挡渣、搅拌等工具必须干燥,残汤罐必须刷涂料并烘干后方可使用。 3.1.3 中间包的准备,确保其处于良好状态。 3.1.3.1 中间包可采用混制好的浇注耐火材料制作。也可用与中频炉坩埚相同配比的石英砂和水玻璃制 作,混制方法同炉衬耐火材料。 3.1.3.2 包底厚度约150-180mm,包壁厚度约50-80mm。浇包内壁要轻轻打实、打平。 3.1.3.3 中间包制作完成后须用燃气烤包器彻底烘烤,或用木材、焦炭烘烤。要确保烤干烤透。任何时 候禁止用潮湿的中间包装盛转运或浇注铁水。 3.1.3.4 中间包的预热:每次重新生产前或浇注过程停工1 小时以上时,应将中间包充分烘烤至暗红色 状态(约600℃以上)后使用。 3.1.4 人员的准备:对临时代理或替班人员,代理人必须知道自己应做的工作,当班班组长保证代理人 可以完成相应的工作。 3.2 备料 3.2.1 准备主料:备料的数量要按生产指令的安排进行。废钢、回炉料的比例按技术部门最后提 出的《配料单》执行。 3.2.2 准备增碳剂、铬铁、锰铁等合金材料。 3.2.3 准备孕育处理:根据生产安排,依据相关技术文件《配料单》,准备相应份数和 重量的孕育剂。 3.3 电炉的检查 3.3.1 开炉熔炼前,必须认真进行下列项目的检查,以避免熔炼过程出现意外事故。 3.3.2 检查坩埚内部侵蚀程度:仔细检查坩埚底部和内壁,发现凹陷和裂纹要及时修补。 3.3.3 检查炉顶、炉嘴和炉盖板,发现掉砂和松动要注意修整和紧固。 3.3.4 检查感应圈四周是否有铁豆、铁屑和其他杂物,如有须清除干净。检查感应圈与绝缘柱的连接螺 栓是否松动和脱落,如有松动要紧固,如有脱落要全部补上并紧固。

大型铸钢件工艺

大型铸钢件工艺设计的关键技术 武汉钢铁重工集团铸钢车间孙凡 摘要:简要介绍大型铸钢件的铸造工艺设计的铸件的工艺性分析、铸造工艺方案选择、铸造工艺参数的选定、铸件成形的控制、铸件的热处理技术、铸造工艺装备的设计、铸件的后处理技术及计算机数值模拟技术等关键技术。 1 零件的工艺性研究 铸造工艺设计时,首先要仔细地阅读和研究铸件的制造或采购技术条件、质量要求。如探伤要求,表面质量要求,机械性能要求,特殊热处理要求等,其次,要研究零件的结构特点,如质量要求高的表面或主要的加工面,主要的尺寸公差要求等,再次,研究材料化学成分,特别是铸造合金中含碳量,合金元素含量作用和机理。这些对下一步的工艺设计有直接影响。需格外重视,做好零件的工艺性研究,能为工艺设计奠定良好的开端。 1.1 材料的工艺性分析 在大型铸件的制造中,材料的物理性能和机械性能,对工艺参数的选定、浇冒口和冷铁设置、热处理技术、铸件的后处理技术等都有重大影响。深入了解铸造合金中含碳量,合金元素含量对铸态组织形态的影响,对力学性能的影响,了解材料的凝固方式,收缩倾向,冒口补缩效果,了解材料的热导率,热应力倾向等,对工艺设计有重要意义。 在砂型条件下,随着合金中碳的质量分数量增加,结晶温度范围扩大。低碳钢为逐层凝固方式,中碳钢为中间凝固方式,高碳钢为体积凝固方式凝固,但改变冷却条件,可以改变结晶温度范围,从而改变合金的凝固方式。由于凝固方式的不同,窄结晶温度范围的合金,容易形成细小的晶粒组织,补缩性好,热烈倾向小;反之,宽结晶温度范围的合金,容易形成粗大的晶粒组织,补缩性差,热烈倾向大。因此,高碳钢的厚大部位,要采取强制冷却工艺缩小结晶温度范围,改善晶粒组织。合金中的碳、锰、铬等元素的含量增加,可以提高强度,提高淬透性,却降低导热性,直接影响铸件各部位冷却、加热的温度差,因此,合金钢较容易造成高的残余应力。工艺上要减少各部位浇注后冷却、热处理加热的温度差。合金在相变时,各种组织组成相的比体积不同,会产生相变应力,其中,马氏体的比体积最大,马氏体相变最容易产生较大的相变应力。碳、锰、铬等淬透性元素含量高的合金钢,冷割冒口时极易产生裂纹,原因就是导热性差热应力大,产生马氏体转变导致相变应力大,必须热割冒口, 1.2 铸件结构的工艺性分析 对于需要铸造的零件,必须检查它的结构是否符合铸造工艺的基本要求。因为有时对铸件的结构,作很小的改动,并不影响铸件的使用性能, 但却大大地简化了铸造工艺,有利于提高铸件质量。在铸造生产中, 对铸件结构的基本要求有以下几点:铸件的壁厚应大于铸件允许的最小壁厚,以免产生浇不足等缺陷。

