文档视界 最新最全的文档下载
当前位置:文档视界 › 指数与指数幂的运算

指数与指数幂的运算

 指数与指数幂的运算
 指数与指数幂的运算

2.1.1 指数与指数幂的运算

1

谈重点对“n次方根”的理解“n次方根”的定义及性质是平方根、立方根定义及性质的推广,根式记号是平方根、立方根记号的推广,可以通过类比进行理解.

【例1】已知m10=2,则m等于()

A.

B.C

D

解析:∵m10=2

,∴m是2的10次方根.

又∵10

是偶数,∴2的10次方根有两个,且互为相反数.∴m=

答案:D

2.根式

点技巧

正数开方要分清,根指奇偶大不同,

根指为奇根一个,根指为偶双胞生.

负数只有奇次根,算术方根零或正,

正数若求偶次根,符号相反值相同.

负数开方要慎重,根指为奇才可行,

根指为偶无意义,零取方根仍为零.

【例2-1】求下列各式的值:

(1)2;(2)3;;

解:(1)2=5.(2)3=-2.2.==π-3.【例2-2】化简:;

(x<π,n∈N*).

(2)∵x<π,∴x-π<0,

当n=|x-π|=π-x;

当n=x-π.

辨误区a n的n次方根,对任意a∈R a不一定成立.当n的值不确定时,应注意分n为奇数和偶数两种情况对n进行讨论.

n的区别:①当n为奇数,且a∈R n=a;②当n为偶数,且a≥0

n=a.

3.分数指数幂

(1)

谈重点对分数指数幂的理解(1)规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数;

(2)指数幂

m

n

a不可以理解为

m

n

个a相乘,它是根式的一种新写法.在定义的规定下,根式与分数指数幂是表示相同意义的量,只是形式上不同而已,这种写法更便于指数运算,所以分数指数幂与根式可以相互转化;

(3)通常规定分数指数幂的底数a>0,但要注意在像

1

4

()a

-=中的a,则需要a≤0.【例3-1】用根式的形式表示下列各式(a>0):

1

5

a,

3

4

a,

3

5

a-,

2

3

a-.

解:

1

5

a=

3

4

a=

3

5

3

5

1

a

a

-

==,

2

3

2

3

1

a

a

-

==.

谈重点分数指数幂与根式互化的易错点(1)写成

n

m

a;

(2)负分数指数幂化简时不注意负号的位置,如

m m

n n

a a

=-

或者

m

n

a-=

点技巧巧记有理数指数幂的运算性质有理数指数幂在运算中幂指数运算法则遵循:乘相加,除相减,幂相乘.

【例3-2】求值:(1)

4

3

8-;(2)

3

4

81;

(3)

3

2

3

-

??

?

??

;(4)

2

3

27

125

-

??

?

??

解:(1)

4

443

34

3

33

1

8(2)22

16

??

?-

-- ?

-

??

====.

(2)

333

4

4

444

81(3)3?

===33=27.

(3)

33

2327 328

-

????

==

? ?

????

(4)

2

22

33

3

33 2733 12555

??

-

-?- ?

??

??

??????

==

??

? ? ?

??????

??

??

2

325 59

-

??

=

?

??

【例3-3】用分数指数幂表示下列各式(a>0,b>0):

(4)2

分析:解决本题的关键是理解分数指数幂的意义,先将根式化为分数指数幂的形式,再运用分数指数幂的运算性质进行化简.

解:(1)原式=

111

17

334

412

a a a a

+

?==.

(2)原式=

11117

11

82488

24

a a a a a

++

??==.

(3)原式=

22313

3

3326

2

a a a a

+

?==.

(4)原式=

12217

11333

23

33326

22222

()()

a a

b a a b a b a b

+

?=?==.

根式化为分数指数幂的方法

m

n

a

=(a>0,m,n∈N*,且n>1).当要变化的根式含有多重根号时,要搞清被开方数,由里向外用分数指数幂写出,然后再利用性质进行合并.4.无理数指数幂

(1)一般地,无理数指数幂aα(a>0,α是无理数)是一个确定的实数;

(2)有理数指数幂的运算性质同样适用于无理数指数幂,即:①aα·aβ=aα+β(a>0,α,β是无理数);

②(aα)β=aα·β(a>0,α,β是无理数);

③(ab)α=aαbα(a>0,b>0,α是无理数).

【例4】求值:

(1)

2

133

28-

-

??;

(2)122

+?

解:(1)

原式=

2

21333

(22(2)-

-

??

=232232

2222

--+-

??==23=8.

(2)

原式=12

+52+21=27.

5.指数幂(根式)的化简与计算

化简、计算指数幂(根式)时,应注意以下几点:

(1)运算顺序:先进行幂的运算,再进行乘除运算,最后进行加减运算,有括号的先算括号内的.

(2)如果指数是小数,那么通常化为分数指数,这样可以随时检验运算的正确性,是常用的化简技巧.比

如,(-3)2.1=

21

10

(3)

-=10(-3)21,由于(-3) 21是一个负数,所以(-3)2.1无意义,这说明化简中出现了错

误.

(3)将其中的根式化为分数指数幂,利用指数幂的运算性质进行计算.比如,化简a a,如果不将根式

a化为指数幂,就很难完成化简:a a=a·1 2

a=

1

1

2

a+=

3

2

a.

(4)计算或化简的结果尽量最简,对于根式计算结果,并不强求统一的表示形式,一般用分数指数幂的形式来表示.如果有特殊要求,则按要求给出结果,但结果中不能同时含有根号和分数指数幂,也不能既有分母又含有负指数,即结果必须化为最简形式.

综上所述:进行指数幂运算时,一般化负指数为正指数,化根式为分数指数幂,化小数为分数,同时兼顾运算的顺序.

【例5-1】计算下列各式:

(1)

3

2

5

??

?

??

+2-2×

1

2

1

2

4

-

??

?

??

-(0.01)0.5;

(2)

0.5

7

2

9

??

?

??

+(0.1)-2+

2

3

10

2

27

-

??

?

??

-3π0+

37

48

(3)

1

3

(0.064)--

7

8

??

- ?

??

4

33

[(2)]-

-+16-0.75+

1

2

|0.01|

-.

解:(1)原式=1+

11

22

1411116

1 4910061015????

?-=+-=

? ?

????

(2)原式=

12

23

2

25164375937

31003

90.1274831648

-

????

++-+=++-+

? ?

????

=100.

(3)原式=0.4-1-1+(-2)-4+2-3+0.1=5111143 1

21681080

-+++=.

【例5-2】化简:

a>0,b>0);(2)

11

11

a b

a b

--

--

+

?

(ab≠0);(3)

11

1

33

3

21121

33333

(8)2

1

42

a a

b b

a

b a b a a

??

- ?

÷-?

?

?

++??

(a·b≠0,且a≠8b).解:(1)

原式=

1

3

11

315

5

2

55

244

11

54

a b

a b a b

a

b

-

-

?=?==

(2)原式=

11

11

a b

a b ab

ab ab

+

+

==a+b.

(3)原式=

1113

3

3

2112113

3

3

3

3

3

(8)422a a b a

a b a b a

a b

-?

?++-=a .

6.条件求值问题

利用指数幂的运算性质解决带有附加条件的求值问题,一般有三种思路: (1)将条件用结论表示,直接解出结论;

(2)有些时候,直接代入求值不方便,可以从总体上把握已知式和所求式的特点,常用整体代入法来求值.要求同学们熟练掌握平方差、立方和(差)以及完全平方公式,如a +b =1121123

3

3

3

3

3

()()a b a a b b +-+,a -b =1

1112

2

2

2

()()a b a b +?-等等,运用这些公式的变形,可快速巧妙求解.

(3)有时适当地选用换元法,能使公式的使用更清晰,过程更简洁.所以在解题时要先审题,比较各种思路的优劣,然后再动手做题,养成良好的思维习惯.

例如:已知2x +2-x =a (常数),求8x +8-

x 的值.

解:(方法一)8x +8-x =23x +2-3x =(2x )3+(2-x )3=(2x +2-x )[(2x )2-2x ·2-x +(2-x )2]=(2x +2-x )[(2x +2-x )2

-3·2x ·2-x ]=(2x +2-x )[(2x +2-x )2-3]=a (a 2-3)=a 3-3a .

(方法二)令2x =t ,则2-x =t -1,所以t +t -1=a ,两边平方整理得t 2+t -2=a 2-2,则8x +8-x =t 3+t -3

=(t +t -1)(t 2-t ·t -1+t -2)=a 3-3a .

【例6】(1)已知12x =

,2

3y =

的值; (2)已知a ,b 是方程x 2-6x +4=0的两根,且a >b >0

的值.

解:

==

, 将12x =,2

y =代入,

236

=--=-=-. (2)∵a ,b 是方程x 2-6x +4=0的根, ∴由根与系数关系得6,

4.

a b ab +=??

=

又∵a >b >0,

∵2

21

105?=

===

5==

. 析规律 条件求值问题的处理方法 对于条件求值问题,常采用“整体代换”或“求值后代换”的方法求解.要注意运用恰当的变形,如分解因式等.用乘法公式时,还要注意开方时正负号的选取,如本题

第(2)小题.

7.二次根式与完全平方公式的综合问题

由于乘方和开方互为逆运算,则完全平方公式(m ±n )2=m 2±2mn +n 2与二次根式的关系也是互逆运

算.在化简a ±k b 时,可设???

x 2+y 2

=a ,

2xy =k b ,

解得x ,y ,则a ±k b =x 2±2xy +y 2=(x ±y )2=|x ±y |.

因此,只要把a ±k b 凑成完全平方公式的形式,利用c 2=|c |即可完成化简.

【例7】__________.

解析:

答案:点技巧 a ±k b 的处理有技巧 将a ±k b 化为a ±2c ·d 的形式,然后观察求出满足(c )2+(d )2=a 的c ,d 的值,则a ±k b =(c ±d )2.例如本题中的5+26=5+22·3,则5+26=(2+3)2.

2.1.1指数与指数幂的运算(2)

§2.1.1指数与指数幂的运算(2) 学习目标 1. 理解分数指数幂的概念; 2. 掌握根式与分数指数幂的相互转化; 3 掌握有理数指数幂的运算. 预习案 预习课本P 50—P 52 页内容 1.正数a 的正分数指数幂=n m a (),,0*N n m a ∈> 2.正数a 的负分数指数幂=- n m a (),,0*N n m a ∈> 3.s r a a ?= (其中),,0Q s r a ∈> 4.s r a )( = (其中),,0Q s r a ∈> 5.s b a )(?= (其中),0,Q s b a ∈> 预习自测 1. 求下列各式的值: (1)3 28 (2)2 1100- (3)2 39- 2.用分数指数幂的形式表示并计算下列各式(式中字母都是正数): (1)a a ?2 (2)323a a ? (3)a a 3.计算下列各式(式中字母都是正数): (1)(2a 3 2b 2 1)(-6a 2 1b 3 1)÷(-3a 6 1b 6 5); (2)(m 4 1n 8 3- )8. 我的疑问

探究案 自主探究一: (1)观察以下式子,并总结出规律:a >0, ①510a =55 2)(a =a 2 =a 5 10; ②8a =2 4)(a =a 4 =a 2 8; ③4 12 a =44 3)(a =a 3 =a 4 12; ④210a =22 5)(a =a 5 =a 2 10. (2)利用(1)的规律,你能表示下列式子吗? 4 35,357,57a ,n m x (x>0,m,n∈+N ,且n>1). (3)你能用方根的意义来解释(3)的式子吗? (4)0的正分数指数幂等于多少?0有负指数幂吗? (5)负整数指数幂的意义是怎样规定的? 合作探究 例1. 已知231 21 1322[()()] a b a b ab a ------==求的值. 变题1:已知31 =+-x x ,求下列各式的值:(1)2 12 1- +x x 例2. 比较63123,11,5的大小.

指数幂与负整数指数幂练习题及答案

零指数幂与负整数指数幂练习题及答案 一.解答题(共30小题) 1.计算:. 2.计算: 3.(1)计算:|﹣3|﹣+(π﹣)0 (2)先化简,再求值:(3+m)(3﹣m)+m(m﹣4)﹣7,其中m= 4.计算:. 5.计算:6.计算:22﹣(﹣1)0+.7.计算:. 8.计算:.