(完整版)泵常用材料

泵体(蜗壳)材料 泵体材料选择考虑因素:a 强度;b 耐腐蚀;c 耐磨粒磨损;d 铸造和机械加工性能;e 焊接修补性能;f成本。 1 铸铁 对于大多数输送液体应用来说,灰铸铁是制造泵壳体的较好材料。对于单级泵,通常灰铸铁有足够的强度抵抗所产生的压力。在中等压力和温度范围内,球墨铸铁被广泛应用。在灰铸铁和球墨铸铁不能达到足够耐腐蚀性能应用场合,耐蚀高镍铸铁常被用做泵体材料。近年来开发出一种新型的,具有良好焊接性能的耐蚀高镍铸铁材料(命名为D2W),含有少量铌元素,以改善其焊接性能。典型的奥氏体铸铁含镍15%~20%,在盐水中广泛应用。 灰口铸铁是最常用的一种铸铁,国标代号为HT。一般清水泵的泵体、叶轮、泵盖、悬架等均采用该材料,通常用到三种牌号:HT150、HT200、HT250。对于底座、垫板等非主要零件多采用HT150,泵体、泵盖、悬架等多采用HT200,而叶轮、口环、轴套等多采用HT250。各国对灰铁的表示方法有所不同,如日本的代号为FC,德国的代号为GG,美国为Class 4 球墨铸铁是一种综合性能较好的铸铁,国标代号为QT。由于其力学性能接近钢,同时其铸造性能、加工性能优于钢,因此通常把它作为铸钢的替代品。最常用到的牌号有:QT450-10、QT500-7、QT600-3。由于受铸造等原因的限制,目前水泵的叶轮采用该材料,尤其是切割式的开式叶轮性价比都优越的。DIN标准对球墨铸铁的表示方法为GGG,美国的表示方法为Ductile iron。 2 铸钢 对于腐蚀和有害的石油产品,或多级泵出口压力达13.8Mpa时,需要使用规定的铸钢或铸造不锈钢。在锅炉给水泵和许多烃类应用中,常选用马氏体不锈钢,马氏体不锈钢机械性能好,适用于高压的工况,但耐腐蚀性能不如其他类不锈钢。在化工应用和其他腐蚀性的环境下,奥氏体不锈钢(CF-8M,CF-3M等)常用来作泵壳体材料,另外,奥氏体不锈钢还能抵抗由于高速而产生的侵蚀,并且可以相对容易地进行现场焊接修补。高压浅海注水泵对耐腐蚀和机械性能有更高的要求,其泵壳体选双相不锈钢材料(50%铁素体+50%奥氏体)。 由于铸钢的强度转高,通常当压力>1.6Mpa时,承压零件多采用铸钢,其国标代号为ZG,最常用的牌号为ZG23 0-450。日本和美国通常用CS表示铸钢。

铸钢件常见热处理工艺

铸钢件常见热处理 按加热和冷却条件不同,铸钢件的主要热处理方式有:退火(工艺代号:5111)、正火(工艺代号:5121)、均匀化处理、淬火(工艺代号:5131)、回火(工艺代号:5141)、固溶处理(工艺代号:5171)、沉淀硬化、消除应力处理及除氢处理。 1.退火(工艺代号:5111) 退火是将铸钢件加热到Ac3以上20~30℃,保温一定时间,冷却的热处理工艺。退火的目的是为消除铸造组织中的柱状晶、粗等轴晶、魏氏组织和树枝状偏析,以改善铸钢力学性能。碳钢退火后的组织:亚共析铸钢为铁素体和珠光体,共析铸钢为珠光体,过共析铸钢为珠光体和碳化物。适用于所有牌号的铸钢件。图11—4为几种退火处理工艺的加热规范示意图。表ll—1为铸钢件常用退火工艺类型及其应用。 2.正火(工艺代号:5121) 正火是将铸钢件目口热到Ac3温度以上30~50℃保温,使之完全奥氏体化,然后在静止空气中冷却的热处理工艺。图11—5为碳钢的正火温度范围示意图。正火的目的是细化钢的组织,使其具有所需的力学性能,也司作为以后热处理的预备处理。正火与退火工艺的区别有两个:其一是正火加热温度要偏高些;其二是正火冷却较快些。经正火的铸钢强度稍高于退火铸钢,