9.(1)计算|﹣2|+(﹣1)0﹣()﹣1﹣(﹣1)2011 (2)化简. 10.计算: 11.(1)计算:. (2)化简:求值.3(x2﹣2xy)﹣[3x2﹣2y+2(xy+y)],其中x=﹣,y=﹣3.12.(1)计算:23+﹣﹣; (2)解方程组:. 13.计算:.14.(2009重庆)计算:|﹣2|+()﹣1×(π﹣)0﹣+(﹣1)2.

15.计算:﹣12+|﹣2|+()﹣1﹣5×(2009﹣π)0 16.计算:(﹣2)2+2×(﹣3)+()﹣1 17.(1)计算:()﹣1﹣++(﹣1)2009 (2)解方程组: 18.计算:|﹣|+(﹣π)0+(﹣)2×()﹣2 19.计算﹣22+|4﹣7|+(﹣π)0 20.(1)计算:()2﹣(﹣3)+20(2)因式分解:a3﹣ab2. 21.计算:﹣(﹣1)+|﹣2|+(π+3)0﹣. 22.计算:+(﹣)0+(﹣1)3﹣|﹣1|.

23.计算:.24.计算:22+(4﹣7)÷+()0 25.计算: 26.计算:|﹣2|+﹣()﹣1+(3﹣π)0 27.计算:﹣1+(﹣2)3+|﹣3|﹣ 28.计算:(﹣1)2006+|﹣|﹣(2﹣)0﹣3.29.计算:.30.计算:

零指数幂与负整数指数幂练习题及答案 参考答案与试题解析 一.解答题(共30小题) 1.计算:. 解答:解:原式=3﹣1+4=6.故答案为6. 2.计算: 解答: 解:, =2+1+4﹣2, =5. 故答案为:5. 3.(1)计算:|﹣3|﹣+(π﹣)0 (2)先化简,再求值:(3+m)(3﹣m)+m(m﹣4)﹣7,其中m= 解答:解:(1)原式=3﹣4+1 =0; (2)原式=9﹣m2+m2﹣4m﹣7 =2﹣4m, 当m=时,原式=2﹣4×=1. 4.计算:. 解答:解:原式=(﹣2)+1+2=1,故答案为1. 5.计算:. 解答:解:原式=2+3+1﹣1 =5. 6.计算:22﹣(﹣1)0+. 解答:解:原式=4﹣1+2=5. 7.计算:. 解答: 解: =1+3﹣1﹣(﹣2) =5. 故答案为5. 8.计算:. 解答: 解:原式= =.

指数与指数幂的运算教案

指数与指数幂的运算 课题:指数与指数幂的运算 课型:新授课 教学方法:讲授法与探究法 教学媒体选择:多媒体教学 学习者分析: 1.需求分析:在研究指数函数前,学生应熟练掌握指数与指数幂的运算,通过本节内容将指数的取值范围扩充到实数,为学习指数函数打基础. 2.学情分析:在中学阶段已经接触过正数指数幂的运算,但是这对我们研究指数函数是远远不够的,通过本节课使学生对指数幂的运算和理解更加深入. 学习任务分析: 1.教材分析:本节的内容蕴含了许多重要的数学思想方法,如推广思想,逼近思想,教材充分关注与实际问题的联系,体现了本节内容的重要性和数学的实际应用价值. 2.教学重点:根式的概念及n次方根的性质;分数指数幂的意义及运算性质;分数指数幂与根式的互化. 3.教学难点:n次方根的性质;分数指数幂的意义及分数指数幂的运算. 教学目标阐明:

1.知识与技能:理解根式的概念及性质,掌握分数指数幂的运算,能够熟练的进行分数指数幂与根式的互化. 2.过程与方法:通过探究和思考,培养学生推广和逼近的数学思想方法,提高学生的知识迁移能力和主动参与能力. 3.情感态度和价值观:在教学过程中,让学生自主探索来加深对n 次方根和分数指数幂的理解,而具有探索能力是学习数学、理解数学、解决数学问题的重要方面. 教学流程图: 教学过程设计: 一.新课引入:

(一)本章知识结构介绍 (二)问题引入 1.问题:当生物体死亡后,它机体内原有的碳14会按确定的规律衰减,大约每经过5730年衰减为原来的一半,这个时间称为“半衰期”.根据此规律,人们获得了生物体内含量P 与死亡年数t 之间的关系: (1)当生物死亡了5730年后,它体内的碳14含量P 的值为 (2)当生物死亡了5730×2年后,它体内的碳14含量P 的值为 (3) 当生物死亡了6000年后,它体内的碳14含量P 的值为 (4)当生物死亡了10000年后,它体内的碳14含量P 的值为 122 12?? ???6000 5730 12?? ???100005730 12?? ? ??

高一数学指数幂及运算练习题及答案

1.若(a -3)14 有意义,则a 的取值范围是( ) A .a ≥3 B .a ≤3 C .a =3 D .a ∈R 且a ≠3 【解析】 要使(a -3)14 有意义,∴a -3≥0,∴a ≥3.故选A. 【答案】 A 2.下列各式运算错误的是( ) A .(-a 2b)2·(-ab 2)3=-a 7b 8 B .(-a 2b 3)3÷(-ab 2)3=a 3b 3 C .(-a 3)2·(-b 2)3=a 6b 6 D .[(a 3)2·(-b 2)3]3=-a 18b 18 【解析】 对于C ,∵原式左边=(-1)2·(a 3)2·(-1)3·(b 2)3=a 6·(-1)·b 6=-a 6b 6,∴C 不正确. 【答案】 C 3.计算[(-2)2]-12 的结果是________. 【解析】 [(-2)2]-12=2-12=1212=22. 【答案】 22 4.已知x 12+x -12=3,求x +x -1-3x 2+x -2-2 . 【解析】 ∵x 12+x -12 =3, ∴(x 12+x -12 )2=9,即x +x -1+2=9. ∴x +x - 1=7. ∴(x +x -1)2=49 ∴x 2+x -2=47. ∴原式=7-347-2=445.

一、选择题(每小题5分,共20分) 1.????1120-(1-0.5-2)÷????27823 的值为( ) A .-13 B.13 C.43 D.73 【解析】 原式=1-(1-22)÷????322=1-(-3)×49=73 .故选D. 【答案】 D 2.a a a(a>0)计算正确的是( ) A .a·a 12a 12=a 2 B .(a·a 12·a 14)12=a 78 C .a 12a 12a 12=a 32 D .a 14a 14a 18=a 58 【答案】 B 3.化简-a 3 a 的结果是( ) A.-a B. a C .--a D .- a 【解析】 由题意知a<0 ∴-a 3 a =--a 3a 2 =--a.故选C. 【答案】 C 4.若4|x|-2有意义,则x 的取值范围是( )

指数与指数幂的运算备课教案

2.1.1 指数与指数幂的运算(2课时) 第一课时根式 教学目标:1.理解n次方根、根式、分数指数幂的概念; 2.正确运用根式运算性质和有理指数幂的运算性质; 3.培养学生认识、接受新事物和用联系观点看问题的能力。教学重点:根式的概念、分数指数幂的概念和运算性质 教学难点:根式概念和分数指数幂概念的理解 教学方法:学导式 教学过程: (I)复习回顾 引例:填空 m n =(m,n∈Z); a+

(II )讲授新课 1.引入: (1)填空(1),(2)复习了整数指数幂的概念和运算性质(其中:因为m n a a ÷可看作m n a a -?,所以m n m n a a a -÷=可以归入性质m n m n a a a +?=;又因为n b a )(可看作 m n a a -?,所以n n n b a b a =)(可以归入性质()n n n ab a b =?(n ∈Z)),这是为下面学习分 数指数幂的概念和性质做准备。为了学习分数指数幂,先要学习n 次根式(*N n ∈)的概念。 (2)填空(3),(4)复习了平方根、立方根这两个概念。如: 分析:若22=4,则2叫4的平方根;若23=8,2叫做8的立方根;若25=32,则2叫做32的5次方根,类似地,若2n =a ,则2叫a 的n 次方根。由此,可有:

2.n 次方根的定义:(板书) 问题1:n 次方根的定义给出了,x 如何用a 表示呢?n a x =是否正确? 分析过程: 解:因为33=27,所以3是27的3次方根;因为5)2(-=-32,所以-2是-32的5次方根; 因为632a )a (=,所以a 2是a 6的3次方根。 结论1:当n 为奇数时(跟立方根一样),有下列性质:正数的n 次方根是正数,负数的n 次方根是负数,任何一个数的方根都是唯一的。此时,a 的n 次方根可表示为n a x =。 从而有:3273=,2325-=-,236a a = 解:因为4216=,16)2(4=-,所以2和-2是16的4次方根;

整数指数幂练习(含答案)人教版

整数指数幂 一、课前预习 (5分钟训练) 1.下列计算正确的是( ) A.(-2)0=-1 B.-23=-8 C.-2-(-3)=-5 D.3- 2=-9 2.填空:(1)a·a 5=__________;(2)a 0·a -3=________;(3)a -1·a - 2=________;(4)a m ·a n =____________. 3.填空:(1)a÷a 4=__________;(2)a 0÷a -2=_____________;(3)a -1÷a - 3=;(4)a m ÷a n =_________. 4.某种细菌的长约为0.000 001 8米,用科学记数法表示为_______________. 二、课中强化(10分钟训练) 1.下列计算正确的是( ) A.(a 2)3=a 5 B.(a -2)-3=a - 5 C.(31 )-1+(-π+3.14)0=-2 D.a+a -2=a -1 2.(1)(a -1)2=___________(a≠0);(2)(a -2b)-2=__________(ab≠0);(3)( b a )-1=________(ab≠0). 3.填空:(1)5-2=_______________;(2)(3a -1b)-1=_______________(ab≠0). 4.计算:(1)( a b )-2·(b a )2; (2)(-3)-5÷33. 5.计算:(1)a -2b 2·(ab -1); (2)(y x )2·(xy)-2÷(x -1y). 6.我们常用“水滴石穿”来说明一个人只要持之以恒地做某件事,就一定能成功.经测算,当水滴不断地滴在一块石头上时,经过10年,石头上可形成一个深为1厘米的小洞,那么平均每个月小洞的深度增加多少米?(结果保留三个有效数字,并用科学记数法表示)

最新指数与指数幂的运算练习题整理

2.1.1指数与指数幂的运算练习题 高一( )班 座号: 姓名: 知能点1:有理数指数幂及运算性质 1、有理数指数幂的分类 (1)正整数指数幂()n n a a a a a n N *=????∈个 ; (2)零指数幂)0(10≠=a a ; (3)负整数指数幂()1 0,n n a a n N a -*= ≠∈ (4)0的正分数指数幂等于0, 0的负分数指数幂没有意义。 2、有理数指数幂的性质 (1)()0,,m n m n a a a a m n Q ==>∈ (2)()()0,,n m mn a a a m n Q =>∈ (3)()()0,0,m m m ab a b a b m Q =>>∈ 知能点2:无理数指数幂 若a >0,P 是一个无理数,则p a 表示一个确定的实数,上述有理指数幂的运算性质,对于无理数指数幂都适用。 知能点3:根式 1、根式的定义:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中( )* ∈>N n n ,1, n a 叫做根式, n 叫做根指数,a 叫被开方数。 2,要注意以下几点: (1)n N ∈,且1n >; (2)当n 是奇数,则a a n n =;当n 是偶数,则???<-≥==0 0a a a a a a n n ; (3)负数没有偶次方根; (4)零的任何次方根都是零。 3、我们规定: (1))0,,,1m n a a m n N n * =>∈>; (2))10,,,1m n m n a a m n N n a -*= = >∈> 1、用根式的形式表示下列各式)0(>a (1)5 1a = (2)3 4 a = (3)35 a -= (4)32 a - = 2、用分数指数幂的形式表示下列各式: (1) 3 4y x = (2) )0(2>= m m m (3)85 - ?? = (4= (5= ; (6)a a a = ; (7) =?a a 2 (8)=?323a a (9)=a a (10) =35 6 q p 3、求下列各式的值 (1)2 38= ;(2)12 100- = ; (3)3 1()4 -= ;(4)3 416()81-= (5)3 227= ;(6)23)4936(= ;(7)2 3)4 25(-= ;(8)23 25=

高中数学指数与指数幂的运算(一)