其珠光体组织较细。一般工程用碳钢及部分厚大、形状复杂的合金钢铸件多采用正火处理。 正火可消除共析铸钢和过共析铸钢件中的网状碳化物,以利于球化退火;可作为中碳钢以及合金结构钢淬火前的预备处理,以细化晶粒和均匀组织,从而减少铸件在淬火时产生的缺陷。 3.淬火(工艺代号:5131) 淬火是将铸钢件加热到奥氏体化后(Ac。或Ac&#8226;以上),保持一定时间后以适当方式冷却,获得马氏体或贝氏体组织的热处理工艺。常见的有水冷淬火、油冷淬火和空冷淬火等。铸钢件淬火后应及时进行回火处理,以消除淬火应力及获得所需综合力学性能。图11—6为淬火回火工艺示意图。 铸钢件淬火工艺的主要参数: (1)淬火温度:淬火温度取决于铸钢的化学成分和相应的临界温度点。图11—7为铸钢件淬火工艺温度范围示意图。原则上,亚共析铸钢淬火温度为Ac。以上20~30℃,常称之为完全淬火。共析及过共析铸钢在Ac。以上30~50℃淬火,即所谓亚临界淬火或两相区淬火。这种淬火也可用于亚共析钢,所获得的组织较一般淬火的细,适用于低合金铸钢件韧化处理。 (2)淬火介质:淬火的目的是得到完全的马氏体组织。为此,铸件淬火时的冷却速率必须大于铸钢的临界冷却速率。否则不能获得马氏体组织及其相应的性能。但冷却速率过高易于导致铸件变形或开裂。为了同时满足上述要求,应根据铸件的材质选用适当的淬火介质,

(完整word版)材料成型工艺基础复习题

一、名词解释 1、铸造:将液态金属浇注到与零件的形状相适应的铸型型腔中冷却后获得铸件的方法。 2、热应力:在凝固冷却过程中,不同部位由于不均衡的收缩而引起的应力。 3、收缩:铸件在液态、凝固态和固态的冷却过程中所发生的体积缩小的现象,合金的收缩 一般用体收缩率和线收缩率表示。 4、金属型铸造:用重力浇注将熔融金属注入金属铸型而获得铸件的方法。 5、流动性:熔融金属的流动能力,近于金属本身的化学成分、温度、杂质含量及物理性质 有关,是熔融金属本身固有的性质。 二、填空题 1、手工造型的主要特点是(适应性强)(设备简单)(生产准备时间短)和(成本低),在 (成批)和(大量)生产中采用机械造型。 2、常用的特种铸造方法有(熔模铸造)(金属型铸造)(压力铸造)(低压铸造)和(离心 铸造)。 3、铸件的凝固方式是按(凝固区域宽度大小)来划分的,有(逐层凝固)(中间凝固)和 (糊状凝固)三种凝固方式。纯金属和共晶成分的合金是按(逐层)方式凝固。 4、铸造合金在凝固过程中的收缩分三个阶段,其中(液态收缩和凝固收缩)是铸件产生缩 孔和缩松的根本原因,而(固态)收缩是铸件产生变形、裂纹的根本原因。 5、铸钢铸造性能差的原因主要是(熔点高,流动性差)和(收缩大)。 6、影响合金流动性的内因有(液态合金的化学成分),外因包括(液态合金的导热系数) 和(黏度和液态合金的温度)。 7、铸造生产的优点是(成形方便)(适应性强)和(成本低),缺点是(铸件力学性能较低) (铸件质量不够稳定)和(废品率高)。 三、是非题 1、铸造热应力最终的结论是薄壁或表层受拉。错 2、铸件的主要加工面和重要的工作面浇注时应朝上。错 3、冒口的作用是保证铸件的同时冷却。错 4、铸件上宽大的水平面浇注时应朝下。对 5、铸造生产特别适合于制造受力较大或受力复杂零件的毛坯。错 6、收缩较小的灰铸铁可以采用定向(顺序)凝固原则来减少或消除铸造内应力。错 7、相同的铸件在金属型铸造时,合金的浇注温度应比砂型浇注时低。错 8、压铸由于熔融金属是在高压下快速充型,合金的流动性很强。对 9、铸件的分型面应尽量使重要的加工面和加工基准面在同一砂箱内,以保证铸件精度。对 10、采用震击紧实法紧实砂型时,砂型下层的紧实度小于上层的紧实度。错 11、由于压力铸造具有质量好、效率高、效益好等优点,目前大量应用于黑色金属的 铸造。错 12、熔模铸造所得铸件的尺寸精度高,而表面光洁度较低。错 13、金属型铸造主要用于形状复杂的高熔点难切削加工合金铸件的生产。错 四、选择题 1、形状复杂的高熔点难切削合金精密铸件的铸造应采用(B) A 金属型铸造 B 熔模铸造 C 压力铸造 2、铸造时冒口的主要作用是(B) A 增加局部冷却速度 B 补偿热态金属,排气及集渣 C 提高流动性 3、下列易产生集中缩孔的合金成分是(C) A 0.77%C B 球墨铸铁 C 4.3%C