课题:指数与指数幂的运算(一) 课 型:新授课 教学目标: 了解指数函数模型背景及实用性必要性,了解根式的概念及表示方法. 理解根式的概念 教学重点:掌握n 次方根的求解. 教学难点:理解根式的概念,了解指数函数模型的应用背景 教学过程: 一、复习准备: 1、提问:正方形面积公式?正方体的体积公式?(2a 、3a ) 2、回顾初中根式的概念:如果一个数的平方等于a ,那么这个数叫做a 的平方根;如果一 个数的立方等于a ,那么这个数叫做a 的立方根. → 二. 讲授新课: 1. 教学指数函数模型应用背景: ① 探究下面实例,了解指数指数概念提出的背景,体会引入指数函数的必要性. 实例1.某市人口平均年增长率为1.25℅,1990年人口数为a 万,则x 年后人口数为多少万? 实例2. 给一张报纸,先实验最多可折多少次(8次) 计算:若报纸长50cm ,宽34cm ,厚0.01mm ,进行对折x 次后,问对折后的面积与厚度? ② 书P52 问题1. 国务院发展研究中心在2000年分析,我国未来20年GDP (国内生产总值)年平均增长率达7.3℅, 则x 年后GDP 为2000年的多少倍? 书P52 问题2. 生物死亡后,体内碳14每过5730年衰减一半(半衰期),则死亡t 年后 体内碳14的含量P 与死亡时碳14的关系为57301()2 t P =. 探究该式意义? ③小结:实践中存在着许多指数函数的应用模型,如人口问题、银行存款、生物变化、自然科学. 2. 教学根式的概念及运算: ① 复习实例蕴含的概念:2(2)4±=,2±就叫4的平方根;3327=,3就叫27的立方根. 探究:4(3)81±=,3±就叫做81的?次方根, 依此类推,若n x a =,那么x 叫做a 的n 次方根. ② 定义n 次方根:一般地,若n x a =,那么x 叫做a 的n 次方根.( n th root ),其中1n >,n *∈N 例如:328=2= ③ 讨论:当n 为奇数时, n 次方根情况如何?, 例如: 33-, 记:x 当n 为偶数时,正数的n 次方根情况? 例如: 4(3)81±=,81的4次方根就是3±, 记: 强调:负数没有偶次方根,0的任何次方根都是0, 即. 0= ④ 练习:4b a =,则a 的4次方根为 ; 3b a =, 则a 的3次方根为 . ⑤ radical ), 这里n 叫做根指数(radical exponent ), a 叫做被开方数(radicand ). ⑥ 计算2→ 探究: n 、n n a 的意义及结果? (特殊到一般) n a =. 当n 是奇数时,a a n n =;当n (0)||(0)a a a a a ≥?==?-

指数与指数幂的运算(教学设计)

2.1.1(2)指数与指数幂的运算(教学设计) 内容:分数指数幂 一、教学目标 (一)知识目标 (1)理解根式的概念及其性质,能根据性质进行简单的根式计算。 (2)理解掌握分数指数幂的意义并能进行基本的运算。 (二)能力目标 (1)学生能进一步认清各种运算间的联系,提高归纳,概括的能力. (2)让学生了解由特殊到一般的解决问题的方法,渗透分类讨论的思想. (3)训练学生思维的灵活性 (三)德育目标 (1)激发学生自主学习的兴趣 (2)养成良好的学习习惯 教学重点: 次方根的概念及其取值规律。 教学难点:分数指数幂的意义及其运算根据的研究。 教学过程: 一、复习回顾,新课引入: 指数与其说它是一个概念,不如说它是一种重要的运算,且这种运算在初中曾经学习过,今天只不过把它进一步向前发展。引导学生回顾指数运算的由来,是从乘方而来,因此最初指数只能是正整数,同时引出正整数指数幂的定义。 .然后继续引导学生回忆零指数幂和负整数指数幂的定义,分别写出 及 ,同时追问这里 的由来。 二、师生互动,新课讲解: 1.分数指数幂 看下面的例子: 当0>a 时, (1)2552510)(a a a ==,又5102=,所以510 510a a =; (2)3443412)(a a a ==,又4123=,所以412 412a a =. 从上面的例子,我们看到,当根式的被开方数的指数能被根指数整除时,根式可以表示为分数指数幂的形式. 那么,当根式的被开方数的指数不能被根指数整除时,根式是否也可以表示为分数指数幂的形式呢? 根据n 次方根的定义,规定正数的正分数指数幂的意义是:n m n m a a =(0>a ,1*,,>∈n N n m ). 0的正分数指数幂等于0, 0的负分数指数幂无意义. 由于分数有既约分数和非既约分数之分,因此当0

指数与指数幂的运算

指数与指数幂的运算 1、有理数指数幂的分类 (1)正整数指数幂()n n a a a a a n N *=????∈64748 L 个; (2)零指数幂)0(10≠=a a ; (3)负整数指数幂()10,n n a a n N a -* =≠∈ (4)0的正分数指数幂等于0, 0的负分数指数幂没有意义。 2、有理数指数幂的性质 (1)()0,,m n m n a a a a m n Q ==>∈ (2)()()0,,n m mn a a a m n Q =>∈ (3)() ()0,0,m m m ab a b a b m Q =>>∈ 知能点2:无理数指数幂 若a >0,P 是一个无理数,则p a 表示一个确定的实数,上述有理指数幂的运算性质,对于无理数指数幂都适用。 知能点3:根式 1、根式的定义:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中( )* ∈>N n n ,1, n a 叫做根式, n 叫做根指数,a 叫被开方数。 2 (1)n N ∈,且1n >; (2)当n 是奇数,则a a n n =;当n 是偶数,则???<-≥==0 0a a a a a a n n ; (3)负数没有偶次方根; (4)零的任何次方根都是零。 3、我们规定: (1))0,,,1m n a a m n N n * =>∈>; (2))10,,,1m n m n a a m n N n a -*= = >∈> 1、用根式的形式表示下列各式)0(>a (1)5 1a = (2)3 4 a = (3)35 a -= (4)32 a - = 2、用分数指数幂的形式表示下列各式: (1)3 4y x = (2))0(2>= m m m (3)85 - ?? = (4= (5= ; (6)a a a = ; (7) =?a a 2 (8)=?323a a (9)=a a (10) =35 6 q p 3、求下列各式的值 (1)2 38= ;(2)12 100- = ; (3)3 1()4 -= ;(4)3 416()81-= (5)3227= ;(6)23)4936(= ;(7)23)4 25 (-= ;(8)23 25= (9)12 2 [(] - = (10)(1 2 2 1?????? = (11)=3 264

(完整版)指数与指数幂的运算练习题

2.1.1指数与指数幂的运算练习题 1、有理数指数幂的分类 (1)正整数指数幂; (2)零指数幂; (3)负整数指数幂 (4)0的正分数指数幂等于0, 0的负分数指数幂没有意义。 2、有理数指数幂的性质 (1) (2) (3) 知能点2:无理数指数幂 若>0,是一个无理数,则表示一个确定的实数,上述有理指数幂的运算性质,对于无理数指数幂都适用。 知能点3:根式 1、根式的定义:一般地,如果,那么叫做的次方根,其中,叫做根式,叫做根指数,叫被开方数。 2、对于根式记号,要注意以下几点: (1),且; (2)当是奇数,则;当是偶数,则; (3)负数没有偶次方根; (4)零的任何次方根都是零。 3、我们规定: (1); (2) 一、填空 1、用根式的形式表示下列各式 (1)= (2)= (3)= (4)= 2、用分数指数幂的形式表示下列各式: (1)= (2) (3)= ;(4)= ; (5)(6)(7) (8) 3、求下列各式的值 (1)= ;(2)= ;(3)= ; (4)= ;(5)= ;(6)= ; (7)= ;(8)= ;(9)= ; (10) 4.化简 (1)(2)

(3)(4)= (5)= (6)= (7)= (8)= 5.计算 (1)(2) (3)(4) 6.已知,求下列各式的值(1)= ;(2)= 7.若,则和用根式形式表示分别为和,和用分数指数幂形式表示分别为和。 8.使式子有意义的x的取值范围是_. 9.若,,则的值= . 10.已知,则的值为. 二.选择题. ,下列各式一定有意义的是() A. B. C. D. ,下列各式一定有意义的是() A. B. C. D. 下列各式计算正确的是() A. B. C. D. 4、若,且为整数,则下列各式中正确的是() A、B、C、D、 5、下列运算结果中,正确的是() A.B.C.D. 6.下列各式中成立的是() A.B.C.D. 7.下列各式成立的是() A. B. C. D.

2.3指数与指数幂的运算

2.3指数与指数幂的运算 班级___________姓名____________ 一、选择题(共5小题;共25分) 1. 下列各式中正确的是 ( ) A. √(?2)26 =(?2)1 3 B. √x 3y 34 =xy 3 4(x >0,y >0) C. 223 =a 13 ?b 13 D. √x y 3 =(y x ) ?1 3 (x ≠0,y ≠0) 2. 将 532 写成根式,正确的是 ( ) A. √523 B. √3 C. √3 25 D. √53 3. 下列运算中,正确的是 ( ) A. a 2a 3=a 6 B. (?a 2)5=(?a 5)2 C. (√a ?1)0 =0 D. (?a 2)5=?a 10 4. ?25 可化为 ( ) A. a ? 25 B. a 52 C. a 25 D. ?a 52 5. 若点 (a,9) 在函数 y =3x 的图象上,则 tan aπ6 的值为 ( ) A. 0 B. √33 C. 1 D. √二、填空题(共4小题;共20分) 6. 将 ?√223 化为分数指数幂的形式为 . 7. 计算:(14) ?2 +(1 6 √2)0 ?271 3= . 8. (1) n ∈N ? 时,(√a n )n = . (2) n 为正奇数时,√a n n = ;n 为正偶数时,√a n n = . 9. 若 log a 2=m ,log a 3=n ,则 a 2m+n = 三、解答题(共3小题;共39分) 10. 求值: (1) 4? 32 +(?27 8 )2 3 ?(0.1)0; (2)[(1?√2)2]12 ?(1+√2) ?1 ?1+213÷214.

(完整版)幂的运算练习题

幕的运算练习题(每日一页) 【基础能力训练】 」、同底数幕相乘 1下列语句正确的是() A ?同底数的幕相加,底数不变,指数相乘; B. 同底数的幕相乘,底数合并,指数相加; C. 同底数的幕相乘,指数不变,底数相加; D. 同底数的幕相乘,底数不变,指数相加 2. a 4 ? a m ? a n =() A. a 4m B . a 4(m+n) C . a m+n+4 D . a m+n+4 7. 计算:a ? (-a ) 2 ?(-a ) 3 8. 计算:(x — y ) 2 ? (x -y ) 3-(x — y ) 4 ? (y -x ) 3. (-x ) ? (-x ) 8 ? (-x ) 3=() A . (-x ) 11 B . (-x ) 24 C . x 12 4. 下列运算正确的是() A . a 2 ? a 3=a 6 B . a 3+a 3=2a T C . a 3a 2=a 6 5. a- a 3x 可以写成() A . (a 3 ) x+1 B . (a x ) 3+1 C . a 3x+1 6. 计算:100X 100m - 1x 100m+1 12 a 8- a 4=a D . (a x ) 2x+1

、幕的乘方 9?填空:(1) (a8) 7= ______ ; (2) (105) m= _______ ; (3) (a m) 3= ______ ; (4) (b2m) 5= _______ ; (5) (a4) 2? (a3) 3= _______ . 10. 下列结论正确的是() A .幕的乘方,指数不变,底数相乘; B .幕的乘方,底数不变,指数相加; C. a的m次幕的n次方等于a的m+n次幕; D. a的m次幕的n次方等于a的mn次幕 11. 下列等式成立的是() A. ( 102) 3=105 B. (a2) 2=a4 C. (a m) 2=a m+2 D. (x n) 2=x2n 12. 下列计算正确的是() A. (a2) 3? (a3) 2=a6? a6=2a6 B. ( —a3) 4? a7=a7? a2=a9 2 3 3 2 6 6 12 C. (—a ) ?( —a ) = ( —a ) ?( —a ) =a D. — (—a3) 3? ( —a2) 2=—(—a9) ? a4=a13 13. 计算:若642X 83=2x,求x的值. 、积的乘方 14. 判断正误: (1)积的乘方,等于把其中一个因式乘方,把幕相乘( ) (2)(xy) n=x ? y n() (3)(3xy) n=3 (xy) n() (4) (ab) nm=a m b n() (5) ( —abc) n= (—1) n a n b n c n() 15. (ab3) 4=()