铸钢件生产中清理环节的注意事项和要求

铸钢件生产中清理环节的注意事项和要求 一般情况下,铸钢件生产工艺流程可分为混砂工艺、造型工艺、钢液的熔炼工艺、浇注工艺、铸钢件清理、铸钢件退火热处理、铸钢件质量验收标准七个环节,每个环节在铸钢件生产整个流程中都意义重大,企业应该积极督促员工按照各个环节的要求和标准执行操作,力保万无一失。 铸钢件清理环节是继浇注工艺后的一个环节,其在整个工艺流程中虽然并非技术要求最高、难度最大的环节,但是是不可或缺的步骤,企业应该重视并严格按照标准要求员工做到落实。 铸钢件清理注意事项及其要求: 铸钢件在未完全凝固前,不能搬动铸件,也不准在600℃以上喷水强冷。铸件一般经自然冷却2-3小时后进行清件。 (一)工作流程 清理铸件表面、型腔废砂→气割铸件浇口、冒口、毛刺→再次清理铸件残砂→焊补铸件→打磨铸件→质量验收 (二)操作方法及质量标准 1、准备工作

按照要求佩戴好劳保用品,并对工作环境进行安全确认;准备好所用机器设备和工具,并认真检查,确保机器设备、工具完好,能正常、安全运行和使用。 2、正常操作 (1)利用风镐或水清砂机进行铸件废砂清理。 (2)铸件废砂清理完毕,按照《气割安全技术操作规程》操作割枪,切割铸件浇口、冒口、飞边、毛刺。 (3)铸件切割完毕,符合要求。按照《电焊工安全技术操作规程》操作电焊机,对铸件残缺部位进行焊补,确保铸件完整。 (4)焊补完毕,复合工艺要求。利用砂轮机对铸件切割、焊补等部位进行打磨处理,保证切割部位和焊补部位光洁、平整。 (5)打磨完毕,进行验收,准备热处理 以上是铸钢件生产中清理环节的注意事项和要求,由于铸钢件清理紧随浇注环节之后,清理前一定要等铸钢件完全凝固并且要冷却2-3小时后方可进行,降低清理中员工高温受伤风险和铸件未完全凝固带来的铸钢件缺陷风险。

中频炉熔炼技术交流

(铸造公司黑色金属交流会) 刘树龙 目录 1、中频炉特点及主要技术参数 2、中频炉筑炉工艺 3、中频炉新炉衬启熔工艺 4、中频炉冷炉及冷炉启熔工艺 5、中频炉炉衬耐火材料使用寿命情况 6、中频炉熔炼工艺 7、我厂中频炉应用存在的问题