2[1].1.1指数与指数幂的运算练习题(整理)1

高一( )班 座号: 姓名: 知能点1:有理数指数幂及运算性质 1、有理数指数幂的分类 (1)正整数指数幂()n n a a a a a n N *=????∈个 ; (2)零指数幂)0(10≠=a a ; (3)负整数指数幂()10,n n a a n N a -* = ≠∈ (4)0的正分数指数幂等于0, 0的负分数指数幂没有意义。 2、有理数指数幂的性质 (1)()0,,m n m n a a a a m n Q ==>∈ (2)()()0,,n m mn a a a m n Q =>∈ (3) ()()0,0,m m m ab a b a b m Q =>>∈ 知能点2:无理数指数幂 若a >0,P 是一个无理数,则p a 表示一个确定的实数,上述有理指数幂的运算性质,对于无理数指数幂都适用。 知能点3:根式 1、根式的定义:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中( )* ∈>N n n ,1, n a 叫做根式, n 叫做根指数,a 叫被开方数。 2 (1)n N ∈,且1n >; (2)当n 是奇数,则a a n n =;当n 是偶数,则?? ?<-≥==0 0a a a a a a n n ; (3)负数没有偶次方根; (4)零的任何次方根都是零。 3、我们规定: (1))0,,,1m n a a m n N n * =>∈>; (2))10,,,1m n m n a a m n N n a -*= = >∈> 1、用根式的形式表示下列各式)0(>a (1)5 1a = (2)3 4 a = (3)35 a -= (4)32 a - = 2、用分数指数幂的形式表示下列各式: (1)3 4y x = (2))0(2>= m m m (3)85 - ?? = (4= (5= ; (6)a a a = ; (7) =?a a 2 (8)=?323a a (9)=a a (10) =35 6 q p 3、求下列各式的值 (1)2 38= ;(2)12 100- = ; (3)3 1()4 -= ;(4)3 416()81-= (5)3227= ;(6)23)4936(= ;(7)23)4 25 (-= ;(8)23 25= (9)12 2 [(]- = (10)(1 2 2 1?????? = (11)=3 264 4.化简

零指数幂与负整数指数幂练习题

? 零指数幂与负整数指数幂练习题 1、计算:-1-(-1)0的结果正确是() A.0 B.1 C.2 D.-2 2、芝麻作为食品和药物,均广泛使用.经测算,一粒芝麻约有0.00000201千克,用科学记数法表示为() A.×10-6千克 B.×10-5千克 C.×10-7千克 D.×10-7千克 3、已知空气的单位体积质量为1.24×10-3克/厘米3,1.24×10-3用小数表示为() A.B.C.D. 4、如图,H7N9病毒直径为30纳米(1纳米=10-9米),用科学记数法表示这个病毒直径的大小,正确的是() : A.30×10-9米B.×10-8米C.×10-10米D.×10-9米 5、计算的结果是( ) A.4 B.-4 C. D. 6、若(x-2)0=1,则( ) A.x≠0 B.x≥2 C.x≤2 D.x≠2 7、若,则x=( ) A.10 B.1 C.0 D.以上结论都不对 > 8、下列运算正确的是( )

A.=0 B.(9-33)0=0 C.(-1)0=1 D.(-2)0=-2 9、化简(x≠-y)为() A.1 B.0 C.x+y D.以上结论都不对 10、英国曼彻斯特大学的两位科学家因为成功地从石墨中分离出石墨烯,荣获了诺贝尔物理学奖.石墨烯目前是世上最薄却也是最坚硬的纳米材料,同时还是导电性最好的材料,其理论厚度仅000 000 34米,将这个数用科学记数法表示为() A.×10-9B.×10-9%C.×10-10D.×10-11 11、花粉的质量很小,一粒某种植物花粉的质量约为毫克,已知1克=1000毫克,那么毫克可用科学记数法表示为() A.×10﹣5克B.×10﹣6克 C.37×10﹣7克D.×10﹣8克 12、计算:. ' 13、某种原子直径为×10-2纳米,把这个数化为小数是_______纳米. 14、钓鱼岛列岛是我国固有领土,共由8个岛屿组成,其中最大的岛是钓鱼岛,面积约为平方公里,最小的岛是飞濑屿,面积约为平方公里.请用科学记数法表示飞濑屿的面积约为_______平方公里. 15、若(a-2)a+1=1,则a=______. 16、若,则x=______. 17、如果无意义,则=______. 18、计算:4-2x5?(23x-2)2=________. 19、用小数表示:×10-5=______. 20、 ,

高一数学必修一指数与指数幂的运算练习总结

高一数学练习19——指数与指数幂的运算 1. 3)8(-的值是 ( ) A .2 B. 2- C. 2± D. 8 2.给出下列4个等式:① a a =2;②a a =2)(;③a a =33;④a a =33)(。其中不一定正确的是 ( ) A. ① B. ② C. ③ D. ④ 3.若 332)21(144a a a -=+-,则实数a 的取值范围为 ( ) A.21≤a B. 21≥a C. 2 121≤≤-a D .R 4.下列说法正确的是 ( ) A.正数的n 次方根是正数)(*N n ∈ B.负数的n 次方根是负数)(*N n ∈ C.0的n 次方根是0)(*N n ∈ D. n a 是无理数)(*N n ∈ 5.若,3120<-x ,则化简33 44)6()8(x x -+-的结果是 9.求下列各式的值: (1)=3248 (2)=462525 (3)=-2)3( (4)=-33)3( (5= (6)=-2)3(a (7)=-+-+-33443 3)2()4()2(ππ 10.化简下列各式:

(1)2115113 36622133a b a b a b ??????-÷ ? ?????,其中0,0.a b >> (2)121 1334223x y x y -????- ??????? (3 )186255a b --??? ??? 一、 选择题 1.化简(1+2321-)(1+2161 -)(1+281 -)(1+2-41 )(1+221 -),结果是( ) A 、 21(1-2321-)-1 B 、(1-232 1 -)-1 C 、 1-2321- D 、21(1-2321 - ) 2.(369a )4(639a )4等于( ) A 、 a 16 B 、 a 8 C 、 a 4 D 、 a 2 3.若a>1,b<0,且a b +a -b =22,则a b -a -b 的值等于( ) A 、6 B 、±2 C 、-2 D 、2 4.已知a>b,ab 0≠下列不等式(1)a 2>b 2,(2)2a >2b ,(3)b a 11<,(4)a 31>b 31,(5)(31)a <(31) b 中恒成立的有( ) A 、1个 B 、2个 C 、3个 D 、4个 5.下列关系中正确的是( ) A 、(21)32<(51)32<(21)31 B 、(21)31<(21)32<(51)3 2 C 、(51)32<(21)31<(21)32 D 、(51)32<(21)32<(21)31 6.已知三个实数a,b=a a ,c=a a a ,其中0.9

指数与指数幂的运算练习题

指数与指数幂的运算练习题 1、有理数指数幂的分类 (1)正整数指数幂()n n a a a a a n N *=????∈个 ; (2)零指数幂)0(10≠=a a ; (3)负整数指数幂()10,n n a a n N a -* = ≠∈ (4)0的正分数指数幂等于0, 0的负分数指数幂没有意义。 2、有理数指数幂的性质 (1)()0,,m n m n a a a a m n Q ==>∈ (2)()()0,,n m mn a a a m n Q =>∈ (3)() ()0,0,m m m ab a b a b m Q =>>∈ 知能点2:无理数指数幂 若a >0,P 是一个无理数,则p a 表示一个确定的实数,上述有理指数幂的运算性质,对于无理数指数幂都适用。 知能点3:根式 1、根式的定义:一般地,如果a x n =,那么x 叫做a 的n 次方根,其中( )* ∈>N n n ,1, n a 叫做根式, n 叫做根指数,a 叫被开方数。 2,要注意以下几点: (1)n N ∈,且1n >; (2)当n 是奇数,则a a n n =;当n 是偶数,则???<-≥==0 0a a a a a a n n ; (3)负数没有偶次方根; (4)零的任何次方根都是零。 3、我们规定: (1))0,,,1m n a a m n N n * =>∈>; (2))10,,,1m n m n a a m n N n a -*= = >∈> 1、用根式的形式表示下列各式)0(>a (1)5 1a = (2)3 4 a = (3)35 a -= (4)32 a - = 2、用分数指数幂的形式表示下列各式: (1) 3 4y x = (2) )0(2>= m m m (3)85 - ?? = (4= (5= ; (6)a a a = ; (7) =?a a 2 (8)=?323a a (9)=a a (10) =35 6 q p 3、求下列各式的值 (1)2 38= ;(2)12 100- = ; (3)3 1()4 -= ;(4)3 416()81-= (5)3 227= ;(6)23)4936(= ;(7)2 3)4 25(-= ;(8)23 25= (9)12 2 [(]- = (10)(1 2 2 1?????? = (11)=3 264 4.化简

指数与指数幂的运算习题.doc

《指数与指数幂的运算》习题 1.下列各式正确的是 ( ) =- 3 = a = 2 D . a 0= 1 2.若 (x - 5)0 有意义,则 x 的取值范围是 ( ) A . x>5 B . x = 5 C . x<5 D . x ≠5 3.若 xy ≠0,那么等式 4x 2y 3 =- 2xy y 成立的条件是 () A . x>0,y>0 B . x>0, y<0 C . x<0, y>0 D . x<0, y<0 n + 12 1 2n + 1 2 · 4.计算 2 (n ∈ N * )的结果为 ( ) n - 2 4 ·8 B .2 2n + 5 C . 2n 2 -2n + 6 D . 1 - ( ) 2n 7 2 5.化简 23- 6 10-4 3+2 2得 ( ) A .3+ 2 B .2+ 3 C .1+2 2 D . 1+2 3 1 - 1 a 2+ 1 ) 6.设 a - a 2 =m ,则 = ( 2 a A . m 2 - 2 B .2- m 2 C . m 2+ 2 D . m 2 7.根式 a - a 化成分数指数幂是 ________. 8.化简 11+ 6 2+ 11- 6 2 =________. 9.化简 ( 3+ 2)2010·( 3- 2)2011= ________. 10.化简求值: (1) - 1 1 3 +; 3 - (- )0 +16 4 8 - 1 - 1 a + b (2) ab - 1 (a , b ≠ 0).

高中数学实数指数幂及其运算测试题(有答案)-word文档

高中数学实数指数幂及其运算测试题(有答案)第三章基本初等函数(Ⅰ) 3.1指数与指数函数 3.1.1有理指数幂及其运算 【目标要求】 1.理解根式的概念。 2.理解分数指数的概念,掌握根式与分数指数幂的关系。3.掌握有理数幂的运算性质并注意灵活运用。 4.掌握用计算器计算有理指数幂的值。 【巩固教材稳扎马步】 1.下列说法中正确的是() A.-2是16的四次方根 B.正数的次方根有两个 C. 的次方根就是 D. 2.下列等式一定成立的是() A. =a B. =0C.(a3)2=a9D. 3. 的值是() A. B. C. D. 4.将化为分数指数幂的形式为( )[ A. B. C. D. 【重难突破重拳出击】 5.下列各式中,正确的是() A. B. C . D.

6.设b 0,化简式子的结果是() A.a B. C. D. 7.化简[3 ]的结果为 () A.5 B. C.- D.-5 8.若,则等于 ( ) A.2 -1 B.2-2 C.2 +1 D. +1 9. 成立的充要条件是() A. 1C.x<1 D.x2 10.式子经过计算可得到() A. B. C. D. 11.化简 (a>0,c<0 的结果为() A. B.- C.- D. 12.设x0, 等于() A. B.2或-2C.2D.-2 【巩固提高登峰揽月】 13.计算0.027 -(-)-2+256 -3-1+(-1)0=__________. 14.化简 =__________. 【课外拓展超越自我】 15.已知求的值. 第三章基本初等函数(Ⅰ) 3.1指数与指数函数

3.1.1有理指数幂及其运算 题号 1 2 3 4 5 6 7 8 9 10[ 11 12 答案 D D A A D A B A D D B C 13.1914. 15.解:由可得x+x-1=7 =27 =18, 故原式=2

相关文档
相关文档 最新文档