(铸造公司黑色金属交流会) 刘树龙 第一部分中频感应电炉基础 1.1感应电炉的基本原理 法拉第在1831年就发现了电磁感应现象:当通过导电回路所包围的面积的磁场发生变化时,此回路中会产生电势,此种电势称为感应电势,当回路闭合时,则产生电流。 感应电炉都是用交流电产生交变磁场,处在这个交变磁场中的金属内部则产生交变的感应电势与感应电流。感应电流的方向与炉子感应线圈中的电流方向相反。 在感应电势作用下,被加热的金属表面层产生感应电流。电流流动时,为克服金属表面层的电阻而产生焦耳热。 感应电炉就是利用这个热量使金属加热熔化。 1.2中频感应电炉的特点 在感应炉内,被熔化的金属由于受到电磁力的作用,产生强烈的搅拌力,这是感应电炉的特点。 在炉子内,电磁搅拌的作用有助于金属炉料和合金迅速熔化,铁水化学成份和温度均匀。如果电磁搅拌力过大,使金属表面旋速过高,金属液强烈流动,冲刷炉衬,使炉衬侵蚀加快,同时还使铁水氧化。这一点操作时非常重要。设计时已限制电磁搅拌作用在一定范围值内。这就要求在不生产时,限定铁水量,限定送电功率。 1.3铸造一厂灰熔车间中频感应电炉的主要技术参数 炉子有效容量:8吨 额定中频感应功率:6000KW 熔比率:10t/h 逆变器输出电压:2800-3000V 逆变器输出额率:200-280HZ 变压器输入电压:10KV 进水压力:0.6Mpa 进水温度:≤35℃

(完整版)《材料成形技术基础》习题集答案解读

填空题 1.常用毛坯的成形方法有铸造、、粉末冶金、、、非金属材料成形和快速成形. 2.根据成形学的观点,从物质的组织方式上,可把成形方式分为、、 . 1.非金属材料包括、、、三大类. 2.常用毛坯的成形方法有、、粉末冶金、、焊接、非金属材料成形和快速成形作业2 铸造工艺基础 2-1 判断题(正确的画O,错误的画×) 1.浇注温度是影响铸造合金充型能力和铸件质量的重要因素。提高浇注温度有利于获得形状完整、轮廓清晰、薄而复杂的铸件。因此,浇注温度越高越好。(×) 2.合金收缩经历三个阶段。其中,液态收缩和凝固收缩是铸件产生缩孔、缩松的基本原因,而固态收缩是铸件产生内应力、变形和裂纹的主要原因。(O) 3.结晶温度范围的大小对合金结晶过程有重要影响。铸造生产都希望采用结晶温度范围小的合金或共晶成分合金,原因是这些合金的流动性好,且易形成集中缩孔,从而可以通过设置冒口,将缩孔转移到冒口中,得到合格的铸件。(O) 4.为了防止铸件产生裂纹,在零件设计时,力求壁厚均匀;在合金成分上应严格限制钢和铸铁中的硫、磷含量;在工艺上应提高型砂及型芯砂的退让性。(O) 5.铸造合金的充型能力主要取决于合金的流动性、浇注条件和铸型性质。所以当合金的成分和铸件结构一定时;控制合金充型能力的唯一因素是浇注温度。(×) 6.铸造合金在冷却过程中产生的收缩分为液态收缩、凝固收缩和固态收缩。共晶成分合金由于在恒温下凝固,即开始凝固温度等于凝固终止温度,结晶温度范围为零。因此,共晶成分合金不产生凝固收缩,只产生液态收缩和固态收缩,具有很好的铸造性能。(×)7.气孔是气体在铸件内形成的孔洞。气孔不仅降低了铸件的力学性能,而且还降低了铸件的气密性。(O) 8.采用顺序凝固原则,可以防止铸件产生缩孔缺陷,但它也增加了造型的复杂程度,并耗费许多合金液体,同时增大了铸件产生变形、裂纹的倾向。(O) 2-2 选择题 1.为了防止铸件产生浇不足、冷隔等缺陷,可以采用的措施有(D)。 A.减弱铸型的冷却能力; B.增加铸型的直浇口高度; C.提高合金的浇注温度; D.A、B和C; E.A和C。 2.顺序凝固和同时凝固均有各自的优缺点。为保证铸件质量,通常顺序凝固适合于(D),而同时凝固适合于(B)。 A.吸气倾向大的铸造合金; B.产生变形和裂纹倾向大的铸造合金; C.流动性差的铸造合金; D.产生缩孔倾向大的铸造合金。 3.铸造应力过大将导致铸件产生变形或裂纹。消除铸件中残余应力的方法是(D);消除铸件中机械应力的方法是(C)。 A.采用同时凝固原则; B.提高型、芯砂的退让性; C.及时落砂; D.去应力退火。 4.合金的铸造性能主要是指合金的(B)、(C)和(G)。 A.充型能力;B.流动性;C.收缩;D.缩孔倾向;E.铸造应力;F.裂纹;G.偏析;H.气孔。

相关文档